WO2013084650A1 - 金属粉末製造用プラズマ装置 - Google Patents

金属粉末製造用プラズマ装置 Download PDF

Info

Publication number
WO2013084650A1
WO2013084650A1 PCT/JP2012/078914 JP2012078914W WO2013084650A1 WO 2013084650 A1 WO2013084650 A1 WO 2013084650A1 JP 2012078914 W JP2012078914 W JP 2012078914W WO 2013084650 A1 WO2013084650 A1 WO 2013084650A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
cooling
metal powder
cooling section
carrier gas
Prior art date
Application number
PCT/JP2012/078914
Other languages
English (en)
French (fr)
Inventor
史幸 清水
前川 雅之
周作 川口
Original Assignee
昭栄化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭栄化学工業株式会社 filed Critical 昭栄化学工業株式会社
Priority to US14/359,837 priority Critical patent/US9375789B2/en
Priority to KR1020147015048A priority patent/KR102005923B1/ko
Priority to CA2855579A priority patent/CA2855579C/en
Priority to JP2013548154A priority patent/JP5900510B2/ja
Priority to CN201280067355.1A priority patent/CN104066537B/zh
Priority to EP12855937.4A priority patent/EP2789414B1/en
Publication of WO2013084650A1 publication Critical patent/WO2013084650A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/18Heating by arc discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/28Cooling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0871Heating or cooling of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0879Solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/13Use of plasma

Definitions

  • the present invention relates to a plasma apparatus for producing metal powder, and more particularly to a plasma apparatus comprising a tubular cooling pipe and producing metal powder by cooling metal vapor generated by melting and evaporating a metal raw material with the cooling pipe.
  • conductive metal powder is used to form conductor coatings and electrodes.
  • the properties and properties required for such metal powders include a small amount of impurities, a fine powder having an average particle size of about 0.01 to 10 ⁇ m, a uniform particle shape and particle size, and agglomeration. There are few, dispersibility in a paste is good, crystallinity is good, etc.
  • conductor coatings and electrodes have been made thinner and fine pitches, and therefore, a finer, more spherical and highly crystalline metal powder has been demanded.
  • One method for producing such fine metal powders is to use plasma to melt and evaporate metal raw materials in a reaction vessel, then cool and condense metal vapor to produce a large number of metal nuclei.
  • a plasma apparatus is known in which a metal powder is obtained by growing it (see Patent Documents 1 and 2).
  • metal vapor is condensed in the gas phase, so that it is possible to produce metal particles with few impurities, fine, spherical and highly crystalline.
  • these plasma devices are each provided with a long tubular cooling pipe, and perform cooling in a plurality of stages for a carrier gas containing metal vapor.
  • Patent Document 1 a first cooling unit that performs cooling by directly mixing a preheated hot gas with the carrier gas, and then a second cooling that performs cooling by directly mixing a normal temperature cooling gas. Department.
  • the indirect cooling section first first for cooling the carrier gas without directly contacting the fluid with the carrier gas.
  • the latter employs indirect cooling in which cooling by radiation is dominant, and therefore, compared with other plasma devices in which cooling by conduction or convection is dominant, metal nuclei (hereinafter simply referred to as “nuclear”). Can be uniformly formed, grown, and crystallized, and a metal powder having a controlled particle size and particle size distribution can be obtained.
  • FIG. 7 is a diagram showing the configuration of the cooling pipe described in Patent Document 2.
  • the cooling pipe 14 includes an indirect cooling section 34 and a direct cooling section 50, and the indirect cooling section 34 is configured by a double pipe of an inner pipe 36 and an outer pipe 38. Then, by circulating a cooling fluid in the space between the outer wall of the inner tube 36 and the inner wall of the outer tube 38, indirect cooling of the metal vapor from the reaction vessel and the metal powder generated by condensation of the metal vapor is performed. It is carried out.
  • the carrier gas is mixed with a cooling fluid to perform direct cooling.
  • the direct cooling section 50 employs a cooling pipe having an inner diameter larger than that of the indirect cooling section 34 to rapidly expand the carrier gas that has passed through the indirect cooling section 34, thereby improving the cooling efficiency.
  • the indirect cooling section 34 radiation cooling is performed on the metal vapor in the carrier gas that has been transferred into the cooling pipe at a high temperature, so that uniform, stable nucleus generation, growth, and crystallization proceed. To do.
  • the particle size distribution of the obtained metal powder is improved as compared with the conventional plasma apparatus, Furthermore, there was a limit in trying to obtain a sharper particle size distribution.
  • the present inventors have conducted research on the cause, and in the indirect cooling section, in the area close to the inner wall of the cooling pipe and the area close to the center (axis), the flow rate and temperature of the carrier gas, the concentration of the metal vapor, etc. We found that there was a difference. Therefore, although it is not certain, the generation timing of the nuclei differs between the region near the inner wall in the cooling pipe and the region near the center due to the difference, whereas the nuclei precipitated at an early timing become larger due to grain growth, especially coalescence. The nuclei deposited late may reach the cooling zone directly before being united and rapidly cooled, which may affect the particle size distribution. Moreover, the above-described difference becomes more prominent as the inner diameter of the cooling pipe is smaller.
  • An object of the present invention is to provide a plasma device for producing metal powder that solves these problems, can obtain a metal powder having a narrow particle size distribution, and has higher production efficiency.
  • a reaction vessel to which a metal raw material is supplied A plasma torch that generates a plasma with the metal source in the reaction vessel and generates a metal vapor by evaporating the metal source; A carrier gas supply unit for supplying a carrier gas for conveying the metal vapor into the reaction vessel;
  • a plasma apparatus for producing metal powder comprising a cooling pipe for cooling the metal vapor transferred from the reaction vessel by the carrier gas to produce metal powder, An indirect cooling section in which the cooling pipe indirectly cools the metal vapor and / or metal powder transferred by the carrier gas from the reaction vessel; the indirect cooling section; and the metal vapor and / or metal powder And a direct cooling section for directly cooling
  • a plasma apparatus for producing metal powder is provided, wherein at least part of the inner wall of the indirect cooling section is provided with a convex part and / or a concave part.
  • the said convex part and / or a recessed part are provided in the inner wall upstream from the position in the said indirect cooling section where a metal nucleus begins to precipitate.
  • a plasma apparatus for producing a metal powder as described in 1 above is provided.
  • the said convex part and / or a recessed part are provided in the inner wall in the said indirect cooling division,
  • the plurality of convex portions and / or concave portions are provided on the inner wall in the indirect cooling section spirally with respect to the longitudinal direction of the cooling pipe.
  • a plasma device for producing metal powder according to claim 3 is provided.
  • the said indirect cooling section cools the circumference
  • the direct cooling section is a section in which a cooling fluid is cooled by being brought into direct contact with the metal vapor and / or metal powder.
  • a plasma device is provided.
  • the carrier gas flow velocity and temperature in the indirect cooling section, the concentration of the metal vapor, and the like can be made uniform, so that the particle size distribution is narrow without reducing the production efficiency.
  • Metal powder can be obtained.
  • the present invention is particularly gentle and more stable without reducing the merit of indirect cooling by providing convex portions and / or concave portions upstream of the region where metal nuclei begin to precipitate in the cooling pipe in the indirect cooling section. The formation, growth and crystallization of nuclei can proceed in a uniform and uniform atmosphere.
  • FIG. 1 shows an example of a plasma apparatus 100 for producing metal powder (hereinafter simply referred to as a plasma apparatus) in which the present invention is applied to a transfer type arc plasma apparatus similar to Patent Document 2, and the inside of a reaction vessel 102 is shown in FIG. Then, the metal raw material is melted and evaporated, and the generated metal vapor is cooled and condensed in the cooling pipe 103 to generate metal particles.
  • a plasma apparatus 100 for producing metal powder hereinafter simply referred to as a plasma apparatus
  • a transfer type arc plasma apparatus similar to Patent Document 2
  • the metal raw material is melted and evaporated, and the generated metal vapor is cooled and condensed in the cooling pipe 103 to generate metal particles.
  • the metal raw material is not particularly limited as long as it is a conductive substance containing the metal component of the target metal powder.
  • an alloy or composite containing two or more metal components Mixtures, compounds and the like can be used.
  • the metal component include silver, gold, cadmium, cobalt, copper, iron, nickel, palladium, platinum, rhodium, ruthenium, tantalum, titanium, tungsten, zirconium, molybdenum, niobium, and the like.
  • nickel powder is produced as metal powder and metal nickel is used as the metal raw material will be described, but the present invention is not limited to this.
  • a predetermined amount of metallic nickel is prepared in the reaction vessel 102, and after starting the operation of the apparatus, depending on the amount reduced from the reaction vessel 102 as metal vapor. As needed, the reaction vessel 102 is replenished from the feed port 109. Therefore, the plasma apparatus of the present invention can produce metal powder continuously for a long time.
  • a plasma torch 104 is disposed above the reaction vessel 102, and a plasma generating gas is supplied to the plasma torch 104 via a supply pipe (not shown).
  • the plasma torch 104 generates a plasma 107 using the cathode 106 as a cathode and an anode (not shown) provided inside the plasma torch 104 as an anode, and then moves the anode to the anode 105, whereby the cathode 106 and the anode 105.
  • a plasma 107 is generated in between, and at least a part of the metallic nickel in the reaction vessel 102 is melted by the heat of the plasma 107 to generate a molten nickel 108. Further, the plasma torch 104 evaporates a part of the molten metal 108 by the heat of the plasma 107 and generates nickel vapor (corresponding to the metal vapor of the present invention).
  • the carrier gas supply unit 110 supplies a carrier gas for transporting nickel vapor into the reaction vessel 102.
  • the carrier gas is not particularly limited when the metal powder to be produced is a noble metal, and an oxidizing gas such as air, oxygen or water vapor, an inert gas such as nitrogen or argon, or a mixed gas thereof may be used. It is preferable to use an inert gas when producing base metals such as nickel and copper that can be easily oxidized. Unless otherwise specified, nitrogen gas is used as the carrier gas in the following description.
  • the carrier gas may be mixed with a reducing gas such as hydrogen, carbon monoxide, methane, or ammonia gas, or an organic compound such as alcohols or carboxylic acids as necessary.
  • a reducing gas such as hydrogen, carbon monoxide, methane, or ammonia gas
  • an organic compound such as alcohols or carboxylic acids
  • oxygen and other components such as phosphorus and sulfur may be included.
  • the plasma generation gas used to generate plasma also functions as part of the carrier gas.
  • the carrier gas containing nickel vapor generated in the reaction vessel 102 is transferred to the cooling pipe 103.
  • the cooling pipe 103 includes an indirect cooling section IC that indirectly cools nickel vapor and / or nickel powder contained in the carrier gas, and a direct cooling section that directly cools nickel vapor and / or nickel powder contained in the carrier gas. DC is provided.
  • cooling is performed by cooling or heating the periphery of the cooling pipe 103 (inner pipe 120) using a cooling fluid, an external heater, or the like, and controlling the temperature of the indirect cooling section IC.
  • the cooling fluid the above-described carrier gas and other gases can be used, and liquids such as water, warm water, methanol, ethanol, or a mixture thereof can also be used.
  • the indirect cooling section IC may be composed of two or more sections having different inner diameters.
  • the indirect cooling section IC is disposed between the first indirect cooling section to which the carrier gas containing the nickel vapor is transferred from the reaction vessel, and between the first indirect cooling section and the direct cooling section.
  • the first indirect cooling section is smaller in inner diameter than the second indirect cooling section.
  • the concentration of the metal vapor is decreased in the second indirect cooling section. Since indirect cooling is subsequently performed in this state, and then direct cooling is performed, the metal powder can be grown and crystallized in a more uniform atmosphere, and a metal powder having a narrower particle size distribution can be obtained.
  • nickel vapor in the carrier gas transferred into the cooling pipe 103 at a high temperature is cooled relatively slowly by radiation, and nuclei are generated in a stable and uniformly temperature-controlled atmosphere.
  • nickel powder having a uniform particle size is generated in the carrier gas.
  • the cooling fluid supplied from a cooling fluid supply unit (not shown) is jetted or mixed with the nickel vapor and / or nickel powder transferred from the indirect cooling section IC to perform direct cooling.
  • the cooling fluid used in the direct cooling section DC may be the same as or different from the cooling fluid used in the indirect cooling section IC, but is the same as the carrier gas from the viewpoint of ease of handling and cost. It is preferable to use gas (nitrogen gas in the following embodiments).
  • gases nitrogen gas in the following embodiments.
  • components such as a reducing gas, an organic compound, oxygen, phosphorus, and sulfur may be mixed and used as necessary, similarly to the carrier gas described above.
  • the cooling fluid includes a liquid, the liquid is introduced into the cooling pipe 103 (inner pipe 160) in a sprayed state.
  • nickel vapor and nickel powder are mixed in the carrier gas in the indirect cooling compartment IC, the ratio of nickel vapor on the downstream side is lower than that on the upstream side. Moreover, depending on the apparatus, nickel vapor and nickel powder may be mixed even in the carrier gas in the direct cooling section DC. However, as described above, the generation, growth, and crystallization of nuclei preferably proceed and complete in the indirect cooling compartment IC, so that the carrier gas in the direct cooling compartment DC contains nickel vapor. Preferably not.
  • the carrier gas containing the metal powder is conveyed further downstream from the cooling pipe 103 and separated into the metal powder and the carrier gas in a collector (not shown), and the metal powder is recovered. Note that the carrier gas separated by the collector may be reused by the carrier gas supply unit 110.
  • the concentration is high and the temperature is several thousand K (for example, 3000 K), but by indirect cooling (radiation cooling), The temperature drops to near the boiling point of the metal, and many nuclei begin to precipitate almost simultaneously at a location in the indirect cooling compartment IC.
  • the position at which the nuclei begin to precipitate varies depending on the type of the target metal, the concentration of the metal vapor, the flow rate of the carrier gas, the temperature of the metal vapor or the carrier gas, the temperature distribution in the tube, etc. Although not shown here, in order to facilitate understanding, it is assumed that nuclei begin to precipitate at the position indicated by the virtual plane 180 in the drawing.
  • the cooling pipe 103 is an inner wall of the inner pipe 120 of the indirect cooling section IC, and includes convex portions 170 at two positions facing each other upstream from the virtual plane 180.
  • the convex portion 170 By the presence of the convex portion 170, the flow of the mixed gas of the carrier gas and the metal vapor is disturbed and stirred in the cooling pipe 103, so that the area close to the inner wall of the cooling pipe 103 and the area close to the center are In the meantime, it is possible to suppress the nonuniformity of the temperature and flow rate of the carrier gas and the concentration of the metal vapor, thereby making it possible to align the timing of nucleation.
  • the size, shape, number, arrangement, etc. of the protrusions are uneven in the region near the inner wall of the cooling pipe and the region near the center where the mixed gas of carrier gas and metal vapor is appropriately stirred.
  • the size of the convex portion is appropriately determined according to the type of the target metal, the concentration of the metal vapor, the flow rate of the carrier gas, the temperature of the metal vapor or the carrier gas, the temperature distribution in the tube, etc. If it is too large, the non-uniformity of the metal concentration in the cooling pipe (concentration including metal vapor and nuclei) will increase, adversely affecting the particle size distribution, and if it is too small, the effects of the present invention cannot be obtained. . Therefore, a suitable size, shape, number, arrangement, and the like of the convex portions can be appropriately designed by performing a simulation in consideration of the above-described factors in advance.
  • the convex portion 171 may be ring-shaped.
  • the convex part 171 in the example of FIG. 3A makes it possible to perform more effective stirring by using a wedge-shaped section whose cross section is inclined on the upstream side, as shown in FIG. 3B.
  • the convex portions 172 may be arranged along the longitudinal direction (axial direction) of the cooling pipe 103. In this example, four convex portions 172 are provided on the upstream side. And two downstream locations.
  • the convex part 172 has a rectangular cross section.
  • the convex portion 173 may be arranged in a spiral shape with respect to the longitudinal direction of the cooling pipe 103.
  • a plurality of convex portions 173 having a substantially triangular cross section as shown in FIG. 5B are spirally arranged over the entire area of the indirect cooling section IC, so that the carrier gas rotates in the cooling pipe 103 while downstream. A swirling flow traveling to the side is generated.
  • the convex portion 173 is arranged so that the tip end portion 173a faces the center of the inner tube 120.
  • two spirals are used, but one spiral or three or more spirals may be used.
  • the plurality of convex portions 173 are arranged at intervals, but may be formed in a single band shape.
  • a concave portion may be provided on the inner wall instead of the convex portion. It is also possible to form both convex portions and concave portions.
  • recesses 174 are formed at two locations on the inner wall of the inner pipe 120 of the indirect cooling section IC that face each other upstream of the virtual surface 180.
  • the recess 174 has a rectangular cross section.
  • the convex part and / or the concave part are only required to be arranged at least upstream of the position (the virtual surface 180) where the metal nucleus begins to precipitate in the indirect cooling section IC.
  • the example shown in FIG. 5A As described above, it is not excluded that they are also arranged downstream of the virtual plane 180. As an example, it is desirable that the height of the convex part and / or the depth of the concave part be in the range of 1 to 100 mm.
  • Nickel powder was manufactured by the plasma apparatus 100 shown in FIG. 1 including the cooling pipe 103 provided with the convex portions 170 shown in FIGS. 2A and 2B.
  • the cooling pipe 103 is a combination of an inner pipe 120 (indirect cooling section IC) having an inner diameter of 8 cm and a length of 115 cm and an inner pipe 160 (direct cooling section DC) having an inner diameter of 18 cm and a length of 60 cm.
  • Two protrusions 170 having a height (h) of 1 cm, a width (w) of 1 cm, and a length (l) of 5 cm are located on the inner wall of the inner tube 120 at a position 20 cm from the upstream end of the inner tube 120. It is arranged.
  • the carrier gas passing through the cooling pipe 103 was 300 L / min, and the metal concentration was controlled to be in the range of 2.1 to 14.5 g / m 3 .
  • the SD value represented by SD (D90 ⁇ D10) / (D50) was determined as an index of particle size distribution.
  • Nickel powder was manufactured using the same apparatus and the same conditions as in Example 1 except that the convex portion 170 was not provided.
  • Example 2 Nickel powder was manufactured in the same manner as in Example 1 except that the cooling pipe 103 provided with the convex portions 173 described in FIGS. 5A and 5B was used.
  • the convex portion 173 a plurality of blocks having a substantially isosceles triangle shape with a cross section of a base (w) of 1 cm and a height (h) of 1 cm and a length (l) of 3 cm were prepared.
  • the plurality of convex parts 173 are extended over the entire area of the indirect cooling section IC so that the longitudinal direction of the convex part 173 is at an angle of 45 ° with respect to the longitudinal direction (axial direction) of the cooling pipe 103. Arranged in two spirals.
  • the nickel powder obtained in Examples 1 and 2 had a narrower particle size distribution than the nickel powder obtained in Comparative Example 1.
  • the inner diameter and length of the inner pipe in the indirect cooling section and the direct cooling section are the type of metal, concentration of metal vapor, carrier gas flow rate, metal vapor or carrier gas temperature, It should be set appropriately according to the temperature distribution and the like, and is not limited to the above-described example.
  • the present invention can be used in a plasma apparatus for producing metal powder used in various electronic parts and electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

 金属原料が供給される反応容器と、反応容器内の金属原料との間でプラズマを生成し、金属原料を蒸発させて金属蒸気を生成するプラズマトーチと、金属蒸気を搬送するためのキャリアガスを反応容器内に供給するキャリアガス供給部と、キャリアガスにより反応容器から移送される金属蒸気を冷却して金属粉末を生成する冷却管を備えるプラズマ装置であって、冷却管が、反応容器からキャリアガスによって移送される金属蒸気及び/又は金属粉末を間接的に冷却する間接冷却区画と、間接冷却区画に続き、金属蒸気及び/又は金属粉末を直接的に冷却する直接冷却区画とを備え、間接冷却区画の内壁の少なくとも一部に、凸部及び/又は凹部が設けられている。

Description

金属粉末製造用プラズマ装置
 本発明は、金属粉末を製造するプラズマ装置に関し、特に管状の冷却管を備え、金属原料を溶融・蒸発させて生ずる金属蒸気を当該冷却管で冷却することにより金属粉末を製造するプラズマ装置に関する。
 電子回路や配線基板、抵抗、コンデンサ、ICパッケージ等の電子部品の製造において、導体被膜や電極を形成するために導電性の金属粉末が用いられている。このような金属粉末に求められる特性や性状としては、不純物が少ないこと、平均粒径が0.01~10μm程度の微細な粉末であること、粒子形状や粒径がそろっていること、凝集が少ないこと、ペースト中での分散性が良いこと、結晶性が良好であることなどが挙げられる。
 近年、電子部品や配線基板の小型化に伴い、導体被膜や電極の薄層化やファインピッチ化が進んでいることから、さらに微細で球状かつ高結晶性の金属粉末が要望されている。
 このような微細な金属粉末を製造する方法の一つとして、プラズマを利用し、反応容器内において金属原料を溶融・蒸発させた後、金属蒸気を冷却し、凝結させて多数の金属核を生成させ、これを成長させて金属粉末を得るプラズマ装置が知られている(特許文献1、2参照)。これらのプラズマ装置では、金属蒸気を気相中で凝結させるため、不純物が少なく、微細で球状かつ結晶性の高い金属粒子を製造することが可能である。
 また、これらのプラズマ装置は共に長い管状の冷却管を備え、金属蒸気を含むキャリアガスに対して複数段階の冷却を行っている。例えば特許文献1では、前記キャリアガスに、予め加熱したホットガスを直接混合することによって冷却を行う第1冷却部と、その後、常温の冷却ガスを直接混合することにより冷却を行う第2の冷却部とを備えている。また、特許文献2のプラズマ装置では、管状体の周囲に冷却用の流体を循環させることにより、当該流体を前記キャリアガスに直接接触させることなく、キャリアガスを冷却する間接冷却区画(第1の冷却部)と、その後、キャリアガスに冷却用流体を直接混合することによって冷却を行う直接冷却区画(第2の冷却部)を備えている。
 特に後者は、輻射による冷却が支配的な間接冷却を採用しているため、伝導や対流による冷却が支配的である他のプラズマ装置に比べて、金属蒸気からの金属核(以下、単に「核」という)の生成、成長及び結晶化を均一に行うことができ、粒径と粒度分布が制御された金属粉末を得ることができる。
米国出願公開2007/0221635号 米国特許第6379419号
 図7は、特許文献2に記載されている冷却管の構成を示す図である。図7に示されるように、冷却管14は間接冷却区画34と直接冷却区画50とを備え、更に間接冷却区画34は、内管36と外管38の二重管で構成されている。そして、内管36の外壁と外管38の内壁との間の空間に冷却用流体を循環させることにより、反応容器からの金属蒸気、並びに当該金属蒸気が凝結して生成した金属粉末に対する間接冷却を行っている。これに続く直接冷却区画50では、キャリアガスに冷却用流体を混合して直接冷却を行う。また直接冷却区画50では、間接冷却区画34に比べて内径の大きい冷却管を採用することにより、間接冷却区画34を通ってきたキャリアガスを急激に膨張させ、冷却効率を高めている。
 ところで、上記間接冷却区画34においては、高温のまま冷却管内に移送されたキャリアガス中の金属蒸気に対し、輻射冷却が行われるため、均一で安定的な核の生成、成長、結晶化が進行する。しかしながら、特許文献2に記載されている装置で金属粉末を製造する場合、本発明者等の研究によれば、従来のプラズマ装置に比べれば得られる金属粉末の粒度分布は改善されているものの、更にシャープな粒度分布を得ようとしても限界があった。
 本発明者等はその原因について研究を進めたところ、間接冷却区画において、冷却管の内壁に近い領域と中央(軸)に近い領域とでは、キャリアガスの流速や温度、金属蒸気の濃度等に差異が生じていることを見出した。従って、定かではないが、当該差異により冷却管内の内壁に近い領域と中央に近い領域とでは核の生成タイミングが異なり、早いタイミングで析出した核は粒成長、特に合一によって大きくなるのに対し、遅れて析出した核は合一する前に直接冷却区画に達して急冷され、粒度分布に影響を及ぼしている可能性が考えられる。しかも、上述した差異は冷却管の内径が小さいほど顕著になる。
 そこで本発明者等は、図7の間接冷却区画34の内管36の内径を、直接冷却区画50と同程度にまで広げてみたところ、生産効率が著しく低下した。これは間接冷却区画34でのキャリアガス中に含まれる金属蒸気の濃度(密度)が下がったため、間接冷却区画34において核が十分に生成しなくなったためと考えられる。しかもキャリアガスの流速が遅くなることから、析出したばかりの核が内管36の内壁に付着しやすくなるという新たな問題も生じることが分かった。
 本発明は、これらの問題を解決し、粒度分布の狭い金属粉末を得ることができ、より生産効率の良い金属粉末製造用プラズマ装置を提供することを目的とする。
 請求項1の発明によれば、金属原料が供給される反応容器と、
 前記反応容器内の金属原料との間でプラズマを生成し、前記金属原料を蒸発させて金属蒸気を生成するプラズマトーチと、
 前記金属蒸気を搬送するためのキャリアガスを前記反応容器内に供給するキャリアガス供給部と、
 前記キャリアガスにより前記反応容器から移送される前記金属蒸気を冷却して金属粉末を生成する冷却管を備える金属粉末製造用プラズマ装置であって、
 前記冷却管が、前記反応容器から前記キャリアガスによって移送される前記金属蒸気及び/又は金属粉末を間接的に冷却する間接冷却区画と、前記間接冷却区画に続き、前記金属蒸気及び/又は金属粉末を直接的に冷却する直接冷却区画とを備え、
 前記間接冷却区画の内壁の少なくとも一部に、凸部及び/又は凹部が設けられていることを特徴とする金属粉末製造用プラズマ装置が提供される。
 請求項2の発明によれば、前記凸部及び/又は凹部が、前記間接冷却区画内の、金属核が析出し始める位置より上流側の内壁に設けられていることを特徴とする請求項1に記載の金属粉末製造用プラズマ装置が提供される。
 請求項3の発明によれば、複数の前記凸部及び/又は凹部が前記間接冷却区画内の内壁に設けられていることを特徴とする請求項1又は2に記載の金属粉末製造用プラズマ装置が提供される。
 請求項4の発明によれば、前記複数の凸部及び/又は凹部が、前記間接冷却区画内の内壁に、前記冷却管の長手方向に対して螺旋状に設けられていることを特徴とする請求項3に記載の金属粉末製造用プラズマ装置が提供される。
 請求項5の発明によれば、前記間接冷却区画が、冷却用流体で前記冷却管の周囲を冷却し、当該流体を前記金属蒸気及び/又は金属粉末に直接接触させることなく、前記金属蒸気及び/又は金属粉末を冷却する区画であり、
 前記直接冷却区画が、冷却用流体を前記金属蒸気及び/又は金属粉末に直接接触させて冷却する区画であることを特徴とする請求項1乃至4の何れか一項に記載の金属粉末製造用プラズマ装置が提供される。
 本発明の金属粉末製造用プラズマ装置によれば、間接冷却区画におけるキャリアガスの流速や温度、金属蒸気の濃度等を均一にすることができるため、生産効率を低下させることなく、粒度分布の狭い金属粉末を得ることができる。
 本発明は、特に、間接冷却区画における冷却管内において、金属核が析出し始める領域より上流側に凸部及び/又は凹部を設けることによって、間接冷却のメリットを減ずることなく、緩やかで、より安定的、均一的な雰囲気で核の生成、成長、結晶化を進行させることができる。
本発明の金属粉末製造用プラズマ装置の全体の構成を示す図である。 本発明の冷却管の一例を示す図である。 図2Aにおける凸部を示す図である。 本発明の冷却管の他の一例を示す図である。 図3Aにおける凸部を示す図である。 本発明の冷却管の他の一例を示す図である。 本発明の冷却管の他の一例を示す図である。 図5Aにおける凸部を示す図である。 本発明の冷却管の他の一例を示す図である。 従来例(特許文献2)の冷却管を示す図である。
 以下、具体的な実施形態に基づきながら本発明を説明するが、本発明はこれらに限定されるものではない。
 図1は、前記特許文献2と同様の移行型アークプラズマ装置に本発明を適用した金属粉末製造用プラズマ装置100(以下、単にプラズマ装置と言う)の一例を示しており、反応容器102の内部で金属原料を溶融・蒸発させ、生成された金属蒸気を冷却管103内で冷却して凝結させることにより金属粒子を生成する。
 なお、本発明において金属原料としては、目的とする金属粉末の金属成分を含有する導電性の物質であれば特に制限はなく、純金属の他、2種以上の金属成分を含む合金や複合物、混合物、化合物等を使用することができる。金属成分の一例としては、銀、金、カドミウム、コバルト、銅、鉄、ニッケル、パラジウム、白金、ロジウム、ルテニウム、タンタル、チタン、タングステン、ジルコニウム、モリブデン、ニオブ等を挙げることができる。特に制限はないが、取扱い易さから、金属原料としては数mm~数十mm程度の大きさの粒状や塊状の金属材料又は合金材料を使用することが好ましい。
 以下においては理解容易のため、金属粉末としてニッケル粉末を製造し、金属原料として金属ニッケルを用いる例で説明するが、本発明はこれに限定されるものではない。
 金属ニッケルは、予め、装置の稼働を開始する前に、反応容器102内に所定量を準備しておき、装置の稼働開始後は、金属蒸気となって反応容器102内から減少した量に応じて、随時、フィードポート109から反応容器102内に補充される。そのため本発明のプラズマ装置は、長時間連続して金属粉末を製造することが可能である。
 反応容器102の上方にはプラズマトーチ104が配置され、図示しない供給管を介してプラズマトーチ104にプラズマ生成ガスが供給される。プラズマトーチ104は、カソード106を陰極、プラズマトーチ104の内部に設けられた図示しないアノードを陽極としてプラズマ107を発生させた後、陽極をアノード105に移行することにより、カソード106とアノード105との間でプラズマ107を生成し、当該プラズマ107の熱により反応容器102内の金属ニッケルの少なくとも一部を溶融させ、ニッケルの溶湯108を生成する。さらにプラズマトーチ104は、プラズマ107の熱により、溶湯108の一部を蒸発させ、ニッケル蒸気(本発明の金属蒸気に相当する)を発生させる。
 キャリアガス供給部110は、ニッケル蒸気を搬送するためのキャリアガスを反応容器102内に供給する。キャリアガスとしては、製造する金属粉末が貴金属の場合は特に制限はなく、空気、酸素、水蒸気等の酸化性ガスや、窒素、アルゴン等の不活性ガス、これらの混合ガス等を使用することができ、酸化しやすいニッケル、銅等の卑金属を製造する場合は不活性ガスを用いることが好ましい。特に断らない限り、以下の説明においては、キャリアガスとして窒素ガスを使用する。
 なお、キャリアガスには、必要に応じて水素、一酸化炭素、メタン、アンモニアガスなどの還元性ガスや、アルコール類、カルボン酸類などの有機化合物を混合してもよく、その他、金属粉末の性状や特性を改善・調整するために、酸素や、その他、リンや硫黄等の成分を含有させても良い。なお、プラズマの生成に使用されたプラズマ生成ガスも、キャリアガスの一部として機能する。
 反応容器102内で発生したニッケル蒸気を含むキャリアガスは、冷却管103に移送される。
 冷却管103は、キャリアガスに含まれるニッケル蒸気及び/又はニッケル粉末を間接的に冷却する間接冷却区画ICと、キャリアガスに含まれるニッケル蒸気及び/又はニッケル粉末を直接的に冷却する直接冷却区画DCを備える。
 間接冷却区画ICでは、冷却用流体や外部ヒータ等を用いて、冷却管103(内管120)の周囲を冷却又は加熱し、間接冷却区画ICの温度を制御することによって冷却を行う。冷却用流体としては、前述したキャリアガスやその他の気体を用いることができ、また水、温水、メタノール、エタノール或いはこれらの混合物等の液体を用いることもできる。但し、冷却効率やコスト的な観点からは、冷却用流体には水又は温水を用い、これを冷却管103の周囲を循環させて冷却管103を冷却することが望ましい。
 間接冷却区画ICとしては、特願2011-263165に記載されているように、内径の異なる2以上の区画で構成されているものであってもよい。特に、間接冷却区画ICが、反応容器から前記ニッケル蒸気を含むキャリアガスが移送される第1の間接冷却区画と、当該第1の間接冷却区画と前記直接冷却区画との間に配置される第2の間接冷却区画とを備え、第1の間接冷却区画の内径が前記第2の間接冷却区画の内径よりも小さいものであることが好ましい。このような装置では、第1の間接冷却区画において金属蒸気の濃度が高い状態で間接冷却を行うことにより核を十分に析出させた後、第2の間接冷却区画で金属蒸気の濃度を下げた状態で引き続き間接冷却を行い、その後直接冷却を行うので、より均一な雰囲気中で金属粉末の成長、結晶化を行うことができ、粒度分布のより狭い金属粉末を得ることが可能になる。
 間接冷却区画ICにおいては、高温のまま冷却管103内に移送されるキャリアガス中のニッケル蒸気は輻射により比較的緩やかに冷却され、安定的且つ均一的に温度制御された雰囲気中で核の生成、成長、結晶化が進行することで、キャリアガス中に粒径の揃ったニッケル粉末が生成される。
 直接冷却区画DCでは、間接冷却区画ICから移送されてきたニッケル蒸気及び/又はニッケル粉末に対し、図示しない冷却流体供給部から供給される冷却用流体を噴出又は混合して、直接冷却を行う。なお、直接冷却区画DCで使用する冷却用流体は、間接冷却区画ICで使用した冷却用流体と同じものでも異なるものでも良いが、取扱いのし易さやコスト的な観点から、前記キャリアガスと同じ気体(以下の実施形態においては窒素ガス)を使用することが好ましい。気体を使用する場合、前述したキャリアガスと同様に、必要に応じて還元性ガスや有機化合物、酸素、リン、硫黄等の成分を混合して用いても良い。また、冷却用流体が液体を含む場合は、当該液体は噴霧された状態で冷却管103(内管160)内へ導入される。
 なお、本明細書の図面において、間接冷却区画IC及び直接冷却区画DCの具体的な冷却機構は省略されているが、本発明の作用効果を妨げない限り、公知のものを使用することができ、例えば前記特許文献2に記載されたものも適宜使用することもできる。
 間接冷却区画IC内のキャリアガス中には、ニッケル蒸気とニッケル粉末が混在しているが、その上流側に比べ、下流側のニッケル蒸気の比率は低くなる。また、装置によっては、直接冷却区画DC内のキャリアガス中においても、ニッケル蒸気とニッケル粉末は混在し得る。但し、上述したように、核の生成、成長、結晶化は間接冷却区画IC内で進行し、完了していることが好ましく、よって直接冷却区画DC内のキャリアガス中にはニッケル蒸気が含まれないことが好ましい。
 金属粉末を含むキャリアガスは、冷却管103から更に下流に向けて搬送され、図示しない捕集器において金属粉末とキャリアガスとに分離され、金属粉末が回収される。なお、捕集器で分離されたキャリアガスは、キャリアガス供給部110で再利用するように構成しても良い。
 キャリアガス中の金属蒸気は、反応容器102から間接冷却区画ICに導入された時点では濃度も高く、温度も数千K(例えば3000K)であるが、間接冷却(輻射冷却)されることにより、温度は金属の沸点近くまで降下し、間接冷却区画IC内の或る位置でほぼ同時に多くの核が析出し始める。核が析出し始める位置は、目的とする金属の種類や金属蒸気の濃度、キャリアガスの流量、金属蒸気やキャリアガスの温度、管内の温度分布等々に応じて変わるものであり、特定の位置を示すものではないが、ここでは理解を容易にするため、図中の仮想面180で示される位置で核が析出し始めるものとする。
 図2Aに示す例において、冷却管103は、間接冷却区画ICの内管120の内壁であって、仮想面180より上流側の互いに対向する2箇所に凸部170を備える。この凸部170が存在することにより、冷却管103内においてキャリアガスと金属蒸気の混合ガスの流れが乱れ、攪拌されるため、前述の冷却管103の内壁に近い領域と中央に近い領域との間のキャリアガスの温度や流速、金属蒸気濃度の不均一性を抑えることができ、これによって核が析出するタイミングを揃えることができる。
 本発明において、凸部の大きさ、形状、個数、配置等については、キャリアガスと金属蒸気の混合ガスが適度に攪拌され冷却管の内壁に近い領域と中央に近い領域とで不均一を生じにくくするようなものであれば特に限定はない。例えば、凸部の大きさは、目的とする金属の種類や金属蒸気の濃度、キャリアガスの流量、金属蒸気やキャリアガスの温度、管内の温度分布等に応じて適宜決めるものであるが、仮に大き過ぎる場合には冷却管内の金属濃度(金属蒸気と核を含む濃度)の不均一性が増大して粒度分布に悪影響を与え、小さ過ぎる場合は、本発明の作用効果を得ることができなくなる。それ故、好適な凸部の大きさ、形状、個数、配置等は、事前に、上述の因子を考慮したシミュレーションを行うことにより適宜設計することができる。
 図3Aに示されるように、凸部171はリング状でも良い。なお、図3Aの例における凸部171は、図3Bに示されるように、その断面が上流側に傾斜を有する楔形のものを用いることで、より効果的な攪拌を行うことを可能にしている。
 図4に示されるように、凸部172は、冷却管103の長手方向(軸方向)に沿って配置されたものであっても良く、本例では凸部172が各4個ずつ、上流側と下流側の2箇所に並設されている。また、凸部172は、断面が矩形状をなしている。
 図5Aに示されるように、凸部173が、冷却管103の長手方向に対して螺旋状に並設されていても良い。本例では、間接冷却区間ICの全域にわたって図5Bに示されるような断面が略三角形の凸部173を複数、螺旋状に配設したことにより、キャリアガスが冷却管103内で回転しながら下流側に進む旋回流を生成する。凸部173は、先端部分173aが内管120の中央を向くように配置されている。なお、図5Aでは2本の螺旋状となっているが、1本の螺旋でもまた3本以上であっても良い。また、図5Aでは複数の凸部173が間隔をあけて配設されているが、1本の帯状であってもよい。
 なお、本発明において、冷却管の内壁に近い領域と中央に近い領域とでキャリアガスと金属蒸気の混合ガスが適度に攪拌される限り、凸部の代わりに内壁に凹部を配設しても良く、また凸部と凹部の両方を形成しても良い。
 凹部を配設した例として挙げた図6では、間接冷却区画ICの内管120の内壁であって、仮想面180より上流側の互いに対向する2箇所に、凹部174が形成されている。凹部174は、断面が矩形状をなしている。この凹部174により、冷却管103の内壁に近い領域と中央に近い領域との間のキャリアガスの温度や流速、金属蒸気濃度の不均一性を抑えることで、核が析出するタイミングを揃えることができる。
 凸部及び/又は凹部は、少なくとも間接冷却区画IC内の、金属核が析出し始める位置(前記仮想面180)より上流側に配設されていれば良いものであり、図5Aで示した例のように、仮想面180より下流側にも連なって配設されていることを除外するものではない。
 一例として、凸部の高さ及び/又は凹部の深さは、1~100mmの範囲内とすることが望ましい。
〔実施例1〕
 図2A及び図2Bに記載の凸部170が配設された冷却管103を備える、図1に記載のプラズマ装置100で、ニッケル粉末の製造を行った。冷却管103は、内径8cm、長さ115cmの内管120(間接冷却区画IC)と内径18cm、長さ60cmの内管160(直接冷却区画DC)とを組合せたものであり、間接冷却区画ICの内管120の内壁には、内管120の上流端から20cmの位置に、高さ(h)が1cm、幅(w)が1cm、長さ(l)が5cmの凸部170が2個配設されている。
 冷却管103を通過するキャリアガスは毎分300Lとし、金属濃度が2.1~14.5g/mの範囲となるよう制御した。
 得られたニッケル粉末について、レーザ式粒度分布測定装置を用いて測定した粒度分布の重量基準の積算分率10%値、50%値、90%値(以下、それぞれ「D10」「D50」「D90」という)から、粒度分布の指標としてSD=(D90-D10)/(D50)で表されるSD値を求めた。
 実施例1で得られたニッケル粉末は、D50=0.40μm、SD=1.28という、粒度分布の狭いものであった。
〔比較例1〕
 凸部170を配設しない以外は実施例1と同様の装置、同様の条件でニッケル粉末を製造した。
 比較例1で得られたニッケル粉末は、D50=0.47μm、SD=1.36であった。
〔実施例2〕
 図5A及び図5Bに記載の凸部173が配設された冷却管103を用いた以外は、実施例1と同様にしてニッケル粉末を製造した。凸部173としては、断面が底辺(w)1cm、高さ(h)1cmの略二等辺三角形形状で、長さ(l)が3cmのブロックを複数個準備した。そして内管120の内壁に、凸部173の長手方向が冷却管103の長手方向(軸方向)に対して45°の角度となるように、複数の凸部173を間接冷却区画IC全域に渡って2本の螺旋状に配設した。
 実施例2で得られたニッケル粉末は、D50=0.44μm、SD=1.10という、粒度分布の狭いものであった。
 以上の結果より、実施例1~2で得られたニッケル粉末は、比較例1で得られたニッケル粉末に比べて、粒度分布の狭いものであった。
 なお、本発明において、間接冷却区画や直接冷却区画における内管の内径や長さは、目的とする金属の種類や金属蒸気の濃度、キャリアガスの流量、金属蒸気やキャリアガスの温度、管内の温度分布等々に応じて適宜設定されるべきものであり、上述した例に限定されるものではない。
 本発明は、各種電子部品や電子機器などに使用される金属粉末を製造するプラズマ装置に利用することができる。
100 金属粉末製造用プラズマ装置
102 反応容器
103 冷却管
104 プラズマトーチ
107 プラズマ
110 キャリアガス供給部
170,171,172,173 凸部
174 凹部
IC 間接冷却区画
DC 直接冷却区画

Claims (5)

  1.  金属原料が供給される反応容器と、
     前記反応容器内の金属原料との間でプラズマを生成し、前記金属原料を蒸発させて金属蒸気を生成するプラズマトーチと、
     前記金属蒸気を搬送するためのキャリアガスを前記反応容器内に供給するキャリアガス供給部と、
     前記キャリアガスにより前記反応容器から移送される前記金属蒸気を冷却して金属粉末を生成する冷却管を備える金属粉末製造用プラズマ装置であって、
     前記冷却管が、前記反応容器から前記キャリアガスによって移送される前記金属蒸気及び/又は金属粉末を間接的に冷却する間接冷却区画と、前記間接冷却区画に続き、前記金属蒸気及び/又は金属粉末を直接的に冷却する直接冷却区画とを備え、
     前記間接冷却区画の内壁の少なくとも一部に、凸部及び/又は凹部が設けられていることを特徴とする金属粉末製造用プラズマ装置。
  2.  前記凸部及び/又は凹部が、前記間接冷却区画内の、金属核が析出し始める位置より上流側の内壁に設けられていることを特徴とする請求項1に記載の金属粉末製造用プラズマ装置。
  3.  複数の前記凸部及び/又は凹部が前記間接冷却区画内の内壁に設けられていることを特徴とする請求項1又は2に記載の金属粉末製造用プラズマ装置。
  4.  前記複数の凸部及び/又は凹部が、前記間接冷却区画内の内壁に、前記冷却管の長手方向に対して螺旋状に設けられていることを特徴とする請求項3に記載の金属粉末製造用プラズマ装置。
  5.  前記間接冷却区画が、冷却用流体で前記冷却管の周囲を冷却し、当該流体を前記金属蒸気及び/又は金属粉末に直接接触させることなく、前記金属蒸気及び/又は金属粉末を冷却する区画であり、
     前記直接冷却区画が、冷却用流体を前記金属蒸気及び/又は金属粉末に直接接触させて冷却する区画であることを特徴とする請求項1乃至4の何れか一項に記載の金属粉末製造用プラズマ装置。
PCT/JP2012/078914 2011-12-06 2012-11-08 金属粉末製造用プラズマ装置 WO2013084650A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/359,837 US9375789B2 (en) 2011-12-06 2012-11-08 Plasma device for production of metal powder
KR1020147015048A KR102005923B1 (ko) 2011-12-06 2012-11-08 금속분말 제조용 플라즈마 장치 및 이를 이용한 금속분말 제조방법
CA2855579A CA2855579C (en) 2011-12-06 2012-11-08 Plasma device for production of metal powder
JP2013548154A JP5900510B2 (ja) 2011-12-06 2012-11-08 金属粉末製造用プラズマ装置
CN201280067355.1A CN104066537B (zh) 2011-12-06 2012-11-08 金属粉末制造用等离子体装置和制造金属粉末的方法
EP12855937.4A EP2789414B1 (en) 2011-12-06 2012-11-08 Plasma device for production of metal powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-266607 2011-12-06
JP2011266607 2011-12-06

Publications (1)

Publication Number Publication Date
WO2013084650A1 true WO2013084650A1 (ja) 2013-06-13

Family

ID=48574029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078914 WO2013084650A1 (ja) 2011-12-06 2012-11-08 金属粉末製造用プラズマ装置

Country Status (8)

Country Link
US (1) US9375789B2 (ja)
EP (1) EP2789414B1 (ja)
JP (1) JP5900510B2 (ja)
KR (1) KR102005923B1 (ja)
CN (1) CN104066537B (ja)
CA (1) CA2855579C (ja)
TW (1) TWI573643B (ja)
WO (1) WO2013084650A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101766173B1 (ko) * 2014-06-20 2017-08-07 소에이 가가쿠 고교 가부시키가이샤 탄소 피복 금속분말의 제조방법

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5817636B2 (ja) 2012-04-20 2015-11-18 昭栄化学工業株式会社 金属粉末の製造方法
US9782731B2 (en) * 2014-05-30 2017-10-10 Battelle Memorial Institute System and process for dissolution of solids
DE102015004474B4 (de) 2015-04-08 2020-05-28 Kai Klinder Anlage zur Herstellung von Metallpulver mit definiertem Korngrößenspektrum
JP6573563B2 (ja) 2016-03-18 2019-09-11 住友金属鉱山株式会社 ニッケル粉末、ニッケル粉末の製造方法、およびニッケル粉末を用いた内部電極ペーストならびに電子部品
CN106670452A (zh) * 2016-12-29 2017-05-17 江民德 一种利用等离子造形制备球形3d打印粉的方法
CN107030292A (zh) * 2017-05-03 2017-08-11 江苏天楹环保能源成套设备有限公司 一种多级冷却制备金属粉末的等离子体雾化装置
CN107344241A (zh) * 2017-08-22 2017-11-14 西安交通大学 一种高纯镁粉末制备方法
CN110814357A (zh) * 2018-08-14 2020-02-21 深圳市百柔新材料技术有限公司 纳米材料制备设备和方法
CN216421070U (zh) * 2021-10-19 2022-05-03 江苏博迁新材料股份有限公司 一种物理气相法制备超细粉体材料用的金属蒸气成核装置
JP7236063B1 (ja) * 2021-11-10 2023-03-09 コリア インスティチュート オブ インダストリアル テクノロジー 無機粉末の製造装置及び製造方法
KR102572728B1 (ko) * 2021-11-19 2023-08-31 한국생산기술연구원 금속분말 제조장치 및 이를 이용한 금속분말 제조방법
CN115770882A (zh) * 2022-11-02 2023-03-10 杭州新川新材料有限公司 超细球形金属粉末的制造方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153533A (ja) * 1982-03-09 1983-09-12 Toyota Motor Corp 合金微粉末製造装置
JPS63221842A (ja) * 1987-03-11 1988-09-14 Nippon Steel Corp 金属粉体、金属化合物粉体およびセラミツクス粉体の製造方法および装置
JPH0630674U (ja) * 1992-09-22 1994-04-22 東海ゴム工業株式会社 蓄熱装置
US6379419B1 (en) 1998-08-18 2002-04-30 Noranda Inc. Method and transferred arc plasma system for production of fine and ultrafine powders
US20070221635A1 (en) 2006-03-08 2007-09-27 Tekna Plasma Systems Inc. Plasma synthesis of nanopowders

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630674A (ja) 1992-07-15 1994-02-08 Asahi Denka Kogyo Kk 食物アレルギー動物
CN1189277C (zh) * 2001-09-04 2005-02-16 宜兴市华科金属纳米材料有限公司 常压下制备细粉或超细粉的方法
CN201340222Y (zh) * 2008-11-10 2009-11-04 蒋飞云 蒸发式冷凝器管
JP2011162842A (ja) * 2010-02-09 2011-08-25 Institute Of Physical & Chemical Research 粒子の製造装置および製造方法
CN102252549B (zh) * 2011-07-22 2012-11-21 华北电力大学 毛细结构分液式冷凝管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153533A (ja) * 1982-03-09 1983-09-12 Toyota Motor Corp 合金微粉末製造装置
JPS63221842A (ja) * 1987-03-11 1988-09-14 Nippon Steel Corp 金属粉体、金属化合物粉体およびセラミツクス粉体の製造方法および装置
JPH0630674U (ja) * 1992-09-22 1994-04-22 東海ゴム工業株式会社 蓄熱装置
US6379419B1 (en) 1998-08-18 2002-04-30 Noranda Inc. Method and transferred arc plasma system for production of fine and ultrafine powders
JP2004036005A (ja) * 1998-08-18 2004-02-05 Canadian Electronic Powders Corp 微細及び超微細の金属粉体
US20070221635A1 (en) 2006-03-08 2007-09-27 Tekna Plasma Systems Inc. Plasma synthesis of nanopowders

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2789414A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101766173B1 (ko) * 2014-06-20 2017-08-07 소에이 가가쿠 고교 가부시키가이샤 탄소 피복 금속분말의 제조방법

Also Published As

Publication number Publication date
CA2855579A1 (en) 2013-06-13
CA2855579C (en) 2019-10-29
KR102005923B1 (ko) 2019-07-31
US9375789B2 (en) 2016-06-28
CN104066537B (zh) 2016-08-31
TWI573643B (zh) 2017-03-11
EP2789414A4 (en) 2015-12-30
TW201332686A (zh) 2013-08-16
EP2789414A1 (en) 2014-10-15
EP2789414B1 (en) 2020-03-18
JP5900510B2 (ja) 2016-04-06
JPWO2013084650A1 (ja) 2015-04-27
US20140319712A1 (en) 2014-10-30
CN104066537A (zh) 2014-09-24
KR20140102665A (ko) 2014-08-22

Similar Documents

Publication Publication Date Title
JP5900510B2 (ja) 金属粉末製造用プラズマ装置
JP5821579B2 (ja) 金属粉末製造用プラズマ装置
TWI474882B (zh) 合金超微粒子及其製造方法
JP2009527640A (ja) 高密度モリブデン金属粉末及びその製造方法
CN104148659B (zh) 金属粉末制造用等离子体装置及金属粉末的制造方法
JP5318463B2 (ja) 微粒子の製造方法およびそれに用いる製造装置
JP2008045202A (ja) 気相反応法を用いた金属ナノ粉末の製造方法
JP4978237B2 (ja) ニッケル粉末の製造方法
Malekzadeh et al. Production of silver nanoparticles by electromagnetic levitation gas condensation
CA2287373C (en) Process for the production of powdered nickel
JP6016729B2 (ja) 金属粉末の製造方法及び製造装置
JP2008285700A (ja) モリブデン超微粉及びその製造方法
KR101679725B1 (ko) 비이송식 열플라즈마 방법을 이용하여 은(Ag) 코팅된 마이크로 크기의 니켈(Ni) 입자의 제조 방법
TW202124068A (zh) 微粒子
JP2017155279A (ja) 金属微粒子の製造方法
JP2007138205A (ja) 金属粉の製造装置及び方法
JP5954470B2 (ja) 金属粉末製造用プラズマ装置及び金属粉末製造方法
JP2009097039A (ja) 粒子製造方法
JP2019103961A (ja) 微粒子製造装置及び微粒子製造方法
JP2004143485A (ja) 金属微粉の製造方法及び製造装置
KR20140148158A (ko) 나노 입자 형성 방법 및 나노 입자 형성 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2855579

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013548154

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14359837

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147015048

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE