JP2007138205A - 金属粉の製造装置及び方法 - Google Patents

金属粉の製造装置及び方法 Download PDF

Info

Publication number
JP2007138205A
JP2007138205A JP2005330886A JP2005330886A JP2007138205A JP 2007138205 A JP2007138205 A JP 2007138205A JP 2005330886 A JP2005330886 A JP 2005330886A JP 2005330886 A JP2005330886 A JP 2005330886A JP 2007138205 A JP2007138205 A JP 2007138205A
Authority
JP
Japan
Prior art keywords
raw material
fine particles
reaction
metal fine
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005330886A
Other languages
English (en)
Inventor
Kazunori Onabe
和憲 尾鍋
Akira Kikutake
亮 菊竹
Shoji Mimura
彰治 味村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005330886A priority Critical patent/JP2007138205A/ja
Publication of JP2007138205A publication Critical patent/JP2007138205A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Ceramic Capacitors (AREA)

Abstract

【課題】0.1乃至数μmのサイズで粒径が揃った真球状のNi微粒子を合成可能である金属粉の製造装置及び方法を提供する。
【解決手段】原料を貯留する複数個の原料容器14,15が設けられており、複数の気化部で各原料容器内の原料を加熱して気化させる。第1の反応部では、ノズル17aから噴出された原料の蒸気とノズル17bから噴出されたHガスとを反応させて金属微粒子を得、第2の反応部では、この金属微粒子と、ノズル17cから噴出された原料蒸気と、ノズル17dから噴出されたHガスとを反応させて、前記金属微粒子を成長させる。
【選択図】図1

Description

本発明は、金属塩化物を出発原料としてこれを水素ガス中で気相還元することにより金属微粒子の粉末を製造する金属粉の製造装置及び方法に関する。
金属塩化物を原料として、水素ガス中で気相還元することにより、Ni,Fe,Co,Mo,W,Cu,Ag等の純金属微粒子又はこれらの元素のうちの2種以上を組み合わせた合金微粒子を合成することができる。
これらの金属又は合金の微粒子は、主に、積層セラミックコンデンサ(MLCC)用内部電極材料として好適であり、平均粒径が0.1〜1μmの微粒子合成に関する製造方法が、特許文献1乃至4に開示されている。
また、電子回路基板を微小電極部で接続する場合には、ヒートシールコネクタ及び異方導電性フィルム等が使用されるが、これらに使用される導電フィラーとしては、真球状で、粒径が揃ったものが好適であり、またその大きさは平均粒径で数μm〜数10μmのものが使用されている。導電フィラーとしては、樹脂の表面にNi,Au,Cu等の導電層をメッキした導電性樹脂粒子、金属Ni粒子、Ni粒子表面にAu又はPdをメッキしたNi粒子等が使用されている。これらの導電フィラーに使用された微粒子が、特許文献5乃至7に開示されている。
しかしながら、ヒートシールコネクタ又は異方導電性フィルムを使用して電子回路基板を微小電極部で接続する場合には、電極間に挟まれた導電フィラーにより電極間の導電性を確保するので、導電フィラーの粒度分布が大きいと接続抵抗にばらつきが生じる。また、導電フィラーが凝集していると、隣接する電極間での短絡を生じやすくなる。従って、ヒートシールコネクタ又は異方導電性フィルムに使用する導電フィラーとしては、その接続信頼性を確保するために、粒度分布範囲が狭いと共に、接着剤及びペーストに練り込んだ場合に容易に凝集がほどけて均一に分散するという分散性が優れたものが必要となる。
微粒子の粒度分布が、下記数式1で現される変動係数により評価される。この変動係数は、異なる母集団のばらつきの大小を比較するときの指標となる。
Figure 2007138205
現在主流となっている導電性樹脂粒子は、この変動係数が、5%以下の極めて粒度分布が揃ったものを得ることができる。しかし、今後、電極部のファインピッチ化が進むにつれて、導電フィラー自身の小径化が進み、粒子自身の高導電性も求められるようになるため、数μmサイズのNi微粒子及びAuメッキNi微粒子等が必要になってくる。しかしながら、従来技術により、数μmサイズで粒度分布が揃ったNi微粒子を得ることは困難である。
例えば、特許文献1においては、平均粒径が0.1乃至数μmのNi微粒子が得られるとしているが、その実施例で得られたNi微粒子は、平均粒径が0.18〜0.8μmと、比較的小さい粒径のNi微粒子しか得られていない。
また、特許文献6においては、平均粒径が2μm、最大粒径が8μmの球状Ni粒子を、特許文献3で開示された製造方法により作成し、異方導電性フィルムに使用した実施例を開示している。このNi粒子の変動係数は特許文献6に記載されていないものの、本願発明者等の経験によると、このような分布を有する粒子の変動件数は50%程度であると推定される。この実施例に見るように、前述の微粒子製造方法(特許文献1,2,3,4)により、平均粒径が0.1〜1.0μmのNi微粒子に関し、粒度分布の揃った微粒子を作成できるが、それ以上の大きさのNi微粒子については、粒径にバラツキが生じ、粒度分布が広くなってしまうという問題点がある。
図2は、従来の金属粉の製造装置を示す模式図であり、MLCC用Ni微粒子の合成に使用されているCVD装置を示すものである。長手方向を水平にして配置された反応管1の外周部に電気炉2及び3が設置されており、この反応管1内にキャリアガスのArガスが供給されるようになっている。反応管1内において、ガス通流方向の上流側の電気炉2により加熱される領域が気化部となり、下流側の電気炉3により加熱される領域が反応部となる。そして、気化部には、原料容器4が設置され、この原料容器4内に、NiCl等の金属塩化物原料5が貯留されている。反応管1の気化部と反応部との境界には、反応ガスノズル6が設置されており、この反応ガスノズル6には、反応管1の入り口側から水素ガスが供給され、反応ガスノズル6の円筒状の噴射口から、水素ガスが反応部に噴射されるようになっている。反応管1の反応部出口には、冷却部7が設けられており、反応生成物は冷却部7で冷却された後、フィルタを備えて微粒子を回収する回収部へ送られる。
このように構成された金属粉の製造装置においては、原料容器4内のNiCl原料が電気炉2により加熱され、NiCl原料が蒸発する。このNiCl蒸気は、Arガスにキャリアされて反応管ノズル6の中心部から反応部に噴出される。一方、反応管ノズル6の円筒状噴出口からは水素ガスが噴出されており、NiCl原料ガスと水素ガスとが、反応部において電気炉4により加熱されて反応し、NiCl原料ガスが還元されて、Ni微粒子が生成する。生成したNi微粒子は、冷却部7で冷却された後、回収部において回収される。
一般的に図2により現される従来の金属粉製造装置は、NiCl原料蒸気の温度、反応温度、反応域における反応ガス滞留時間を制御することにより、0.1〜1.0μmの範囲で任意の粒径を有するNi微粒子を得ることができる。
特開平4−365806号公報 特開平8−246001号公報 特開平10−219313号公報 特開2000−336408号公報 特開平7−140480号公報 特開2003−197033号公報 特開2004−238738号公報
しかしながら、従来装置により、数μmサイズのNi微粒子を合成した場合には、特許文献6に記載された実施例と同様に、Ni微粒子のサイズの分布が広くなってしまうという問題点がある。これは、Ni粒子径を大きくするために、原料ガス濃度を分圧で0.4以上に高めると共に、反応ガス滞留時間を長くするために、キャリアArガス流量を減少させる必要が生じ、その結果、反応ガスノズル6近傍におけるNiClガスの濃度分布が不均一となり、Hガスとの均一な反応場を形成しにくいことによるものである。
本発明はかかる問題点に鑑みてなされたものであって、0.1乃至数μmのサイズで粒径が揃った真球状のNi微粒子を合成可能である金属粉の製造装置及び方法を提供することを目的とする。
本発明に係る金属粉の製造装置は、原料を貯留する第1の原料容器と、この第1の原料容器内の原料を加熱して気化させる第1の気化部と、前記第1の気化部から送給される原料の蒸気と還元ガスとを加熱して反応させ金属微粒子を得る第1の反応部と、原料を貯留する第2の原料容器と、この第2の原料容器内の原料を加熱して気化させる第2の気化部と、前記金属微粒子と第2の気化部から送給された原料蒸気と還元ガスとを加熱して反応させ前記金属微粒子を成長させる第2の反応部とを有することを特徴とする。
本発明に係る他の金属粉の製造装置は、原料を貯留する複数個の原料容器と、前記各原料容器内の原料を加熱して気化させる複数個の気化部と、前記各気化部から送給される原料の蒸気と還元ガスとを加熱して反応させる複数個の反応部と、を有し、2段目以降の各反応部においては、前段の反応部で生成した金属微粒子又は前段の反応部で成長させた金属微粒子の表面に、更にその段の気化部で生成した原料蒸気と還元ガスとの反応により生成した金属を堆積させて、前記金属微粒子を成長させることを特徴とする。
本発明に係る金属粉の製造方法は、原料を加熱して気化させる工程と、得られた原料蒸気と還元ガスとを加熱して反応させ前記原料を還元して金属微粒子を得る工程と、この金属微粒子と原料蒸気と還元ガスとを加熱して反応させこの原料蒸気の還元生成物を前記金属微粒子の表面上に成長させる工程とを有することを特徴とする。
本発明によれば、第1の気化部で気化した原料蒸気を第1の反応部で還元して金属微粒子を得、第2の気化部で気化した原料蒸気を第2の反応部で加熱して原料蒸気を還元する際、第2の反応部に第1の反応部で得られた金属微粒子も供給する。これにより、第2の反応部において、第1の反応部から供給された金属微粒子の表面に第2の反応部で還元された金属が成長し、より大きな粒径の金属微粒子が得られる。よって、本発明により、0.1乃至数μmのサイズで粒径が揃った真球状のNi微粒子を合成することができる。
即ち、複数段の還元反応によりNi微粒子を合成することにより、Ni微粒子の粒成長を段階的に制御することができ、Ni微粒子の精密な粒径制御が可能となる。このため、粒径が1μm以上のNi微粒子も、粒度分布が揃った粉末として得ることができる。更に、還元反応をより多段にすることにより、更に一層、Ni微粒子の精密な粒径制御が可能となると共に、より大きなNi微粒子を合成することができる。
以下、本発明の実施の形態について、添付の図面を参照して具体的に説明する。図1は、本実施形態の金属粉の製造装置を示す模式図である。反応管10は気化部において、下方に膨らんで副室11が形成されており、第1の原料容器14は、反応管10の中心部上に配置され、第2の原料容器15は、反応管10の膨らんだ副室11に配置されている。気化部には電気炉12と、副室11を囲む電気炉12a、12b、12cが設けられている。反応部には電気炉13が設けられている。
そして、反応管10の内部には、前方が縮径されたパイプ16a、16bが反応管10に同軸的に配置されており、外側のパイプ16bは内側のパイプ16aよりも前方に突出している。また、副室11を含む反応管10とパイプ16bとの間の空間は、パイプ16cにより、パイプ16bの前端まで導かれている。パイプ16cはパイプ16bの外面に沿って同軸的に設けられている。また、反応管10の入り口における反応管上部とパイプ16bとの間の空間は、パイプ16cの外側にパイプ16cに同軸的に配置されたパイプ16dによりパイプ16b、16cの前端まで導かれている。これらのパイプ群16により、反応部においては、パイプ16aの中心部により第1のノズル17aが構成され、パイプ16bとパイプ16aとの間の空間により第2のノズル17bが構成され、パイプ16bとパイプ16cとの間の空間により第3のノズル17cが構成され、パイプ16cとパイプ16dとの間の空間により第4のノズル17dが構成されている。そして、第1のノズル17aからは、第1の原料容器14を経由したキャリアArガスが第2のパイプ16bにより囲まれる空間(第1の反応部)に噴出し、第2のノズル17bからは、還元ガスとしてのHガスが同じく第1の反応部に噴出し、第3のノズルから17cは、第2の原料容器15を経由したキャリアArガスが反応管10内の第2の反応部に噴出し、第4のノズル17dからは、還元ガスとしてのHガスが同じく第2の反応部に噴出する。従って、本実施形態においては、反応部は、ノズル17a、17b出口の第1の反応部と、ノズル17c、17d出口の第2の反応部とから構成されている。
反応管10の反応部の下流側には、反応生成物を冷却する冷却部18が設けられ、冷却後の反応生成物は回収部に送られて回収される。
このように構成された本実施形態の金属粉の製造装置においては、第1の原料容器内のNiCl原料粉は、電気炉12により加熱されて気化し、蒸気となって、Arガスにキャリアされて、第1のノズル17aから第1の反応部に噴出される。この第1の反応部には、第2のノズル17bから還元ガスとしてのHガスが噴出されており、電気炉13により加熱されて、第1の原料容器から気化した原料蒸気とHガスとが反応して、原料蒸気が還元され、金属微粒子が生成する。この金属微粒子は、Arガスによりキャリアされて第2のパイプ16bの出口から第1の反応部に噴出される。一方、第2の原料容器15内の原料は、加熱されて気化し、Arガスにキャリアされて第3のノズル17cから第2の反応部に噴出される。また、第4のノズル17dからは還元ガスのHガスが第2の反応部に噴出される。これにより、第2の反応部において、第1の原料容器14内の原料が還元された金属微粒子と、第2の原料容器15内の原料が気化した原料蒸気と、第4のノズル17dから噴出されたHガスとが、電気炉13により加熱されて反応し、原料蒸気がHガスにより還元されて生成した金属が金属微粒子の表面に堆積して、金属微粒子の粒径が大型化する。
本実施形態においては、第1の原料容器14内の原料が還元されて生成する金属微粒子の合成条件を、その原料蒸気分圧が粒度分布が揃った1.0μm程度のNi微粒子が得られる条件とし、第2の原料容器15内の原料が還元されて生成する金属を、前記金属微粒子の表面に供給することにより、この金属微粒子を数μmのサイズまで粒成長させる。このようにして、NiCl分圧を制御しながら、段階的にNi微粒子の成長を行うので、粒度分布が揃った大粒径の微粒子を得ることができる。例えば、平均粒径が0.09〜3.5μmのNi微粒子を粒度が揃った状態で合成することができる。
なお、図1に示す金属粉製造装置においては、0.1〜1.0μmのNi微粒子を合成する場合は、第2の原料容器15を使用しなければよい。また、原料容器を3個以上使用することにより、金属微粒子(Ni微粒子)を3段階以上で成長させることができ、より精密な粒径制御が可能になると共に、より大きな粒径の金属微粒子(Ni微粒子)を得ることができる。更に、図1に示す実施形態においては、Hガスの反応管10への導入を、別の入り口から行っているが、同一の入り口から反応管内にHガスを導入し、反応管内で、分岐することにより、各原料容器から蒸発した原料蒸気に供給することとしてもよい。
本発明の実施例においては、図1の装置を使用して、塩化ニッケル(NiCl)を原料としてNi微粒子を合成した。比較例においては、図2の装置を使用して、同様にNi微粒子を合成した。得られたNi微粒子は、レーザ回折式粒度分布測定装置により粒度分布を測定し、変動係数による分布の相対比較を行った。下記表1は、合成条件を示し、表2は、合成結果を示す。但し、変動係数(%)は、100×(標準偏差/平均粒径)により算出される。また、表2において、ガス流量の単位はリットル/分である。
Figure 2007138205
Figure 2007138205
この表2に示すように、本発明の範囲から外れる比較例1,2は、大粒径のNi微粒子を得ようとすると、その変動係数が大きいものであった。これに対し、実施例1乃至6は平均粒径が0.09乃至3.5μmにわたって変動係数が小さいものであった。
本発明により合成できるNi微粒子は、積層セラミックコンデンサ等の電子部品用電極材料、並びにヒートシールコネクタ、異方導電性接着剤、異方導電性フィルム、及び異方導電性ペースト等の電子回路基板の接続部材用の導電フィラー等として利用される。
本発明の実施形態の金属粉の製造装置を示す図である。 従来の金属粉の製造装置を示す図である。
符号の説明
10:反応管
11:副室
12,13:電気炉
14,15:原料容器
16:パイプ群
16a〜16d:パイプ
17a〜17d:ノズル
18:冷却部

Claims (3)

  1. 原料を貯留する第1の原料容器と、この第1の原料容器内の原料を加熱して気化させる第1の気化部と、前記第1の気化部から送給される原料の蒸気と還元ガスとを加熱して反応させ金属微粒子を得る第1の反応部と、原料を貯留する第2の原料容器と、この第2の原料容器内の原料を加熱して気化させる第2の気化部と、前記金属微粒子と前記第2の気化部から送給された原料蒸気と還元ガスとを加熱して反応させ前記金属微粒子を成長させる第2の反応部とを有することを特徴とする金属粉の製造装置。
  2. 原料を貯留する複数個の原料容器と、前記各原料容器内の原料を加熱して気化させる複数個の気化部と、前記各気化部から送給される原料の蒸気と還元ガスとを加熱して反応させる複数個の反応部と、を有し、2段目以降の各反応部においては、前段の反応部で生成した金属微粒子又は前段の反応部で成長させた金属微粒子の表面に、更にその段の気化部で生成した原料蒸気と還元ガスとの反応により生成した金属を堆積させて、前記金属微粒子を成長させることを特徴とする金属粉の製造装置。
  3. 原料を加熱して気化させる工程と、得られた原料蒸気と還元ガスとを加熱して反応させ前記原料を還元して金属微粒子を得る工程と、この金属微粒子と原料蒸気と還元ガスとを加熱して反応させこの原料蒸気の還元生成物を前記金属微粒子の表面上に成長させる工程とを有することを特徴とする金属粉の製造方法。

JP2005330886A 2005-11-15 2005-11-15 金属粉の製造装置及び方法 Pending JP2007138205A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005330886A JP2007138205A (ja) 2005-11-15 2005-11-15 金属粉の製造装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005330886A JP2007138205A (ja) 2005-11-15 2005-11-15 金属粉の製造装置及び方法

Publications (1)

Publication Number Publication Date
JP2007138205A true JP2007138205A (ja) 2007-06-07

Family

ID=38201444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005330886A Pending JP2007138205A (ja) 2005-11-15 2005-11-15 金属粉の製造装置及び方法

Country Status (1)

Country Link
JP (1) JP2007138205A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101372841B1 (ko) 2012-04-30 2014-03-13 한국에너지기술연구원 동시기화를 이용한 복합체 합성 장치, 복합체 합성 방법, 복합체 합성 장치용 기화기 및 복합체
CN107186217A (zh) * 2017-07-26 2017-09-22 赣州博立科技有限公司 一种钨粉还原设备及其控制方法
JP7236063B1 (ja) 2021-11-10 2023-03-09 コリア インスティチュート オブ インダストリアル テクノロジー 無機粉末の製造装置及び製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101372841B1 (ko) 2012-04-30 2014-03-13 한국에너지기술연구원 동시기화를 이용한 복합체 합성 장치, 복합체 합성 방법, 복합체 합성 장치용 기화기 및 복합체
US9259702B2 (en) 2012-04-30 2016-02-16 Korea Institute Of Energy Research Method and apparatus for synthetizing composite using simultaneous vaporization, vaporizer for composite synthesis apparatus, vaporizer heater, and composite
CN107186217A (zh) * 2017-07-26 2017-09-22 赣州博立科技有限公司 一种钨粉还原设备及其控制方法
JP7236063B1 (ja) 2021-11-10 2023-03-09 コリア インスティチュート オブ インダストリアル テクノロジー 無機粉末の製造装置及び製造方法
JP2023071129A (ja) * 2021-11-10 2023-05-22 コリア インスティチュート オブ インダストリアル テクノロジー 無機粉末の製造装置及び製造方法

Similar Documents

Publication Publication Date Title
JP5821579B2 (ja) 金属粉末製造用プラズマ装置
US10640378B2 (en) Induction-coupled plasma synthesis of boron nitrade nanotubes
US8859931B2 (en) Plasma synthesis of nanopowders
JP5900510B2 (ja) 金属粉末製造用プラズマ装置
US8013269B2 (en) Induction plasma synthesis of nanopowders
Zhang et al. Single-step pathway for the synthesis of tungsten nanosized powders by RF induction thermal plasma
US20070277648A1 (en) Method producing metal nanopowders by decompositon of metal carbonyl using an induction plasma torch
KR20090059749A (ko) 플라스마를 이용한 금속 나노 분말의 합성장치 및 방법
WO2011071225A1 (ko) 열플라즈마를 이용한 고순도 구리분말의 제조방법
KR20150011366A (ko) 입자 제조 장치 및 방법
JP2007154222A (ja) 金属粉の製造装置及び製造方法
JP2007138205A (ja) 金属粉の製造装置及び方法
JP6016729B2 (ja) 金属粉末の製造方法及び製造装置
JP3807873B2 (ja) Ni超微粉の製造方法
CN113427016B (zh) 一种制备细微钛铝金属间化合物粉末的装置及其生产方法
CN117836240A (zh) 碳纳米管集合线的制造方法和碳纳米管集合线制造装置
RU2434807C1 (ru) Способ получения нанопорошков систем элемент-углерод
JP6082574B2 (ja) 金属粉末の製造方法および製造装置
JP7194544B2 (ja) 粒子の製造方法
JP6738459B1 (ja) 銅粉体の製造方法
JP3929985B2 (ja) 金属粉製造装置
JP2004143485A (ja) 金属微粉の製造方法及び製造装置
JP4295860B2 (ja) 金属粉末の製造方法
JP2005105365A (ja) 導電性粉末材料及びその製造方法
CN116275086A (zh) 球形纳米金属及其氧化物粉末的等离子体制备系统及方法