WO2013084489A1 - 露光制御装置 - Google Patents

露光制御装置 Download PDF

Info

Publication number
WO2013084489A1
WO2013084489A1 PCT/JP2012/007806 JP2012007806W WO2013084489A1 WO 2013084489 A1 WO2013084489 A1 WO 2013084489A1 JP 2012007806 W JP2012007806 W JP 2012007806W WO 2013084489 A1 WO2013084489 A1 WO 2013084489A1
Authority
WO
WIPO (PCT)
Prior art keywords
light amount
light
region
exposure control
adjusting plate
Prior art date
Application number
PCT/JP2012/007806
Other languages
English (en)
French (fr)
Inventor
俊介 安木
江澤 弘造
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280018541.6A priority Critical patent/CN103502885B/zh
Priority to JP2013548089A priority patent/JP6025104B2/ja
Priority to US14/111,366 priority patent/US8801305B2/en
Publication of WO2013084489A1 publication Critical patent/WO2013084489A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • G02B26/023Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light comprising movable attenuating elements, e.g. neutral density filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/281Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for attenuating light intensity, e.g. comprising rotatable polarising elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/08Shutters
    • G03B9/10Blade or disc rotating or pivoting about axis normal to its plane
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components

Definitions

  • the present application relates to an exposure control apparatus that adjusts the amount of transmitted light.
  • the amount of light that passes through an optical system and enters an imaging device is generally adjusted by an optical aperture or a shutter.
  • the exposure control method using the optical aperture and the shutter speed has a problem that the depth of field and the blurring of the subject become unintended.
  • Patent Document 1 includes two polarizing plates and two driving sources, and adjusts the amount of light by relatively rotating the two polarizing plates by one driving source, and by the other driving source.
  • An exposure control device for retracting two polarizing plates from the optical path is disclosed.
  • Patent Document 2 includes two polarizing plates and one driving source, and adjusts the amount of light by relatively rotating the two polarizing plates with one driving source, and two polarizing plates from the optical path.
  • An exposure control apparatus is disclosed that performs both retraction using a single drive source.
  • FIG. 14 shows a conventional exposure control apparatus 1000 disclosed in Patent Document 2.
  • FIG. 14A shows a state where two polarizing plates are inserted in the optical path.
  • FIG. 14B shows a state where two polarizing plates are retracted from the optical path.
  • the two polarizing plates 1001 and 1002 are fixed to the polarization driving plate 1003, and the polarizing driving plate 1003 is moved when the polarizing plate 1001 and the polarizing plate 1002 are retracted from the optical path.
  • These configurations can create a state in which the polarizing plate does not exist on the optical path, so that the maximum value of the transmittance that can be adjusted can be increased.
  • One non-limiting exemplary embodiment of the present application provides an exposure control apparatus that can adjust the amount of transmitted light with a simple configuration.
  • An exposure control apparatus is an exposure control apparatus disposed on an optical path, and includes a first region having a characteristic of transmitting light polarized in a specific direction and light polarized in the specific direction.
  • First and second light quantity adjustment plates each having a second region having no transmission characteristic are provided, and the light quantity is adjusted by rotating the first and second light quantity adjustment plates.
  • the exposure control apparatus creates a state in which there is no polarization region on the optical path with a simple configuration and control. Thereby, the amount of light can be adjusted without reducing the maximum amount of transmitted light. Furthermore, since the light amount adjusting plate can be slid at a portion having a small diameter, the light amount adjusting plate can be rotated with a small friction, and the energy required for rotating the polarizing plate and the wear of the members can be reduced.
  • FIG. 8 is a diagram showing another example of the light amount adjustment plate in the first embodiment.
  • FIG. 10 is a diagram showing another form of the first embodiment.
  • (A) to (g) are other views showing a state in which the light amount adjusting plate is rotated in the exposure control apparatus of the first embodiment.
  • FIG. 2 It is a figure which shows the structure of Embodiment 2 of the exposure control apparatus by this invention.
  • (A) to (e) are views showing a state in which a light amount adjusting plate is rotated in the exposure control apparatus of the second embodiment. It is a top view which shows the structure of Embodiment 3 of the exposure control apparatus by this invention. It is the figure which looked at the exposure control apparatus of Embodiment 3 from the side.
  • (A)-(i) is a figure which shows the state which rotated the light quantity adjustment board in the exposure control apparatus of Embodiment 3.
  • FIG. It is a figure which shows the relationship between the rotation angle of the light quantity adjustment board and the transmittance
  • FIG. It is a figure which shows the arrangement
  • FIG. It is a block diagram which shows embodiment of the imaging device by this invention.
  • (A) And (b) is a figure which shows the structure of the conventional exposure control apparatus.
  • An exposure control apparatus is an exposure control apparatus disposed on an optical path, and includes a first region having a characteristic of transmitting light polarized in a specific direction and light polarized in the specific direction.
  • First and second light quantity adjustment plates each having a second region having no transmission characteristic are provided, and the light quantity is adjusted by rotating the first and second light quantity adjustment plates.
  • Each of the first and second light quantity adjustment plates has a rotation axis at the center, the rotation axis is disposed outside the optical path, and a part of each of the first and second light quantity adjustment plates is The light quantity may be adjusted by overlapping each other on the optical path and rotating the first and second light quantity adjustment plates around the rotation axis.
  • the rotation axis of the first light amount adjustment plate and the rotation axis of the second light amount adjustment plate may be arranged at different positions.
  • the first region of the first light amount adjustment plate and the first region of the second light amount adjustment plate respectively overlap the optical path, and the first region of the first light amount adjustment plate
  • the first and second light amount adjusting plates rotate such that the specific direction and the specific direction of the first region of the second light amount adjusting plate are perpendicular to each other, the first and second The transmittance of the light transmitted through the light quantity adjusting plate may be the lowest.
  • first and second light amount adjustment plates rotate such that the second region of the first light amount adjustment plate and the second region of the second light amount adjustment plate overlap the optical path, respectively.
  • the transmittance of light passing through the first and second light quantity adjustment plates may be maximized.
  • the specific direction and the specific direction of the first region of the second light quantity adjustment plate may be parallel to each other from a state perpendicular to each other.
  • the first and second light quantity adjusting plates may rotate in opposite directions at the same speed.
  • the first and second light quantity adjustment plates may rotate at different speeds in opposite directions.
  • the first and second light quantity adjustment plates may rotate in the same direction at different speeds.
  • the rotation axes of the first and second light quantity adjusting plates may coincide with each other.
  • the first light amount adjustment plate and The second light amount adjustment plate may rotate in the same direction at the same speed.
  • the second region of the first light amount adjusting plate and the second region of the second light amount adjusting plate overlap with the optical path, respectively, and the first region of the first light amount adjusting plate In a state where the specific direction and the specific direction of the first region of the second light amount adjustment plate are not parallel to each other, one of the first light amount adjustment plate and the second light amount adjustment plate rotates,
  • the other may be stationary.
  • the exposure control apparatus may further include an optical element that converts incident light into circularly polarized light, and light that has passed through the optical element may pass through the first and second light quantity adjustment plates.
  • the exposure control apparatus may further include an optical element that is arranged so that light transmitted through the first and second light quantity adjustment plates is incident and that converts the incident light into circularly polarized light.
  • the exposure control device may further include an optical diaphragm or shutter arranged in the optical path of the optical system.
  • FIG. 1A shows the configuration of Embodiment 1 of the exposure control apparatus of the present invention.
  • 1A includes a light amount adjusting plate 1, a light amount adjusting plate 2, a gear 3, and a gear 4.
  • a light amount adjusting plate (first light amount adjusting plate) 1 and a light amount adjusting plate (second light amount adjusting plate) 2 are respectively specified as a polarizing region 1a and a polarizing region 2a having characteristics of transmitting light oscillating in a specific direction.
  • a non-polarizing region 1b and a non-polarizing region 2b that do not have the property of transmitting light that vibrates in the direction are provided.
  • the light quantity adjustment plate 1 and the light quantity adjustment plate 2 are each provided with the rotating shaft 1c and the rotating shaft 2c.
  • the rotating shaft 1 c and the rotating shaft 2 c are present inside the light amount adjusting plate 1 and the light amount adjusting plate 2 and outside the optical path 5.
  • a part of each of the light amount adjusting plate 1 and the light amount adjusting plate 2 overlaps with each other on the optical path and crosses the entire optical path 5.
  • the polarizing region 1a and the non-polarizing region 1b are each formed in a sector shape with the rotation axis 1c as the center, and the central angle ⁇ ′ of the polarizing region 1a is 180 °. . Therefore, the central angle ⁇ ′ of the non-polarizing region 1b is also 180 °.
  • the polarizing region 2a and the non-polarizing region 2b in the light amount adjusting plate 2 also have the same structure. As long as the polarization region 1a and the polarization region 2a are provided so as to completely cover the entire optical path 5, the arrangement is not limited to that shown in FIG. 1A, and the polarization region 1a is located in the vicinity of the rotation axis 1c and the rotation axis 2c. And the polarization region 2a may not be provided.
  • the optical path 5 is, for example, perpendicular to the light amount adjustment plate 1 and the light amount adjustment plate 2 and is shown in a cross section parallel to the light amount adjustment plate 1 and the light amount adjustment plate 2 in FIG. 1A.
  • the optical path 5 only needs to intersect with the light amount adjustment plate 1 and the light amount adjustment plate 2, and may be inclined with respect to the light amount adjustment plate 1 and the light amount adjustment plate 2.
  • the optical path 5 is not limited to a circle as shown in FIG. 1, and may have various cross-sectional shapes.
  • the polarizing region 1a and the polarizing region 2a are made of, for example, a polarizing film.
  • a polarizing film a film made of polyvinyl alcohol or iodine, or a film in which metal wires such as aluminum are arranged may be used.
  • a polarizing film made of any material of organic materials and inorganic materials can be adopted.
  • the non-polarization region 1b and the non-polarization region 2b do not have a property of transmitting light polarized in a specific direction. Specifically, the non-polarizing region 1b and the non-polarizing region 2b are not provided with a polarizer such as the polarizing film described above. For this reason, the non-polarizing region 1b and the non-polarizing region 2b transmit light without polarization.
  • the polarization region 1a and the polarization region 2a are indicated by hatching, and the direction of the striped line indicates the vibration direction of transmitted light.
  • an axis parallel to the vibration direction of the light transmitted through the polarizing region 1a and the polarizing region 2a is referred to as a transmission axis.
  • FIG. 1B is a side view of the exposure control apparatus 100 of FIG. 1A.
  • the light amount adjusting plate 1 and the light amount adjusting plate 2 have gear teeth on the side surfaces.
  • the gear 3 is rotated by power from a motor (actuator) which is a drive source (not shown).
  • the gear 3 is connected to a rotating disk or the like, and the operator may rotate the rotating disk with fingers.
  • the gear 3 rotates, the light amount adjusting plate 1 and the gear 4 meshing with the gear 3 rotate.
  • the gear 4 rotates, the light amount adjusting plate 2 engaged with the gear 4 rotates.
  • the gear 3 and the gear 4 constitute a drive mechanism 10 that rotates the light amount adjusting plate 1 and the light amount adjusting plate 2 in the same direction or in the opposite direction.
  • the light amount adjusting plate 1 and the light amount adjusting plate 2 are rotated in opposite directions by the drive mechanism 10 at the same rotational speed.
  • the light amount adjustment plate 1 and the light amount adjustment plate 2 are arranged so as to be substantially parallel to each other. As long as the light amount adjusting plate 1 and the light amount adjusting plate 2 completely cross the optical path 5, the light amount adjusting plate 1 and the light amount adjusting plate 2 may not be parallel and may form an angle of several tens of degrees or less. 1 and the light amount adjusting plate 2 may be provided with a gap g. However, if the angle between the light amount adjusting plate 1 and the light amount adjusting plate 2 is increased or the gap g is increased, stray light that does not pass through one of the light amount adjusting plate 1 and the light amount adjusting plate 2 but passes through the other (FIG. 1B). Is not shown in particular) is likely to occur. When stray light becomes a problem, an appropriate light shielding structure may be provided so that stray light does not enter the light amount adjustment plate 2 from the gap g.
  • the light amount adjusting plate 1 and the light amount adjusting plate 2 rotate at the same speed.
  • the light entering the exposure control apparatus 100 through the optical path 5 is light that contains linearly polarized components in all directions uniformly. Further, it is expressed that light passes through both the polarization region 1a and the polarization region 2a of the exposure control apparatus 100 and the light passes through the non-polarization region 1b and the non-polarization region 2b of the exposure control apparatus 100.
  • the operation of the exposure control apparatus 100 will be described with reference to FIG.
  • the central angle ⁇ ′ of the polarizing region 1a and the polarizing region 2a in the light amount adjusting plate 1 and the light amount adjusting plate 2 is 180 °
  • the boundary between the polarizing region 1a and the non-polarizing region 1b is a straight line.
  • the polarization region 1a of the light amount adjustment plate 1 and the polarization region 2a of the light amount adjustment plate 2 respectively cover the entire optical path 5, and the transmission axis of the polarization region 1a and the transmission axis of the polarization region 2a are perpendicular to each other. Is an initial state, and the operation will be described assuming that the gear 3 is rotated in the direction of the arrow R. The light enters the light amount adjustment plate 1, and the light transmitted through the light amount adjustment plate 1 passes through the light amount adjustment plate 2.
  • FIG. 2A shows the initial state
  • FIG. 2B shows the light amount adjusting plate 1 in the direction opposite to the arrow R, and the light amount adjusting plate 2 in the same direction as the arrow R, 15 ° from the initial state.
  • the rotated state is shown.
  • FIG.2 (c) shows the state rotated 30 degrees similarly.
  • FIG.2 (d) shows the state rotated 45 degrees similarly.
  • FIG.2 (e) shows the state rotated 120 degree
  • FIG. 3 shows the transmittance of the exposure control apparatus 100 with respect to the rotation angle from the initial state of the light amount adjusting plate 1 and the light amount adjusting plate 2. Note that the relationship between the rotation angle and the transmittance in FIG. 3 is a schematic example, does not show a strict relationship, and does not limit the invention.
  • (a) to (d) indicate that the rotation angles of the light amount adjusting plate 1 and the light amount adjusting plate 2 are the sizes shown in FIGS. 2 (a) to (d).
  • the transmission axes of the polarizing region 1a and the polarizing region 2a of the light amount adjusting plate 1 are perpendicular to each other, so that the transmittance of the exposure control apparatus 100 is the smallest. That is, the transmittance at this time is lower than 50%.
  • the transmittance is about 0%.
  • the transmittance indicates the ratio of the amount of light after passing through the exposure control apparatus 100 to the total amount of light passing through the optical path 5.
  • the transmittance 100%, the light is not polarized and passes through the exposure control apparatus 100 without being blocked.
  • the transmittance is 0%, the light transmitted through the optical path 5 is completely blocked by the exposure control apparatus 100.
  • the transmission axes of the polarizing region 1a and the polarizing region 2a are not vertical.
  • the light transmitted through the polarization region 1 a of the light amount adjustment plate 1 includes a component parallel to the transmission axis of the polarization region 2 a of the light amount adjustment plate 2. Therefore, part of the light transmitted through the polarization region 1 a of the light amount adjustment plate 1 transmits through the polarization region 2 a of the light amount adjustment plate 2.
  • the angle formed between the transmission axis of the polarizing region 1a and the transmission axis of the polarizing region 2a decreases, so that the amount of light transmitted through the polarizing region 2a of the light amount adjusting plate 2 is also increased. Increase.
  • the transmittance of the exposure control apparatus 100 increases and the transmission axes of the polarization region 1a and the polarization region 2a in the light amount adjustment plate 1 and the light amount adjustment plate 2 are parallel to each other as shown in FIG. ).
  • the maximum transmittance is obtained.
  • the transmittance at this time is about 50%, for example.
  • the non-polarization region 1b of the light amount adjustment plate 1 and the non-polarization region 2b of the light amount adjustment plate 2 begin to overlap with the optical path 5. Since the light transmitted through the non-polarization region 1b is not polarized, the transmittance increases as the area where the non-polarization region 1b and the non-polarization region 2b overlap with the optical path 5 increases as shown in FIG.
  • the present embodiment it is possible to reduce the friction between the polarizing plate and other members with a simple structure and to realize a state where there is no polarizing plate on the optical path. Therefore, it is possible to realize an exposure control apparatus that can change the transmittance within a wide range with high accuracy.
  • each of the two light quantity adjustment plates includes a polarization region and a non-polarization region and rotates, so that the two non-polarization regions overlap the optical path, and the two polarization regions are It is possible to create a state overlapping with the optical path and an intermediate state between them.
  • the angle of the transmission axis of the two polarization regions can be changed. Therefore, according to the conventional method of arranging two polarizing plates on the optical path and adjusting the amount of polarized light, the transmittance can be adjusted only between about 0% and about 50%. The transmittance can be adjusted from about 0% to about 100%.
  • the radius of the rotation axis of the two polarizing plates 1001 and 1002 is substantially equal to the radius of the polarizing plate 1001 and the polarizing plate 1002, so The friction between the polarizing plate 1001 and the polarizing plate 1002 is large.
  • movement which retracts the light quantity adjustment board 1 and the light quantity adjustment board 2 itself is unnecessary.
  • the rotating shaft 1c and the rotating shaft 2c are arranged at the center of the light amount adjusting plate 1 and the light amount adjusting plate 2, and the diameter of the rotating shaft can be made smaller than that of the conventional exposure control apparatus 1000.
  • the contact area with the other members on the rotating shafts of the light amount adjusting plate 1 and the light amount adjusting plate 2 is reduced, and the light amount adjusting plate 1 and the light amount adjusting plate 2 can be rotated with a small friction. Energy can be reduced and the drive source can also be reduced.
  • unnecessary energy is not required because the operation of retracting the light amount adjusting plate 1 and the light amount adjusting plate 2 itself is unnecessary.
  • the polarization region 1a, the polarization region 2a, the non-polarization region 1b, and the non-polarization region 2b have a radius that is about twice the diameter of the optical path 5.
  • the light amount adjustment plate 1 and the light amount adjustment plate 2 have polarization regions 1a, 2a and non-polarization regions 1b, 2b, respectively, and are rotated around rotation axes located in the light amount adjustment plate 1 and the light amount adjustment plate 2, respectively. If the polarizing regions 1a, 2a or the non-polarizing regions 1b, 2b can be arranged in the optical path 5, the transmittance of the exposure control device can be changed.
  • the size and shape of the polarization region 1a, the polarization region 2a, the non-polarization region 1b, and the non-polarization region 2b may be freely changed.
  • the shape and size may be different from 2b.
  • the central angle ⁇ ′ of the polarizing region 1 a of the light amount adjusting plate 1 and the central angle ⁇ ′ of the polarizing region 2 a of the light amount adjusting plate 2 may be different from each other.
  • the central angle of the non-polarizing region 1b of the light amount adjusting plate 1 and the central angle of the non-polarizing region 2b of the light amount adjusting plate 2 are also different from each other.
  • the transmittance of the exposure control apparatus can be changed with higher accuracy.
  • the transmission axes of the polarization region 1a of the light amount adjustment plate 1 and the polarization region 2a of the light amount adjustment plate 2 change from a parallel state to a perpendicular state by the rotation of the light amount adjustment plate 1 and the light amount adjustment plate 2
  • the light amount adjustment plate 1 and the light amount adjusting plate 2 have a size and a shape that allow the polarization region 1a and the polarization region 2a to include the entire trajectory through which the optical path 5 passes.
  • the non-polarizing region 1b and the non-polarizing region 2b have a size and shape that can include the entire optical path 5.
  • condition A the above-described two conditions regarding the size and shape of the polarizing region 1a, the non-polarizing region 1b, the polarizing region 2a, and the non-polarizing region 2b are referred to as a condition A.
  • the exposure control apparatus of the present embodiment may have the structure shown in FIG. Similar to the exposure control apparatus 100, the exposure control apparatus 101 includes a light amount adjustment plate 1, a light amount adjustment plate 2, a gear 3, and a gear 4.
  • the radii of the light amount adjustment plate 1 and the light amount adjustment plate 2, that is, the radii of the polarization region 1a and the non-polarization region 1b, and the polarization region 2a and the non-polarization region 2b are approximately the same as the diameter of the optical path 5. Thereby, the size of the exposure control apparatus 101 can be reduced.
  • the features will be described below.
  • the radii of the light amount adjusting plate 1 and the light amount adjusting plate 2 are about the diameter of the optical path 5.
  • the light amount adjusting plate 1 and the light amount adjusting plate 2 of the exposure control apparatus 101 have ⁇ and ⁇ ′ different from those of the exposure control apparatus 100.
  • is centered at the midpoint of the line segment connecting the rotation axis 1c, 2c of the light amount adjustment plate 1 and the light amount adjustment plate 2 to the rotation axis 1c of the light amount adjustment plate and the rotation axis 2c of the light amount adjustment plate 2.
  • ⁇ ′ is a central angle in a fan shape formed by the polarizing region 1a or the polarizing region 2a. Conditions to be satisfied by ⁇ and ⁇ ′ can be derived from calculation.
  • the conditions that ⁇ should satisfy are shown.
  • the light amount adjustment plate 1 and the light amount adjustment plate 2 are reversely rotated at the same speed. Therefore, by rotation, the transmission axes of the polarization region 1a of the light amount adjustment plate 1 and the polarization region 2a of the light amount adjustment plate 2 change from a mutually perpendicular state to a parallel state, or from a parallel state to a perpendicular state.
  • the light amount adjusting plate 1 and the light amount adjusting plate 2 need to be rotated by 45 °.
  • the non-polarization region 1 b and the non-polarization region 2 b need to cover the entire optical path 5. Therefore, the non-polarizing region 1b and the non-polarizing region 2b are also required by ⁇ in the circumferential direction of the light amount adjusting plate 1 and the light amount adjusting plate 2. Since the sum of the necessary regions only needs to be 360 ° or less of the circumference, the relational expression of Equation 1 can be derived. ( ⁇ + 45) + ⁇ ⁇ 360 (Equation 1)
  • Equation 2 which is a condition that ⁇ should satisfy, can be obtained.
  • Equation 2 which is a condition that ⁇ should satisfy, can be obtained.
  • the area in the circumferential direction necessary for changing the amount of light transmitted through the exposure control device from the minimum value to the maximum value is the angle indicated by the left side of Equation 1.
  • the region of the light amount adjusting plate 1 and the light amount adjusting plate 2 can be efficiently used without waste as the value of ⁇ increases.
  • the maximum value of the amount of light is the maximum value of the amount of light that passes through the exposure control device when the non-polarizing region 1b and the non-polarizing region 2b exist on the optical path 5 and the light is not blocked.
  • Equation 2 the maximum value of ⁇ is 157.5 °. A portion corresponding to ⁇ in FIG. 5 is represented by 157.5 °.
  • Equation 3 360 ⁇ ′ ⁇ 157.5
  • the polarization region 1a of the light amount adjustment plate 1 and the polarization region 2a of the light amount adjustment plate 2 of the exposure control apparatus in the present embodiment may have any shape.
  • the boundary between the polarization region 1a and the non-polarization region 1b and the boundary between the polarization region 2a and the non-polarization region 2b are straight lines. However, as shown in FIG. As long as the condition 'is satisfied, the line need not be a straight line.
  • the radii of the rotary shaft 1c and the rotary shaft 2c are not considered.
  • the radii of the rotating shaft 1c and the rotating shaft 2c are not negligible compared to the radius of the optical path 5
  • the radii of the light amount adjusting plate 1 and the light amount adjusting plate 2 are determined in consideration of the radii of the rotating shaft 1c and the rotating shaft 2c. do it.
  • the number of drive sources is not limited to one, and a plurality of drive sources may be used.
  • the gear 3 and the gear 4 may be rotated by one drive source.
  • the drive source is not limited to a motor or the like, and as described above, the user may manually rotate the light amount adjustment plate 1, the light amount adjustment plate 2, the gear 3, and the gear 4.
  • the midpoint of the line segment connecting the rotation axes 1c and 2c does not have to coincide with the center of the circular optical path 5, and the rotation axis is satisfied as long as the conditions A, ⁇ , and ⁇ ′ are satisfied.
  • the centers of 1c and 2c and the optical path 5 may be arranged in a relationship other than the illustrated position.
  • the positions of the rotary shaft 1c and the rotary shaft 2c may coincide if the condition A and the conditions of ⁇ , ⁇ ′ are satisfied. If the rotation axis exists at the same position, the light amount adjusting plate 1 and the light amount adjusting plate 2 are overlapped, and the size of the exposure control device itself can be reduced.
  • the non-polarizing region 1b and the non-polarizing region 2b do not have to have a property of transmitting light polarized in a specific direction.
  • a material that does not have polarization characteristics such as glass, may be provided in the non-polarization region 1b and the non-polarization region 2b, or an object is not provided, and is filled with an environmental medium such as air that holds an exposure control device. It may be.
  • a polarizing plate or an ND filter exhibiting polarization characteristics other than the characteristic of transmitting light polarized in a specific direction may be provided in the non-polarization region 1b and the non-polarization region 2b.
  • the shapes of the light quantity adjusting plate 1 and the light quantity adjusting plate 2 themselves may not be circular. However, it does not have to be circular.
  • the gear 3 is rotated to rotate the gear 4, the light amount adjusting plate 1 and the light amount adjusting plate 2, but the configuration, size, position, etc. of the gear are not limited thereto. Also, the number of gears may be other than two. Further, the light amount adjusting plate 1 and the light amount adjusting plate 2 may be directly driven by a motor.
  • the rotating shaft 1c and the rotating shaft 2c may be directly rotated, and the light amount adjusting plate 1 and the light amount adjusting plate 2 are rotated.
  • the method of making it not restricted to the method of this Embodiment.
  • the exposure control apparatus further includes optical elements such as a wavelength plate and a depolarizer for converting incident light into circularly polarized light, which are different from the light amount adjusting plate 1 and the light amount adjusting plate 2, on the light incident side. You may have. According to such a configuration, it is possible to reduce the influence of the subject dependency of the light amount adjustment that the light amount adjustment amount changes depending on the polarization direction of the light from the subject.
  • Such an optical element may be arranged such that light transmitted through the light amount adjusting plate 1 and the light amount adjusting plate 2 enters.
  • the exposure control device has a wavelength plate that converts linearly polarized light different from the light amount adjusting plate 1 and the light amount adjusting plate 2 into circularly polarized light on the side opposite to the light incident side of the exposure control device.
  • An optical element such as a depolarizer may be provided.
  • the influence of the polarization dependence can be reduced even when the polarization dependence is incident on an apparatus that affects the output.
  • Examples of such an apparatus in which the polarization dependency affects the output include an AF apparatus having a configuration in which light is divided into an AF mechanism and an imaging element by an optical low-pass filter or a polarizing prism.
  • the polarizing region 1a of the light amount adjusting plate 1 and the polarizing region 2a of the light amount adjusting plate 2 are composed of polarizing films, but have the property of transmitting light that vibrates in a specific direction. If so, the configuration is not limited to the configuration of the present embodiment.
  • the present embodiment includes two light amount adjustment plates, it may include three or more light amount adjustment plates.
  • the exposure control apparatus of this embodiment may further include an optical aperture or a shutter. Thereby, it is possible to realize an imaging apparatus that can photograph a subject under appropriate photographing conditions by simultaneously changing the shutter speed, the depth of field, and the exposure amount.
  • FIG. 6 shows a state when the gear 3 is further rotated in the direction of arrow R from FIG.
  • FIG. 6A shows the same state as FIG. 3E, in which the light amount adjusting plate 1 is rotated in the direction opposite to the arrow R and the light amount adjusting plate 2 is rotated in the same direction as the arrow R by 120 ° from the initial state. Shows the state. 6 (b), (c), (d), (e), (f) and (g) are similarly rotated by 180 °, 240 °, 315 °, 330 °, 345 ° and 360 °, respectively. Indicates.
  • the absolute value of the rotation amount of the light amount adjusting plate 1 and the light amount adjusting plate 2 (based on the state of FIG. 2A) is 60 ° in FIGS. 2E and 6C, and FIG. 6 (d), 135 °, FIGS. 2 (c) and 6 (e), 150 °, FIGS. 2 (b) and 6 (f), 165 °, FIGS. 2 (a) and 6 (g). ) Is 180 °. Further, FIG. 2 (e) and FIG. 6 (c), FIG. 2 (d) and FIG. 6 (d), FIG. 2 (c) and FIG. 6 (e), FIG. 2 (b) and FIG. In FIG. 2 (a) and FIG.
  • the optical path 5 has a line-symmetric shape with a vertical bisector connecting the rotation axes 1c and 2c as an axis of symmetry, and the center point of the line segment connecting the rotation axes 1c and 2c and the center of gravity of the optical path 5 If they match, (1)
  • the polarizing region 1a and the polarizing region 2a are arranged symmetrically with respect to the perpendicular bisector.
  • (3) The above-described condition A and the conditions of ⁇ and ⁇ ′ are satisfied. When these conditions are satisfied, the transmittance is not limited to the shapes of the polarizing region 1a and the polarizing region 2a, and the transmittance can be changed as described above.
  • FIG. 7 shows the configuration of the second embodiment of the exposure control apparatus of the present invention.
  • the exposure control device 200 is different from the exposure control device 100 of the first embodiment in that the light amount adjustment plate 1 and the light amount adjustment plate 2 rotate at different speeds.
  • the light amount adjusting plate 1 and the light amount adjusting plate 2 have the polarizing region 1a and the polarizing region 2a having the property of transmitting light oscillating in a specific direction and the property of transmitting the light oscillating in a specific direction.
  • Each of the non-polarizing region 1b and the non-polarizing region 2b is included.
  • the light amount adjustment plate 1 and the light amount adjustment plate 2 have a rotation shaft 1c and a rotation shaft 2c, respectively.
  • the rotating shaft 1 c and the rotating shaft 2 c are present inside the light amount adjusting plate 1 and the light amount adjusting plate 2 and outside the optical path 5.
  • each of the light amount adjusting plate 1 and the light amount adjusting plate 2 overlaps with each other on the optical path and crosses the entire optical path 5.
  • the incident light (not shown) is not limited to the light incident on the light amount adjusting plate 1 and the light amount adjusting plate 2 but may be incident on the light amount adjusting plate 1 and the light amount adjusting plate 2 at an angle.
  • the polarizing region 1a and the polarizing region 2a are made of, for example, a polarizing film.
  • the non-polarizing region 1b and the non-polarizing region 2b do not have a property of transmitting light polarized in a specific direction.
  • the stripe pattern shown on the light amount adjustment plate 1 and the light amount adjustment plate 2 indicates the polarization region 1a and the polarization region 2a, and the direction of the stripe line indicates the vibration direction of the transmitted light. Show.
  • the gear 3 is rotated by power from a motor or the like which is a drive source not shown in the drawing. Further, the light amount adjusting plate 1 and the gear 4 meshing with the gear 3 are rotated by the rotation of the gear 3. As the gear 4 rotates, the gear 4, the gear 21, the gear 22, and the gear 23 sequentially mesh with each other, and the gear 23 rotates in the same direction as the gear 4.
  • the gear 23 rotates around the same rotation axis 2c as the light quantity adjusting plate 2. Since the light amount adjusting plate 2 and the gear 23 are respectively fixed to the rotating shaft 2c, when the gear 23 rotates, the light amount adjusting plate 2 also rotates in the same direction at the same rotational speed.
  • the number of teeth of the gear 23 is 1 ⁇ 2 of the number of teeth of the gear provided on the side surface of the light adjusting plate 1 (the radius of the gear 23 is not accurately shown in FIG. 7). For this reason, the light adjusting plate 2 rotates twice in the reverse direction while the light adjusting plate 1 rotates once. With such a structure, the light amount adjusting plate 1 and the light amount adjusting plate 2 rotate at different speeds.
  • the light amount adjustment plate 1 and the light amount adjustment plate 2 rotate at a speed ratio of 1: 2.
  • the operation of the exposure control apparatus 200 will be described with reference to FIG.
  • the gear 21, the gear 22, and the gear 23 are not shown for easy understanding.
  • the transmission axes of the polarizing region 1a of the light amount adjusting plate 1 and the polarizing region 2a of the light amount adjusting plate 2 are perpendicular to each other, and the polarizing region 1a and the polarizing region 2a of the light amount adjusting plate 1 and the light amount adjusting plate 2 are the optical path 5.
  • the rotation state of the light amount adjusting plate 1 and the light amount adjusting plate 2 when the gear 3 is rotated in the direction of the arrow R when the state including the whole is the initial state is shown.
  • FIG. 8A shows the initial state.
  • FIG. 8B shows a state in which the light amount adjusting plate 1 is rotated by 10 ° in the direction opposite to the arrow R from the initial state, and the light amount adjusting plate 2 is rotated by 20 ° in the same direction as the arrow R from the initial state.
  • FIG. 8C shows a state in which the light amount adjusting plate 1 is rotated by 20 ° in the direction opposite to the arrow R from the initial state, and the light amount adjusting plate 2 is rotated by 40 ° in the same direction as the arrow R from the initial state.
  • FIG. 8D shows a state in which the light amount adjusting plate 1 is rotated 30 ° in the direction opposite to the arrow R from the initial state, and the light amount adjusting plate 2 is rotated 60 ° in the same direction as the arrow R from the initial state.
  • FIG. 8E shows a state in which the light amount adjusting plate 1 is rotated by 80 ° in the direction opposite to the arrow R from the initial state, and the light amount adjusting plate 2 is rotated by 160 ° in the same direction as the arrow R from the initial state.
  • the transmission axes of the polarization region 1a of the light amount adjustment plate 1 and the polarization region 2a of the light amount adjustment plate 2 are perpendicular to each other. small.
  • the transmittance of the exposure control apparatus 200 increases. As shown in FIG. 8A, in the initial state, the transmission axes of the polarization region 1a of the light amount adjustment plate 1 and the polarization region 2a of the light amount adjustment plate 2 are perpendicular to each other. small.
  • the transmittances in the states shown in (d) and FIG. 8 (d), and in FIGS. 2 (e) and 8 (e) are equal.
  • the present embodiment it is possible to reduce the friction between the polarizing plate and other members with a simple structure and to realize a state in which there is no polarizing plate on the optical path.
  • An exposure control apparatus that can change the transmittance in a wide range can be realized. Further, by rotating the light amount adjusting plate 1 and the light amount adjusting plate 2 at different speeds, the range of transmittance control is widened.
  • the rotation speed ratio between the light amount adjustment plate 1 and the light amount adjustment plate 2 is 1: 2, but the speed ratio can be freely set as long as the conditions A, ⁇ , and ⁇ ′ are satisfied. May be changed. Further, the speed ratio may be changed during the rotation. There is no restriction
  • the polarization region 1a, the polarization region 2a, the non-polarization region 1b, and the non-polarization region 2b are illustrated in a sector shape having a radius about twice the diameter of the optical path 5.
  • the size and shape of the polarizing region 1a, the polarizing region 2a, the non-polarizing region 1b, and the non-polarizing region 2b may be freely changed as long as the conditions A and ⁇ , ⁇ ′ are satisfied.
  • FIG. 9A shows the configuration of Embodiment 3 of the exposure control apparatus of the present invention.
  • the exposure control apparatus 300 shown in FIG. 9A is different from the exposure control apparatus 100 of the first embodiment in the configuration of the gears and the rotation direction of the light amount adjustment plate.
  • the exposure control apparatus 300 includes a light amount adjusting plate 1, a light amount adjusting plate 2, a gear 6, a gear 7, a gear 8, a gear 9, and a gear 10.
  • the light amount adjusting plate 1 and the light amount adjusting plate 2 include a polarizing region 1a and a polarizing region 2a having a property of transmitting light oscillating in a specific direction, and a non-polarizing region 1b having no property of transmitting light oscillating in a specific direction, and And a non-polarizing region 2b. Further, the light amount adjustment plate 1 and the light amount adjustment plate 2 have a rotation shaft 1c and a rotation shaft 2c, respectively.
  • the rotating shaft 1 c and the rotating shaft 2 c are present inside the light amount adjusting plate 1 and the light amount adjusting plate 2 and outside the optical path 5. A part of each of the light amount adjusting plate 1 and the light amount adjusting plate 2 overlaps with each other on the optical path and crosses the entire optical path 5.
  • Incident light (not shown) is not limited to the light incident on the light amount adjusting plate 1 and the light amount adjusting plate 2 but may be incident on the light amount adjusting plate 1 and the light amount adjusting plate 2 at an angle.
  • the polarizing region 1a and the polarizing region 2a are made of, for example, a polarizing film.
  • the non-polarizing region 1b and the non-polarizing region 2b do not have a property of transmitting light polarized in a specific direction.
  • the stripe pattern shown on the light amount adjustment plate 1 and the light amount adjustment plate 2 indicates the polarization region 1a and the polarization region 2a, and the direction of the stripe line indicates the vibration direction of the transmitted light. Show.
  • FIG. 9B is a side view of the exposure control apparatus 300 shown in FIG. 9A. If the thickness is ignored, the gear 6, the gear 7, the gear 8, the gear 9, and the gear 10 are located on the same plane.
  • the gear 6 is rotated by power from a motor or the like which is a drive source not shown in the drawing.
  • the gear 6 meshes with the gear 9 and the gear 10 at a reduction ratio of 1: 1.
  • the gear 9 and the gear 7 and the gear 8 and the gear 10 are engaged at a reduction ratio of 1: 1. Therefore, the rotation of the gear 6 causes the gear 7 and the gear 8 to rotate in the same direction at the same speed.
  • the light amount adjusting plate 1 and the gear 7 are fixed to the rotating shaft 1c, and the rotating shaft 1c is rotated by the rotation of the gear 7, and the light amount adjusting plate 1 is rotated.
  • the light amount adjusting plate 2 and the gear 8 are fixed to the rotating shaft 2c, and the rotating shaft 2c is rotated by the rotation of the gear 8, and the light amount adjusting plate 2 is rotated. That is, the light amount adjusting plate 1 and the light amount adjusting plate 2 are rotated in the same direction at the same speed by the rotation of the gear 6.
  • the gear 9 is an intermittent gear and controls the rest and rotation of the gear 7. Therefore, the gear 9 can control the rest and rotation of the light amount adjusting plate 1.
  • a state where the transmission axis of the polarization region 2a of the polarization region 1a and the light amount adjustment plate 2 of the light amount adjustment plate 1 is vertical and the polarization region 1a and the polarization region 2a overlap the entire optical path 5 is defined as an initial state.
  • the state when the gear 6 is rotated in the direction of the arrow R is shown.
  • FIG. 10A shows an initial state of the light amount adjusting plate 1 and the light amount adjusting plate 2. Further, between the states shown in FIGS. 10A to 10D, the gear 9 and the gear 7 which are intermittent gears are not engaged with each other, so that the gear 7 and the light amount adjusting plate 1 are stationary. For this reason, only the light quantity adjusting plate 2 rotates during the state shown in FIGS. 10 (a) to 10 (d).
  • FIG. 10B shows a state in which the light amount adjusting plate 2 is rotated by 30 ° in the same direction as the arrow R from the initial state.
  • FIG. 10C shows a state in which the light amount adjusting plate 2 is rotated by 60 ° in the same direction as the arrow R from the initial state.
  • FIG. 10D shows a state in which the light amount adjusting plate 2 is rotated 90 ° in the same direction as the arrow R from the initial state.
  • FIG. 10E shows a state in which the light amount adjusting plate 1 is rotated by 15 ° in the same direction as the arrow R from the initial state, and the light amount adjusting plate 2 is rotated by 105 ° in the same direction as the arrow R from the initial state.
  • FIG. 10F shows a state in which the light amount adjustment plate 1 is rotated 30 ° in the same direction as the arrow R from the initial state, and the light amount adjustment plate 2 is rotated 120 ° in the same direction as the arrow R from the initial state.
  • FIG. 10G shows a state in which the light amount adjusting plate 1 is rotated 45 ° in the same direction as the arrow R from the initial state, and the light amount adjusting plate 2 is rotated 135 ° in the same direction as the arrow R from the initial state.
  • FIG. 10H shows a state in which the light amount adjusting plate 1 is rotated by 60 ° in the same direction as the arrow R from the initial state, and the light amount adjusting plate 2 is rotated by 150 ° in the same direction as the arrow R from the initial state.
  • FIG. 10 (i) shows a state in which the light amount adjusting plate 1 is rotated by 75 ° in the same direction as the arrow R from the initial state, and the light amount adjusting plate 2 is rotated by 165 ° in the same direction as the arrow R from the initial state.
  • FIG. 11 shows the transmittance of the exposure control apparatus 300 with respect to the rotation angle from the initial state of the light amount adjusting plate 2. Note that the relationship between the rotation angle and the transmittance in FIG. 11 is a schematic example, does not show a strict relationship, and does not limit the invention.
  • (a) to (i) indicate that the rotation angle of the light amount adjusting plate 2 is the size shown in FIGS. 10 (a) to (i).
  • the transmission axes of the polarization region 1a of the light amount adjustment plate 1 and the polarization region 2a of the light amount adjustment plate 2 are perpendicular to each other. It becomes the smallest. That is, the transmittance at this time is lower than 50%.
  • the transmittance at this time is, for example, 0%.
  • the transmittance of the exposure control apparatus 300 increases as shown in FIG. 10D, when the transmission axes of the polarization region 1a of the light amount adjustment plate 1 and the polarization region 2a of the light amount adjustment plate 2 are parallel to each other, the polarization of the light amount adjustment plate 1 and the light amount adjustment plate 2 on the optical path 5.
  • the maximum transmittance is obtained when the region 1a and the polarizing region 2a exist.
  • the transmittance at this time is about 50%, for example.
  • the light amount adjusting plate 1 and the light amount adjusting plate 2 can be rotated in the state shown in FIG. 10A to FIG.
  • the transmittance of the control device 300 can be monotonously increased or decreased. Further, with such a configuration, even when the light amount adjusting plate 1 and the light amount adjusting plate 2 are rotated in the same direction, the state where there is no polarizing plate on the optical path without increasing the friction between the polarizing plate and other members. Therefore, exposure control can be performed with high accuracy.
  • the transmittance increases monotonously during the state shown in FIGS. 2A to 2D, but the transmittance is maximized from FIG. 2D.
  • the transmittance of the exposure control apparatus 300 can be changed monotonously from the minimum to the maximum. Therefore, it is easy to adjust the intended transmittance or the amount of light transmitted through the optical path.
  • the exposure control apparatus 100 in the process in which the non-polarization region 1b and the non-polarization region 2b overlap the optical path 5 (the process between FIG. 2D and FIG. 2E), The state where the transmission axes of the polarizing region 1a and the polarizing region 2a are not parallel continues. That is, there are regions in the optical path 5 where the transmittance is lower than about 50% and regions where the transmittance is about 100%. For this reason, light diffraction may appear remarkably at the boundary between the two regions.
  • the non-polarizing region 1b and the light amount of the light amount adjusting plate 1 are maintained while the transmission axes of the polarizing region 1a of the light amount adjusting plate 1 and the polarizing region 2a of the light amount adjusting plate 2 are kept parallel.
  • the non-polarization region 2b of the adjustment plate 2 and the optical path 5 overlap. That is, a state in which there is a region with a transmittance of about 50% and a region with a transmittance of about 100% in the optical path 5 continues, and the influence of light diffraction can be minimized.
  • the rotational speeds of the light quantity adjustment plate 1 and the light quantity adjustment board 2 are not particularly limited, and can be adjusted according to the rotational speed of the drive source and the gear reduction ratio. Further, the speed may be changed during the rotation. Further, the light amount adjustment plate 1 does not have to be stationary.
  • the reduction ratio between the gear 7 and the gear 9 and between the gear 8 and the gear 10 is 4: 5.
  • the gear 7 which is an intermittent gear a gear 7 having no teeth in the 2/5 portion of the circumference is used.
  • FIG. 10 (a) the contact point between the gear 7 and the gear 9 is in the state where the transmission axes of the polarizing region 1a of the light amount adjusting plate 1 and the polarizing region 2a of the light amount adjusting plate 2 are perpendicular to each other.
  • the optical path 5 has a line-symmetric shape with the vertical bisector connecting the rotation axes 1c and 2c as the symmetry axis, and the center of the line segment connecting the rotation axes 1c and 2c and the center of gravity of the optical path 5 If they match, (1)
  • the polarizing region 1a and the polarizing region 2a are arranged symmetrically with respect to the perpendicular bisector.
  • Condition A and the conditions of ⁇ and ⁇ ′ are satisfied.
  • the transmittance is not limited to the shapes of the polarizing region 1a and the polarizing region 2a, and the transmittance can be changed as described above.
  • Various modifications and modifications described in the first embodiment can also be adopted in the exposure control apparatus 300.
  • FIG. 13 is a schematic block diagram illustrating an embodiment of an imaging apparatus of the present invention.
  • An imaging apparatus 400 illustrated in FIG. 13 includes an optical system 102, an exposure control apparatus 109, an imaging element 110, and an image processing unit 112.
  • the optical system 102 includes a focus lens, and forms an image of a subject to be photographed on the imaging surface of the image sensor 110.
  • the optical system 102 is shown as a single lens, but the optical system 102 may be composed of a plurality of lenses, and may further include a zoom lens or the like.
  • the imaging apparatus 400 may further include a drive unit 103.
  • the exposure control device 109 adjusts the amount of light transmitted through the optical system 102.
  • the exposure control device 109 is provided between the optical system 102 and the image sensor 110.
  • the exposure control device 109 includes an optical aperture 104, an exposure control unit 106, and a shutter 108.
  • the exposure control unit described in Embodiments 1 to 3 can be used as the exposure control unit 106.
  • the exposure control unit 106 is disposed between the optical aperture 104 and the shutter 108.
  • the present invention is not limited to this arrangement, and the exposure control unit 106 is located at another position such as between the shutter 108 and the image sensor 110. May be provided.
  • the optical aperture 104 and the shutter 108 may be integrally formed, and the shutter 108 may be mechanical or electronic.
  • the electronic shutter may be provided in the image sensor 110. Further, as described above, when the optical system 102 includes two or more lenses, some of the constituent elements of the optical aperture 104 and the exposure control device 109 are adjacent to any two of the plurality of lenses of the optical system 102. You may provide between sheets.
  • the exposure control apparatus 109 may further include an optical element 107 that converts linearly polarized light into circularly polarized light.
  • the optical element 107 may be provided between the exposure control unit 106 and the shutter 108 so that the light transmitted through the exposure control unit 106 enters, or the light transmitted through the optical element 107 enters the exposure control unit 106. May be provided.
  • the image sensor 110 detects an image of a subject formed on the image plane, converts it into an electrical signal, and generates image data.
  • the imaging apparatus 400 further includes a controller 114, a memory 116, a display unit 118, and an operation unit 120.
  • the controller 114 receives image data from the image processing unit 112 and records it in the memory 116.
  • the image data received from the image processing unit 112 or the image data read from the memory 116 is output to the display unit 118.
  • the controller 114 also receives commands from the user from the operation unit 120 and controls each unit of the imaging apparatus 400.
  • the image pickup apparatus 400 includes the exposure control unit 106 that adjusts the amount of light incident on the image pickup device 110 in addition to the optical aperture 104 and the shutter 108. For this reason, even when the shooting scene is bright, the amount of light incident on the image sensor 110 can be reduced by the exposure controller 106 without reducing the aperture of the optical aperture. Therefore, a clear image can be acquired without causing small aperture blur.
  • the exposure amount can be adjusted independently of the depth of field determined by the size of the aperture of the optical aperture 104 and the exposure time (shutter speed) controlled by the shutter 110. Therefore, it is possible to acquire an image with an appropriate exposure amount while maintaining the depth of field, the subject blurring, and the like at the settings intended by the user.
  • the exposure control device disclosed in the present application can be applied to general imaging devices such as cameras and movies, and optical filters for adjusting light quantity.
  • Exposure control device 1 100, 101, 200, 300 Exposure control device 1, 2 Light quantity adjustment plate 1a, 2a Polarization region 1b, 2b Non-polarization region 1c, 2c Rotating shaft 3, 4, 6, 7, 8, 9, 10 Gear 5 Optical path 1000
  • Exposure control apparatus 1001 1002 Polarizing plate 1003 Polarization driving plate

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Polarising Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Diaphragms For Cameras (AREA)
  • Blocking Light For Cameras (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

 本願に開示された露光制御装置は、光路上に配置される露光制御装置であって、特定方向に偏光した光を透過させる特性を有する第1の領域及び前記特定方向に偏光した光を透過させる特性を有しない第2の領域をそれぞれが有する第1及び第2の光量調節板を備え、前記第1及び第2の光量調節板を回転させることによって光量を調節する。

Description

露光制御装置
 本願は、透過する光の光量調節を行う露光制御装置に関する。
 従来のカメラ等の撮像装置では、光学系を透過して撮像素子に入射する光の量は、一般に光学絞りやシャッターによって調整されている。
 しかしながら、光学絞りによって光量を減らす場合、光学絞りの開口径を小さくする必要があるため、光の回折現象によって解像度の低下を引き起こしてしまうという課題がある。また光学絞りの開口径は、被写界深度の深さに影響し、シャッタースピードは被写体もしくは撮像装置が動いている場合、被写体のぶれ方に影響する。そのため、光学絞りやシャッタースピードを利用した露出制御方法では、被写界深度や被写体のぶれ方が意図しないものとなってしまうといった課題もある。
 この課題に対して、同軸に配置した2枚の偏光板を軸周りに相対的に回転させ、光量を調節する方法が知られている。この方法では、光路上に常に偏光板が存在することになり、偏光板がない場合と比較して、必ず遮光される偏光成分が存在するため、その分最大透過光量が減少してしまう。
 これに対して、特許文献1は、2つの偏光板と2つの駆動源を備え、一方の駆動源によって2つの偏光板を相対的に回転させて光量を調節するとともに、もう一方の駆動源によって2つの偏光板を光路から退避させる露光制御装置を開示している。
 また特許文献2は、2つの偏光板と1つの駆動源を備え、1つの駆動源によって、2つの偏光板を相対的に回転させて光量を調節すること、及び、2つの偏光板を光路から退避させることの両方を1つの駆動源で行う露光制御装置を開示している。図14に、特許文献2に開示された従来の露光制御装置1000を示す。図14(a)は、2つの偏光板が光路に挿入されている状態を示す。図14(b)は、2つの偏光板を光路から退避させている状態を示す。従来の露光制御装置1000では、2つの偏光板1001及び偏光板1002を偏光駆動板1003に固定させ、偏光板1001及び偏光板1002を光路から退避させる際には、偏光駆動板1003を移動させる。
 これらの構成によって、偏光板が光路上に存在しない状態を作り出すことができるため、調整できる透過率の最大値を大きくすることができる。
特開2010-85772号公報 特開2006-337658号公報
 しかしながら、上述した従来の技術では、偏光板を光路から退避させるために比較的大きな駆動源が必要となり、露光制御装置が大型化する場合がある。
 本願の、限定的ではない例示的なある実施形態は、簡単な構成によって透過光量を調節し得る露光制御装置を提供する。
 本発明の一態様である露光制御装置は、光路上に配置される露光制御装置であって、特定方向に偏光した光を透過させる特性を有する第1の領域及び前記特定方向に偏光した光を透過させる特性を有しない第2の領域をそれぞれが有する第1及び第2の光量調節板を備え、前記第1及び第2の光量調節板を回転させることによって光量を調節する。
 本発明の一態様に係る露光制御装置によれば、簡単な構成及び制御で、光路上に偏光領域が存在しない状態を作り出す。これにより、最大透過光量を減少させることなく光量の調節を行うことができる。さらに、光量調節板を径の小さい部分で摺動させることができるので、小さい摩擦で光量調節板を回転させ、偏光板の回転に必要なエネルギーや部材の磨耗を小さくすることができる。
本発明による露光制御装置の実施の形態1の構成を示す上面図である。 実施の形態1の露光制御装置を横から見た図である。 (a)から(e)は、実施の形態1の露光制御装置において、光量調節板を回転させた状態を示す図である。 実施の形態1の露光制御装置における、光量調節板の回転角度と透過率との関係を示す図である。 実施の形態1における光量調節板の他の例を示す図である。 実施の形態1の他の形態を示す図である。 (a)から(g)は、実施の形態1の露光制御装置において、光量調節板を回転させた状態を示す他の図である。 本発明による露光制御装置の実施の形態2の構成を示す図である。 (a)から(e)は、実施の形態2の露光制御装置において、光量調節板を回転させた状態を示す図である。 本発明による露光制御装置の実施の形態3の構成を示す上面図である。 実施の形態3の露光制御装置を横から見た図である。 (a)から(i)は、実施の形態3の露光制御装置において、光量調節板を回転させた状態を示す図である。 実施の形態3の露光制御装置における、光量調節板の回転角度と透過率との関係を示す図である。 実施の形態3の露光制御装置における、2つの光量調節板ある配置関係を示す図である。 本発明による撮像装置の実施の形態を示すブロック図である。 (a)及び(b)は従来の露光制御装置の構成を示す図である。
 本願発明者の検討によれば、特許文献1及び特許文献2に開示された露光制御装置では、円形の偏光板の外側にギアを設け偏光板を回転させており、回転軸の径は大きい。そのため、偏光板を回転させ、移動させるのに大きなトルクが必要である。また、回転軸の径が大きいことで、偏光板の外周等における摩擦が大きくなる。この摩擦の影響により、偏光板の回転に必要なトルク、エネルギーがさらに増大する。また、摩擦によって部材の磨耗が起こる。また、偏光板の退避を行う際にも、必要なトルクが増大し、摩擦も増大する。
 このような課題は、光学絞りやシャッターとは別に露光制御装置が求められる小型の撮像装置において、特に重要となる場合がある。本願発明者はこのような課題に鑑み、新規な露光制御装置を想到した。本発明の一態様の概要は以下の通りである。
 本発明の一態様である露光制御装置は、光路上に配置される露光制御装置であって、特定方向に偏光した光を透過させる特性を有する第1の領域及び前記特定方向に偏光した光を透過させる特性を有しない第2の領域をそれぞれが有する第1及び第2の光量調節板を備え、前記第1及び第2の光量調節板を回転させることによって光量を調節する。
 前記第1及び第2の光量調節板は、それぞれ、中心に回転軸を有し、前記回転軸は、前記光路の外側に配置され、前記第1及び第2の光量調節板のそれぞれ一部は前記光路上において互いに重なっており、前記回転軸を中心に、前記第1及び第2の光量調節板がそれぞれ回転することによって、前記光量を調節してもよい。
 前記第1の光量調節板の前記回転軸と、前記第2の光量調節板の前記回転軸とは、互いに異なる位置に配置されてもよい。
 前記第1の光量調節板の前記第1の領域及び前記第2の光量調節板の前記第1の領域がそれぞれ前記光路と重なり、かつ、前記第1の光量調節板の前記第1の領域の前記特定方向と前記第2の光量調節板の前記第1の領域の前記特定方向とが互いに垂直となるように前記第1及び第2の光量調節板が回転した場合、前記第1及び第2の光量調節板を透過する光の透過率は最低となってもよい。
 前記第1の光量調節板の前記第2の領域及び前記第2の光量調節板の前記第2の領域がそれぞれ前記光路と重なるように前記第1及び第2の光量調節板が回転した場合、前記第1及び第2の光量調節板を透過する光の透過率は最大となってもよい。
 前記第1の光量調節板の前記第1の領域及び前記第2の光量調節板の前記第1の領域がそれぞれ前記光路と重なっている間、前記第1の光量調節板の前記第1の領域の前記特定方向と前記第2の光量調節板の前記第1の領域の前記特定方向とが互いに垂直な状態から互いに平行な状態となってもよい。
 前記第1及び第2の光量調節板は互いに反対方向に同速度で回転してもよい。
 前記第1及び第2の光量調節板は互いに反対方向に異なる速度で回転してもよい。
 前記第1及び第2の光量調節板が互いに同じ方向に異なる速度で回転してもよい。
 前記第1及び第2の光量調節板の回転軸は互いに一致してもよい。
 前記第1の光量調節板の前記第1の領域の前記特定方向と第2の光量調節板の前記第1の領域の前記特定方向とが互いに平行な状態では、前記第1の光量調節板と、前記第2の光量調節板とが、同方向に同速度で回転してもよい。
 前記第1の光量調節板の前記第2の領域及び前記第2の光量調節板の前記第2の領域がそれぞれ前記光路と重なり、かつ、前記第1の光量調節板の前記第1の領域の前記特定方向と前記第2の光量調節板の前記第1の領域の前記特定方向とが互いに平行でない状態において、前記第1の光量調節板及び前記第2の光量調節板の一方が回転し、他方は静止していてもよい。
 露光制御装置は、入射光を円偏光に変換する光学素子をさらに備え、前記光学素子を透過した光が前記第1及び第2の光量調節板を透過してもよい。
 露光制御装置は、前記第1及び第2の光量調節板を透過した光が入射するように配置され、前記入射光を円偏光に変換する光学素子をさらに備えていてもよい。
 露光制御装置は、前記光学系の光路に配置される光学絞りまたはシャッターをさらに備えていてもよい。
 以下、図面を参照しながら、本発明による露光制御装置及び撮像装置の実施の形態を説明する。以下で説明する実施の形態は、いずれも本発明の一具体例であり、以下の実施の形態で示される構成要素、構成要素の配置位置及び接続形態、動作の順序なども、一例である。本発明は、請求の範囲だけによって限定される。
 (実施の形態1)
 図1Aは、本発明の露光制御装置の実施の形態1の構成を示す。
 図1Aに示す露光制御装置100は、光量調節板1、光量調節板2、ギア3及びギア4を備える。
 光量調節板(第1の光量調節板)1及び光量調節板(第2の光量調節板)2は、それぞれ特定方向に振動する光を透過させる特性を有する偏光領域1a及び偏光領域2aと、特定方向に振動する光を透過させる特性を有しない非偏光領域1b及び非偏光領域2bとを備える。また、光量調節板1及び光量調節板2は、回転軸1c及び回転軸2cをそれぞれ備える。回転軸1c及び回転軸2cは、光量調節板1及び光量調節板2内であって、光路5の外側に存在している。
 光量調節板1及び光量調節板2のそれぞれの一部は前記光路上において互いに重なっており、かつ、光路5全体を横切っている。
 また、本実施形態では、光量調節板1において、偏光領域1a及び非偏光領域1bは、それぞれ回転軸1cを中心として扇形に形成されており、偏光領域1aの中心角度θ’は180°である。したがって、非偏光領域1bの中心角度θ’も180°である。また、光量調節板2における偏光領域2a及び非偏光領域2bも同じ構造を備える。偏光領域1a及び偏光領域2aは光路5の全体を完全に覆うように設けられている限り、図1Aに示されるような配置に限られず、回転軸1c及び回転軸2cの近傍には偏光領域1a及び偏光領域2aは設けられていなくてもよい。
 光路5は、例えば、光量調節板1及び光量調節板2と垂直であり、図1Aでは、光量調節板1及び光量調節板2と平行な断面で示されている。光路5は、光量調節板1及び光量調節板2と交わればよく、光量調節板1及び光量調節板2に対して斜めであってもよい。また光路5は、図1のように円形に限られず、種々の断面形状を有していてよい。
 偏光領域1a及び偏光領域2aは、例えば、偏光フィルムで構成されている。偏光フィルムとしては、ポリビニルアルコールやヨウ素からなるものや、アルミ等の金属線を並べたものなどを用いてもよい。特定の方向に偏光した光を透過させる特性を有しておれば、特にその素材に関する制限はなく、有機物質及び無機物質のあらゆる素材からなる偏光フィルムが採用され得る。また、偏光フィルムに限られず、板形状を有する偏光板など、他の形状を有する偏光子によって偏光領域1a及び偏光領域2aを構成してもよい。
 非偏光領域1b及び非偏光領域2bは、特定方向に偏光した光を透過させる特性を有しない。具体的には、非偏光領域1b及び非偏光領域2bには上述の偏光フィルムなどの偏光子が設けられていない。このため、非偏光領域1b及び非偏光領域2bは、光を偏光させずに透過させる。図1A及び以降の図面に示す光量調節板1及び光量調節板2において、偏光領域1a及び偏光領域2aは、ハッチングで示され、縞模様の線の方向は、透過する光の振動方向を示す。以後、偏光領域1a、偏光領域2aを透過する光の振動方向と平行な軸を透過軸と呼ぶ。
 図1Bは図1Aの露光制御装置100を横から見た図である。光量調節板1及び光量調節板2は側面にギアの歯を有している。ギア3は、図には示していない駆動源であるモータ(アクチュエータ)等からの動力によって回転する。ギア3は、回転ディスク等に接続されており、回転ディスクを操作者が手指によって回転させてもよい。ギア3の回転によって、ギア3とかみ合っている光量調節板1及びギア4が回転する。ギア4の回転によって、ギア4とかみ合っている光量調節板2が回転する。このような構成によって、ギア3及びギア4は、光量調節板1及び光量調節板2を同じ方向にあるいは逆方向に回転させる駆動機構10を構成している。本実施形態では、駆動機構10によって、同じ回転速度で、光量調節板1と光量調節板2とは互いに逆方向に回転する。
 図1Bに示すように、光量調節板1と光量調節板2とは概ね互いに平行となるように配置される。光量調節板1及び光量調節板2が光路5を完全に横切る限り、光量調節板1と光量調節板2とが平行ではなく、数十度以下の角度を成していてもよく、光量調節板1と光量調節板2とに間隙gが設けられていてもよい。ただし、光量調節板1と光量調節板2とのなす角度が大きくなったり、間隙gが大きくなると光量調節板1及び光量調節板2の一方を透過せずに、他方を透過する迷光(図1Bでは特に示していない。)の影響が生じる可能性が高くなる。迷光が問題となる場合には、迷光が間隔gから例えば光量調節板2へ入射しないように、適切な遮光構造を設ければよい。
 本実施の形態では、光量調節板1と光量調節板2とは同速度で回転する。また特に断りがない限り、光路5を通り露光制御装置100へ入射する光は全方向の直線偏光成分が均一に含まれた光である。また光が露光制御装置100の偏光領域1a及び偏光領域2aを通過する場合も、光が露光制御装置100の非偏光領域1b及び非偏光領域2bを通過する場合も、透過すると表現する。
 以下、図2を参照しながら、露光制御装置100の動作を説明する。上述したように本実施の形態では、光量調節板1及び光量調節板2における偏光領域1a及び偏光領域2aの中心角度θ’が180°であるため、偏光領域1aと非偏光領域1bとの境界及び偏光領域2aと非偏光領域2bとの境界は直線である。また、光量調節板1の偏光領域1a及び光量調節板2の偏光領域2aがそれぞれ光路5全体を覆っており、かつ、偏光領域1aの透過軸と偏光領域2aの透過軸とが互いに垂直なときを初期状態とし、ギア3を矢印Rの方向に回転させるとして動作を説明する。光は光量調節板1に入射し、光量調節板1を透過した光が光量調節板2を透過する。
 図2(a)は、初期状態を表し、図2(b)は、光量調節板1が矢印Rと逆の方向に、光量調節板2が矢印Rと同じ方向に、初期状態からそれぞれ15°回転した状態を示す。図2(c)は、同様に30°回転した状態を示す。図2(d)は、同様に45°回転した状態を示す。図2(e)は、同様に120°回転した状態を示す。また、図3は、光量調節板1及び光量調節板2の初期状態からの回転角度に対する露光制御装置100の透過率を示す。なお、図3における回転角度と透過率との関係は模式的な一例であり、厳密な関係を示しておらず、発明を限定するものではない。図3中、(a)から(d)は、光量調節板1及び光量調節板2の回転角度が図2(a)から(d)に示す大きさであることを示している。
 図2(a)に示すように、初期状態では、光量調節板1の偏光領域1a及び偏光領域2aの透過軸が互いに垂直であるため、露光制御装置100の透過率は一番小さくなる。すなわち、この際の透過率は50%より低い。理想的には、光量調節板1の偏光領域1aを透過した光の全てが光量調節板2の偏光領域2aで遮られる。この場合、例えば透過率は約0%となる。ここで透過率とは、光路5を通過する全光量に対する露光制御装置100を透過した後の光量の割合を示す。透過率が100%である場合、光は偏光せず、また、遮られずに露光制御装置100を透過する。透過率が0%である場合、露光制御装置100によって光路5を透過する光が完全に遮断される。
 図2(a)から図2(d)に示すように、ギア3の回転によって、光量調節板1及び光量調節板2が回転すると、偏光領域1a及び偏光領域2aの透過軸が垂直ではなくなることにより、光量調節板1の偏光領域1aを透過した光は、光量調節板2の偏光領域2aの透過軸と平行な成分を含む。よって、光量調節板1の偏光領域1aを透過した光の一部が、光量調節板2の偏光領域2aを透過する。光量調節板1及び光量調節板2の回転にともない、偏光領域1aの透過軸と偏光領域2aの透過軸のなす角度が小さくなるため、光量調節板2の偏光領域2aを透過する光の量も増える。
 露光制御装置100の透過率が増加し、図2(d)のように光量調節板1及び光量調節板2中の偏光領域1a及び偏光領域2aの透過軸が互いに平行になると(なす角度がゼロ)、光路5上に光量調節板1及び光量調節板2の偏光領域1a及び偏光領域2aが存在する場合において最大の透過率となる。この際の透過率は例えば約50%となる。
 ギア3の回転によって、図2(d)からさらに光量調節板1及び光量調節板2を回転させると、光量調節板1の偏光領域1aの透過軸と光量調節板2の偏光領域2aの透過軸とが再び0°以外の角度を成すため、図3に示すように、透過率が低下する。
 さらにギア3が回転すると、光量調節板1の非偏光領域1b及び光量調節板2の非偏光領域2bが光路5と重なり始める。非偏光領域1bと透過する光は偏光しないため、非偏光領域1b及び非偏光領域2bが光路5と重なる面積が増大するにつれて、図3に示すように、透過率は増大する。
 図2(e)の状態となると、光は全て非偏光領域1b及び非偏光領域2bに入射し、遮られることなく透過する。つまり、光路5上に偏光領域が位置しない状態を実現しており、この際の透過率は例えば約100%となる。
 図2(e)の状態からギア3を矢印Rと逆方向に回転させると、図2(e)に示す状態及び透過率から図2(a)に示す初期状態まで順に戻すことができる。
 本実施の形態によれば、簡単な構造によって偏光板と他の部材との摩擦を低減し、かつ、光路上に偏光板のない状態を実現することができる。よって、高精度かつ広い範囲で透過率を変更することができる露光制御装置を実現することができる。
 具体的には、本実施形態によれば、2つの光量調節板のそれぞれが、偏光領域および非偏光領域を備え、回転するため、2つの非偏光領域が光路と重なる状態、2つの偏光領域が光路と重なる状態およびこれらの中間の状態をつくることができる。また、2つの偏光領域が光路と重なる状態において、2つの偏光領域の透過軸の角度を変化させることができる。よって、従来の2枚の偏光板を光路上に配置し偏光量を調節する方法によれば、透過率を約0%から約50%の間でのみ調整することができるが、本実施の形態によれば、透過率を約0%から約100%まで調節することが可能である。
 また、図14で示した従来の露光制御装置1000では、2つの偏光板1001及び偏光板1002の回転軸の半径が、偏光板1001及び偏光板1002の半径とほぼ等しいため、偏光駆動板1003と、偏光板1001及び偏光板1002との間の摩擦が大きい。これに対し、本実施の形態では、光量調節板1及び光量調節板2自体を退避させる動作が不要である。このため、光量調節板1及び光量調節板2の中心に回転軸1c、回転軸2cを配置し、回転軸の径を従来の露光制御装置1000と比較して小さくできる。その結果、光量調節板1及び光量調節板2の回転軸における他の部材との接触面積が小さくなり、小さい摩擦で光量調節板1及び光量調節板2回転させることができるため、回転に必要なエネルギーが小さくなり、駆動源も小さくすることができる。
 また、本実施の形態によれば、光量調節板1及び光量調節板2自体を退避させる動作が不要である、不要なエネルギーを必要としない。
 なお、本実施の形態の露光制御装置100では、図1A及び図2に示すように偏光領域1a、偏光領域2a、非偏光領域1b及び非偏光領域2bは、光路5の直径の倍程度の半径を有する半円形状を有しているが、本発明はこの形状に限られない。光量調節板1及び光量調節板2がそれぞれ偏光領域1a、2a及び非偏光領域1b、2bを有し、光量調節板1及び光量調節板2内に位置する回転軸周りにそれぞれ回転させることによって、光路5に偏光領域1a、2aまたは非偏光領域1b、2bを配置することができれば、露光制御装置の透過率を変化させることができる。よって、偏光領域1a、偏光領域2a、非偏光領域1b及び非偏光領域2bの大きさや形状は自由に変えてよく、偏光領域1aと偏光領域2aとで、または、非偏光領域1bと非偏光領域2bとで、形状や、大きさが異なっていてもよい。例えば、図4に示すように、光量調節板1の偏光領域1aの中心角θ’と光量調節板2の偏光領域2aの中心角θ’とが互いに異なっていてもよい。この場合、光量調節板1の非偏光領域1bの中心角と光量調節板2の非偏光領域2bの中心角も互いに異なる。
 また、以下の2つの条件を満たす場合、露光制御装置の透過率をより高い精度で変化させることができる。
1.光量調節板1及び光量調節板2の回転によって、光量調節板1の偏光領域1a及び光量調節板2の偏光領域2aの透過軸が互いに平行な状態から垂直な状態となる間に、光量調節板1及び光量調節板2において、光路5が通る軌跡全体を偏光領域1a及び偏光領域2aが含むことができる大きさ及び形状を偏光領域1a及び偏光領域2aが有している。
2.非偏光領域1b及び非偏光領域2bが、光路5全体を含むことができる大きさ及び形状を有している。
 以後、偏光領域1a、非偏光領域1b、偏光領域2a及び非偏光領域2bの大きさや形状に関する、上述の2つの条件を条件Aと呼ぶ。
 本実施の形態には種々の改変が可能である。例えば本実施の形態の露光制御装置は図5に示す構造を備えていてもよい。露光制御装置101は、露光制御装置100と同様、光量調節板1、光量調節板2、ギア3及びギア4を備える。光量調節板1及び光量調節板2の半径、つまり、偏光領域1a及び非偏光領域1bならびに偏光領域2a及び非偏光領域2bの半径は光路5の直径と同程度である。これにより、露光制御装置101のサイズを小さくすることができる。以下にその特徴を説明する。
 露光制御装置101では、光量調節板1及び光量調節板2の領域を無駄なく効率的に使用しているため、光量調節板1及び光量調節板2の半径は光路5の直径程度となる。
 露光制御装置101の光量調節板1及び光量調節板2は、露光制御装置100と異なるθ及びθ’を有している。ここでθは、光量調節板1及び光量調節板2の回転軸1c、2cから、光量調節板の回転軸1cと光量調節板2の回転軸2cとを結ぶ線分の中点に中心を有し、光路5を全て含むことができる最小円に引くことができる2本の接線のなす角である。θ’とは、偏光領域1aまたは偏光領域2aによって形成される扇形状における中心角である。θ、θ’が満たすべき条件は計算より導き出すことができる。
 まず、θが満たすべき条件を示す。本実施の形態では、光量調節板1及び光量調節板2が同速度で逆回転している。このため、回転により、光量調節板1の偏光領域1a及び光量調節板2の偏光領域2aの透過軸が互いに垂直な状態から平行な状態へ、もしくは平行な状態から垂直な状態へ変化するには、光量調節板1及び光量調節板2がそれぞれ45°回転する必要がある。光量調節板1及び光量調節板2が45°回転する間、偏光領域1a及び偏光領域2aが、光路5全体を常に含んでいる必要があるため、偏光領域1a及び偏光領域2aは、光量調節板1及び光量調節板2の円周方向においてθ+45°分必要となる。つまり、偏光領域1a及び偏光領域2aの中心角θ’=θ+45である。
 また、光路5上に偏光領域1a及び偏光領域2aが位置しない状態を作り出すために、非偏光領域1b及び非偏光領域2bが、光路5全体を覆う必要がある。よって非偏光領域1b及び非偏光領域2bも光量調節板1及び光量調節板2の円周方向においてθ分必要となる。必要な領域の合計が、円周の360°以下になればよいため、数1の関係式を導き出すことができる。
(θ+45)+θ≦360     (数1)
 数1よりθが満たすべき条件である数2を求めることができる。
θ≦157.5          (数2)
 露光制御装置を透過する光量を最小値から最大値まで変化させる場合に必要な円周方向での領域は、数1の左辺で示す角度分である。数1、数2において、θの値が大きくなるほど光量調節板1及び光量調節板2の領域を無駄なく効率的に使用できる。一方、θの値が小さくなると露光量の調節に使用しなくてもよい領域が多くなり、光量調節板1及び光量調節板2のサイズも大きくなる。光量の最大値とは、非偏光領域1b及び非偏光領域2bが光路5上に存在し、光が遮られない状態において露光制御装置を透過する光の量の最大値である。
 数2より、θの最大値は157.5°となる。図5のθに相当する部分は157.5°で表している。
 また、図1で示したθ’の条件について述べる。θ’とは、図5に示すように、偏光領域1a及び偏光領域2aの中心角を示す。上述した条件Aを満たすためには、θ’は以下の数3及び数4の関係を満たせばよい。
θ’≧θ+45          (数3)
360-θ’≧157.5     (数4)
 これらの条件を満たす限り、本実施の形態における露光制御装置の光量調節板1の偏光領域1a及び光量調節板2の偏光領域2aはどのような形状を有していてもよい。露光制御装置100では偏光領域1aと非偏光領域1bとの境界、及び偏光領域2aと非偏光領域2bとの境界は直線となっているが、図5に示すように、条件A、θ、θ’の条件を満たしていれば、直線に限らなくてもよい。
 なお、上述の説明では、回転軸1c及び回転軸2cの半径を考慮していない。光路5の半径に比べて回転軸1c及び回転軸2cの半径が無視できない場合には、回転軸1c及び回転軸2cの半径を考慮して、光量調節板1及び光量調節板2の半径を決定すればよい。
 また、本実施の形態では、駆動源が1つであるが、駆動源は1つに限らず、複数使用してもよい。例えばギア3とギア4とをそれぞれ1つの駆動源によって回転させてもよい。
 また、駆動源はモータ等に限られず、上述したように、ユーザーが手動で光量調節板1及び光量調節板2やギア3及びギア4を回転させてもよい。
 また、回転軸1c、2cを結ぶ線分の中点と、円形の光路5の中心とは一致していなくてもよく、条件A、及びθ、θ’の条件を満たしていれば、回転軸1c、2c及び光路5の中心は図示した位置以外の関係で配置されていてもよい。
 また、条件A及びθ、θ’の条件を満たせば回転軸1c及び回転軸2cの位置が一致していてもよい。回転軸が同位置に存在すると光量調節板1と光量調節板2が重なり、露光制御装置自体のサイズを小さくすることができる。
 また、非偏光領域1b及び非偏光領域2bは特定方向に偏光した光を透過させる特性を有していなければよい。例えば、ガラスなど、偏光特性を有しない物質を非偏光領域1b及び非偏光領域2bに設けてもよいし、物体が設けられておらず、空気など露光制御装置が保持される環境媒体で満たされていてもよい。非偏光領域1b及び非偏光領域2bに、特定方向に偏光した光を透過させる特性以外の偏光特性を示す偏光板やNDフィルターを設けてもよい。
 また、条件A及びθ、θ’の条件を満たしていれば、光量調節板1及び光量調節板2自体の形状も円形でなくてもよい。としたが、円形に限らなくてもよい。
 また、本実施の形態では、ギア3を回転させて、ギア4、光量調節板1及び光量調節板2を回転させているが、ギアの構成、大きさ、位置等はこれに限られない。また、ギアの数も2以外であってよい。さらに、光量調節板1及び光量調節板2を直接モータで駆動してもよい。
 また、ギア3、ギア4を用いて光量調節板1及び光量調節板2を回転させる以外に回転軸1c及び回転軸2cを直接回転させてもよく、光量調節板1及び光量調節板2を回転させる方法は、本実施の形態の方法に限られない。
 また、光量調節板1及び光量調節板2の回転速度に特に制限はない。駆動源の回転速度やギアの減速比によって調節することができる。光量調節板1及び光量調節板2の回転の途中で速度を変化させてもよい。
 また、光量調節板1の偏光領域1a及び光量調節板2の偏光領域2aが両方とも光路5と重なっている状態において、光量調節板1及び光量調節板2の一方の回転を静止してもよい。
 本実施の形態の露光制御装置は、光が入射する側に、光量調節板1及び光量調節板2とは別の、入射光を円偏光に変換する波長板、デポラライザーなどの光学素子をさらに備えていてもよい。このような構成によると、被写体からの光の偏光方向によって光量の調節量が変化してしまうという光量調節の被写体依存性の影響を小さくすることができる。このような光学素子は、光量調節板1及び光量調節板2を透過した光が入射するように光学素子を配置してもよい。
 あるいは、本実施の形態の露光制御装置は露光制御装置の光が入射する側とは反対側に、光量調節板1及び光量調節板2とは別の直線偏光を円偏光に変換する波長板やデポラライザーなどの光学素子を備えていてもよい。このような構成によると、露光制御装置100の透過光は円偏光性を有するため、偏光依存性が出力に影響が出る装置に入射した場合でも、偏光依存性の影響を小さくすることができる。このような偏光依存性が出力に影響が出る装置には、例えば、光学ローパスフィルターや偏光プリズムによって、光がAF機構と撮像素子とに分割される構成を備えたAF装置等が含まれる。
 また、本実施の形態では、光量調節板1の偏光領域1a及び光量調節板2の偏光領域2aは、偏光フィルムで構成されているが、特定の方向に振動する光を透過させる性質をもつものであれば、本実施の形態の構成に限らなくてもよい。
 また本実施の形態は、2枚の光量調節板を備えているが、3枚以上の光量調節板を備えていてもよい。
 本実施の形態の、露光制御装置は光学絞りやシャッターをさらに備えていてもよい。これにより、シャッタースピードや被写界深度と露光量とを同時に変化させて適切な撮影条件で被写体を撮影することのできる撮像装置を実現し得る。
 なお、本実施の形態では、ギア3を図2(e)に示す状態からさらに矢印Rの方向に回転させると、ある状態を中間点として、その状態からどちらに回転させても回転量が同じであれば、同じ透過率が得られるようになる。そのため、透過率を最小値から最大値へ変化させて、また最小値へ戻す場合に、逆回転をする必要はなく、そのまま同じ方向へ回転させても同じ効果を得ることができる。
 図6に図2(e)からさらにギア3を矢印Rの方向へ回転させたときの様子を示す。
 図6(a)は、図3(e)と同じ状態であり、光量調節板1が矢印Rと逆の方向に、光量調節板2が矢印Rと同じ方向に、初期状態からそれぞれ120°回転した状態を示す。図6(b)、(c)、(d)、(e)、(f)及び(g)は、それぞれ同様に180°、240°、315°、330°、345°及び360°回転した状態を示す。
 以下、図2及び図6を参照しながら、図6(b)を初期状態として、ギア3を矢印Rと同じ方向に回転させた場合と矢印Rと逆の方向に回転させた場合とを比較しながら露光制御装置の動作を説明する。
 図6(b)の状態から、ギア3を矢印Rと逆の方向に回転させた場合、図2(e)(図6(a))から図2(d)、図2(c)、図2(b)、図2(a)の順で示すように光量調節板1及び光量調節板2の回転角度が変化する。同様に、ギア3を矢印Rと同じ方向に回転させた場合、図6(c)から図6(d)、図6(e)、図6(f)、図6(g)の順で示すように光量調節板1及び光量調節板2の回転角度が変化する。
 光量調節板1及び光量調節板2の回転量の絶対値(図2(a)の状態を基準とする)は、図2(e)と図6(c)では60°、図2(d)と図6(d)では135°、図2(c)と図6(e)では150°、図2(b)と図6(f)では165°、図2(a)と図6(g)では180°となる。さらに図2(e)と図6(c)、図2(d)と図6(d)、図2(c)と図6(e)、図2(b)と図6(f)、図2(a)と図6(g)において、それぞれ光量調節板1の偏光領域1a及び光量調節板2の、偏光領域2aの透過軸のなす角度は同じであるため、透過率も同じである。以上より、図6(b)を初期状態とすると、ギア3を矢印Rと同じ方向に回転させても、矢印Rと逆の方向に回転させても回転量が同じであれば、透過率は同じにある。よって、透過率を最小値から最大値へ変化させて、また最小値へ戻す場合、またその逆の変化をさせる場合、回転の方向を変える必要はないことが分かる。
 このように、透過率を最小値から最大値へ変化させて、また最小値へ戻す場合、またその逆の変化をさせる場合、回転の方向を変える必要はないという特徴を満たす条件は以下の通りである。
 光路5が回転軸1c、2cを結ぶ線分の垂直二等分線を対称軸とした線対称な形状を有しており、回転軸1c、2cを結ぶ線分の中点と光路5の重心が一致している場合において、
(1) 偏光領域1a及び偏光領域2aが垂直二等分線に対して対称に配置されている。
(2) 偏光領域1a及び偏光領域2aの一方を裏返して重ねた場合に、透過軸の方向が互いに垂直である。
(3) 上述の条件A及びθ、θ’の条件を満たしている。
これらの条件を満たしている場合、偏光領域1a及び偏光領域2aの形状に限られず、上述したように透過率を変化させることができる。
 (実施の形態2)
 図7は、本発明の露光制御装置の実施の形態2の構成を示す。
 図7に示す露光制御装置200は、光量調節板1、光量調節板2、ギア3、ギア4、ギア21、ギア22及びギア23を備える。露光制御装置200の基本的な構成は、露光制御装置100と同様であるので、同様の符号を用いて説明する。露光制御装置200は、光量調節板1と光量調節板2とが異なる速度で回転する点で実施の形態1の露光制御装置100と異なる。
 露光制御装置100と同様、光量調節板1及び光量調節板2は、特定方向に振動する光を透過させる特性を有する偏光領域1a及び偏光領域2aと、特定方向に振動する光を透過させる特性を有しない非偏光領域1b及び非偏光領域2bとをそれぞれ含む。また、光量調節板1及び光量調節板2は、回転軸1c及び回転軸2cをそれぞれ有する。回転軸1c及び回転軸2cは、光量調節板1及び光量調節板2内であって、光路5の外側に存在している。光量調節板1及び光量調節板2のそれぞれ一部は前記光路上において互いに重なっており、かつ、光路5の全体を横切っている。入射光(図示せず)は光量調節板1及び光量調節板2に対して垂直に入射するものに限らず、光量調節板1及び光量調節板2に対して斜めに入射するものでもよい。
 偏光領域1a及び偏光領域2aは、例えば、偏光フィルムで構成されている。非偏光領域1b及び非偏光領域2bは、特定方向に偏光した光を透過させる特性を有しない。実施の形態1と同様、光量調節板1及び光量調節板2に示されている縞模様は、偏光領域1a及び偏光領域2aを示し、縞模様の線の方向は、透過する光の振動方向を示す。
 ギア3は、図には示していない駆動源であるモータ等からの動力によって回転する。さらにギア3の回転によって、ギア3とかみ合っている光量調節板1及びギア4が回転する。ギア4の回転によって、ギア4、ギア21、ギア22、ギア23が順次かみ合い、ギア4と同方向にギア23が回転する。
 ギア23は光量調節板2と同じ回転軸2c周りに回転する。光量調節板2及びギア23は回転軸2cにそれぞれ固定されているため、ギア23が回転すると同じ回転速度で同じ方向に光量調節板2も回転する。ギア23の歯数は、光調節板1の側面に設けられたギアの歯数の1/2である(図7ではギア23の半径は正確には示していない。)。このため、光調節板1が1回転する間に光調節板2は、逆方向に2回転する。このような構造によって、光量調節板1と光量調節板2とが異なる速度で回転する。本実施の形態では、光量調節板1と光量調節板2とは速度比1:2で回転する。以下、図8を参照しながら露光制御装置200の動作を説明する。なお、以下の図では、分かりやすさのため、ギア21、ギア22、ギア23を示さない。
 図8に、光量調節板1の偏光領域1a及び光量調節板2の偏光領域2aの透過軸が互いに垂直であり、光量調節板1及び光量調節板2の偏光領域1a及び偏光領域2aが光路5全体を含んでいる状態を初期状態とした場合において、ギア3を矢印Rの方向に回転させたときの光量調節板1及び光量調節板2の回転状態を示す。
 図8(a)は、初期状態を表す。また、図8(b)は、光量調節板1が初期状態から矢印Rと逆の方向に10°回転し、光量調節板2が初期状態から矢印Rと同じ方向に20°回転した状態を示す。図8(c)は、光量調節板1が初期状態から矢印Rと逆の方向に20°回転し、光量調節板2が初期状態から矢印Rと同じ方向に40°回転した状態を示す。図8(d)は、光量調節板1が初期状態から矢印Rと逆の方向に30°回転し、光量調節板2が初期状態から矢印Rと同じ方向に60°回転した状態を示す。図8(e)は、光量調節板1が初期状態から矢印Rと逆の方向に80°回転し、光量調節板2が初期状態から矢印Rと同じ方向に160°回転した状態を示す。
 図8(a)に示すように初期状態では、光量調節板1の偏光領域1a及び光量調節板2の偏光領域2aの透過軸が互いに垂直であるため、露光制御装置200の透過率は一番小さい。ギア3の回転によって、図8(a)から図8(d)に示すように、光量調節板1及び光量調節板2が回転すると、露光制御装置200の透過率が増加する。図8(d)に示すように、光量調節板1の偏光領域1a及び光量調節板中の偏光領域2aの透過軸が互いに平行になった場合光路5上に光量調節板1の偏光領域1a及び光量調節板2の偏光領域2aが重なっている状態における最大の透過率を示す。ギア3の回転によって、図8(d)からさらに光量調節板1及び光量調節板2を回転させ、図8(e)に示す状態となると、光は全て非偏光領域1b及び非偏光領域2bに入射し、遮られることなく露光制御装置200を透過する。また図8(e)の状態からギア3を矢印Rと逆方向に回転させると、図8(e)から図8(a)の初期状態まで順に戻すことができる。
 露光制御装置100と露光制御装置200とにおいて、図2(a)と図8(a)、図2(b)と図8(b)、図2(c)と図8(c)、図2(d)と図8(d)、図2(e)と図8(e)に示される状態の透過率は互いに等しい。
 このように、本実施の形態によれば、簡単な構造によって偏光板と他の部材との摩擦を低減し、かつ、光路上に偏光板のない状態を実現することができる、よって、高精度かつ広範範囲で透過率を変更することができる露光制御装置を実現することができる。また、光量調節板1及び光量調節板2を互いに異なる速度で回転させることによって、透過率の制御の幅が広がる。
 なお、本実施の形態では、光量調節板1と光量調節板2との回転の速度比を1:2としたが、条件A及びθ、θ’の条件を満たしていれば、自由に速度比を変えてもよい。また回転の途中で速度比を変化させてもよい。回転速度には特に制限はなく、駆動源の回転速度やギアの減速比によって調節することができる。また回転の途中で速度を変化させてもよい。さらに、光量調節板の偏光領域1a1及び光量調節板2の偏光領域2aがともに光路5全体と重なっている状態において、光量調節板1及び光量調節板2の一方が静止してもよい。
 また、図7及び図8において、偏光領域1a、偏光領域2a、非偏光領域1b及び非偏光領域2bは光路5の直径の倍程度の半径を有する扇形で図示した。しかし、条件A及びθ、θ’の条件を満たしていれば、偏光領域1a、偏光領域2a、非偏光領域1b及び非偏光領域2bの大きさや形状は自由に変えてよい。
 また、実施の形態1で説明した種々の改変や変形例は、露光制御装置200においても採用できる。
 (実施の形態3)
 図9Aは、本発明の露光制御装置の実施の形態3の構成を示す。
 図9Aに示す露光制御装置300は、ギアの構成及び光量調節板の回転方向が実施の形態1の露光制御装置100と異なる。
 露光制御装置300は、光量調節板1、光量調節板2、ギア6、ギア7、ギア8、ギア9及びギア10を備える。光量調節板1及び光量調節板2は、特定方向に振動する光を透過させる特性を有する偏光領域1a及び偏光領域2aと、特定方向に振動する光を透過させる特性を有しない非偏光領域1b及び非偏光領域2bとをそれぞれ備える。また、光量調節板1及び光量調節板2は、回転軸1c及び回転軸2cをそれぞれ有する。回転軸1c及び回転軸2cは、光量調節板1及び光量調節板2内であって、光路5の外側に存在している。光量調節板1及び光量調節板2のそれぞれ一部は前記光路上において互いに重なっており、かつ、光路5の全体を横切っている。入射光(図示せず)は光量調節板1及び、光量調節板2に対して垂直に入射するものに限らず、光量調節板1及び光量調節板2に対して斜めに入射するものでもよい。
 偏光領域1a及び偏光領域2aは、例えば、偏光フィルムで構成されている。非偏光領域1b及び非偏光領域2bは、特定方向に偏光した光を透過させる特性を有しない。実施の形態1と同様、光量調節板1及び光量調節板2に示されている縞模様は、偏光領域1a及び偏光領域2aを示し、縞模様の線の方向は、透過する光の振動方向を示す。
 図9Bは図9Aに示す露光制御装置300を横から見た図であり、厚みを無視すると、ギア6、ギア7、ギア8、ギア9、ギア10は同一平面上に位置している。
 ギア6は、図には示していない駆動源であるモータ等からの動力によって回転する。ギア6は、ギア9及びギア10と減速比1:1でかみ合っている。ギア9とギア7、ならびに、ギア8とギア10が減速比1:1でかみ合っている。そのため、ギア6の回転により、ギア7とギア8が同速度で同方向に回転する。
 光量調節板1とギア7は、回転軸1cに固定されており、ギア7の回転によって回転軸1cが回転し、光量調節板1が回転する。同様に、光量調節板2とギア8は、回転軸2cに固定されており、ギア8の回転によって回転軸2cが回転し、光量調節板2が回転する。すなわち、ギア6の回転によって、光量調節板1と光量調節板2は同速度で同方向に回転する。またギア9は間欠ギアであり、ギア7の静止及び回転を制御する。そのため、ギア9は、光量調節板1の静止及び回転を制御し得る。
 図10に、光量調節板1の偏光領域1a及び光量調節板2の、偏光領域2aの透過軸が垂直であり、偏光領域1a及び偏光領域2aが光路5全体と重なっている状態を初期状態とした場合において、ギア6を矢印Rの方向に回転させたときの状態を示す。
 図10(a)は、光量調節板1及び光量調節板2の初期状態を表す。また、図10(a)から図10(d)に示す状態の間は、間欠ギアであるギア9とギア7とがかみ合っていないため、ギア7及び光量調節板1は静止している。このため図10(a)から図10(d)に示す状態の間、光量調節板2のみが回転する。図10(b)は、光量調節板2が初期状態から矢印Rと同じ方向に30°回転した状態を示す。図10(c)は、光量調節板2が初期状態から矢印Rと同じ方向に60°回転した状態を示す。図10(d)は、光量調節板2が初期状態から矢印Rと同じ方向に90°回転した状態を示す。
 図10(d)に示す状態から、間欠ギアであるギア9とギア7がかみ合い、ギア7が回転する。そのため、光量調節板1は、光量調節板1及び光量調節板2中の偏光領域1a、偏光領域2aの透過軸がお互いに平行のまま、光量調節板2と同速度で同方向に回転する。図10(e)は、光量調節板1が初期状態から矢印Rと同じ方向に15°回転し、光量調節板2が初期状態から矢印Rと同じ方向に105°回転した状態を示す。図10(f)は、光量調節板1が初期状態から矢印Rと同じ方向に30°回転し、光量調節板2が初期状態から矢印Rと同じ方向に120°回転した状態を示す。図10(g)は、光量調節板1が初期状態から矢印Rと同じ方向に45°回転し、光量調節板2が初期状態から矢印Rと同じ方向に135°回転した状態を示す。図10(h)は、光量調節板1が初期状態から矢印Rと同じ方向に60°回転し、光量調節板2が初期状態から矢印Rと同じ方向に150°回転した状態を示す。図10(i)は、光量調節板1が初期状態から矢印Rと同じ方向に75°回転し、光量調節板2が初期状態から矢印Rと同じ方向に165°回転した状態を示す。
 図11は、光量調節板2の初期状態からの回転角度に対する露光制御装置300の透過率を示す。なお、図11における回転角度と透過率との関係は模式的な一例であり、厳密な関係を示しておらず、発明を限定するものではない。図11中、(a)から(i)は、光量調節板2の回転角度が図10(a)から(i)に示す大きさであることを示している。
 図10(a)に示すように、初期状態では、光量調節板1の偏光領域1a及び光量調節板2の偏光領域2aの透過軸が互いに垂直であるため、露光制御装置300の透過率は一番小さくなる。すなわち、この際の透過率は50%より低い。この際の透過率は例えば0%である。
 図10(a)から図10(d)に示すように、ギア6の回転によって、光量調節板2を回転させると、図11に示すように露光制御装置300の透過率が増加する。図10(d)に示すように光量調節板1の偏光領域1a及び光量調節板2の偏光領域2aの透過軸が互いに平行になると、光路5上に光量調節板1及び光量調節板2の偏光領域1a及び偏光領域2aが存在する場合において最大の透過率となる。この際の透過率は例えば約50%となる。
 図10(d)に示す状態から、間欠ギアであるギア9とギア7はかみ合う。このため、図10(d)から図10(g)に示すように、ギア6の回転によって、光量調節板1及び光量調節板2は同じ回転速度で同じ方向に回転する。その結果、光量調節板1及び光量調節板2は、偏光領域1a及び偏光領域2aの透過軸が互いに平行な状態を維持しながら同じ方向に回転する。この時、光路5において重なる偏光領域1a及び偏光領域2aの面積は次第に小さくなる。しかし、透過軸が互いに平行な状態を維持しているため、図11に示すように、図10(d)から図10(g)に示す状態の間、光量調節板1及び光量調節板2を透過する光の量は変化せず一定である。
 図10(g)に示す状態よりも光量調節板1及び光量調節板2が回転すると、図10(h)に示すように、光路5と非偏光領域1b及び非偏光領域2bとが重なり始める。このため、図11に示すように、光量調節板1及び光量調節板2に遮られない光が増加し始め、透過率は徐々に増加する。
 図10(i)に示す状態になると、光路5は全て非偏光領域1b及び非偏光領域2bと重なる。このため、露光制御装置300に入射した光は、遮られることなく透過することができる。この際の透過率は約100%となる。
 図10(e)の状態からギア3を矢印Rと逆方向に回転させると、図10(e)から図10(a)の初期状態まで順に戻すことができる。
 よって、本実施の形態によれば、1つの駆動源によって、図10(a)から図10(i)に示す状態で、光量調節板1及び光量調節板2を回転させることができるため、露光制御装置300の透過率を単調に増加または減少させることができる。また、このような構成により、光量調節板1及び光量調節板2を同方向に回転させても、偏光板と他の部材との摩擦を増大させることなく、光路上に偏光板のない状態をつくることができるので、高精度に露光制御を行うことができる。
 実施の形態1及び実施の形態2では、図2(a)から図2(d)に示す状態の間、透過率は単調に増加するが、図2(d)から透過率が最大となる図3(e)へ変化する状態の間に、図3(d)の状態と比べ再び透過率が減少する状態が存在する。すなわち光量が最小から最大まで単調に変化しない場合がある。これに対し、本実施の形態によれば、露光制御装置300の透過率を最小から最大まで単調に変化させることができる。よって、意図している透過率あるいは、光路を透過する光の量を調節することが容易となる。
 また、実施の形態1の露光制御装置100では、非偏光領域1b及び非偏光領域2bと光路5とが重なってゆく過程(図2(d)から図2(e)の間の過程)では、偏光領域1a及び偏光領域2aの透過軸が平行でない状態が続く。すなわち、光路5のうち透過率が約50%より低い領域と、透過率が約100%の領域が存在する。このためこの2つの領域の境界にて光の回折が顕著に表れる場合がある。
 これに対し、露光制御装置300の場合、光量調節板1の偏光領域1a及び光量調節板2の偏光領域2aの透過軸が平行な状態を維持したまま光量調節板1の非偏光領域1b及び光量調節板2の非偏光領域2bと光路5とが重なっていく。すなわち、光路5のうち透過率が約50%の領域と、透過率約100%の領域が存在する状態が続き、光の回折の影響を最小限に抑えることができる。
 なお、本実施の形態において、光量調節板1及び光量調節板2の回転速度に特に制限はなく、駆動源の回転速度やギアの減速比によって調節することができる。また回転の途中で速度を変化させてもよい。また、光量調節板1は静止させなくてもよい。
 また、光量調節板1及び光量調節板2が同速度で回転することは変化させずに、減速比のみを変化させてもよい。具体的には、ギア7とギア9、ギア8とギア10の減速比を4:5とする。さらに間欠ギアであるギア7として、円周の2/5の部分において歯がないものを用いる。さらに図10(a)に示すように、光量調節板1の偏光領域1a及び光量調節板2の偏光領域2aの透過軸が互いに垂直な状態で、ギア7とギア9との接点が、ギア7の歯の部分の中間点に一致している場合、ギア6を図11(i)の状態からさらに矢印Rの方向に回転させると、図12の状態を中間点として、その状態からどちらに回転させても回転量が同じであれば、同じ透過率が得られる。そのため、実施の形態2の場合と同様に、透過率を最小値から最大値へ変化させて、また最小値へ戻す場合、またその逆の変化をさせる場合に、逆回転をする必要はなく、そのまま同じ方向へ回転させても同じ効果を得ることができ、回転の方向を変える必要はない。
 透過率を最小値から最大値へ変化させて、また最小値へ戻す場合、またその逆の変化をさせる場合、回転の方向を変える必要はないという特徴を満たす条件を説明する。光路5が回転軸1c、2cを結ぶ線分の垂直二等分線を対称軸とした線対称な形状を有しており、回転軸1c、2cを結ぶ線分の中点と光路5の重心が一致している場合において、
(1) 偏光領域1a及び偏光領域2aが垂直二等分線に対して対称に配置されている。
(2) 偏光領域1a及び偏光領域2aの一方を裏返して重ねた場合に、透過軸の方向が互いに垂直である。
(3) 条件A及びθ、θ’の条件を満たしている。
 これらの条件を満たしている場合、偏光領域1a及び偏光領域2aの形状に限られず、上述したように透過率を変化させることができる。また、実施の形態1で説明した種々の改変や変形例は、露光制御装置300においても採用できる。
 (実施の形態4)
 図13は、本発明の撮像装置の実施形態を示す模式的なブロック図である。図13に示す撮像装置400は、光学系102と、露光制御装置109と撮像素子110と、画像処理部112を備える。
 光学系102は、フォーカスレンズを含み、撮影すべき被写体の像を撮像素子110の撮像面に形成する。図13では、光学系102を1枚のレンズで示しているが、光学系102は複数のレンズによって構成されていてもよく、また、ズームレンズ等をさらに備えていてもよい。フォーカスレンズやズームレンズの位置を調整するために、撮像装置400は駆動部103をさらに備えていてもよい。
 露光制御装置109は、光学系102を透過した光の量を調整する。露光制御装置109は、光学系102と撮像素子110との間に設けられている。本実施形態では、露光制御装置109は、光学絞り104と、露光制御部106とシャッター108とを含む。露光制御部106には、実施の形態1から3で説明した露光制御装置を用いることができる。露光制御部106は本実施形態では光学絞り104とシャッター108との間に配置されているが、この配置に限られず、シャッター108と撮像素子110との間等、他の位置に露光制御部106を設けてもよい。光学絞り104及びシャッター108は一体的に構成されていてもよいし、シャッター108は機械的であっても電子的であってもよい。電子シャッターのみを用いる場合、電子シャッターは撮像素子110に設けられていてもよい。また上述したように光学系102が2枚以上のレンズを含んでいる場合、光学絞り104や露光制御装置109の構成要素の一部を光学系102の複数のレンズのうちの隣接するいずれか2枚の間に設けてもよい。
 実施の形態1で説明したように露光制御装置109は、直線偏光を円偏光に変換する光学素子107をさらに含んでいてもよい。光学素子107は、露光制御部106を透過した光が入射するように露光制御部106とシャッター108との間に設けてもよいし、光学素子107を透過した光が、露光制御部106に入射するように設けてもよい。
 撮像素子110は、像面に形成された被写体の像を検出し、電気信号に変換し、画像データを生成する。
 撮像装置400は、さらに、コントローラ114と、メモリ116と、表示部118と、操作部120とを備える。コントローラ114は、画像処理部112から画像データを受け取り、メモリ116に記録する。画像処理部112から受け取った画像データ、あるいは、メモリ116から読みだされた画像データを表示部118へ出力する。コントローラ114は、また、ユーザーからの指令を操作部120から受け付け、撮像装置400の各部を制御する。
 撮像装置400によれば、光学絞り104及びシャッター108とは別に、撮像素子110に入射する光の量を調整する露光制御部106を備える。このため、撮影シーンが明るい場合でも、光学絞りの開口を小さくせずに、露光制御部106によって撮像素子110に入射する光の量を少なくすることができる。よって、小絞りボケを生じることなく、鮮明な画像を取得することができる。
 また、光学絞り104の開口の大きさで決まる被写界深度や、シャッター110で制御される露光時間(シャッタースピード)と独立して露光量を調節することができる。このため、被写界深度や被写体ぶれ方などをユーザーの意図した設定に維持しながら、適切な露光量で画像を取得することが可能となる。
 本願に開示された露光制御装置は、カメラやムービー等の撮像機器全般及び光量調節用光学フィルター等に適用可能である。
 100、101、200、300  露光制御装置
 1、2  光量調節板
 1a、2a  偏光領域
 1b、2b  非偏光領域
 1c、2c  回転軸
 3、4、6、7、8、9、10  ギア
 5  光路
 1000  従来の露光制御装置
 1001、1002  偏光板
 1003  偏光駆動板

Claims (15)

  1.  光路上に配置される露光制御装置であって、
     特定方向に偏光した光を透過させる特性を有する第1の領域及び前記特定方向に偏光した光を透過させる特性を有しない第2の領域をそれぞれが有する第1及び第2の光量調節板を備え、
     前記第1及び第2の光量調節板を回転させることによって光量を調節する、露光制御装置。
  2.  前記第1及び第2の光量調節板は、それぞれ、中心に回転軸を有し、
     前記回転軸は、前記光路の外側に配置され、
     前記第1及び第2の光量調節板のそれぞれ一部は前記光路上において互いに重なっており、
     前記回転軸を中心に、前記第1及び第2の光量調節板がそれぞれ回転することによって、前記光量を調節する、請求項1に記載の露光制御装置。
  3.  前記第1の光量調節板の前記回転軸と、前記第2の光量調節板の前記回転軸とは、互いに異なる位置に配置される、請求項2に記載の露光制御装置。
  4.  前記第1の光量調節板の前記第1の領域及び前記第2の光量調節板の前記第1の領域がそれぞれ前記光路と重なり、かつ、前記第1の光量調節板の前記第1の領域の前記特定方向と前記第2の光量調節板の前記第1の領域の前記特定方向とが互いに垂直となるように前記第1及び第2の光量調節板が回転した場合、前記第1及び第2の光量調節板を透過する光の透過率は最低となる、
    請求項2に記載の露光制御装置。
  5.  前記第1の光量調節板の前記第2の領域及び前記第2の光量調節板の前記第2の領域がそれぞれ前記光路と重なるように前記第1及び第2の光量調節板が回転した場合、前記第1及び第2の光量調節板を透過する光の透過率は最大となる、
    請求項2に記載の露光制御装置。
  6.  前記第1の光量調節板の前記第1の領域及び前記第2の光量調節板の前記第1の領域がそれぞれ前記光路と重なっている間、前記第1の光量調節板の前記第1の領域の前記特定方向と前記第2の光量調節板の前記第1の領域の前記特定方向とが互いに垂直な状態から互いに平行な状態となる、請求項2に記載の露光制御装置。
  7.  前記第1及び第2の光量調節板は互いに反対方向に同速度で回転する、請求項1から請求項6のいずれかに記載の露光制御装置。
  8.  前記第1及び第2の光量調節板は互いに反対方向に異なる速度で回転する、請求項1から請求項6のいずれかに記載の露光制御装置。
  9.  前記第1及び第2の光量調節板が互いに同じ方向に異なる速度で回転する、請求項1から請求項6のいずれかに記載の露光制御装置。
  10.  前記第1及び第2の光量調節板の回転軸は互いに一致する、請求項1または請求項2のいずれかに記載の露光制御装置。
  11.  前記第1の光量調節板の前記第1の領域の前記特定方向と前記第2の光量調節板の前記第1の領域の前記特定方向とが互いに平行な状態では、前記第1の光量調節板と、前記第2の光量調節板とが、同方向に同速度で回転する、請求項2から請求項6のいずれかに記載の露光制御装置。
  12.  前記第1の光量調節板の前記第2の領域及び前記第2の光量調節板の前記第2の領域がそれぞれ前記光路と重なり、かつ、前記第1の光量調節板の前記第1の領域の前記特定方向と前記第2の光量調節板の前記第1の領域の前記特定方向とが互いに平行でない状態において、
     前記第1の光量調節板及び前記第2の光量調節板の一方が回転し、他方は静止している、請求項2から請求項6のいずれかに記載の露光制御装置。
  13. 入射光を円偏光に変換する光学素子をさらに備え、
     前記光学素子を透過した光が前記第1及び第2の光量調節板を透過する、請求項1から請求項12のいずれかに記載の露光制御装置。
  14.  前記第1及び第2の光量調節板を透過した光が入射するように配置され、前記入射光を円偏光に変換する光学素子をさらに備える、請求項1から請求項12のいずれかに記載の露光制御装置。
  15.  前記光学系の光路に配置される光学絞りまたはシャッターをさらに備える、請求項1から請求項12のいずれかに記載の露光制御装置。
PCT/JP2012/007806 2011-12-08 2012-12-05 露光制御装置 WO2013084489A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280018541.6A CN103502885B (zh) 2011-12-08 2012-12-05 曝光控制装置
JP2013548089A JP6025104B2 (ja) 2011-12-08 2012-12-05 露光制御装置
US14/111,366 US8801305B2 (en) 2011-12-08 2012-12-05 Exposure control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-268853 2011-12-08
JP2011268853 2011-12-08

Publications (1)

Publication Number Publication Date
WO2013084489A1 true WO2013084489A1 (ja) 2013-06-13

Family

ID=48573879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007806 WO2013084489A1 (ja) 2011-12-08 2012-12-05 露光制御装置

Country Status (4)

Country Link
US (1) US8801305B2 (ja)
JP (1) JP6025104B2 (ja)
CN (1) CN103502885B (ja)
WO (1) WO2013084489A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019032569A (ja) * 2013-08-06 2019-02-28 パナソニックIpマネジメント株式会社 カメラ装置およびフィルタユニット
WO2019155908A1 (ja) * 2018-02-09 2019-08-15 ソニー株式会社 フィルタユニット、フィルタ選択方法、および、撮像装置
JP2020154264A (ja) * 2019-03-22 2020-09-24 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 撮像装置、及び移動体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007027985A1 (de) * 2006-12-21 2008-06-26 Carl Zeiss Smt Ag Optisches System, insbesondere Beleuchtungseinrichtung oder Projektionsobjektiv einer mikrolithographischen Projektionsbelichtungsanlage
CA2820007C (en) 2010-09-09 2016-06-28 John R. Kouns Optical filter opacity control reducing temporal aliasing in motion picture capture
CN105264880B (zh) * 2013-04-05 2018-08-28 Red.Com 有限责任公司 用于相机的滤光
CN106661917A (zh) * 2014-04-22 2017-05-10 米兰理工大学 用于选择性控制电磁辐射的交互式装置
CN105516555A (zh) * 2015-11-26 2016-04-20 努比亚技术有限公司 一种摄像头模组和移动终端
CN110119034A (zh) * 2019-05-21 2019-08-13 Oppo广东移动通信有限公司 摄像装置、摄像控制方法、存储介质及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178A (ja) * 1985-06-26 1987-01-06 Sony Corp 監視装置
JPH09166518A (ja) * 1995-10-11 1997-06-24 Asahi Optical Co Ltd 光学部材検査装置
JP2001061165A (ja) * 1999-08-20 2001-03-06 Sony Corp レンズ装置及びカメラ
JP2008096461A (ja) * 2006-10-05 2008-04-24 Nippon Hoso Kyokai <Nhk> 偏光装置、偏光フィルタ、制御装置、及びプログラム

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2269713A (en) * 1939-09-09 1942-01-13 Ralph J Erwin Shutter for projection apparatus
US2450761A (en) * 1945-06-09 1948-10-05 Eastman Kodak Co Flicker photometers, particularly for measuring the contrast of a lens
US3501229A (en) * 1967-03-08 1970-03-17 Optical Systems Corp Method and apparatus for projecting motion pictures
US4592632A (en) * 1984-12-28 1986-06-03 Walter Renold Motion picture shutter method and apparatus
JPH04212117A (ja) * 1990-03-29 1992-08-03 Asahi Optical Co Ltd 内視鏡用光源装置
US5481321A (en) * 1991-01-29 1996-01-02 Stereographics Corp. Stereoscopic motion picture projection system
JPH05323264A (ja) 1992-05-25 1993-12-07 Ricoh Co Ltd 光量調整装置
KR0153796B1 (ko) * 1993-09-24 1998-11-16 사토 후미오 노광장치 및 노광방법
JPH08278512A (ja) * 1995-04-06 1996-10-22 Sharp Corp 液晶表示装置
US5828500A (en) 1995-10-11 1998-10-27 Asahi Kogaku Kogyo Kabushiki Kaisha Optical element inspecting apparatus
US20050140820A1 (en) 1999-08-20 2005-06-30 Koichi Takeuchi Lens unit and camera
US6726333B2 (en) * 2001-02-09 2004-04-27 Reflectivity, Inc Projection display with multiply filtered light
JP2003035922A (ja) * 2001-07-23 2003-02-07 Sony Corp 光学系の絞り装置
US6874889B1 (en) * 2003-05-30 2005-04-05 Lockheed Martin Corporation Differential rate double shutter for cinematographic digital image capture cameras
JP4721411B2 (ja) 2005-06-01 2011-07-13 キヤノン株式会社 カメラの露出装置及びカメラ
US8172399B2 (en) * 2005-12-21 2012-05-08 International Business Machines Corporation Lumen optimized stereo projector using a plurality of polarizing filters
US8189038B2 (en) * 2005-12-21 2012-05-29 International Business Machines Corporation Stereographic projection apparatus with passive eyewear utilizing a continuously variable polarizing element
US8182099B2 (en) * 2005-12-21 2012-05-22 International Business Machines Corporation Noise immune optical encoder for high ambient light projection imaging systems
JP4645692B2 (ja) * 2008-07-18 2011-03-09 ソニー株式会社 撮像装置
JP5590783B2 (ja) 2008-09-30 2014-09-17 日本電産コパル株式会社 露光量制御装置及びカメラ
CA2820007C (en) * 2010-09-09 2016-06-28 John R. Kouns Optical filter opacity control reducing temporal aliasing in motion picture capture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178A (ja) * 1985-06-26 1987-01-06 Sony Corp 監視装置
JPH09166518A (ja) * 1995-10-11 1997-06-24 Asahi Optical Co Ltd 光学部材検査装置
JP2001061165A (ja) * 1999-08-20 2001-03-06 Sony Corp レンズ装置及びカメラ
JP2008096461A (ja) * 2006-10-05 2008-04-24 Nippon Hoso Kyokai <Nhk> 偏光装置、偏光フィルタ、制御装置、及びプログラム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019032569A (ja) * 2013-08-06 2019-02-28 パナソニックIpマネジメント株式会社 カメラ装置およびフィルタユニット
WO2019155908A1 (ja) * 2018-02-09 2019-08-15 ソニー株式会社 フィルタユニット、フィルタ選択方法、および、撮像装置
JPWO2019155908A1 (ja) * 2018-02-09 2021-01-28 ソニー株式会社 フィルタユニット、フィルタ選択方法、および、撮像装置
JP7226341B2 (ja) 2018-02-09 2023-02-21 ソニーグループ株式会社 フィルタユニットおよび撮像装置
US11592661B2 (en) 2018-02-09 2023-02-28 Sony Corporation Filter unit, filter selection method, and imaging device
JP2020154264A (ja) * 2019-03-22 2020-09-24 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 撮像装置、及び移動体

Also Published As

Publication number Publication date
JP6025104B2 (ja) 2016-11-16
CN103502885A (zh) 2014-01-08
JPWO2013084489A1 (ja) 2015-04-27
US8801305B2 (en) 2014-08-12
US20140028991A1 (en) 2014-01-30
CN103502885B (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
JP6025104B2 (ja) 露光制御装置
US9007469B2 (en) Lens barrel and image pickup device
US10088671B2 (en) Transmitted light volume adjusting apparatus and transmitted light volume adjusting method
JP6172955B2 (ja) 光量調整装置、レンズ鏡筒および撮像装置
US8693861B2 (en) Lens barrel
US8823862B2 (en) Position detection device, position detection method, and imaging apparatus
JP5446669B2 (ja) 光学装置及び撮像装置
JP5215235B2 (ja) レンズ鏡筒
EP2762940B1 (en) Lens device, and imaging device fitted with said lens device
WO2012004989A1 (ja) 減光装置および撮像装置
JP5065196B2 (ja) レンズ鏡筒及び撮影装置
US9121997B2 (en) Lens barrel
WO2013146051A1 (ja) フィルタ装置、レンズ装置、撮像装置
JP2015004759A (ja) レンズ装置およびそれを有する撮像装置
JP6448186B2 (ja) レンズ鏡筒およびこれを備えた光学機器
JP3980125B2 (ja) カメラのレンズ駆動機構
US9019419B2 (en) Lens apparatus and image pickup apparatus
JP5429245B2 (ja) レンズユニットおよび光学機器
JP2019191223A (ja) 光量調整装置
WO2018157429A1 (zh) 同步调节装置及矩阵相机
JP2013117653A (ja) レンズ鏡筒
JP2006106312A (ja) レンズ鏡筒
JP2013125232A (ja) レンズ鏡筒および撮像装置
JP2013092549A (ja) レンズ鏡筒および光学機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548089

Country of ref document: JP

Kind code of ref document: A

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14111366

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856553

Country of ref document: EP

Kind code of ref document: A1