WO2013084323A1 - 鋳造用部材、及びその製造方法 - Google Patents

鋳造用部材、及びその製造方法 Download PDF

Info

Publication number
WO2013084323A1
WO2013084323A1 PCT/JP2011/078345 JP2011078345W WO2013084323A1 WO 2013084323 A1 WO2013084323 A1 WO 2013084323A1 JP 2011078345 W JP2011078345 W JP 2011078345W WO 2013084323 A1 WO2013084323 A1 WO 2013084323A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
film
carbon film
base material
casting
Prior art date
Application number
PCT/JP2011/078345
Other languages
English (en)
French (fr)
Inventor
高嗣 冨田
雄一 古川
修司 外崎
雄大 伊藤
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201180075317.6A priority Critical patent/CN103958090A/zh
Priority to PCT/JP2011/078345 priority patent/WO2013084323A1/ja
Priority to JP2013548009A priority patent/JP5776790B2/ja
Priority to US14/362,772 priority patent/US20140306091A1/en
Publication of WO2013084323A1 publication Critical patent/WO2013084323A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • B22C9/061Materials which make up the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/2209Selection of die materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only

Definitions

  • the present invention relates to a casting member such as a mold and a manufacturing method thereof.
  • An object of the present invention is to provide a low-cost casting member on which a film having high peel strength is formed, and a method for producing the same.
  • a casting member according to the present invention is a casting member used for casting, and is produced by powder melt lamination and has a base material having a surface composed of a large number of minute irregularities having an inverse gradient shape, and the base And a film formed on the surface of the material.
  • the base material is a mold, and the film is formed on a molding surface of the mold.
  • a method for producing a casting member according to the present invention is a method for producing a casting member used for casting, wherein a base material having a surface composed of a large number of minute irregularities having a reverse gradient shape is formed by powder melt lamination.
  • the film is a carbon film containing at least one kind of nanocarbon, and in the film forming step, while supplying a reaction gas that is a raw material of the carbon film, It is preferable to form the carbon film on the surface of the base material by heating the base material.
  • the temperature and time for heating the base material in the film forming step are set to the temperature and time for performing an aging treatment for curing the base material. It is preferable to do.
  • peeling of the film can be suppressed at a low price.
  • die which concerns on this invention The figure which shows the manufacturing process of the surface treatment metal mold
  • the surface treatment mold 1 includes a mold 10 as a base material and a carbon film 20 formed on the molding surface of the mold 10.
  • the mold 10 is a mold used for die casting or the like, and one surface thereof (the upper surface in FIG. 1) is formed as a molding surface.
  • the mold 10 is produced by powder melt lamination, and its surface has a rough surface property due to a large number of minute irregularities.
  • the powder melt lamination means that a product of a desired shape is formed by laminating a predetermined portion of each layer with a laser while laminating layers made of a predetermined metal powder (for example, maraging steel powder). It is a technique and is known as a technique in rapid prototyping. In the powder melt lamination, since the metal powder is melted and solidified, a large number of minute irregularities are formed on the surface of the mold 10, and the surface of the mold 10 has a rough surface property.
  • a large number of minute irregularities formed on the surface of the mold 10 produced by powder fusion lamination are composed of a large number of protrusions 11, 11.
  • the protrusion 11 protrudes outward (upper side in FIG. 1) from the molding surface of the mold 10 and has a reverse gradient shape (so-called undercut).
  • the width of the protrusion 11 gradually increases from the base end (lower end in FIG. 1) to the protruding end (upper end in FIG. 1). It is formed to be large.
  • the distance between the adjacent protrusions 11 and 11 gradually decreases as it goes to the outside of the mold 10 (upper side in FIG. 1).
  • the molding surface of the mold 10 is formed as an uneven surface composed of a large number of protrusions 11. That is, the molding surface of the mold 10 is composed of a large number of minute irregularities that form an inverse gradient shape (so-called undercut).
  • the carbon film 20 is a dense film for realizing reduction of mold release resistance on the molding surface of the mold 10 and prevention of melting damage.
  • the carbon film 20 in the present embodiment is a carbon film containing at least one kind of nanocarbon.
  • the nanocarbons in the present invention are fine fibrous nanocarbons such as carbon nanofibers, carbon nanotubes, carbon nanocoils, and carbon nanofilaments.
  • the carbon film 20 may be composed of a large number of carbon nanofibers formed on the molding surface of the mold 10, or may be composed of a large number of carbon nanotubes formed on the molding surface of the mold 10. Is possible.
  • the carbon film 20 is formed on the molding surface of the mold 10 so as to cover a large number of the protrusions 11, 11, and so as to fill the gaps between the adjacent protrusions 11, 11. Yes. Therefore, an anchor effect occurs between the large number of protrusions 11, 11... And the carbon film 20. Specifically, since a large number of protrusions 11, 11... Protrude upward from the molding surface of the mold 10, the projections 11, 11. The movement of the carbon film 20 along the surface is regulated by a large number of protrusions 11. Furthermore, since the protrusion 11 has a reverse gradient shape (so-called undercut), the movement of the carbon film 20 along the direction perpendicular to the molding surface of the mold 10 (vertical direction in FIG. 1) is large. It will be regulated by the projections 11. Therefore, it is possible to suppress the carbon film 20 from being peeled off from the molding surface of the mold 10 due to the anchor effect generated between the numerous protrusions 11, 11... And the carbon film 20.
  • the molding surface of the mold 10 is formed as an uneven surface composed of a number of protrusions 11, 11... Having a reverse gradient shape (so-called undercut).
  • the carbon film 20 is formed on the molding surface.
  • the surface area of the molding surface of the mold 10 can be made larger than the surface area of the molding surface of a conventional mold (such as a molding surface processed by shot blasting).
  • Many nanocarbons can be generated. Therefore, the bond of the carbon film 20 to the molding surface of the mold 10 can be strengthened, and the carbon film 20 can be prevented from peeling from the molding surface of the mold 10. Further, since more nanocarbons are generated on the molding surface of the mold 10, the carbon film 20 having a larger thickness (vertical dimension in FIG. 1) can be formed.
  • the heat insulation of the molding surface of the surface treatment mold 1 during casting can be improved, and a good hot water flow can be realized. Furthermore, since the mold release agent is satisfactorily held by the carbon film 20, the oil impregnation property on the molding surface of the surface treatment mold 1 can be improved.
  • the film according to the present invention is the carbon film 20 containing at least one kind of nanocarbon, but the present invention is not limited to this.
  • a dense film such as hard chrome plating or black rust can be employed as the film according to the present invention.
  • the manufacturing process S1 includes a modeling process S10 and a film forming process S20.
  • the modeling step S10 is a step of producing a mold 10 having a molding surface composed of a large number of minute irregularities having a reverse gradient shape (so-called undercut) by powder melt lamination.
  • die 10 which has the shaping
  • the film forming step S ⁇ b> 20 is a step of forming the carbon film 20 on the molding surface of the mold 10.
  • the mold 10 is heated by supplying a reaction gas such as acetylene, which is a raw material of the carbon film 20, in an atmosphere of an inert gas such as nitrogen in an atmosphere furnace.
  • the carbon film 20 is formed on the molding surface.
  • the carbon film 20 on the molding surface of the mold 10 in an atmosphere furnace it is preferable to perform an aging treatment for curing the mold 10. Specifically, as shown in FIG. 3, after the atmosphere furnace is made a nitrogen (N 2 ) atmosphere, the temperature is raised to 570 ° C. while supplying acetylene (C 2 H 2 ) and ammonia (NH 3 ), The mold 10 is heated for 4 hours while maintaining the temperature. Thus, the carbon film 20 is formed on the molding surface of the mold 10 and the mold 10 is subjected to an aging treatment.
  • N 2 nitrogen
  • NH 3 ammonia
  • the aging treatment of the mold is performed by heating the mold at 570 ° C. for 4 hours.
  • the mold 10 is heated at the same temperature and time as the conventional aging treatment of the mold. Therefore, the aging treatment is performed on the mold 10 through the film forming step S20.
  • the carbon film is formed on the molding surface of the mold at a lower temperature (480 ° C.) than the aging treatment of the mold, and the carbon film is formed on the molding surface of the mold.
  • the temperature at the time of performing is different from the temperature at the time of aging treatment of the mold.
  • the temperature at the time of forming the carbon film on the molding surface of the mold is set to the aging treatment of the mold. It is possible to set the temperature (570 ° C.) at the time of performing.
  • the heating temperature of the mold 10 in the film forming step S20 is 570 ° C., but is not limited thereto.
  • the temperature at which the carbon film 20 is formed on the molding surface of the mold 10 may be 400 ° C. (temperature at which nanocarbons are generated) or higher, and the temperature at which the aging treatment of the mold 10 is performed is 350 Since it should just be above ° C, what is necessary is just to set the heating temperature of metallic mold 10 in coat formation process S20 to 400 ° C or more. Further, as described above, since the carbon film 20 may be oxidized and deteriorated when the temperature exceeds 600 ° C., the heating temperature of the mold 10 in the film forming step S20 may be set to 600 ° C. or less. Therefore, the heating temperature of the mold 10 in the film forming step S20 is preferably set to 400 to 600 ° C.
  • the supply amount of the reactive gas such as acetylene is set to the conventional value (in comparison with the aging treatment of the mold). Even if it is reduced by about 20% from the supply amount at the time of forming the carbon film at a low temperature, the quality of the carbon film is not greatly affected. Therefore, it is possible to change (reduce) the supply amount of the reactive gas such as acetylene according to the conditions of the aging treatment of the mold.
  • the ammonia reduces the (NH 3) supply time of ammonia (NH 3) the supply amount of which is reduced than the conventional value (see hatched portion in FIG. 3 and FIG.
  • the temperature and time when forming the carbon film 20 are changed to the extent that the quality of the carbon film 20 is not greatly affected, and the same temperature and time when performing the aging treatment on the mold 10.
  • the formation of the carbon film 20 on the molding surface of the mold 10 and the aging treatment of the mold 10 can be performed simultaneously in the film forming step S20. Therefore, it is not necessary to separately perform an aging treatment on the mold 10, and the time and cost required for manufacturing the surface treatment mold 1 can be reduced.
  • a step of forming a carbon film on the molding surface of the mold is performed, but the mold cured by the aging treatment is applied to the molding surface of the mold.
  • the effect of the aging treatment is diminished.
  • the formation of the carbon film 20 on the molding surface of the mold 10 and the aging treatment of the mold 10 are performed simultaneously in the film forming step S20, the effect of the aging treatment is not diminished.
  • the mold 10 can be set to a desired hardness.
  • the surface treatment mold 1 is manufactured by sequentially performing the modeling process S10 and the film forming process S20.
  • the molding surface of the mold 10 produced in the modeling step S10 has a rough surface property due to a large number of protrusions 11, 11,..., But on the molding surface of the mold 10 in the film formation step S20. Since the dense carbon film 20 is formed, the molding surface of the surface treatment mold 1 has a dense surface property.
  • a mold is manufactured through a roughing process for forming the shape of the mold and a finishing process for smoothing the surface. Thereafter, the surface of the mold is made uneven by shot blasting or the like, and a film such as a carbon film is formed on the uneven surface.
  • the surface-treated metal mold is formed by forming the dense carbon film 20 on the molding surface of the mold 10 in the film forming process S20 after the rough surface texture mold 10 is manufactured in the modeling process S10. Since the mold 1 is manufactured, it is not necessary to perform the above-described finishing process and surface processing such as shot blasting. Therefore, the time and cost required for manufacturing the surface treatment mold 1 can be reduced.
  • the metal mold 10 is produced by solidifying the metal powder after being melted by the laser in the modeling step S10, the surface is in an active state, that is, a new surface is exposed.
  • manufacturing process S1 after performing modeling process S10, in order to perform film formation process S20, without performing surface finishing, such as the above-mentioned finishing processing and shot blasting, on the molding surface of metallic mold 10
  • surface finishing such as the above-mentioned finishing processing and shot blasting
  • a sliding member such as a plunger chip can be employed in addition to a mold such as the surface treatment mold 1.
  • a coating similar to the carbon film 20 may be formed on the outer peripheral surface (sliding surface) of the plunger tip.
  • the present invention can be used for a casting member such as a mold and a manufacturing method thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

 高い剥離強度を有する皮膜が形成された、低価な鋳造用部材、及びその製造方法を提供する。逆勾配形状を有する多数の突起部11・11・・・から構成される成形面を有する金型10を粉末溶融積層によって作製する造形工程S10と、造形工程S10にて作製された金型10の成形面に炭素膜20を形成する皮膜形成工程S20と、を具備する製造工程S1を経て、逆勾配形状を有する多数の突起部11・11・・・から構成される成形面を有する金型10と、金型10の成形面に形成された炭素膜20と、を具備する表面処理金型1が製造される。

Description

鋳造用部材、及びその製造方法
 本発明は、金型等の鋳造用部材、及びその製造方法に関する。
 従来、金型等の鋳造用部材においては、表面の一部(例えば、成形面)に、ナノカーボン類から成る炭素膜等の皮膜を形成し、摩擦抵抗の低減等を図る技術が広く知られている。
 更に、鋳造用部材の表面における、皮膜を形成する部分をショットブラスト等によって凹凸面とし、当該部分の表面積を大きくすることによって、当該部分から皮膜が剥離することを抑制する技術が公知となっている(特許文献1参照)。
 しかしながら、ショットブラスト等による鋳造用部材の表面加工では、加工部分の表面積の増加が充分とはいえず、皮膜の剥離強度の更なる向上が望まれていた。
 更に、上記のような鋳造用部材を製造する際に、ショットブラスト等の表面加工を別途行う必要があり、製造コストが増加する等の問題が生じていた。
特開2011-156549号公報
 本発明は、高い剥離強度を有する皮膜が形成された、低価な鋳造用部材、及びその製造方法を提供することを課題とする。
 本発明に係る鋳造用部材は、鋳造に用いられる鋳造用部材であって、粉末溶融積層により作製され、逆勾配形状を成す多数の微小な凹凸から構成される表面を有する母材と、前記母材の表面に形成される皮膜と、を具備する。
 本発明に係る鋳造用部材において、前記母材は、金型であり、前記金型の成形面上に前記皮膜が形成されることが好ましい。
 本発明に係る鋳造用部材の製造方法は、鋳造に用いられる鋳造用部材の製造方法であって、逆勾配形状を成す多数の微小な凹凸から構成される表面を有する母材を粉末溶融積層によって作製する造形工程と、前記造形工程にて作製された母材の表面に皮膜を形成する皮膜形成工程と、を具備する。
 本発明に係る鋳造用部材の製造方法において、前記皮膜は、少なくとも一種のナノカーボン類を含む炭素膜であり、前記皮膜形成工程にて、前記炭素膜の原料となる反応ガスを供給しつつ、前記母材を加熱することで、当該母材の表面に前記炭素膜を形成することが好ましい。
 本発明に係る鋳造用部材の製造方法において、前記皮膜形成工程にて前記母材を加熱する際の温度及び時間を、前記母材を硬化させるための時効処理を行う際の温度及び時間に設定することが好ましい。
 本発明によれば、低価で皮膜の剥離を抑制できる。
本発明に係る表面処理金型を示す図。 本発明に係る表面処理金型の製造工程を示す図。 皮膜形成工程を示すタイムチャート。 従来の金型に対する時効処理を示すタイムチャート。 従来の金型の成形面に炭素膜を形成する工程を示すタイムチャート。
 以下では、図1を参照して、本発明に係る鋳造用部材の一実施形態である表面処理金型1について説明する。
 図1に示すように、表面処理金型1は、母材としての金型10と、金型10の成形面に形成された炭素膜20とを具備する。
 金型10は、ダイカスト鋳造等に用いられる金型であり、その一面(図1における上面)が成形面として形成されている。金型10は、粉末溶融積層によって作製されており、その表面は、多数の微小な凹凸により、粗い表面性状となっている。
 ここで、粉末溶融積層とは、所定の金属粉末(例えば、マルエージング鋼の粉末)から成る層を積層しつつ、各層の所定部分をレーザにより溶融させることで、所望の形状の製品を造形する技術であり、ラピッドプロトタイピング(Rapid Prototyping)における一手法として知られている。
 粉末溶融積層においては、金属粉末が溶融されて凝固するため、金型10の表面に多数の微小な凹凸が形成され、金型10の表面が粗い表面性状となるのである。
 粉末溶融積層によって作製された金型10の表面に形成された多数の微小な凹凸は、多数の突起部11・11・・・から構成されている。
 なお、以下では、説明の便宜上、金型10の表面の一部を成す、金型10の成形面、における多数の突起部11・11・・・のみについて説明する。
 突起部11は、金型10の成形面から外方(図1における上側)に突出し、逆勾配形状(所謂、アンダーカット)を有している。詳細には、突起部11は、その基端部(図1における下端部)から突出端部(図1における上端部)に向かうに伴い、幅寸法(図1における左右方向の長さ)が徐々に大きくなるように形成されている。換言すれば、隣接する突起部11・11間の距離が、金型10の外側(図1における上側)に向かうに伴って、徐々に小さくなっている。
 このように、金型10の成形面は、多数の突起部11・11・・・から構成された凹凸面として形成されている。つまり、金型10の成形面は、逆勾配形状(所謂、アンダーカット)を成す、多数の微小な凹凸から構成されているのである。
 炭素膜20は、金型10の成形面における離型抵抗の低減、及び溶損の防止等を実現するための緻密な皮膜である。本実施形態における炭素膜20は、少なくとも一種のナノカーボン類を含む炭素膜である。
 ここで、本発明におけるナノカーボン類とは、カーボンナノファイバー、カーボンナノチューブ、カーボンナノコイル、及びカーボンナノフィラメント等の微細な繊維状のナノカーボン類である。
 例えば、炭素膜20を、金型10の成形面上に形成される多数のカーボンナノファイバーから構成すること、又は金型10の成形面上に形成される多数のカーボンナノチューブから構成すること等が可能である。更に、カーボンナノファイバー等の繊維状のナノカーボン類に、多数の炭素原子から構成される略球状のフラーレンを塗布することも可能である。
 炭素膜20は、金型10の成形面上において、多数の突起部11・11・・・を覆うように形成され、かつ、隣接する突起部11・11間の空隙を埋めるように形成されている。
 そのため、多数の突起部11・11・・・と、炭素膜20との間にアンカー効果が生じる。
 詳細には、多数の突起部11・11・・・が金型10の成形面から上方に突出しているため、金型10の成形面に対して平行となる方向(図1における左右方向)に沿った、炭素膜20の移動が多数の突起部11・11・・・によって規制される。更に、突起部11が逆勾配形状(所謂、アンダーカット)を有するため、金型10の成形面に対して直交する方向(図1における上下方向)に沿った、炭素膜20の移動が多数の突起部11・11・・・によって規制されることとなる。
 したがって、多数の突起部11・11・・・と、炭素膜20との間に生じるアンカー効果によって、炭素膜20が金型10の成形面から剥離することを抑制することができる。
 以上のように、表面処理金型1においては、金型10の成形面が、逆勾配形状(所謂、アンダーカット)を有する多数の突起部11・11・・・から構成された凹凸面として形成され、当該成形面上に炭素膜20が形成されている。
 これにより、金型10の成形面における表面積を、従来の金型の成形面(ショットブラストによって加工された成型面等)における表面積よりも大きくすることができ、金型10の成形面に、より多くのナノカーボン類を生成させることができる。
 したがって、金型10の成形面に対する炭素膜20の結合を強固なものとすることができ、炭素膜20が金型10の成形面から剥離することを抑制することができる。
 また、より多くのナノカーボン類が金型10の成形面に生成されることで、より大きい厚み(図1における上下寸法)を有する炭素膜20を形成することができる。
 したがって、鋳造時における表面処理金型1の成形面の断熱性を向上させ、良好な湯流れを実現できる。更に、炭素膜20によって離型剤が良好に保持されるため、表面処理金型1の成形面における含油性を向上させることができる。
 なお、本実施形態においては、本発明に係る皮膜を、少なくとも一種のナノカーボン類を含む炭素膜20としたが、これに限定するものではない。
 例えば、本発明に係る皮膜として、硬質クロムめっき、又は黒錆等の緻密な皮膜を採用することが可能である。
 以下では、図2~図5を参照して、本発明に係る鋳造用部材の製造方法の一実施形態である、表面処理金型1の製造工程S1について説明する。
 図2に示すように、製造工程S1は、造形工程S10と、皮膜形成工程S20とを具備する。
 造形工程S10は、逆勾配形状(所謂、アンダーカット)を成す多数の微小な凹凸から構成される成形面を有する金型10を粉末溶融積層によって作製する工程である。
 造形工程S10においては、粉末溶融積層によって、多数の突起部11・11・・・が形成された成形面を有する金型10を、マルエージング鋼等の金属粉末から作製する。
 皮膜形成工程S20は、金型10の成形面上に炭素膜20を形成する工程である。
 皮膜形成工程S20においては、雰囲気炉にて、窒素等の不活性ガス雰囲気下で炭素膜20の原料となるアセチレン等の反応ガスを供給しつつ、金型10を加熱することで、金型10の成形面に炭素膜20を形成する。
 雰囲気炉にて金型10の成形面に炭素膜20を形成する際には、金型10を硬化させるための時効処理を兼ねて行うことが好ましい。
 詳細には、図3に示すように、雰囲気炉内を窒素(N)雰囲気とした後、アセチレン(C)及びアンモニア(NH)を供給しつつ、570℃まで昇温し、当該温度を保持した状態で、金型10を4時間加熱する。
 こうして、金型10の成形面に炭素膜20が形成されると共に、金型10に時効処理が施される。
 図4に示すように、従来、金型の時効処理は、金型を570℃で4時間加熱することによって行われている。
 本実施形態においては、皮膜形成工程S20にて、従来の金型の時効処理と同じ温度及び時間で、金型10の加熱が行われる。
 そのため、皮膜形成工程S20を経ることで、金型10に時効処理が施されるのである。
 図5に示すように、従来、金型の成形面における炭素膜の形成は、金型の時効処理よりも低い温度(480℃)で行われており、金型の成形面に炭素膜を形成する際の温度は、金型の時効処理を行う際の温度とは異なる。
 しかしながら、金型の成形面に形成される炭素膜は、600℃を超えなければ酸化劣化することがないため、金型の成形面に炭素膜を形成する際の温度を、金型の時効処理を行う際の温度(570℃)に設定することが可能である。
 なお、本実施形態においては、皮膜形成工程S20における金型10の加熱温度を570℃としたが、これに限定するものではない。
 金型10の成形面に炭素膜20を形成する際の温度は、400℃(ナノカーボン類が生成される温度)以上であればよく、金型10の時効処理を行う際の温度は、350℃以上であればよいため、皮膜形成工程S20における金型10の加熱温度を400℃以上に設定すればよい。
 更に、前述のように、炭素膜20は、600℃を超えると酸化劣化するおそれがあるため、皮膜形成工程S20における金型10の加熱温度を600℃以下に設定すればよい。
 したがって、皮膜形成工程S20における金型10の加熱温度は、400~600℃に設定することが好ましい。
 また、金型の時効処理と同一の温度及び時間で、金型の成形面に炭素膜を形成する際においては、アセチレン等の反応ガスの供給量を従来の値(金型の時効処理よりも低い温度で炭素膜を形成する際の供給量)よりも20%程度減少させても、炭素膜の品質に大きな影響はない。そのため、金型の時効処理の条件に応じて、アセチレン等の反応ガスの供給量を変更する(減少させる)ことが可能である。本実施形態においては、アンモニア(NH)の供給時間を減少させて、アンモニア(NH)の供給量を従来の値よりも減少させている(図3及び図5におけるハッチングパターン部分参照)。なお、アンモニア(NH)の供給量を減少させた代わりに、窒素(N)の供給量を増加させている。
 また、金型の時効処理の条件に応じて、炭素膜の品質に大きな影響が生じない程度に、金型の加熱時間を変更することも可能である。
 このように、炭素膜20の品質に大きな影響が生じない程度に、炭素膜20を形成する際の温度及び時間を変更し、金型10に対して時効処理を行う際の温度及び時間と同一の値とすることで、皮膜形成工程S20にて、金型10の成形面における炭素膜20の形成と、金型10の時効処理とを同時に行うことができる。
 そのため、金型10に対する時効処理を別途行う必要がなく、表面処理金型1の製造に要する時間及びコストを低減することができる。
 また、一般的に、金型に対する時効処理を行った後に、当該金型の成形面に炭素膜を形成する工程が行われるが、時効処理によって硬化した金型は、当該金型の成形面に炭素膜を形成する際に再び加熱されることとなるため、時効処理の効果が薄れてしまう。しかしながら、本発明によれば、皮膜形成工程S20にて、金型10の成形面における炭素膜20の形成と、金型10の時効処理とが同時に行われるため、時効処理の効果が薄れることなく、金型10を所望の硬度に設定することができるのである。
 以上のように、製造工程S1においては、造形工程S10と、皮膜形成工程S20とを順に経ることにより、表面処理金型1が作製される。
 造形工程S10にて作製された金型10の成形面は、多数の突起部11・11・・・により、粗い表面性状となっているが、皮膜形成工程S20にて金型10の成形面上に緻密な炭素膜20が形成されるため、表面処理金型1の成形面は、緻密な表面性状となっている。
 従来、金型の形状を成形する荒加工、及び表面を平滑化する仕上げ加工を順に経ることによって金型が作製される。その後、金型の表面がショットブラスト等により凹凸面とされ、当該凹凸面に炭素膜等の皮膜が形成される。
 しかしながら、本発明では、造形工程S10にて荒い表面性状の金型10を作製した後、皮膜形成工程S20にて金型10の成形面上に緻密な炭素膜20を形成することによって表面処理金型1を作製するため、前記のような仕上げ加工、及びショットブラスト等の表面加工を行う必要がない。
 したがって、表面処理金型1の製造に要する時間及びコストを低減することができる。
 また、金型10は、造形工程S10にて、金属粉末がレーザにより溶融された後に凝固することによって作製されるため、表面が活性状態、つまり新生面が露出した状態となっている。
 特に、製造工程S1においては、造形工程S10を行った後に、前記のような仕上げ加工、及びショットブラスト等の表面加工を行うことなく、皮膜形成工程S20を行うため、金型10の成形面に炭素膜20を形成する際においても、金型10の成形面に酸化皮膜が形成されず、金型10の成形面の活性状態が維持される。
 これにより、皮膜形成工程S20において、金型10の成形面と、アセチレン等の反応ガスとの反応が促進され、短時間で強固な炭素膜20を形成することができる。
 なお、本発明に係る鋳造用部材としては、表面処理金型1のような金型の他に、プランジャチップ等の摺動部材を採用可能である。
 例えば、本発明に係る鋳造用部材として、プランジャチップを採用した場合には、当該プランジャチップの外周面(摺動面)に炭素膜20と同様の皮膜を形成すればよい。
 本発明は、金型等の鋳造用部材、及びその製造方法に利用できる。
 1  表面処理金型(鋳造用部材)
 10 金型(母材)
 11 突起部
 20 炭素膜

Claims (5)

  1.  鋳造に用いられる鋳造用部材であって、
     粉末溶融積層により作製され、逆勾配形状を成す多数の微小な凹凸から構成される表面を有する母材と、
     前記母材の表面に形成される皮膜と、を具備する、
     ことを特徴とする鋳造用部材。
  2.  前記母材は、金型であり、
     前記金型の成形面上に前記皮膜が形成される、
     ことを特徴とする請求項1に記載の鋳造用部材。
  3.  鋳造に用いられる鋳造用部材の製造方法であって、
     逆勾配形状を成す多数の微小な凹凸から構成される表面を有する母材を粉末溶融積層によって作製する造形工程と、
     前記造形工程にて作製された母材の表面に皮膜を形成する皮膜形成工程と、を具備する、
     ことを特徴とする鋳造用部材の製造方法。
  4.  前記皮膜は、少なくとも一種のナノカーボン類を含む炭素膜であり、
     前記皮膜形成工程にて、前記炭素膜の原料となる反応ガスを供給しつつ、前記母材を加熱することで、当該母材の表面に前記炭素膜を形成する、
     ことを特徴とする請求項3に記載の鋳造用部材の製造方法。
  5.  前記皮膜形成工程にて前記母材を加熱する際の温度及び時間を、前記母材を硬化させるための時効処理を行う際の温度及び時間に設定する、
     ことを特徴とする請求項4に記載の鋳造用部材の製造方法。
PCT/JP2011/078345 2011-12-07 2011-12-07 鋳造用部材、及びその製造方法 WO2013084323A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180075317.6A CN103958090A (zh) 2011-12-07 2011-12-07 铸造用部件及其制造方法
PCT/JP2011/078345 WO2013084323A1 (ja) 2011-12-07 2011-12-07 鋳造用部材、及びその製造方法
JP2013548009A JP5776790B2 (ja) 2011-12-07 2011-12-07 鋳造用部材、及びその製造方法
US14/362,772 US20140306091A1 (en) 2011-12-07 2011-12-07 Casting member and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/078345 WO2013084323A1 (ja) 2011-12-07 2011-12-07 鋳造用部材、及びその製造方法

Publications (1)

Publication Number Publication Date
WO2013084323A1 true WO2013084323A1 (ja) 2013-06-13

Family

ID=48573727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078345 WO2013084323A1 (ja) 2011-12-07 2011-12-07 鋳造用部材、及びその製造方法

Country Status (4)

Country Link
US (1) US20140306091A1 (ja)
JP (1) JP5776790B2 (ja)
CN (1) CN103958090A (ja)
WO (1) WO2013084323A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024421A (ja) * 2013-07-25 2015-02-05 本田技研工業株式会社 鋳造用金型
US9156080B2 (en) 2013-07-25 2015-10-13 Honda Motor Co., Ltd. Casting die

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019038018A (ja) * 2017-08-25 2019-03-14 アイシン精機株式会社 アルミダイカスト金型用部品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08509666A (ja) * 1994-05-27 1996-10-15 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ 鋳込み技術に使用される方法
JPH11348045A (ja) * 1998-06-10 1999-12-21 Matsushita Electric Ind Co Ltd 金属金型
JP2008105082A (ja) * 2006-10-27 2008-05-08 Matsuoka Tekkosho:Kk 金型

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3431776B2 (ja) * 1995-11-13 2003-07-28 シャープ株式会社 太陽電池用基板の製造方法および太陽電池用基板加工装置
US20080000611A1 (en) * 2006-06-28 2008-01-03 Ronald Scott Bunker Method for Forming Casting Molds
JP5036656B2 (ja) * 2008-07-31 2012-09-26 トヨタ自動車株式会社 鋳造型の表面処理方法およびそれを用いた鋳造型
JP4868052B2 (ja) * 2009-10-29 2012-02-01 トヨタ自動車株式会社 金型の表面処理方法
CN101948106B (zh) * 2010-09-28 2013-03-27 华东理工大学 一种高比表面积块体多孔炭的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08509666A (ja) * 1994-05-27 1996-10-15 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ 鋳込み技術に使用される方法
JPH11348045A (ja) * 1998-06-10 1999-12-21 Matsushita Electric Ind Co Ltd 金属金型
JP2008105082A (ja) * 2006-10-27 2008-05-08 Matsuoka Tekkosho:Kk 金型

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOKUZO SUGA: "Laser Yoyu Funmatsu Sekiso Zokeiho ni yoru Die Caste Kanagata no Genjo to Shorai", LAZER KAKO GAKKAI RONBUNSHU, DAI 62 KAI, vol. 77, no. 1, December 2004 (2004-12-01), pages 77 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024421A (ja) * 2013-07-25 2015-02-05 本田技研工業株式会社 鋳造用金型
US9156080B2 (en) 2013-07-25 2015-10-13 Honda Motor Co., Ltd. Casting die

Also Published As

Publication number Publication date
JPWO2013084323A1 (ja) 2015-04-27
US20140306091A1 (en) 2014-10-16
CN103958090A (zh) 2014-07-30
JP5776790B2 (ja) 2015-09-09

Similar Documents

Publication Publication Date Title
JP6548462B2 (ja) 付加製造方法
JP5748150B2 (ja) テクスチャ面を具える低熱膨張係数のスラッシュ金型、その製造方法、及びその使用方法
JP6291693B2 (ja) 高速火炎溶射コーティング法とプラズマイオン窒化法とを利用した金型の補正及び再生方法、並びにそのシステム
CN107427924B (zh) 渗透的铁类材料
KR20160147860A (ko) 첨가 제조 후 단조 작업을 거치는 금속 또는 금속 매트릭스 복합물로 만들어지는 부품들의 생성 방법
JP5776790B2 (ja) 鋳造用部材、及びその製造方法
JP2004306120A (ja) 連続鋳造用鋳型、その製造方法及び補修方法
US20180207749A1 (en) Method of manufacturing an object from granular material coated with a metallic material and a related article of manufacture
US8985185B2 (en) Composite components formed with loose ceramic material
KR20190138021A (ko) 이종 접합 부재 및 그의 제조방법
JP5833982B2 (ja) 鋳造用金型及びその製造方法
JP4701035B2 (ja) 鋳造方法
JP2008119727A (ja) 鋳造用金型及びその製造方法
JP5272245B2 (ja) 絞りプレス型のビード加工方法
JP2018104801A (ja) Fe−Al合金材及びその製造方法
JP5969327B2 (ja) 断熱金型の製造方法
WO2019167692A1 (ja) 金型装置
KR101149787B1 (ko) 다층구조를 가지는 용사금형 제조방법
KR20110099708A (ko) 금속 소결 부품을 제조하기 위한 전구체, 이 전구체의 제조 방법 및 금속 소결 부품의 제조 방법
KR100962137B1 (ko) 고압 주조용 금형 코어핀의 표면 코팅방법
KR101086319B1 (ko) 용사를 이용한 금속재 제조방법
CN106475520B (zh) 制造用于车辆排气系统的精密铸造零件的方法
JPWO2018225803A1 (ja) 金型部品の製造方法、及び金型部品
JP2004237301A (ja) 有層鋼材製部材およびその製造方法
KR20210103085A (ko) 효율적인 플라스틱 사출금형 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877085

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013548009

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14362772

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877085

Country of ref document: EP

Kind code of ref document: A1