CN107427924B - 渗透的铁类材料 - Google Patents

渗透的铁类材料 Download PDF

Info

Publication number
CN107427924B
CN107427924B CN201680017725.9A CN201680017725A CN107427924B CN 107427924 B CN107427924 B CN 107427924B CN 201680017725 A CN201680017725 A CN 201680017725A CN 107427924 B CN107427924 B CN 107427924B
Authority
CN
China
Prior art keywords
layer
metallic
range
binder
skeleton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680017725.9A
Other languages
English (en)
Other versions
CN107427924A (zh
Inventor
C·D·图菲勒
H·莱姆克
P·E·麦克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanosteel Co Inc
Original Assignee
Nanosteel Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanosteel Co Inc filed Critical Nanosteel Co Inc
Publication of CN107427924A publication Critical patent/CN107427924A/zh
Application granted granted Critical
Publication of CN107427924B publication Critical patent/CN107427924B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/14Formation of a green body by jetting of binder onto a bed of metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/36Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Composite Materials (AREA)

Abstract

用于以分层方式制备独立金属性材料的金属合金和方法。所得到的分层构造提供了可以用第二金属渗透的选定孔隙率的金属性骨架,以提供具有小于或等于130mm3的体积损失的独立材料,根据ASTM G65‑04(2010)测量。

Description

渗透的铁类材料
相关申请的交叉引用
本申请要求2015年2月3日提交的美国临时专利申请序列号62/111,395的权益,其全部内容通过引用并入本文。
技术领域
本发明涉及用于以分层方式制备独立(free-standing)金属性材料的合金和方法。
背景技术
许多应用,例如在工具、模具、钻井、泵送、农业和采矿中发现的应用,需要具有高耐磨性的部件,以便在必须将其更换或翻新之前提高部件的耐久性和预期寿命。对材料进行设计,从而通过提供具有高耐磨性的整体(bulk)材料或提供由在整个基体中含有高耐磨性颗粒的低耐磨性基体组成的复合材料,对部件提供高耐磨性。许多这些材料需要硬化热处理,例如淬火和回火处理,以获得提供耐磨性的结构。虽然硬化处理在提高材料的耐磨性方面是有效的,但是由于部件变形和热诱导应力的破裂,它们可对经受硬化处理的部件的尺寸控制和完整性产生有害影响。
在本文中可以将分层构造理解为其中将材料层逐层地堆积(built up)或铺设以制造零件的工艺。分层构造的实例包括采用激光器或电子束能量源的粉末床熔融、定向能量沉积、粘合剂喷射、片材层压、材料挤出、材料喷射和容器光聚合(vatphotopolymerization)。与金属一起使用的主要分层构造工艺包括粉末床熔融、定向能量沉积和粘合剂喷射。本发明的重点是在粘合剂喷射的领域,包括粘合剂喷射部件的渗透。
粘合剂喷射方法是通过将粘合剂喷射(或印刷)到粉末床上,固化该粘合剂,沉积新的粉末层并重复的分层构造方法,其具有构造终形(net shape)部件的优异能力。这种方法已经商业用于从沙子、陶瓷和各种金属包括316型不锈钢和420型不锈钢(以下分别称呼它们的UNS名称S31600和S42000)制造部件。
由于在固态粘合剂喷射方法中的粉末床的性质,在该方法中生产的部件固有地具有显著的孔隙率。在固化印刷的粘合剂之后,“生结合的(green bonded)”金属部件通常具有大于或等于40%的孔隙率。生结合部件的烧结通过在颗粒之间产生冶金结合并且还减小孔隙率来增加部件的坚固性。可以使用长烧结时间以降低孔隙率大于5%,但这也会导致部件的部分收缩和变形,并可不利地影响材料结构。因此,生结合的粘合剂喷射部件的烧结目的是通过产生颗粒间的冶金结合来提高部件强度,而且通过使孔隙率的降低最小化来使变形和收缩率最小化。对于粘合剂喷射部件,烧结收缩率通常在1-5%范围内,孔隙率降低是类似的,这导致烧结部件具有大于35%的孔隙率。
烧结部件中的孔隙率不利地影响部件的机械性能,因此期望进一步降低烧结部件的孔隙率。通过毛细管作用的渗透是用于通过用处于液相的另一材料填充烧结部件中的空隙来降低孔隙率的方法。与烧结的粘合剂喷射部件以及许多粉末冶金工艺一起使用部件渗透,并且因此部件渗透是众所周知的。渗透可能遇到的主要问题包括导致不完全渗透的烧结骨架与渗透剂之间的不良润湿性,烧结骨架与渗透剂之间的材料相互作用,例如烧结骨架的溶解侵蚀和新相形成,以及由于不匹配的材料性质可发展的内应力。
对于粘合剂喷射和渗透方法,已经尝试开发新的材料体系,但是由于上述问题,极少能够商业化。存在的用于工业产品的粘合剂喷射的两种金属材料体系是:(1)用90-10青铜渗透的S31600,和(2)用90-10青铜渗透的S42000。S31600合金按重量百分比计具有以下组成:16<Cr<18;10<Ni<14;2.0<Mo<3.0;Mn<2.0;Si<1.0;C<0.08,余量为Fe。S31600不能通过热处理硬化,并且在渗透状态下柔软且耐磨性低。因此,青铜渗透的S31600不是用于高耐磨部件的合适材料。S42000合金按重量百分比计具有以下组成:12<Cr<14;Mn<1.0;Si<1.0;C≥0.15,余量为Fe。S42000可以通过淬火和回火工艺硬化,并且因此用作需要耐磨性的粘合剂喷射部件的耐磨材料。
用于渗透粘合剂喷射S42000部件的方法包括将部件埋入颗粒状陶瓷材料中,该颗粒状陶瓷材料作为支撑结构以支撑部件并抵抗在烧结和渗透工艺中的部件变形。将粘合剂喷射部件包裹在陶瓷中也有助于热量在部件内的均匀化,这降低了热梯度和部件变形以及因梯度而破裂的可能性。S42000依赖于从渗透温度开始相对高的淬火速率,以将奥氏体组织转变为提供高硬度和耐磨性的马氏体组织。S42000被认为是一种可空气硬化的合金,但强烈建议在油中淬火该部件,以确保整个部件厚度中的冷却速率足以将所有的奥氏体转化为马氏体。从90-10青铜的渗透温度淬火时,油淬具有大于20℃/秒的典型淬火速率,而空气淬火速率约为5℃/秒。渗透炉和作为淬火中的热障的粘合剂喷射部件周围的陶瓷层的淬火能力的组合限制了部件可实现的淬火速率,从而限制了部件的硬度。
因此,期望通过粘合剂喷射和渗透来生产具有高耐磨性的并且可以用于需要高耐磨性应用的终形部件。
发明内容
本公开涉及一种产品和方法,其中将逐层构造应用于金属性合金以产生在高温下稳定的高耐磨性的独立材料。使用本发明的逐层构造方法生产的材料的耐磨性值比市售的青铜渗透的S42000的耐磨性值大一个数量级。例如,如通过ASTM G65-10-04(2010)工序A测量的,材料的耐磨性导致小于或等于130mm3的体积损失。优选得到使高耐磨性成为可能的结构,而不需要用热硬化工艺(例如通过淬火和回火或固溶和时效)对逐层堆积进行后处理,并且该结构在相对高的温度下保持稳定。逐层构造允许形成可用于诸如射压造型模具、泵和轴承的应用中的金属性零件。
附图说明
图1显示了铁类合金Al粉末的显微组织。
图2显示了本发明的青铜渗透的铁类Al合金骨架的显微组织。在右上象限中看到渗透的青铜,并且铁类骨架构成显微照片的其余部分。
具体描述
本发明涉及通过逐层堆积连续的金属层然后烧结和渗透该金属性结构来构造独立且相对硬和耐磨的铁基金属性材料的方法。因此,在本文涉及独立的金属性材料被理解为这样的情况,其中采用逐层堆积以形成给定的构建(built)结构,然后将其烧结和用另一材料渗透。然后,渗透的结构可以用作各种应用中的金属部件零件,例如射压造型模具和泵和轴承部件。
本文所述的逐层工序通常称为粘合剂喷射,其中将液体粘合剂选择性地印刷在粉末床上,干燥该粘合剂,使新的粉末层覆盖在先前的层上方,将粘合剂选择性地印刷在粉末上并干燥,并且重复该过程,直到完全构造该部件。
粘合剂可以是可通过印刷头选择性地印刷的任何液体,并且当干燥时用于将粉末颗粒结合,使得随后可以在目前的层顶部上堆积附加层,并且当固化时产生颗粒之间的结合,其使部件能被处理而不损坏部件(“生结合”)。粘合剂也必须能够在炉中烧掉,使得其不干扰部件中的粉末颗粒的烧结。适用于粘合剂喷射的粘合剂的实例是乙二醇单甲醚和二甘醇的溶液。在每个层中,在印刷粘合剂之后将其干燥,采用加热源将粉末表面加热到30-100℃的范围内。当部件完全构建时,部件中的粘合剂可以在烘箱中在100-300℃的范围内,且更优选在150-200℃的范围内的温度下固化。在固化温度下的时间在2-20小时的范围内,且更优选在6-10小时的范围内。
本文中的逐层工序考虑了各自厚度在0.010-0.300mm范围内,且更优选地在0.070-0.130mm的范围内的单一层的堆积。然后,逐层工序可以提供总高度在0.010mm至大于100mm(且更典型地大于300mm)范围内的堆积构造。因此,堆积层的合适厚度范围为0.010mm及以上。然而,更通常,厚度范围为0.100-300mm。以逐层工序包装固体颗粒导致具有在20-60%的范围内,且更特别地在40-50%的范围内的颗粒间孔隙率的印刷和固化的部件。
在粉末层覆盖期间,球形颗粒比非球形颗粒流动更容易,因为它们具有更大的滚动自由度,并且具有较小的团聚的可能性,这归因于不规则形状相互钩住(catch onto)。用于制造烧结的铁类骨架的金属粉末通常为球形的并且粒度分布范围为0.005-0.300mm,且更优选范围为0.010-0.100mm,且甚至更优选范围为0.015-0.045mm。
用于制造钢骨架的铁基合金粉末的相对高的硬度和耐磨性被认为是在液相雾化工艺加工时在铁基合金中存在的相对精细规模的显微组织和相的结果,利用该液相雾化工艺生产粉末。更具体地,本文的铁基合金是这样的,当在升高的温度下形成为液相并使其冷却和固化成粉末颗粒时,该结构优选由相对高体积分数的均匀分布的硬质碳化物相如硼碳化物(borocarbides)、钼碳化物、铌碳化物、铬碳化物和富Fe基体中的复合碳化物组成,其中碳化物相的尺寸范围为约10-10,000nm。图1显示了本发明的铁类合金(Al)粉末的实例中的组织。
示例性的铁类合金包含至少50原子%的Fe和选自Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、Mn、W、Al、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu的至少一种元素;和选自B、C、N、O、P和S中的至少一种元素。在本发明的特定方面,该合金将具有由式Fe(100-x-y)M(x)B(y)(原子百分比)表示的组分,其中M表示选自Ti、Zr、Hf、V、Nb、Mo、Ta、Cr、W和Mn中的至少一种元素,其中30≥x≥4,其中25≥y≥0,且其中45≥(x+y)≥7。该合金还可以含有X(Si、Ge、P、Ga等)和/或T(Au、Co、Ni等)。
值得注意的是,以上合金具有相对高的开裂敏感性,且通常用作含有相对高裂纹水平的涂层。因此,不曾预期这种合金对于如本文所述的逐层工序是有用的,并且出乎意料地提供具有意想不到的硬度和磨损性能的金属性零件。
必须烧结通过逐层工序生产的固化部件,以通过在颗粒之间形成冶金结合来提高部件强度。烧结工艺是在具有受控气氛的炉中进行的多级热工艺。烧结工艺阶段包括粘合剂烧掉、烧结和冷却,并且各自由特定温度和时间以及规定温度之间的温变(ramp)速率限定。去除粘合剂(例如粘合剂烧掉)的温度和时间取决于粘合剂和部件尺寸,用于烧掉的典型温度范围在300℃至800℃之间,和时间范围在30分钟至240分钟之间。在足以引起颗粒间颈部形成的温度和时间下进行烧结,同时也使部件收缩率最小化。在800-1200℃的温度范围内进行烧结,且更优选在950-1100℃的范围内进行烧结。整个部件处于烧结温度下的烧结时间在1-120分钟范围内。与孔隙率在20-60%范围内的固化粘合剂状态相比,烧结导致在0.1-5%的范围内的孔隙率降低。因此,烧结部件可以具有在15-59.1%的范围内的孔隙率。
为了降低采用逐层工序生产的烧结部件中的孔隙率,可以在烧结之后将部件进行冷却,然后在炉中再加热并用另一材料渗透,或者用另一材料渗透可以在烧结之后作为烧结炉周期内的附加步骤。在渗透过程中,液相中的渗透剂通过毛细管作用被吸入部件,以填充钢骨架周围的空隙。渗透剂与钢骨架的最终体积比在15/85至60/40的范围内。渗透后,通过降低炉温小于渗透剂的固相线温度来凝固渗透剂。渗透后的残余孔隙率在0-20%的范围内,且更特别地在0-5%的范围内。然后将炉子和部件冷却至室温。与可硬化钢合金不同,本发明的钢合金对冷却速率的依赖性低,因此可以以慢的速率冷却,以降低冷却过程中的变形、开裂和残余应力的可能性,同时保持高硬度和耐磨性。可以使用小于5℃/分钟,且更特别地小于2℃/分钟的冷却速率来降低变形、开裂和残余应力。当制造钢粉末时,通过快速凝固,初始开发了被认为提供高硬度和耐磨性的本发明钢合金中的纳米尺度组织。在烧结和渗透炉循环中,组织转变以产生具有在纳米尺度范围内的尺度的均匀等轴组织。一旦组织转变为等轴组织,它在整个烧结和渗透温度下都很稳定,因此在整个炉周期保持组织的尺度,从而能够缓慢地冷却部件。组织的尺度可以在图1和图2中看到,其示出了铁类合金(Al)粉末和烧结、渗透和冷却后的钢骨架中的组织的实例。缓慢冷却降低了畸变,从而实现了高尺寸控制,并降低了满足尺寸要求的生产后机加工。
可以使用各种材料作为渗透剂,包括各种金属合金和聚合物树脂(例如环氧树脂),其在金属性骨架结构内提供交联聚合物结构。优选用作渗透剂的金属合金包括铜和各种青铜合金。青铜是指铜和锡的合金,其中铜是主要成分(>70%),且锡和/或其他金属如铝、锰、镍、锌、铁、锰、硅或铅。渗透剂的一个优选标准是其液相线温度低于烧结骨架的液相线温度,并且其优选地润湿烧结骨架的表面。渗透可能遇到的主要问题包括残余孔隙率、材料反应和残余应力。残余孔隙率通常是由于以下中的一种或多种:烧结骨架与渗透剂之间的差的润湿性、完全渗透的时间不足、或导致渗透剂高粘度的渗透温度不足。烧结骨架与渗透剂之间可能发生材料反应,如烧结骨架的溶解侵蚀和金属间化合物的形成。残余应力也可能由于不匹配的材料性质而发展。
在选择适当的渗透剂时,重要的是考虑到主要标准和问题。用于渗透本发明的钢骨架的合适渗透剂的实例是金属材料如铜和青铜。铜(Cu)和青铜是就钢骨架而言的良好渗透剂,因为Cu本身或在青铜合金中的Cu优选地润湿钢中的铁(Fe)。根据Sn浓度,青铜中的锡(Sn)优选将压低液相线温度低于铜的液相线温度至多385℃,这优选使青铜过热以降低粘度成为可能,并且Cu和Sn在过热温度下在Fe中具有低的溶解度。在1083℃,Cu在Fe、Fe在Cu、Sn在Fe中和Fe在Sn中的溶解度分别仅为3.2、7.5、8.4和9.0原子%。可以优选使用各种青铜合金,包括具有90重量%Cu和10重量%Sn的化合组成的合金,以下称为Cu10Sn。
虽然渗透的材料的复合结构由骨架材料和渗透剂的组合而获得其整体性质,但耐磨性被认为主要由结构中的骨架提供。硬度通常用作材料耐磨性的代用品;然而,这并不一定是复合材料的良好指标。高负载和宏观硬度穿透深度的测量导致复合材料的测量,即两种成分的硬度的混杂的混合,而可以在渗透剂和骨架区域中单独进行显微硬度测量。各种渗透铁类合金的整体复合材料中整体复合材料的宏观硬度以及渗透剂和骨架材料的显微硬度如表1所示。通过ASTM G65-04(2010)工序A方法测量的这些材料的耐磨性也显示在表1中。A1和A2合金是本发明的示例性铁类合金。A1合金具有以下按重量百分比的组成:17.0<Cr<22.0;8.0<Mo<12.0;2.0<B<5.0;3.0<W<7.0;0.5<C<2.0;1.0<Mn<4.0,1.0<Si<3.0,余量为Fe。合金A2具有以下按重量百分比的组成:12.0<Cr<17.0;2.0<B<6.0;1.0<Nb<5.0;0.5<C<2.0;Mn<2.0;Si<2.0,余量为Fe。因此,后一种制剂中Mn和Si的存在是任选的。S42000合金按重量百分比具有以下组成:12<Cr<14;Mn<1.0;Si<1.0;C≥0.15,余量为Fe。虽然整体材料的宏观硬度和每种材料体系中青铜渗透剂的显微硬度具有相似的值,且S42000钢骨架和材料体系中A1和A2合金的显微硬度都在高硬度范围内,但是耐磨性是完全不同的。耐磨性的数量级差异被认为是S42000的非最佳硬化条件和存在于本发明的钢骨架中的均匀分布的小碳化物相的高体积分数的结果。着重注意,青铜渗透的S42000的非最佳硬化是固有的工艺限制,这是由于渗透工艺的冷却速率不足以将组织中的奥氏体完全转变为马氏体。
表1:青铜渗透的铁类合金的硬度和耐磨性
Figure BDA0001407181790000081
从上可以看出,本文的合金的磨损体积损失如所指出的那样比S42000-Cu10Sn低出数量级。因此,关于本文公开的合金,正好在本发明的上下文中,通过ASTM G65-04(2010)测量的耐磨性的体积损失小于或等于130mm3。更优选地,本文的耐磨性的体积损失是这样的,其在30mm3至130mm3的范围内,包括其中的所有值和增量,例如30mm3、35mm3、40mm3、45mm3、等直至130mm3
许多可硬化金属具有相对低的最高工作温度能力,超过该能力该材料因相变而软化或脆化。例如,S42000的稳定组织的最高工作温度为500℃。在本发明中,渗透部件中钢骨架的高温稳定性使得至多1000℃的高工作温度成为可能。
渗透的铁类合金的热性能对于需要快速热循环的钢(例如射压造型模具)是引人注目的。认为青铜渗透的铁类合金中的导热率比典型的射压造型钢(例如P20级)高得多,这是由于青铜比铁合金的热导率高出几乎数量级。通过该材料,渗透的铁合金模具的高热导率可以使高的加热和冷却速率成为可能。认为本发明的渗透钢部件由于钢骨架的低热膨胀而具有低热膨胀,这有助于在需要热循环的应用(例如射压造型模具)中进行尺寸控制。虽然本发明渗透的铁类合金的高热导率和低热膨胀都导致在需要高热循环的应用中材料性能的提高,但是认为这些性能的组合导致材料提供高生产率和高尺寸控制,该组合是意想不到的,因为这些属性之一提高通常以牺牲另一个属性为代价。

Claims (10)

1.一种用于逐层形成独立金属性部件的方法,包括:
(a)供应金属性合金颗粒,其按重量百分比包含:17.0<Cr<22.0,8.0<Mo<12.0,2.0<B<5.0,3.0<W<7.0,0.5<C<2.0,1.0<Mn<4.0,1.0<Si<3.0,余量为Fe;
(b)将所述金属性合金颗粒与粘合剂混合,其中所述粘合剂结合所述粉末颗粒并形成所述独立金属性部件的层,其中所述层具有在20%-60%的范围内的孔隙率;
(c)加热所述金属性合金颗粒和所述粘合剂并在所述颗粒之间形成结合;
(d)通过加热来烧结所述金属性合金颗粒和所述粘合剂且去除所述粘合剂,并以小于5℃/分钟的速率冷却以形成多孔金属性骨架,其中在所述烧结过程中,在所述金属性合金中的纳米尺度组织转变以形成纳米尺度范围内的尺度的均匀等轴组织;
(e)用第二材料渗透所述多孔金属性骨架并形成所述独立金属性部件,其中所述部件具有小于或等于130mm3的体积损失,根据ASTM G65-04(2010)测量。
2.根据权利要求1所述的方法,其中所述金属性合金颗粒具有在0.005-0.300mm范围内的粒度分布。
3.根据权利要求1所述的方法,其中所述层的厚度在0.010至0.300mm的范围内。
4.根据权利要求1所述的方法,其中重复步骤(b)至(d),以提供具有在0.010mm至300mm的范围内的总厚度的逐层堆积。
5.根据权利要求1所述的方法,其中所述烧结提供具有15%至59.1%的孔隙率的金属性骨架。
6.根据权利要求1所述的方法,其中将所述多孔金属性骨架的所述渗透配置为提供15/85至60/40范围内的渗透剂与骨架的最终体积比。
7.根据权利要求1所述的方法,其中所述用第二材料渗透包括用金属合金渗透。
8.根据权利要求1所述的方法,其中所述用第二材料渗透包括用聚合物树脂渗透。
9.根据权利要求1所述的方法,其中所述部件具有30mm3-130mm3的体积损失,通过ASTMG65-04(2010)测量。
10.根据权利要求1所述的方法,其中以小于2℃/分钟的速率进行所述冷却。
CN201680017725.9A 2015-02-03 2016-02-03 渗透的铁类材料 Active CN107427924B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562111395P 2015-02-03 2015-02-03
US62/111,395 2015-02-03
PCT/US2016/016356 WO2016126814A1 (en) 2015-02-03 2016-02-03 Infiltrated ferrous materials

Publications (2)

Publication Number Publication Date
CN107427924A CN107427924A (zh) 2017-12-01
CN107427924B true CN107427924B (zh) 2020-03-20

Family

ID=56553735

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680017725.9A Active CN107427924B (zh) 2015-02-03 2016-02-03 渗透的铁类材料

Country Status (10)

Country Link
US (2) US11628493B2 (zh)
EP (1) EP3253516B1 (zh)
JP (1) JP6875294B2 (zh)
KR (1) KR20170113588A (zh)
CN (1) CN107427924B (zh)
AU (1) AU2016215334A1 (zh)
CA (1) CA2983062C (zh)
ES (1) ES2902957T3 (zh)
WO (1) WO2016126814A1 (zh)
ZA (1) ZA201705843B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3352985A4 (en) * 2015-09-21 2019-07-31 The Nanosteel Company, Inc. INFILED SEPARATED IRON MATERIALS
US10953465B2 (en) 2016-11-01 2021-03-23 The Nanosteel Company, Inc. 3D printable hard ferrous metallic alloys for powder bed fusion
EP3535086A4 (en) * 2016-11-01 2020-06-17 The Nanosteel Company, Inc. 3D PRINTABLE HARD IRON METAL ALLOYS FOR THE POWDER BED FUSION
US20190160541A1 (en) * 2017-11-29 2019-05-30 Lincoln Global, Inc. Methods and compositions for making a near net shape article
US11833749B2 (en) * 2017-12-19 2023-12-05 Stratasys, Inc. Method for producing a treated, 3D printed object
US11325206B2 (en) * 2018-04-20 2022-05-10 Ut-Battelle, Llc Additive manufactured interpenetrating phase composite
WO2020222759A1 (en) * 2019-04-29 2020-11-05 Hewlett-Packard Development Company, L.P. Determining liquid agent amounts in 3d printing
US20210221051A1 (en) * 2020-01-16 2021-07-22 Entegris, Inc. Porous sintered metal bodies and methods of preparing porous sintered metal bodies
CN113967743B (zh) * 2021-03-05 2023-08-18 暨南大学 一种结构形状复杂且耐磨损的316不锈钢件及其制备方法与应用
CN112792352B (zh) * 2021-03-31 2021-06-29 陕西斯瑞新材料股份有限公司 一种利用钨粉熔丝喷射3d打印钨坯渗铜的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709739B1 (en) * 1999-06-03 2004-03-23 Case Western Reserve University Closed cell metal composites
CN101250638A (zh) * 2007-02-21 2008-08-27 德普伊产品公司 多孔金属泡沫结构及其制造方法
CN102648089A (zh) * 2009-10-30 2012-08-22 纳米钢公司 形成玻璃的耐磨带材料
CN103132074A (zh) * 2011-11-28 2013-06-05 钴碳化钨硬质合金公司 功能等级的涂层
WO2015006697A1 (en) * 2013-07-11 2015-01-15 Heikkila Kurt E Surface modified particulate and sintered extruded products

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4710223A (en) * 1986-03-21 1987-12-01 Rockwell International Corporation Infiltrated sintered articles
US5204055A (en) 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
JPH04183840A (ja) * 1990-11-19 1992-06-30 Sumitomo Metal Mining Co Ltd Fe―C0―Si合金軟質磁性材料焼結体の製造方法
DE4104832A1 (de) 1991-02-16 1992-08-20 Castolin Sa Vorrichtung aus metall zum verschliessen von koksoefen und verfahren zu deren herstellung
US5775402A (en) 1995-10-31 1998-07-07 Massachusetts Institute Of Technology Enhancement of thermal properties of tooling made by solid free form fabrication techniques
JPH07216411A (ja) * 1994-02-04 1995-08-15 Chuo Hatsumei Kenkyusho:Kk 摺動部材および摺動部材の摩擦特性の改善方法
US5819154A (en) * 1995-12-08 1998-10-06 Hitachi Powdered Metal Co., Ltd. Manufacturing process of sintered iron alloy improved in machinability, mixed powder for manufacturing, modification of iron alloy and iron alloy product
US6719948B2 (en) 2000-05-22 2004-04-13 Massachusetts Institute Of Technology Techniques for infiltration of a powder metal skeleton by a similar alloy with melting point depressed
RU2311984C2 (ru) * 2002-08-20 2007-12-10 Экс Уан Корпорейшн Способ литья и средства для его осуществления
US7250134B2 (en) * 2003-11-26 2007-07-31 Massachusetts Institute Of Technology Infiltrating a powder metal skeleton by a similar alloy with depressed melting point exploiting a persistent liquid phase at equilibrium, suitable for fabricating steel parts
US8381806B2 (en) * 2006-04-21 2013-02-26 Shell Oil Company Joint used for coupling long heaters
PL2139630T3 (pl) * 2007-03-21 2013-10-31 Hoeganaes Ab Publ Kompozyty sproszkowanych metali i polimerów
US10040216B2 (en) * 2007-04-04 2018-08-07 The Exone Company Powder particle layerwise three-dimensional printing process
CN101812657A (zh) * 2009-02-25 2010-08-25 中国科学院金属研究所 一种超硬高耐冲蚀非晶钢涂层的制备方法
US20130078448A1 (en) * 2010-04-09 2013-03-28 The Regents Of The University Of California Method of making electrochemical device with porous metal layer
CN102286702B (zh) * 2011-08-15 2016-06-01 奥美合金材料科技(北京)有限公司 一种铁基粉末及其零件
US20130167965A1 (en) 2011-12-30 2013-07-04 Justin Lee Cheney Coating compositions, applications thereof, and methods of forming
US9346101B2 (en) * 2013-03-15 2016-05-24 Kennametal Inc. Cladded articles and methods of making the same
JP6391154B2 (ja) * 2013-09-20 2018-09-19 アイエヌジ商事株式会社 鉄基合金及び合金溶着方法
US11242581B2 (en) * 2014-12-17 2022-02-08 Uddeholms Ab Wear resistant alloy
CN107527702B (zh) * 2017-09-08 2020-05-05 中国舰船研究设计中心 一种铁基非晶态合金粉末及其制备方法和用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709739B1 (en) * 1999-06-03 2004-03-23 Case Western Reserve University Closed cell metal composites
CN101250638A (zh) * 2007-02-21 2008-08-27 德普伊产品公司 多孔金属泡沫结构及其制造方法
CN102648089A (zh) * 2009-10-30 2012-08-22 纳米钢公司 形成玻璃的耐磨带材料
CN103132074A (zh) * 2011-11-28 2013-06-05 钴碳化钨硬质合金公司 功能等级的涂层
WO2015006697A1 (en) * 2013-07-11 2015-01-15 Heikkila Kurt E Surface modified particulate and sintered extruded products

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Three-Dimensional Printing of Metal Parts for Tooling and Other Applications";Samuel M.Allen et al;《METALS AND MATERIALS》;20001101;第6卷(第6期);589-594 *

Also Published As

Publication number Publication date
KR20170113588A (ko) 2017-10-12
US20230249250A1 (en) 2023-08-10
JP6875294B2 (ja) 2021-05-19
CA2983062A1 (en) 2016-08-11
CN107427924A (zh) 2017-12-01
AU2016215334A1 (en) 2017-08-17
US20160221083A1 (en) 2016-08-04
EP3253516B1 (en) 2021-09-22
ES2902957T3 (es) 2022-03-30
CA2983062C (en) 2022-06-14
JP2018510267A (ja) 2018-04-12
EP3253516A4 (en) 2018-09-05
US11628493B2 (en) 2023-04-18
WO2016126814A1 (en) 2016-08-11
ZA201705843B (en) 2019-07-31
EP3253516A1 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
CN107427924B (zh) 渗透的铁类材料
Enneti et al. Sintering of WC-12% Co processed by binder jet 3D printing (BJ3DP) technology
KR20180058755A (ko) 용침된 분리된 철계 재료
US6814926B2 (en) Metal powder composition for laser sintering
Mizuuchi et al. Thermal conductivity of diamond particle dispersed aluminum matrix composites fabricated in solid–liquid co-existent state by SPS
JP6623177B2 (ja) 含金属材料の層状構成
JP2019505674A (ja) 構造、機械、工具応用のための長期耐用性高機能鋼鉄
TWI777018B (zh) 成型用的不鏽鋼粉末
US20180311728A1 (en) Method of making a pre-sintered preform
CA2686261A1 (en) Direct to metal sintering of 17-4ph steel
JP2023519255A (ja) コバルトクロム合金粉末
CN112095045B (zh) 增材制造用粉末以及模铸模具部件
JP5117085B2 (ja) 金属−セラミックス複合材料及びその製造方法
WO2022124358A1 (ja) Fe基合金粉末
WO2024058145A1 (ja) Fe基合金粉末及び造形体の製造方法
PL226657B1 (pl) Materiał kompozytowy na osnowie miedzi umocniony związkiem międzymetalicznym i sposób jego wytwarzania

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant