WO2013083021A1 - 高强度铝合金车轮 - Google Patents

高强度铝合金车轮 Download PDF

Info

Publication number
WO2013083021A1
WO2013083021A1 PCT/CN2012/085787 CN2012085787W WO2013083021A1 WO 2013083021 A1 WO2013083021 A1 WO 2013083021A1 CN 2012085787 W CN2012085787 W CN 2012085787W WO 2013083021 A1 WO2013083021 A1 WO 2013083021A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
alloy wheel
strength
strength aluminum
wheel according
Prior art date
Application number
PCT/CN2012/085787
Other languages
English (en)
French (fr)
Inventor
曹海平
陈亮
Original Assignee
福建省瑞奥麦特轻金属有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建省瑞奥麦特轻金属有限责任公司 filed Critical 福建省瑞奥麦特轻金属有限责任公司
Publication of WO2013083021A1 publication Critical patent/WO2013083021A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B3/00Disc wheels, i.e. wheels with load-supporting disc body
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/26Making other particular articles wheels or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2310/00Manufacturing methods
    • B60B2310/60Surface treatment; After treatment
    • B60B2310/616Coating with thin films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2310/00Manufacturing methods
    • B60B2310/60Surface treatment; After treatment
    • B60B2310/64Effect of treatments
    • B60B2310/654Anti-corrosive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2360/00Materials; Physical forms thereof
    • B60B2360/10Metallic materials
    • B60B2360/104Aluminum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/10Reduction of
    • B60B2900/141Corrosions

Definitions

  • the invention relates to the technical field of wheel manufacturing of a motor vehicle, and in particular to a high-strength aluminum alloy wheel.
  • the commonly used locomotive wheels mainly include steel wheels and aluminum alloy wheels, large passenger cars and freight cars are mainly steel wheels, and most small cars use aluminum alloy wheels.
  • aluminum alloy wheels Compared with steel wheels, aluminum alloy wheels have the advantages of light weight, good heat dissipation and strong corrosion resistance.
  • the commonly used aluminum alloy wheel materials are cast aluminum alloy A356 and A357 and deformed aluminum alloys 6061 and 6082; these commonly used aluminum Alloy materials have a common feature is that they have strong corrosion resistance, but their tensile strength generally does not exceed 350Mpa.
  • these aluminum alloy materials only use Mg as the main strengthening alloying element and contain little or only a small amount of Cu alloying elements; however, both Cu and Mg are mostly
  • the important strengthening elements of aluminum alloys, especially Cu have strong solid solution and age strengthening effects, which can greatly improve the mechanical strength of many aluminum alloys; however, the Cu alloy elements also reduce the corrosion resistance of aluminum alloys, so To meet the demanding environment of the wheel, the existing aluminum alloy wheel materials do not contain or contain only a small amount of Cu alloying elements, which greatly limits the mechanical strength limit of the aluminum alloy wheel.
  • An object of the present invention is to provide a high-strength aluminum alloy wheel and a manufacturing method which have high mechanical strength, light weight, high corrosion resistance and high surface abrasion resistance.
  • a high-strength aluminum alloy wheel comprising a rim and a spoke, the rim and/or the spoke being made of an aluminum alloy material, the mass percentage of Cu element in the aluminum alloy material Is greater than 1%;
  • the mass percentage of the Cu element in the aluminum alloy material is preferably not less than 2%.
  • the mass percentage of the Cu element in the aluminum alloy material is more preferably not less than 3%.
  • the aluminum alloy material may further contain a Si element in an amount of not more than 13% by mass.
  • the aluminum alloy material may further contain a Mg element having a mass percentage of not more than 4%.
  • the rims and/or spokes of the high strength aluminum alloy wheel are preferably subjected to surface micro-arc oxidation treatment.
  • the high strength aluminum alloy wheel is preferably formed by a semi-solid forming method.
  • the high-strength aluminum alloy wheel is preferably a motor vehicle that is applied to more than four traveling wheels.
  • the aluminum alloy material of the rim and/or spoke of the invention for manufacturing high-strength aluminum alloy wheels contains more than 1% by mass of Cu element, including a typical high-strength Al-Cu-based alloy, such as Cu-containing 4.6- 5.3wt%, China's brand name ZL205A cast aluminum alloy, its tensile strength up to 440MPa, elongation rate up to 7% under T5 heat treatment; as well as Cu content of 3.9-5.0wt%, grade is 2014 Al-Cu-Mg-based deformed aluminum alloy, which has a tensile strength of up to 450 MPa and an elongation of 7% under heat treatment conditions of T6; and, for example, Al-Zn having a Cu content of 1.2-2.0% by weight and grade 7075 -Cu-Mg-based deformed aluminum alloy, which has a tensile strength of 540 MPa and an elongation of 8% under heat treatment conditions of T6.
  • the aluminum alloy material for the rim and/or spoke of the high-strength aluminum alloy wheel may contain, in addition to the Cu element having a mass percentage of more than 1%, the Si element and the mass percentage of not more than 13% by mass.
  • the content of Mg is not more than 4%; Si element can improve the casting properties of aluminum alloy, and Si can also react with Mg to form Mg2Si strengthening phase to improve the mechanical strength of aluminum alloy; typical high strength Al-Si-Cu-Mg
  • the base alloy has a cast aluminum alloy having a Cu content of 3.0-4.0 wt%, a Si content of 5.5-6.5 wt%, a Mg content of 0.1-0.35 wt%, and a US grade of A319, which is resistant to heat treatment under T6.
  • the tensile strength can reach 460 MPa and the elongation can reach 9%.
  • a further technical solution adopted by the present invention is: performing surface micro-arc oxidation treatment on the rim and/or spoke of the high-strength aluminum alloy wheel;
  • the surface micro-arc oxidation refers to utilizing on the basis of ordinary anodizing An arc discharge enhances and activates a reaction occurring on the anode to form a high quality ceramic layer on the surface of the high strength aluminum alloy wheel workpiece;
  • the primary principle is to apply the high strength to the high intensity by a specific micro-arc oxidation source
  • the aluminum alloy wheel workpiece applies a high voltage to cause the metal on the surface of the wheel workpiece to interact with the electrolyte and generate a micro-arc discharge on the surface of the wheel workpiece; in the micro-arc oxidation process, the surface of the wheel workpiece
  • the instantaneous temperature can reach above 1500 degrees Celsius, and the metal on the surface of the wheel workpiece will grow in situ under the action of high temperature, electric field and other factors into a dense and firmly bonded ceramic layer mainly composed of Al
  • the surface hardness of the gold wheel thereby greatly enhancing the surface anti-wear performance of the high-strength aluminum alloy wheel; by using appropriate process parameters, the surface micro-arc oxidation treatment of the high-strength aluminum alloy wheel can satisfy
  • the high-strength aluminum alloy wheels described have requirements for use in terms of corrosion resistance and wear resistance.
  • the high-strength aluminum alloy wheel of the present invention may be fabricated by processes such as casting, forging, extrusion, spinning and rolling, all of which are within the scope of the claimed invention.
  • the invention further discloses an economical and efficient method for producing the high-strength aluminum alloy wheel, that is, the high-strength aluminum alloy wheel is formed by a semi-solid forming method.
  • the semi-solid forming method refers to a method of manufacturing the high-strength aluminum alloy wheel workpiece by a filling, forging and pressing process using a slurry of the high-strength aluminum alloy material containing non-branched crystals.
  • the semi-solid slurry of the high-strength aluminum alloy can have high viscosity and low solidification shrinkage by appropriately controlling the solid phase fraction of the semi-solid slurry of the high-strength aluminum alloy material, thereby preventing the roll during forming.
  • the gas forms pores and forms shrinkage holes when solidified; at the same time, the semi-solid slurry has good fluidity to meet the forming requirements of the high-strength aluminum alloy wheels of various shapes; in addition, the semi-solid forming
  • the method can greatly reduce the forming hot cracking tendency of the high-strength aluminum alloy material, and the deformed high-strength aluminum alloy having a strong thermal cracking tendency such as Al-Cu, Al-Zn-Cu-Mg, etc. according to the present invention can be Direct and efficient molding, thereby greatly reducing the manufacturing cost of the high-strength aluminum alloy wheel.
  • the high strength aluminum alloy wheels of the present invention are suitable for use in all motor vehicles and are within the scope of the claimed invention.
  • the weight of the high-strength aluminum alloy wheels of the present invention can be more than 50% lighter than the currently used steel wheels. Therefore, the application of the present invention is applicable.
  • High-strength aluminum alloy wheels can greatly reduce the weight of the wheels of large motor vehicles, and have obvious energy-saving and emission-reducing effects.
  • the high-strength aluminum alloy wheel according to the present invention is preferably applied to a motor vehicle having more than four traveling wheels, such as a passenger car and a freight car, etc.; the strength of the high-strength aluminum alloy wheel according to the present invention can be close to or even higher than that currently used.
  • the strength of the steel wheel such as the steel wheel material commonly used in the current grade 12LW-GB11262-89, has a tensile strength of 355-470 MPa.
  • the thermal conductivity of the high-strength aluminum alloy wheel of the present invention is much higher than that of the currently used steel wheel, and thus the high-strength aluminum alloy wheel can effectively reduce the traveling vehicle relative to the steel wheel.
  • the tire temperature effectively extends the service life of the motor vehicle tires and effectively reduces the occurrence of phenomena such as high temperature puncture and high temperature brake failure of the motor vehicle.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the rim and/or spoke of a high-strength aluminum alloy wheel is made of a high-strength aluminum alloy material containing Cu, and the chemical elements of the aluminum alloy material and the mass percentage thereof are: 5.2% Cu , 0.1% Fe, 0.4% Mn, 0.35% Ti, 0.2% Cd, 0.15% V, 0.1% Zr, 0.02% B, The rest is Al.
  • the aluminum alloy wheel workpiece is formed by a semi-solid forming method, and the tensile strength of the aluminum alloy wheel workpiece is up to 440 MPa and the elongation rate is up to 7% by subjecting the aluminum alloy wheel workpiece to T5 heat treatment;
  • the aluminum alloy wheel workpiece is subjected to surface micro-arc oxidation treatment, and can be grown in situ on the surface of the workpiece into a dense, firmly bonded and high-hardness ceramic layer, thereby greatly improving the corrosion resistance and surface resistance of the aluminum alloy wheel.
  • the wear performance can meet the requirements of the environment of the high-strength aluminum alloy wheel.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the rim and/or spoke of a high-strength aluminum alloy wheel is made of a high-strength aluminum alloy material containing Cu, and the chemical elements of the aluminum alloy material and the mass percentage thereof are: 1.1% Si , 0.2% Fe, 4.5% Cu, 0.5% Mn, 0.7% Mg, 0.15% Ti, 0.1% Cr, 0.25% Zn The rest is Al.
  • the aluminum alloy wheel workpiece is formed by a semi-solid forming method, and the tensile strength of the aluminum alloy wheel workpiece is up to 450 MPa and the elongation rate can reach 7% or more by the T6 heat treatment of the aluminum alloy wheel workpiece;
  • the aluminum alloy wheel workpiece is subjected to surface micro-arc oxidation treatment, and can be grown in situ on the surface of the workpiece into a dense, firmly bonded and high-hardness ceramic layer, thereby greatly improving the corrosion resistance and resistance of the aluminum alloy wheel.
  • the surface wear performance can meet the requirements of the environment of the high-strength aluminum alloy wheel.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the rim and/or spoke of a high-strength aluminum alloy wheel is made of a high-strength aluminum alloy material containing Cu, and the chemical elements of the aluminum alloy material and the mass percentage thereof are: 0.3% Si , 0.2% Fe, 1.7% Cu, 5.8% Zn, 0.3% Mn, 2.5% Mg, 0.2% Ti, 0.25% Cr, The rest is Al.
  • the aluminum alloy wheel workpiece is formed by a suitable semi-solid forming method, and the tensile strength of the aluminum alloy wheel workpiece can be up to 540 MPa and the elongation rate can reach 8% or more by further performing T6 heat treatment on the aluminum alloy wheel workpiece;
  • T6 heat treatment By surface micro-arc oxidation treatment of the aluminum alloy wheel workpiece, a dense, firmly bonded and high-hardness ceramic layer can be grown in situ on the surface of the workpiece, thereby greatly improving the corrosion resistance of the aluminum alloy wheel. And anti-surface wear performance, can meet the environmental requirements of the high-strength aluminum alloy wheel.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the rim and/or spoke of a high-strength aluminum alloy wheel is made of a high-strength aluminum alloy material containing Cu, and the chemical elements of the aluminum alloy material and the mass percentage thereof are: 6.15% Si , 0.09% Fe, 3.91% Cu, 0.02% Mn, 0.29% Mg, 0.12% Ti, The rest is Al.
  • the aluminum alloy wheel workpiece is formed by a semi-solid forming method, and the tensile strength of the aluminum alloy wheel workpiece can be up to 460 MPa and the elongation rate can reach 9% or more by the T6 heat treatment of the aluminum alloy wheel workpiece;
  • the aluminum alloy wheel workpiece is subjected to surface micro-arc oxidation treatment, and can be grown in situ on the surface of the workpiece into a dense, firmly bonded and high-hardness ceramic layer, thereby greatly improving the corrosion resistance and resistance of the aluminum alloy wheel.
  • the surface wear performance can meet the requirements of the environment of the high-strength aluminum alloy wheel.
  • the high-strength aluminum alloy wheel of the invention has a mass percentage of Cu element in the aluminum alloy material of more than 1%, and the aluminum alloy wheel workpiece is formed by a semi-solid forming method, and then the workpiece is heat-treated by the heat treatment.
  • the tensile strength can reach 440 MPa or more, and the elongation can reach 7% or more, which can meet the requirements of the use environment of high-strength aluminum alloy wheels.

Abstract

高强度铝合金车轮,包括轮辋和轮辐,所述轮辋和/或轮辐由铝合金材料制造而成,所述铝合金材料中Cu元素的质量百分含量为大于1%。使用所述的高强度铝合金材料,并通过半固态成形方法成型制作出铝合金车轮工件,再通过对该车轮工件进行热处理,其抗拉强度可达440MPa以上,延伸率可达7%以上;通过对该高强度铝合金车轮进行表面微弧氧化处理,可以在该工件表面原位生长成一层致密的、结合牢固的和高硬度的陶瓷层,从而大幅度地提高该铝合金车轮的抗腐蚀性能和抗表面磨损性能,可满足该高强度铝合金车轮的使用环境要求。

Description

高强度铝合金车轮 技术领域
本发明涉及机动车辆的车轮制造技术领域,尤其涉及一种高强度铝合金车轮。
背景技术
目前常用的机车车轮主要有钢制车轮和铝合金车轮,大型客车和货运车以钢制车轮为主,而大部分小轿车使用铝合金车轮。相对于钢制车轮,铝合金车轮具有质轻、散热好及耐蚀性强等优点,目前常用的铝合金车轮材料有铸造铝合金A356和A357以及变形铝合金6061和6082等;这些常用的铝合金材料都有一个共同的特点就是具有较强的耐蚀性,但其抗拉强度一般都不超过350Mpa,不如一些常用的高强铸造铝合金如A319,其抗拉强度可达到450Mpa以上;也不如一些高强变形铝合金如2014和7075等,其抗拉强度可达到500Mpa以上。通过分析这些常用的铝合金车轮材料,可以发现这些的铝合金材料都只以Mg为主要强化合金元素而不含或只含很少量的Cu合金元素;然而Cu和Mg两者都是大部分铝合金的重要强化元素,尤其是Cu,具有极强的固溶和时效强化作用,可以大幅度提高许多铝合金的机械强度;但Cu合金元素同时也降低了铝合金的抗腐蚀性能,因此为了满足车轮的苛刻的使用环境要求,目前现有的铝合金车轮材料都不含或只含少量的Cu合金元素,这极大地限制铝合金车轮的机械强度极限。
发明内容
本发明的目的是提供一种机械强度高、质量轻,且具有高抗腐蚀性能和高抗表面磨损性能的高强度铝合金车轮及制造方法。
本发明所采用的技术方案是:一种高强度铝合金车轮,包括轮辋和轮辐,所述轮辋和/或轮辐由铝合金材料制造而成,所述铝合金材料中Cu元素的质量百分含量为大于1%;
所述铝合金材料中Cu元素的质量百分含量优选为不少于2%。
所述铝合金材料中Cu元素的质量百分含量更优选为不少于3%。
所述铝合金材料还可以含有质量百分含量为不大于13%的Si元素。
所述铝合金材料还可以含有质量百分含量为不大于4%的Mg元素。
所述高强度铝合金车轮的轮辋和/或轮辐优选为经过表面微弧氧化处理。
所述高强度铝合金车轮优选为通过半固态成形方法成型。
所述高强度铝合金车轮优选为应用于行驶车轮的数量大于4个的机动车辆。
本发明用于制造高强铝合金车轮的轮辋和/或轮辐的铝合金材料含有质量百分含量大于1%的Cu元素,其中包括典型的高强度Al-Cu基合金,如含Cu量为4.6-5.3wt%,中国牌号为ZL205A的铸造铝合金,其在T5热处理状态下,抗拉强度可达440MPa,延伸率可达7%;又如含Cu量为3.9-5.0wt%,牌号为2014的Al-Cu-Mg基变形铝合金,其在T6热处理状态下,抗拉强度可达450MPa,延伸率可达7%;再如含Cu量为1.2-2.0wt%,牌号为7075的Al-Zn-Cu-Mg基变形铝合金,其在T6热处理状态下,抗拉强度可达540MPa,延伸率可达8%。用于制造高强铝合金车轮的轮辋和/或轮辐的铝合金材料除含有质量百分含量大于1%的Cu元素外,还可以含有质量百分含量为不大于13%的Si元素和质量百分含量为不大于4%的Mg元素;Si元素可以改善铝合金的铸造性能,同时Si还可以与Mg反应形成Mg2Si强化相以提高铝合金的机械强度;典型的高强度Al-Si-Cu-Mg基合金有如含Cu量为3.0-4.0wt%,含Si量为5.5-6.5wt%,含Mg量为0.1-0.35wt%,美国牌号为A319的铸造铝合金,其在T6热处理状态下,抗拉强度可达460MPa,延伸率可达9%。
以上所述的这些高强度铝合金材料的抗拉强度都远高于目前常用的A356、A357和6061等铝车轮材料,但由于这些高强度铝合金材料含有Cu元素,其抗腐蚀性能不如A356、A357和6061等铝合金材料。本发明所采用的进一步技术方案是:对所述的高强度铝合金车轮的轮辋和/或轮辐进行表面微弧氧化处理;所述的表面微弧氧化是指在普通阳极氧化的基础上,利用弧光放电增强并激活在阳极上发生的反应,从而在所述的高强度铝合金车轮工件的表面形成优质的陶瓷层的方法;其主要原理是通过特定的微弧氧化电源对所述的高强度铝合金车轮工件施加高的电压,使所述的车轮工件表面的金属与电解液相互作用,并在所述的车轮工件表面产生微弧放电;在微弧氧化过程,所述的车轮工件表面的瞬时温度可达1500摄氏度以上,所述的车轮工件表面的金属在高温、电场等因素的作用下会原位生长成致密的、结合牢固的以Al2O3为主的陶瓷层;该陶瓷层可以大幅度地提高所述的高强度铝合金车轮的抗腐蚀性能,同时该陶瓷层也可以大幅度地提高所述的高强度铝合金车轮的表面硬度,从而大幅度地增强所述的高强度铝合金车轮的表面抗磨损性能;通过采用适当的工艺参数,对所述的高强度铝合金车轮进行表面微弧氧化处理可以满足所述的高强度铝合金车轮的抗腐蚀性和抗磨损性等使用环境要求。
本发明所述的高强度铝合金车轮的制作方法可以是如铸造、锻造、挤压、旋压和滚压等工艺,其都在本发明的要求保护范围。本发明进一步揭露了一种经济、高效的制作所述的高强度铝合金车轮的方法,即所述的高强度铝合金车轮通过半固态成形方法成型。所述的半固态成形方法是指使用含有非枝状晶的所述的高强度铝合金材料的浆体通过充填、锻压和挤压等工艺制作所述的高强度铝合金车轮工件的方法。通过适当控制所述的高强度铝合金材料的半固态浆体的固相分数,所述的高强度铝合金的半固态浆体可具有高的粘度和低的凝固收缩率,从而防止成形时卷气形成气孔和凝固时形成缩孔;同时所述的半固态浆体又具有好的流动性可满足各种形状的所述的高强度铝合金车轮的成形要求;另外,所述的半固态成形方法可大幅度地降低所述的高强度铝合金材料的成形热裂倾向,使本发明所述的Al-Cu,Al-Zn-Cu-Mg等具有强热裂倾向的变形高强度铝合金可直接且高效地成型,从而大幅度地降低所述的高强度铝合金车轮的制作成本。
本发明所述的高强度铝合金车轮适用于所有的机动车辆,其都在本发明的要求保护范围。鉴于目前大部分的大型机动车辆的车轮还是以钢制车轮为主,本发明所述的高强度铝合金车轮的重量可比目前常用的钢制车轮轻50%以上,因此,应用本发明所述的高强度铝合金车轮可大幅度地减轻大型机动车辆的车轮的重量,起到明显的节能减排的效果。本发明所述的高强度铝合金车轮优选为应用于行驶车轮的数量大于4个的机动车辆,如客车和货运车等;本发明所述的高强度铝合金车轮的强度可以接近甚至超过目前常用的钢制车轮的强度,如目前常用的牌号为12LW-GB11262-89的钢制车轮材料,其抗拉强度为355-470MPa。另外,本发明所述的高强度铝合金车轮的导热系数远高于目前常用的钢制车轮的导热系数,因而,相对于钢制车轮,所述的高强度铝合金车轮可有效地降低行驶车辆的轮胎温度,从而有效地延长机动车辆轮胎的使用寿命和有效地减少机动车辆的如高温爆胎和高温制动失效等现象的发生。
具体实施方式
下面结合具体实施例对本发明做进一步说明。
实施例一:
一种高强度铝合金车轮的轮辋和/或轮辐是由一种含Cu的高强度铝合金材料制造而成,所述的铝合金材料的各化学元素及其质量百分含量为:5.2%Cu, 0.1%Fe, 0.4%Mn, 0.35%Ti, 0.2%Cd, 0.15%V, 0.1%Zr,0.02%B, 其余为Al。使用该铝合金材料,通过半固态成形方法成型制作出铝合金车轮工件,再通过对该铝合金车轮工件进行T5热处理,其抗拉强度可达440MPa,延伸率可达7%;再通过对该铝合金车轮工件进行表面微弧氧化处理,可以在该工件表面原位生长成一层致密的、结合牢固的和高硬度的陶瓷层,从而大幅度地提高该铝合金车轮的抗腐蚀性能和抗表面磨损性能,可满足该高强度铝合金车轮的使用环境要求。
实施例二:
一种高强度铝合金车轮的轮辋和/或轮辐是由一种含Cu的高强度铝合金材料制造而成,所述的铝合金材料的各化学元素及其质量百分含量为:1.1%Si, 0.2%Fe, 4.5%Cu, 0.5%Mn, 0.7%Mg, 0.15%Ti, 0.1%Cr, 0.25%Zn 其余为Al。使用该铝合金材料,通过半固态成形方法成型制作出铝合金车轮工件,再通过对该铝合金车轮工件进行T6热处理,其抗拉强度可达450MPa,延伸率可达7%以上;再通过对该铝合金车轮工件进行表面微弧氧化处理,可以在该工件表面原位生长成一层致密的、结合牢固的和高硬度的陶瓷层,从而大幅度地提高该铝合金车轮的抗腐蚀性能和抗表面磨损性能,可满足该高强度铝合金车轮的使用环境要求。
实施例三:
一种高强度铝合金车轮的轮辋和/或轮辐是由一种含Cu的高强度铝合金材料制造而成,所述的铝合金材料的各化学元素及其质量百分含量为:0.3%Si, 0.2%Fe, 1.7%Cu, 5.8%Zn, 0.3%Mn, 2.5%Mg, 0.2%Ti, 0.25%Cr, 其余为Al。使用该铝合金材料,通过适合的半固态成形方法成型制作出铝合金车轮工件,再通过对该铝合金车轮工件进行T6热处理,其抗拉强度可达540MPa,延伸率可达8%以上;再通过对该铝合金车轮工件进行表面微弧氧化处理,可以在该工件表面原位生长成一层致密的、结合牢固的和高硬度的陶瓷层,从而大幅度地提高该铝合金车轮的抗腐蚀性能和抗表面磨损性能,可满足该高强度铝合金车轮的使用环境要求。
实施例四:
一种高强度铝合金车轮的轮辋和/或轮辐是由一种含Cu的高强度铝合金材料制造而成,所述的铝合金材料的各化学元素及其质量百分含量为:6.15%Si, 0.09%Fe, 3.91%Cu, 0.02%Mn, 0.29%Mg, 0.12%Ti, 其余为Al。使用该铝合金材料,通过半固态成形方法成型制作出铝合金车轮工件,再通过对该铝合金车轮工件进行T6热处理,其抗拉强度可达460MPa,延伸率可达9%以上;再通过对该铝合金车轮工件进行表面微弧氧化处理,可以在该工件表面原位生长成一层致密的、结合牢固的和高硬度的陶瓷层,从而大幅度地提高该铝合金车轮的抗腐蚀性能和抗表面磨损性能,可满足该高强度铝合金车轮的使用环境要求。
需要理解到的是:以上的优选实施例仅用以说明而非限制本发明的技术方案,在本发明的构思范围内,所进行的添加、变换、替换等,也应属于本发明的保护范围。
工业实用性
本发明高强度铝合金车轮,其铝合金材料中Cu元素的质量百分含量为大于1%,并通过半固态成形方法成型制作出铝合金车轮工件,再通过对该车轮工件进行热处理,其抗拉强度可达440MPa以上,延伸率可达7%以上,可满足高强度铝合金车轮的使用环境要求。

Claims (17)

  1. 高强度铝合金车轮,包括轮辋和轮辐,其特征在于:所述轮辋和/或轮辐由铝合金材料制造而成,所述铝合金材料中Cu元素的质量百分含量为大于1%。
  2. 根据权利要求1所述的高强度铝合金车轮,其特征在于:所述铝合金材料中Cu元素的质量百分含量为不少于2%。
  3. 根据权利要求1所述的高强度铝合金车轮,其特征在于:所述铝合金材料中Cu元素的质量百分含量为不少于3%。
  4. 根据权利要求1所述的高强度铝合金车轮,其特征在于:所述铝合金材料含有质量百分含量为不大于13%的Si元素。
  5. 根据权利要求4所述的高强度铝合金车轮,其特征在于:所述铝合金材料含有质量百分含量为不大于4%的Mg元素。
  6. 根据权利要求1所述的高强度铝合金车轮,其特征在于:所述轮辋和/或轮辐经过表面微弧氧化处理。
  7. 根据权利要求4所述的高强度铝合金车轮,其特征在于:所述轮辋和/或轮辐经过表面微弧氧化处理。
  8. 根据权利要求5所述的高强度铝合金车轮,其特征在于:所述轮辋和/或轮辐经过表面微弧氧化处理。
  9. 根据权利要求1所述的高强度铝合金车轮,其特征在于:所述高强度铝合金车轮通过半固态成形方法成型。
  10. 根据权利要求6所述的高强度铝合金车轮,其特征在于:所述高强度铝合金车轮通过半固态成形方法成型。
  11. 根据权利要求7所述的高强度铝合金车轮,其特征在于:所述高强度铝合金车轮通过半固态成形方法成型。
  12. 根据权利要求8所述的高强度铝合金车轮,其特征在于:所述高强度铝合金车轮通过半固态成形方法成型。
  13. 根据权利要求1所述的高强度铝合金车轮,其特征在于:所述高强度铝合金车轮应用于行驶车轮的数量大于4个的机动车辆。
  14. 根据权利要求6所述的高强度铝合金车轮,其特征在于:所述高强度铝合金车轮应用于行驶车轮的数量大于4个的机动车辆。
  15. 根据权利要求9所述的高强度铝合金车轮,其特征在于:所述高强度铝合金车轮应用于行驶车轮的数量大于4个的机动车辆。
  16. 根据权利要求1所述的高强度铝合金车轮,其特征在于:所述轮辋和/或轮辐由铝合金材料制造而成,包括以下步骤:
    选择材料:铝合金材料含Cu元素的质量百分含量为大于1%;
    成型:通过半固态成形方法成型制作出铝合金车轮工件;
    热处理:对该铝合金车轮工件进行通T5或T6热处理;
    表面处理:对该铝合金车轮工件进行表面微弧氧化处理,在该工件表面原位生长成一层致密的、结合牢固的和高硬度的陶瓷层。
  17. 根据权利要求16所述的高强度铝合金车轮,其特征在于:所述铝合金材料包括典型的高强度Al-Cu基合金:含Cu量为4.6-5.3wt%,中国牌号为ZL205A的铸造铝合金,其在T5热处理状态下,抗拉强度可达440MPa,延伸率可达7%;含Cu量为3.9-5.0wt%,牌号为2014的Al-Cu-Mg基变形铝合金,其在T6热处理状态下,抗拉强度可达450MPa,延伸率可达7%;含Cu量为1.2-2.0wt%,牌号为7075的Al-Zn-Cu-Mg基变形铝合金,其在T6热处理状态下,抗拉强度可达540MPa,延伸率可达8%。
PCT/CN2012/085787 2011-12-07 2012-12-04 高强度铝合金车轮 WO2013083021A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110428959.1A CN102514444B (zh) 2011-12-07 2011-12-07 高强度铝合金车轮
CN201110428959.1 2011-12-07

Publications (1)

Publication Number Publication Date
WO2013083021A1 true WO2013083021A1 (zh) 2013-06-13

Family

ID=46285621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085787 WO2013083021A1 (zh) 2011-12-07 2012-12-04 高强度铝合金车轮

Country Status (2)

Country Link
CN (1) CN102514444B (zh)
WO (1) WO2013083021A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436744A (zh) * 2013-07-16 2013-12-11 安徽省天马泵阀集团有限公司 强度高、耐热性好的铝合金泵轴材料及其制造方法
CN104264014A (zh) * 2014-10-17 2015-01-07 湖南创元铝业有限公司 铝合金杆及其生产方法
CN105401002A (zh) * 2015-11-14 2016-03-16 合肥标兵凯基新型材料有限公司 一种易拉罐用铝合金

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102514444B (zh) * 2011-12-07 2014-04-16 福建省瑞奥麦特轻金属有限责任公司 高强度铝合金车轮
CN106757252A (zh) * 2016-12-13 2017-05-31 安徽省煜灿新型材料科技有限公司 一种具有陶瓷薄膜层铝制熨斗底板
CN113584334A (zh) * 2021-08-12 2021-11-02 江苏库纳实业有限公司 一种汽车用铝合金型材的生产工艺
CN115572871B (zh) * 2022-10-31 2023-09-15 山东骏程金属科技有限公司 商用铝合金锻造车轮及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0978210A (ja) * 1995-09-07 1997-03-25 Mitsubishi Materials Corp アルミ合金製車両ホイールの製造方法および車両ホイール
JP2001262262A (ja) * 2000-03-21 2001-09-26 Isuzu Motors Ltd 鋳造用アルミニウム合金及びその熱処理方法
CN1831167A (zh) * 2005-03-07 2006-09-13 东北轻合金有限责任公司 铝合金轮毂合金及制作方法
CN1936051A (zh) * 2006-10-17 2007-03-28 山东大学 一种铝硅铜镁系变形铝合金及其制备方法
CN101643869A (zh) * 2009-09-04 2010-02-10 河池学院 高强度汽车铝合金轮辋
CN101781723A (zh) * 2009-09-15 2010-07-21 河池学院 高强度汽车铝合金轮辋材料的制造方法
CN201530260U (zh) * 2009-09-14 2010-07-21 刘绍东 保护镁合金轮毂的凸台齿形垫
CN201871710U (zh) * 2010-10-19 2011-06-22 中信戴卡轮毂制造股份有限公司 半固态模锻铝合金车轮模具
CN102268577A (zh) * 2011-07-09 2011-12-07 浙江巨科铝业有限公司 一种汽车轮毂用铸造铝合金材料
CN102514444A (zh) * 2011-12-07 2012-06-27 福建省瑞奥麦特轻金属有限责任公司 高强度铝合金车轮

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143605A (ja) * 1995-02-27 1997-06-03 Furukawa Electric Co Ltd:The 強度、靭性に優れた高圧鋳造アルミニウム合金およびその製造方法
JPH10130822A (ja) * 1996-10-28 1998-05-19 Totsuka Sogyo:Kk 金属表面処理方法
CN101935790A (zh) * 2010-10-19 2011-01-05 上海友升铝业有限公司 高强度的适用于摩托车轮辋的铝合金材料

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0978210A (ja) * 1995-09-07 1997-03-25 Mitsubishi Materials Corp アルミ合金製車両ホイールの製造方法および車両ホイール
JP2001262262A (ja) * 2000-03-21 2001-09-26 Isuzu Motors Ltd 鋳造用アルミニウム合金及びその熱処理方法
CN1831167A (zh) * 2005-03-07 2006-09-13 东北轻合金有限责任公司 铝合金轮毂合金及制作方法
CN1936051A (zh) * 2006-10-17 2007-03-28 山东大学 一种铝硅铜镁系变形铝合金及其制备方法
CN101643869A (zh) * 2009-09-04 2010-02-10 河池学院 高强度汽车铝合金轮辋
CN201530260U (zh) * 2009-09-14 2010-07-21 刘绍东 保护镁合金轮毂的凸台齿形垫
CN101781723A (zh) * 2009-09-15 2010-07-21 河池学院 高强度汽车铝合金轮辋材料的制造方法
CN201871710U (zh) * 2010-10-19 2011-06-22 中信戴卡轮毂制造股份有限公司 半固态模锻铝合金车轮模具
CN102268577A (zh) * 2011-07-09 2011-12-07 浙江巨科铝业有限公司 一种汽车轮毂用铸造铝合金材料
CN102514444A (zh) * 2011-12-07 2012-06-27 福建省瑞奥麦特轻金属有限责任公司 高强度铝合金车轮

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436744A (zh) * 2013-07-16 2013-12-11 安徽省天马泵阀集团有限公司 强度高、耐热性好的铝合金泵轴材料及其制造方法
CN104264014A (zh) * 2014-10-17 2015-01-07 湖南创元铝业有限公司 铝合金杆及其生产方法
CN105401002A (zh) * 2015-11-14 2016-03-16 合肥标兵凯基新型材料有限公司 一种易拉罐用铝合金

Also Published As

Publication number Publication date
CN102514444A (zh) 2012-06-27
CN102514444B (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
WO2013083021A1 (zh) 高强度铝合金车轮
CN102796925B (zh) 一种压力铸造用的高强韧压铸铝合金
CN103469024B (zh) 一种重载汽车用铝合金车轮液态模锻成型专用铝合金材料
US9797031B2 (en) Aluminum casting alloy
CN103290278B (zh) 一种汽车车身用高吸能性铝合金
WO2017166444A1 (zh) 一种重载轮毂用抗疲劳原位铝基复合材料及其制备方法
CN105008565A (zh) 包含镁和锌的可热处理铝合金及其制备方法
CN105316542B (zh) 一种高强度高韧性压铸铝合金及其制品
CN104775061A (zh) 用于汽车轮毂液态模锻的铝合金材料
Sanders Jr Continuous casting for aluminum sheet: a product perspective
KR102132028B1 (ko) 차량 휠너트 및 그 제조방법
EP3128021B1 (en) Al-si-mg system aluminum alloy for casting, which has excellent specific stiffness, strength and ductility, and cast member formed from same
CA2564078A1 (en) Heat treatable al-zn-mg alloy for aerospace and automotive castings
US20140138250A1 (en) Aluminum wheel and method for producing the same
JP4511156B2 (ja) アルミニウム合金の製造方法と、これにより製造されるアルミニウム合金、棒状材、摺動部品、鍛造成形品および機械加工成形品
CN114540670A (zh) 一种锻造用铝合金及其制备方法
CN105695813A (zh) 一种汽车轮毂专用铝合金锭及其制备方法
JPWO2012095940A1 (ja) ホイールとその製造方法
CN108624769A (zh) 一种细窄轮辐铝合金轮毂的铸造工艺
WO2005049896A1 (ja) アルミニウム合金、棒状材、鍛造成形品、機械加工成形品、それを用いた陽極酸化皮膜硬さに優れた耐摩耗性アルミニウム合金、摺動部品、及びそれらの製造方法
WO2006056481A1 (en) Aluminium alloy sheet for automotive applications
KR101820012B1 (ko) 소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법
WO2018103065A1 (en) Artificial aging process for aluminum-silicon alloys for die cast components
JP2015074823A (ja) 鋳造用アルミニウム合金
JPH09248649A (ja) 高耐久性・耐食性を有する鍛造製軽量アルミホイールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/12/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12856354

Country of ref document: EP

Kind code of ref document: A1