WO2017166444A1 - 一种重载轮毂用抗疲劳原位铝基复合材料及其制备方法 - Google Patents

一种重载轮毂用抗疲劳原位铝基复合材料及其制备方法 Download PDF

Info

Publication number
WO2017166444A1
WO2017166444A1 PCT/CN2016/086358 CN2016086358W WO2017166444A1 WO 2017166444 A1 WO2017166444 A1 WO 2017166444A1 CN 2016086358 W CN2016086358 W CN 2016086358W WO 2017166444 A1 WO2017166444 A1 WO 2017166444A1
Authority
WO
WIPO (PCT)
Prior art keywords
situ
fatigue
melt
alloy
aluminum
Prior art date
Application number
PCT/CN2016/086358
Other languages
English (en)
French (fr)
Inventor
赵玉涛
彭原璞
范同祥
怯喜周
陈刚
王文玲
Original Assignee
江苏大学
江苏苏美达车轮有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学, 江苏苏美达车轮有限公司 filed Critical 江苏大学
Priority to US15/771,432 priority Critical patent/US10781507B2/en
Publication of WO2017166444A1 publication Critical patent/WO2017166444A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • B22D27/11Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of mechanical pressing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0015Hubs for driven wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B3/00Disc wheels, i.e. wheels with load-supporting disc body
    • B60B3/02Disc wheels, i.e. wheels with load-supporting disc body with a single disc body integral with rim
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0073Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2360/00Materials; Physical forms thereof
    • B60B2360/10Metallic materials
    • B60B2360/104Aluminum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/10Reduction of
    • B60B2900/121Resisting forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B3/00Disc wheels, i.e. wheels with load-supporting disc body
    • B60B3/10Disc wheels, i.e. wheels with load-supporting disc body apertured to simulate spoked wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the invention relates to an aluminum-based composite material, in particular to a lightweight high-strength anti-fatigue in-situ A356.2-X matrix composite material for heavy-duty automobile wheels and a preparation method thereof.
  • Heavy-duty vehicles refer to medium-sized and large-sized vehicles other than ordinary passenger vehicles, especially modern motorhomes, buses, special equipment vehicles, etc.
  • the wheel hub is also a highly demanding security component. It not only carries the weight of the car, but also reflects the appearance of the car. In the past decade, the average annual growth rate of global aluminum alloy automobile wheel production has reached 7.6%.
  • the manufacturing cost of the hub is greatly improved, and the mechanical performance is not significantly improved, which is not conducive to the production and popularization of high-performance wheels; (2) alloying can not effectively improve the modulus of the material, so that the rigidity of the material can not be fundamentally improved, and fatigue resistance can be prevented. Poor capacity, light weight benefits are not obvious. Therefore, with the rapid development of the heavy-duty automotive aluminum wheel market in recent years (in the international motor home market, for example, the global car ownership in 2014 was about 30 million, and the demand for high-performance aluminum alloy wheels for the RV was about 20 million. ), there is an urgent need to develop new materials and technologies for heavy-duty automotive aluminum wheels, and promote the development of high-performance aluminum wheel industry.
  • the object of the present invention is to overcome the technical disadvantages of the existing A356.2 alloy which can not meet the requirements of high-load, high modulus, higher fatigue life of aluminum wheels for heavy-duty vehicles, and on the basis of A356.2 alloy, through composition and molding.
  • the high-performance wheels of scale production have the anti-fatigue capability up to US standard SAE J1204. 2.5 times, the product did not show cracks in the case of 1.5 ⁇ 10 5 bending fatigue tests and 1.5 ⁇ 10 6 radial fatigue tests.
  • the chemical composition of the aluminum matrix composite is calculated according to the mass percentage: Si6.8-7.5, Zr3.0-5.0, B0.5-1.0, Mg0.3-0.45, Er0.18-0.25, Y0.18-0.25, Cr 0.15-0.22, Mn 0.1-0.12, Ti 0.1-0.15, Fe 0.08-0.12, Cu 0.05-0.1, and the balance is Al.
  • the invention firstly controls the microalloying element composition (Er, Y, Zr, Cr and Mn) in the molten A356.2 alloy and uniformly disperses, and then introduces the Z element in the B element and the alloy to synthesize the nano ZrB 2 ceramic in situ.
  • the microalloying element composition Er, Y, Zr, Cr and Mn
  • the aluminum matrix is fine and the crystal contains a large number of microalloyed nano-precipitated particles, and the eutectic silicon particles are fine and round, Mg 2 Si
  • the in-situ nano-particle-reinforced A356.2-X-based composite material and the preparation technology thereof for a lightweight high-strength anti-fatigue heavy-duty hub of the invention are effectively thinned by nano-compositing, micro-alloying combined with supercharging rapid prototyping technology Aluminium matrix grains, refine Al-Si eutectic groups, reduce coarse iron-rich phase, and obtain a large number of uniform fine micro-alloy precipitates and nano-ceramic reinforcement phases in the matrix, and reduce tissue shrinkage and porosity Casting defects significantly improve the fatigue resistance of the material and reduce the source of fatigue cracks, greatly improving the fatigue resistance of the hub.
  • the preparation method of the invention comprises the following steps:
  • Microalloying Firstly, the molten and insulated A356.2 alloy melt is refined and degassed, then a layer of covering agent is evenly sprinkled on the surface of the melt, and the microalloying element intermediate alloy is pressed into the refining through a bell jar. After degassing the A356.2 aluminum alloy melt, stir it evenly with a graphite rotor and let it stand for use.
  • the melting and holding temperature is 750-760 °C.
  • microalloying element intermediate alloys are Al-Zr, Al-Er, Al-Y, Al-Cr and Al-Mn.
  • step (2) In-situ nanocompositing: press the B-containing alloy or boron salt into the micro-alloyed A356.2 aluminum alloy melt prepared in step (1) by using a graphite bell jar, and simultaneously start the graphite stirring rotor to promote the B-containing alloy. Melting, or promoting the boron salt to fully contact with the microalloyed A356.2 aluminum alloy melt and effectively absorbing B element, in-situ reaction of the introduced B element with the Zr element introduced during the melt microalloy treatment to synthesize ZrB 2 nanometer Ceramic reinforcement, the composite melt is obtained and allowed to stand for use.
  • Pressurized gravity casting rapid sequential solidification molding transferring the composite melt prepared in step (2) In the holding furnace of the super-compressed gravity casting rapid sequential solidification wheel forming equipment, the casting of the wheel hub is carried out; the specific structure and working mode of the equipment can be found in Chinese patent CN 201510001789.7.
  • the casting hub is obtained by the step (3) for heat treatment to realize the effective precipitation of the microalloyed element phase, the refinement of the eutectic silicon particles and the round passivation, and finally the composite material hub is obtained.
  • the microalloying is to adjust the composition of the A356.2 alloy, and to use the rare earth elements Er and Y and the Zr element as additive components, and to increase the contents of Cr and Mn.
  • the purpose is to form Al 3 Er, Al 7 Y and Al 3 Zr and ⁇ -Al have a good interfacial coherent fine intermetallic compound in the early stage of solidification of the alloy, which can be used as a high-efficiency aluminum phase.
  • the core of the core shape can significantly increase the subcooling and supercooling of the components, increase the nucleation rate, and refine the primary ⁇ -Al phase; the rare earth elements Er and Y can be adsorbed during the formation of the aluminum-silicon eutectic group.
  • the Cr and Mn elements with increased content can not only form fine precipitates with iron in the alloy to avoid coarse and large iron-rich phase which is easy to be a source of fatigue cracks, but also effectively inhibit Mg. 2 Si (the main strengthening phase of A356.2) in the grain boundary analysis Improve the toughness of the material and reduce the risk of fatigue cracking at the grain boundary.
  • the microalloying is adjusted so that the mass percentage of the elements in the melt of the A356.2 alloy is Zr3.0-5.0, Er0.18-0.25, Y0.18-0.25, Cr0.15-0.22, Mn0. 1-0.12.
  • the microalloying element intermediate alloy preferentially considers an intermediate alloy having a high alloying element content and a low impurity element content (impurity element ⁇ 0.05 wt.%), such as: Al-15Zr, Al-20Er, Al-20Y, Al-20Cr And Al-10Mn, in order to reduce the amount of the intermediate alloy, and to avoid the introduction of other impurity elements in the intermediate alloy to bring difficulties to the adjustment of the alloy composition or to cause unstable product performance.
  • impurity element ⁇ 0.05 wt.% such as: Al-15Zr, Al-20Er, Al-20Y, Al-20Cr And Al-10Mn
  • the in-situ nanocomposite refers to a thermodynamic-kinetic property of low Gibbs free energy using ZrB 2 and low solubility and low thermal diffusivity of Zr in Al, in the melt after microalloying.
  • the B element is introduced to form a dispersed nano ZrB 2 ceramic reinforcement in situ with the Zr element introduced in the alloy, and has a size of 15-75 nm and a content of 2.57-5.14 wt.%.
  • the presence of nano ZrB 2 and Al 3 Zr in the melt exists.
  • the in-situ synthesized ZrB 2 ceramic reinforcement is dispersed in the matrix after solidification of the alloy, and exhibits dispersion strengthening and load-bearing strengthening, and enhances the reinforcement around the reinforcement by the physical mismatch between the reinforcement and the matrix (thermal expansion, modulus, etc.).
  • the dislocation density effectively strengthens and hardens the matrix and significantly increases the fatigue strength of the matrix.
  • the rapid gravity solidification forming of the pressurized gravity casting method is to add a feed port cooling system and a pressurizing mechanism on the basis of the original gravity casting equipment, and to transform the segmental cooling of the mold to make the melt injected into the cavity (
  • the feed port portion of the alloy or composite material first solidifies the closed cavity, and then starts the pressurization mechanism to control the mold cooling system under a certain pressure (50-250 MPa) to achieve rapid sequential solidification of the casting.
  • a certain pressure 50-250 MPa
  • the supercharged gravity casting rapid sequential solidification molding technology of the invention has the characteristics of small equipment transformation input, production of complex structural castings (wheels, etc.), and flexible pressure regulation.
  • the in-situ nano-particle-reinforced A356.2-X-based composite material and the preparation technique thereof for a lightweight high-strength anti-fatigue heavy-duty hub of the invention are effectively thinned by nano-compositing, microalloying and combined with rapid pressure forming technology Aluminium matrix grains, refine Al-Si eutectic groups, reduce coarse iron-rich phase, and obtain a large number of uniform fine micro-alloy precipitates and nano-ceramic reinforcement phases in the matrix, while achieving a melt under a certain pressure
  • the sequential solidification, reduction of shrinkage defects such as shrinkage and looseness of the structure significantly improve the fatigue resistance of the material and reduce the source of fatigue cracks, and greatly improve the fatigue resistance of the hub.
  • Lightweight, high-strength, anti-fatigue heavy-duty hubs with in-situ nano-particle-reinforced A356.2-X-based composite wheel products are manufactured to quality standards in accordance with US standards, including: SAE J1204 motorhome and multi-purpose trailer wheel test procedures, SAE J267 trucks And the public vehicle wheel performance requirements and test procedures, SAE J1992 military vehicle wheel / rim test procedures and performance requirements, SAE J175 road vehicle wheel impact test procedures.
  • FIG. 2 is a structural diagram of an in-situ nano-particle-reinforced A356.2-X-based composite wheel hub for a lightweight high-strength anti-fatigue heavy-duty hub prepared according to the present invention; (a) a morphology distribution of silicon particles in a matrix - OM photo (b) Nano-ZrB2 reinforcement-TEM image of in-situ synthesis in the grain; from the metallographic photo of the composite material in Fig. 2a, it can be seen that the Si phase in the composite prepared by this patent is fine spherical, from the composite of Figure 2b. Transmission electron micrographs show that the dispersed composite ZrB 2 in-situ nano-ceramic reinforcement phase is dispersed inside the prepared composite grains.
  • Figure 3 shows the A356.2 composite wheel hub made only by combining nanocomposite and supercharged rapid prototyping technology.
  • Organizational chart it can be seen that compared with the composite wheel prepared by combining microalloying, in situ nanocomposite and supercharged rapid prototyping in Example 2 (Fig. 2a), only nanocomposites and additions are made.
  • the A356.2 composite material prepared by the combination of pressure rapid prototyping technology has coarse crystal grains, and the Si phase is relatively coarse and uniform.
  • FIG. 4 is a physical diagram of an in-situ nanoparticle-reinforced A356.2-X-based composite material hub for a lightweight high-strength anti-fatigue heavy-duty hub prepared according to the present invention.
  • Al-15Zr, Al-20Er, Al-20Y, Al-20Cr, Al-10Mn and Al-10B intermediate alloys, and A356.2 alloy were used as raw materials to prepare A356.2- by rapid sequential solidification molding technology using pressurized gravity casting.
  • the molten 500Kg commercial A356.2 alloy (750-760 ° C) was transferred into the heat-insulating degassing tundish, and the reverse-rotating and intermediate argon-passing graphite rotor was placed in the tundish for refining and degassing for 5 min. Then, a layer of covering agent is evenly sprinkled on the surface of the alloy melt of the tundish. After the coating agent is uniformly dispersed on the surface layer of the alloy and a protective film is formed, the Al-15Zr, Al-20Er, Al-20Y, Al will be weighed.
  • the -20Cr and Al-10Mn master alloys were pressed into the alloy melt by a graphite bell jar through a covering agent, and combined with the reverse rotation of the graphite rotor for 15 min to promote rapid melting and uniform dispersion of the intermediate alloy, and allowed to stand for 5-10 minutes. After adjustment, the mass percentage of the elements in the alloy is divided into Zr3.5, Er0.2, Y0.2, Cr0.18, Mn0.11; and the weighed Al-10B intermediate alloy is pressed into the melt by a bell jar.
  • the graphite rotor was stirred for 10 min, and the B element (0.65 wt.% of the A356.2-X composite wheel hub) was uniformly reacted with the Zr element uniformly dispersed in the melt to synthesize a uniformly dispersed nano ZrB 2 ceramic reinforcement. ; remove the graphite stirring rotor, turn off the insulation heating to cool the composite melt to 720-730 ° C and The surface covering agent is removed, the composite melt is obtained and allowed to stand for 5-10 minutes to be used; the composite melt is transferred into a holding furnace of a pressurized gravity casting rapid sequential solidification molding apparatus for casting of the hub (pressurization and solidification pressure 150 MPa) Finally, the wheel slab is heat treated to obtain a machined hub blank.
  • Al-15Zr, Al-20Er, Al-20Y, Al-20Cr, and Al-10Mn master alloys, KBF 4 , and A356.2 alloys were used as raw materials to prepare A356.2- by rapid sequential solidification molding technology using pressurized gravity casting.
  • the microalloying elements are introduced into the Al-15Zr, Al-20Er, Al-20Y, Al-20Cr, and Al-10Mn master alloys, and the mass percentage of the elements in the alloy is first adjusted to reach Zr4.5, Er0.25, Y0. .18, Cr0.22, Mn0.12, the specific steps are the same as in the first embodiment; the weighed KBF 4 is pressed into the melt by a bell jar and stirred by a graphite rotor for 10 min to make the B element (content A356.2).
  • FIG. 1 the XRD pattern and the organization diagram of the A356.2-X composite wheel prepared by the process scheme of the present embodiment.
  • Figure 4 is a lightweight, high-strength anti-fatigue prepared by the present invention.
  • A356.2-X was prepared by supercritical gravity solidification rapid sequential solidification molding technology using Al-15Zr, Al-15Er, Al-10Y, Al-5Cr and Al-10Mn intermediate alloys, KBF 4 and A356.2 alloys as raw materials. Composite wheel.
  • the microalloying elements were introduced into the Al-15Zr, Al-15Er, Al-10Y, Al-5Cr and Al-10Mn master alloys.
  • the mass percentage of the elements in the alloy was first adjusted to reach Zr4.0, Er0.2, Y0. 25, Cr0.18, Mn0.1, the specific steps are the same as in the first embodiment;
  • the weighed KBF 4 is pressed into the melt by a bell jar and stirred by a graphite rotor for 10 min to make the B element (content A356.2- 0.77wt.% of the X composite wheel hub and the Zr element uniformly dispersed in the melt, in-situ reaction to synthesize the uniformly dispersed nano ZrB 2 ceramic reinforcement; remove the graphite stirring rotor, close the insulation heating and cool the composite melt to 720- 730 ° C and remove the surface covering agent, obtain the composite melt and let stand for 5-10min to be used; transfer the composite melt into the holding furnace of the pressurized gravity casting rapid sequential solidification molding equipment for the casting
  • the A356.2 based composite material hub (without microalloying) was prepared by supercritical gravity solidification rapid sequential solidification molding technology using Al-15Zr master alloy, KBF 4 and A356.2 alloy as raw materials.
  • the Zr element was introduced by using Al-15Zr master alloy, and the mass percentage content of Zr element in the alloy was adjusted to 4 wt.%. The specific steps were the same as in Example 1.
  • the weighed KBF 4 was pressed into the melt by a bell jar.
  • the graphite rotor was stirred for 10 min, and the B element (content of 1.09 wt.% of the alloy, the molar ratio of Zr and B in the alloy was 1:2) was reacted in situ with the uniformly dispersed Zr element in the melt to form a uniform dispersion.
  • Nano ZrB 2 ceramic reinforcement remove the graphite stirring rotor, close the insulation heating, cool the composite melt to 720-730 ° C and remove the surface covering agent, obtain the composite melt and let stand for 5-10 minutes; use the composite melt
  • the casting of the hub is carried out in the holding furnace of the super-compressed gravity casting rapid sequence solidification molding equipment (supercharged solidification pressure 250 MPa), and finally the hub casting blank is heat-treated to obtain the machined hub blank; as shown in Fig. 3, only the nano composite is formed.
  • Organizational drawings of A356.2 composite wheels prepared in combination with pressurized rapid prototyping technology It can be seen that compared with the composite wheel prepared by combining microalloying, in situ nanocomposite and supercharged rapid prototyping in Example 2 (Fig. 2a), the composite wheel prepared in the comparative example The crystal grains are coarse, and the Si phase is also relatively coarse and the uniformity is poor.
  • A356.2 alloy wheels were prepared by supercritical gravity solidification rapid sequential solidification molding technology using Al-15Zr, Al-20Er, Al-10Y, Al-10Cr, and Al-10Mn master alloys, and A356.2 alloy as raw materials. Adopt nanocomposite).
  • the microalloying elements are introduced into the Al-15Zr, Al-20Er, Al-10Y, Al-10Cr, and Al-10Mn master alloys, and the mass percentage of the elements in the alloy is first adjusted to reach Zr0.5, Er0.25, Y0. .18, Cr0.22, Mn0.12, the specific steps are the same as in the first embodiment; then remove the graphite stirring rotor, turn off the insulation heating, cool the alloy melt to 720-730 ° C and remove the surface covering agent to obtain the composite melt and The mixture is allowed to stand for 5-10 minutes for use; the composite melt is transferred into the holding furnace of the pressurized gravity casting rapid sequence solidification molding equipment to carry out the casting of the hub (supercharged solidification pressure 250 MPa), and finally the heat treatment of the wheel slab is obtained to obtain the machining hub. blank.
  • the microalloying elements are introduced into the Al-15Zr, Al-20Er, Al-10Y, Al-10Cr, and Al-10Mn master alloys, and the mass percentage of the elements in the alloy is first adjusted to reach Zr4.5, Er0.25, Y0. .18, Cr0.22, Mn0.12, the specific steps are the same as in the first embodiment; the weighed KBF 4 is pressed into the melt by a bell jar and stirred by a graphite rotor for 10 min to make the B element (content 0.89 wt.

Abstract

一种重载汽车轮毂用抗疲劳原位铝基纳米复合材料及其制备方法。通过成分和成型工艺微调,将原位纳米复合化、微合金化以及快速增压成型技术相结合。即通过添加Zr和B元素原位反应形成分布于铝晶内和晶界,且与基体保持牢固的冶金界面结合的纳米ZrB 2陶瓷增强体;同时将稀土元素Er和Y以及Zr元素作为添加成分,并提高Cr和Mn的含量,在轮毂快速增压成型和热处理过程中获得铝晶粒细小且晶内包含大量微合金化纳米析出粒子、共晶硅颗粒细小圆整、Mg 2Si相细小且主要分布于晶粒内部的组织;从而有效提高合金的抗拉强度、屈服强度和疲劳强度。

Description

一种重载轮毂用抗疲劳原位铝基复合材料及其制备方法 技术领域
本发明涉及铝基复合材料,特指一种重载汽车轮毂用轻质高强抗疲劳原位A356.2-X基复合材料及其制备方法。
背景技术
重载汽车是指除普通乘用车以外的中型、大型汽车,尤其是现代房车、客车、特种装备车等,所用轮毂与普通乘用车相比其强度、模量、抗疲劳性能及安全性要求更高(其强度与轿车铝轮毂相比提高30%,抗疲劳性能提高2倍)。轮毂作为汽车行驶系统中的重要部件之一,也是一种要求较高的保安件,它不仅承载汽车的重量,同时也体现着汽车的外观造型。近十年来,全球铝合金汽车轮毂产量的年平均增长率达7.6%。当前,为顺应汽车轻量化及节能减排的发展趋势,愈来愈多的重载汽车倾向采用重量轻、散热性好、造型美观、经济环保的高性能铝合金轮毂。然而,目前汽车用铝轮毂广泛采用的A356.2合金材料性能仅能满足普通乘用车的要求,难以满足重载汽车尤其是高性能重载汽车对铝轮毂更高强度、更高疲劳寿命的要求。其中,缩孔、缩松、气孔和夹杂物等铸造缺陷,粗大铝晶粒的循环塑性变形,粗大共晶硅粒子和铁基金属间化合物断裂是导致疲劳裂纹萌生和断裂的主要原因。
对现有的技术文献和综述文献调研表明,目前主要通过大量的稀土元素合金化,并结合熔体净化、变质,以及苛刻的热处理工艺来进一步提高铝制轮毂的强韧性和疲劳性能(如:专利CN103774001,CN103773999,CN10377003,JP52148412-A,EP274972-A);然而,上述苛刻的工艺技术依然存在着以下的缺点和不足(1)大量价格昂贵的稀土元素的使用,如Sc、Gd等,使轮毂的制造成本大幅提高,且力学性能提高不显著,不利于高性能轮毂的生产和普及;(2)合金化不能有效提高材料的模量,从而不能从根本上提高材料的刚度,抗疲劳变形能力差,轻量化效益不明显。因此,随着近年来重载汽车铝轮毂市场的迅猛发展(以国际房车市场为例,2014年全球房车保有量约为3000万辆,当年房车用高性能铝合金轮毂需求量约为2000万只),迫切需要开发重载汽车铝轮毂用新材料、新技术,推动高性能铝轮毂产业的发展。
发明内容
本发明的目的就在于针对现有A356.2合金不能满足重载汽车对铝轮毂更高强度、模 量、更高疲劳寿命要求的技术不足,在A356.2合金的基础上,通过成分和成型工艺微调,将原位纳米复合化、微合金化以及快速增压成型技术相结合,协同提高复合材料轮毂的强韧性和抗疲劳性能,其中规模生产的高性能轮毂抗疲劳能力达美国标准SAE J1204的2.5倍,产品在1.5×105次弯曲疲劳试验、1.5×106次径向疲劳试验情况下不出现裂纹。
铝基复合材料的化学成分,按照质量百分比计算为:Si6.8-7.5,Zr3.0-5.0,B0.5-1.0,Mg0.3-0.45,Er0.18-0.25,Y0.18-0.25,Cr0.15-0.22,Mn0.1-0.12,Ti0.1-0.15,Fe0.08-0.12,Cu0.05-0.1,余量为Al。
本发明首先对熔融的A356.2合金中进行微合金化元素成分调控(Er、Y、Zr、Cr和Mn)并均匀分散,然后引入B元素与合金中的Zr元素原位合成纳米ZrB2陶瓷增强体,最后采用增压重力铸造快速顺序凝固成型技术并结合热处理技术获得组织致密,铝基体晶粒细小且晶内包含大量微合金化纳米析出粒子,共晶硅颗粒细小圆整,Mg2Si相细小且主要分布于晶粒内部,同时基体包含大量弥散纳米ZrB2陶瓷增强体的高强韧、高抗疲劳老性能的A356.2-X铝基复合材料轮毂。
本发明的一种轻质高强抗疲劳重载轮毂用原位纳米颗粒强化A356.2-X基复合材料及其制备技术,通过纳米复合化化、微合金并结合增压快速成型技术,有效细化铝基体晶粒、细化Al-Si共晶团、减小粗大富铁相、并在基体中获得大量均匀细小的微合金析出相和纳米陶瓷增强相的同时,减少组织缩孔和疏松等铸造缺陷,显著提高材料的疲劳抗力并减少疲劳裂纹源,大幅提高轮毂的抗疲劳性能。
本发明的制备方法包括以下步骤:
(1)微合金化:首先对熔化并保温的A356.2合金熔体精炼除气,然后在熔体表面均匀撒上一层覆盖剂,再将微合金化元素中间合金通过钟罩压入精炼除气后的A356.2铝合金熔体中,并用石墨转子搅拌均匀,静置待用。
所述熔化并保温的温度为750-760℃。
所述微合金化元素中间合金为Al-Zr,Al-Er,Al-Y,Al-Cr和Al-Mn。
(2)原位纳米复合化:将含B合金或硼盐采用石墨钟罩压入步骤(1)制备的微合金化的A356.2铝合金熔体中,同时启动石墨搅拌转子促进含B合金的熔化,或促进硼盐与微合金化的A356.2铝合金熔体充分接触并有效吸收B元素,使引入的B元素与熔体微合金处理时引入的Zr元素原位反应合成ZrB2纳米陶瓷增强体,获得复合材料熔体并静置待用。
增压重力铸造快速顺序凝固成型:将步骤(2)制备的复合材料熔体转入 增压重力铸造快速顺序凝固轮毂成型设备的保温炉中,进行轮毂的铸造成型;设备具体结构及工作方式见中国专利CN 201510001789.7。
(3)热处理:将步骤(3)获得铸造轮毂进行热处理,以实现微合金化元素相的有效析出,共晶硅颗粒的细化和圆钝化,最终获得复合材料轮毂。
所述的微合金化,是调整A356.2合金的成分,将稀土元素Er和Y以及Zr元素作为添加成分,并提高Cr和Mn的含量。目的是在合金凝固前期,通过Er,Y、Zr与Al结合,形成Al3Er,Al7Y和Al3Zr与α-Al具有良好界面共格细小金属间化合物,可作为铝相的高效异质形核核心,而且可显著提高成分过冷度和成分过冷区域,提高形核率,细化初生α-Al相;在铝-硅共晶团的形成过程中稀土元素Er和Y可吸附于共晶硅表面抑制硅相的横向生长细化共晶团,并在后续热处理时获得细小圆整的硅颗粒;凝固后,固溶于合金中的Er、Y、Zr元素可在晶粒内部形成大量的于铝具有良好界面共格结构的L12型纳米析出相(如Al3Zr,Al3Er等),有效阻碍位错的交滑和交滑移,显著提高铝晶粒的疲劳抗力避免铝晶粒的循环疲劳塑性变形,含量提高的Cr和Mn元素不仅可与合金中的铁结合形成细小的析出避免粗大易于成为疲劳裂纹源的粗大富铁相的产生,而且还可有效抑制Mg2Si(A356.2的主要强化相)在晶界析出,提高材料的强韧性,降低晶界疲劳开裂的风险。
所述的微合金化,调整后使A356.2合金熔体中元素的质量百分比含量分别为Zr3.0-5.0,Er0.18-0.25,Y0.18-0.25,Cr0.15-0.22,Mn0.1-0.12。
所述的微合金化元素中间合金优先考虑合金元素含量高、杂质元素含量低的中间合金(杂质元素<0.05wt.%),如:Al-15Zr,Al-20Er,Al-20Y,Al-20Cr和Al-10Mn,以减少中间合金的用量,并避免中间合金中其他杂质元素的引入给合金成分调控带来困难或造成产品性能不稳定。
所述的原位纳米复合化,是指利用ZrB2的吉布斯自由能低,且Zr在Al中具有低溶解度和低热扩散系数的热力学-动力学特性,在微合金化后的熔体中引入B元素,使之与合金中引入的Zr元素原位生成弥散的纳米ZrB2陶瓷增强体,其尺寸为15-75nm,含量为2.57-5.14wt.%。一方面,熔体中生成的纳米ZrB2与Al3Zr存在
Figure PCTCN2016086358-appb-000001
动态平衡反应,并借助Liquid+Al3Zr→α-Al的包晶反应形成大量游离的α-Al晶核,强化Al3Zr的异质形核性能,高效细化基体晶粒;另一方面,原位合成的ZrB2陶瓷增强体在合金凝固后弥散于基体中,发挥弥散强化、承载强化的同时,通过增强体与基体之间 的物理失配(热膨胀和模量等)提高增强体周围的位错密度,有效强化、硬化基体,显著提高基体的抗疲劳强度。
所述的增压重力铸造快速顺序凝固成型,是在原有重力铸造设备的基础上加装进料口冷却系统和增压机构,并改造实现模具的分段冷却,使注入型腔的熔体(合金或复合材料)的进料口部分首先凝固封闭模腔,然后启动增压机构使密闭的熔体在一定的压力(50-250MPa)下调控模具冷却系统,实现铸件的快速顺序凝固,设备具体结构及工作方式见中国专利CN 201510001789.7;通过增压系统及其配套机构的添加和升级,增大液固界面前沿的温度梯度,增加枝晶间液态熔体的补缩压力,有效减少组织缩孔、缩松等铸造缺陷并细化组织,减少疲劳裂纹源并提高基体的强度和疲劳抗力。本发明的增压重力铸造快速顺序凝固成型技术相对于传统的压力铸造(低压铸造和压铸),具有设备改造投入小、可生产较复杂结构铸件(轮毂等)、压力调节灵活的特点。
本发明的一种轻质高强抗疲劳重载轮毂用原位纳米颗粒强化A356.2-X基复合材料及其制备技术,通过纳米复合化、微合金化并结合增压快速成型技术,有效细化铝基体晶粒、细化Al-Si共晶团、减小粗大富铁相、并在基体中获得大量均匀细小的微合金析出相和纳米陶瓷增强相的同时,实现熔体在一定压力下的顺序凝固、减少组织缩孔和疏松等铸造缺陷,显著提高材料的疲劳抗力并减少疲劳裂纹源,大幅提高轮毂的抗疲劳性能。轻质高强抗疲劳重载轮毂用原位纳米颗粒强化A356.2-X基复合材料轮毂产品执行的质量标准按照美国标准,主要包括:SAE J1204旅居车和多用途挂车车轮试验规程、SAE J267卡车和共公汽车车轮性能要求和试验规程、SAE J1992军用车车轮/轮辋试验规程和性能要求、SAE J175道路车辆车轮冲击试验规程等。
附图说明
图1为本发明制备的轻质高强抗疲劳重载轮毂用原位纳米颗粒强化A356.2-X基复合材料轮毂XRD分析图谱;图谱中除了Al的衍射峰外,可以明显地看出ZrB2和Si相得衍射峰。
图2为本发明制备的轻质高强抗疲劳重载轮毂用原位纳米颗粒强化A356.2-X基复合材料轮毂组织图;(a)基体中硅颗粒的形貌分布-OM照片(b)晶粒内部原位合成的纳米ZrB2增强体-TEM照片;从图2a复合材料的金相组织照片可以看出采用本专利所制备的复合材料中Si相呈细小的球状,从图2b复合材料的透射电镜照片可以看出所制备的复合材料晶粒内部分散有弥散的纳米ZrB2原位纳米陶瓷增强相。
图3所示为仅将纳米复合化和增压快速成型技术相结合制备的A356.2复合材料轮毂的 组织图;可以看出,与实施例2中将微合金化、原位纳米复合化以及增压快速成型三者相结合制备的复合材料轮毂相比(图2a),仅将纳米复合化和增压快速成型技术相结合制备的A356.2复合材料轮毂晶粒粗大,Si相也相对粗大且均匀性较差。
图4为本发明制备的轻质高强抗疲劳重载轮毂用原位纳米颗粒强化A356.2-X基复合材料轮毂实物图。
具体实施方式
以下结合附图对本发明实施方案进一步描述:以下实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
以Al-15Zr,Al-20Er,Al-20Y,Al-20Cr,Al-10Mn和Al-10B中间合金,以及A356.2合金为原料,采用增压重力铸造快速顺序凝固成型技术制备A356.2-X复合材料轮毂。
将熔融的500Kg商用A356.2合金(750-760℃)转入保温除气中间包中,将反向转动且中间可通氩气的石墨转子放入中间包中进行精炼除气,时间为5min;然后在中间包的合金熔体表面均匀撒上一层覆盖剂,待覆盖剂在合金表层均匀分散并形成保护膜后,将称量好的Al-15Zr,Al-20Er,Al-20Y,Al-20Cr和Al-10Mn中间合金采用石墨钟罩透过覆盖剂压入合金熔体中,并结合石墨转子的反向转动15min促进中间合金的快速熔化和均匀分散,静置5-10min待用,调整后使合金中元素的质量百分比含量分达到Zr3.5,Er0.2,Y0.2,Cr0.18,Mn0.11;再将称量好的Al-10B中间合金采用钟罩压入熔体并采用石墨转子搅拌10min,使B元素(含量为A356.2-X复合材料轮毂的0.65wt.%)与熔体中均匀分散的Zr元素,原位反应合成均匀分散的纳米ZrB2陶瓷增强体;去除石墨搅拌转子,关闭保温加热将复合熔体降温至720-730℃并去除表面覆盖剂,获得复合材料熔体并静置5-10min待用;将复合熔体转入增压重力铸造快速顺序凝固成型设备的保温炉中进行轮毂的铸造成型(增压凝固压力150MPa),最后将轮毂铸坯热处理获得机加工轮毂毛坯。
取样分析表明,T6(545℃×3.5h+135℃×3h)处理后,轮辐的弹性模量为77GPa,强度达到了325MPa,延伸率为13.6%,实现了1.2×105次弯曲疲劳试验、1.3×106次径向疲劳试验情况下不出现裂纹,超过了美国SAE J1204房车轮毂标准要求(抗拉强度300MPa,延伸率10%,5×104次弯曲疲劳试验、6×105次径向疲劳试验)。
实施例2
以Al-15Zr,Al-20Er,Al-20Y,Al-20Cr,和Al-10Mn中间合金,KBF4,以及A356.2 合金为原料,采用增压重力铸造快速顺序凝固成型技术制备A356.2-X复合材料轮毂。
采用Al-15Zr,Al-20Er,Al-20Y,Al-20Cr,和Al-10Mn中间合金引入微合金化元素,首先调整使合金中元素的质量百分比含量分达到Zr4.5,Er0.25,Y0.18,Cr0.22,Mn0.12,具体步骤与实施例1相同;再将称量好的KBF4采用钟罩压入熔体并采用石墨转子搅拌10min,使B元素(含量为A356.2-X复合材料轮毂的0.89wt.%)与熔体中均匀分散的Zr元素,原位反应合成均匀分散的纳米ZrB2陶瓷增强体;去除石墨搅拌转子,关闭保温加热将复合熔体降温至720-730℃并去除表面覆盖剂,获得复合材料熔体并静置5-10min待用;将复合熔体转入增压重力铸造快速顺序凝固成型设备的保温炉中进行轮毂的铸造成型(增压凝固压力250MPa),最后将轮毂铸坯热处理获得机加工轮毂毛坯;如图1,2所示分别为采用本实施例工艺方案所制备的A356.2-X基复合材料轮毂的XRD图谱和组织图,图4为本发明制备的轻质高强抗疲劳重载轮毂用原位纳米颗粒强化A356.2-X基复合材料轮毂实物图。
取样分析表明,T6(545℃×3.5h+135℃×3h)处理后,轮辐的弹性模量为80GPa,强度达到了345MPa,延伸率为13%,实现了1.5×105次弯曲疲劳试验、1.5×106次径向疲劳试验情况下不出现裂纹,超过了美国SAE J1204房车轮毂标准要求(抗拉强度300MPa,延伸率10%,5×104次弯曲疲劳试验、6×105次径向疲劳试验)
实施例3
以Al-15Zr,Al-15Er,Al-10Y,Al-5Cr和Al-10Mn中间合金,KBF4,以及A356.2合金为原料,采用增压重力铸造快速顺序凝固成型技术制备A356.2-X复合材料轮毂。
采用Al-15Zr,Al-15Er,Al-10Y,Al-5Cr和Al-10Mn中间合金引入微合金化元素,首先调整使合金中元素的质量百分比含量分达到Zr4.0,Er0.2,Y0.25,Cr0.18,Mn0.1,具体步骤与实施例1相同;再将称量好的KBF4采用钟罩压入熔体并采用石墨转子搅拌10min,使B元素(含量为A356.2-X复合材料轮毂的0.77wt.%)与熔体中均匀分散的Zr元素,原位反应合成均匀分散的纳米ZrB2陶瓷增强体;去除石墨搅拌转子,关闭保温加热将复合熔体降温至720-730℃并去除表面覆盖剂,获得复合材料熔体并静置5-10min待用;将复合熔体转入增压重力铸造快速顺序凝固成型设备的保温炉中进行轮毂的铸造成型(增压凝固压力50MPa),最后将轮毂铸坯热处理获得机加工轮毂毛坯。
取样分析表明,T6(545℃×3.5h+135℃×3h)处理后,轮辐的弹性模量为79GPa,强度达到了315MPa,延伸率为14.7%,实现了1×105次弯曲疲劳试验、1.2×106次径向疲劳试验情况下不出现裂纹,超过了美国SAE J1204房车轮毂标准要求(抗拉强度300MPa, 延伸率10%,5×104次弯曲疲劳试验、6×105次径向疲劳试验)
对比实施方式
对比实施例1
以Al-15Zr中间合金,KBF4,以及A356.2合金为原料,采用增压重力铸造快速顺序凝固成型技术制备A356.2基复合材料轮毂(未采用微合金化)。
采用Al-15Zr中间合金引入Zr元素,并调整使合金中Zr元素的质量百分比含量分达到4wt.%,具体步骤与实施例1相同;再将称量好的KBF4采用钟罩压入熔体并采用石墨转子搅拌10min,使B元素(含量为合金的1.09wt.%,使合金中Zr和B的摩尔比为1:2)与熔体中均匀分散的Zr元素原位反应合成均匀分散的纳米ZrB2陶瓷增强体;去除石墨搅拌转子,关闭保温加热将复合熔体降温至720-730℃并去除表面覆盖剂,获得复合材料熔体并静置5-10min待用;将复合熔体转入增压重力铸造快速顺序凝固成型设备的保温炉中进行轮毂的铸造成型(增压凝固压力250MPa),最后将轮毂铸坯热处理获得机加工轮毂毛坯;如图3所示为仅将纳米复合化和增压快速成型技术相结合制备的A356.2复合材料轮毂的组织图。可以看出,与实施例2中将微合金化、原位纳米复合化以及增压快速成型三者相结合制备的复合材料轮毂相比(图2a),本对比实施例中制备的复合材料轮毂晶粒粗大,Si相也相对粗大且均匀性较差。
取样分析表明,T6(545℃×3.5h+135℃×3h)处理后,轮辐的弹性模量为80.3GPa,强度达为305MPa,延伸率为10.7%,1.0×105次弯曲疲劳试验、7.8×105次径向疲劳试验情况下未出现裂纹,虽然超过了美国SAE J1204房车轮毂标准要求(抗拉强度300MPa,延伸率10%,5×104次弯曲疲劳试验、6×105次径向疲劳试验),但与实施例2中将微合金化、原位纳米复合化以及增压快速成型相结合制备的复合材料轮毂相比,性能仍有大幅降低。
对比实施例2
以Al-15Zr,Al-20Er,Al-10Y,Al-10Cr,和Al-10Mn中间合金,以及A356.2合金为原料,采用增压重力铸造快速顺序凝固成型技术制备A356.2合金轮毂(未采用纳米复合化)。
采用Al-15Zr,Al-20Er,Al-10Y,Al-10Cr,和Al-10Mn中间合金引入微合金化元素,首先调整使合金中元素的质量百分比含量分达到Zr0.5,Er0.25,Y0.18,Cr0.22,Mn0.12,具体步骤与实施例1相同;然后去除石墨搅拌转子,关闭保温加热将合金熔体降温至720-730℃并去除表面覆盖剂,获得复合材料熔体并静置5-10min待用;将复合熔体转入增压重力铸造快速顺序凝固成型设备的保温炉中进行轮毂的铸造成型(增压凝固压力250MPa),最后将轮毂铸坯热处理获得机加工轮毂毛坯。
取样分析表明,T6(545℃×3.5h+135℃×3h)处理后,轮辐的弹性模量为71GPa,强度为302MPa,延伸率为12.1%,6×104次弯曲疲劳试验、7.4×105次径向疲劳试验情况下未出现裂纹,虽然达到了美国SAE J1204房车轮毂标准要求(抗拉强度300MPa,延伸率10%,5×104次弯曲疲劳试验、6×105次径向疲劳试验)。但与实施例2中将微合金化、原位纳米复合化以及增压快速成型相结合制备的复合材料轮毂相比,性能仍有大幅降低。
对比实施例3
以Al-15Zr,Al-20Er,Al-10Y,Al-10Cr,和Al-10Mn中间合金,KBF4,以及A356.2合金为原料,采用普通重力铸造成型技术制备A356.2-X复合材料轮毂(未采用增压快速成型技术)。
采用Al-15Zr,Al-20Er,Al-10Y,Al-10Cr,和Al-10Mn中间合金引入微合金化元素,首先调整使合金中元素的质量百分比含量分达到Zr4.5,Er0.25,Y0.18,Cr0.22,Mn0.12,具体步骤与实施例1相同;再将称量好的KBF4采用钟罩压入熔体并采用石墨转子搅拌10min,使B元素(含量为0.89wt.%)与熔体中均匀分散的Zr元素,原位反应合成均匀分散的纳米ZrB2陶瓷增强体;去除石墨搅拌转子,关闭保温加热将复合熔体降温至720-730℃并去除表面覆盖剂,获得复合材料熔体并静置5-10min待用;将复合熔体转入普通重力铸造成型设备的保温炉中进行轮毂的铸造成型,最后将轮毂铸坯热处理获得机加工轮毂毛坯。
取样分析表明,T6(545℃×3.5h+135℃×3h)处理后,轮辐的弹性模量为78.3GPa,强度达为315MPa,延伸率为11.4%,1.1×105次弯曲疲劳试验、9.2×105次径向疲劳试验情况下未出现裂纹,虽然超过了美国SAE J1204房车轮毂标准要求(抗拉强度300MPa,延伸率10%,5×104次弯曲疲劳试验、6×105次径向疲劳试验),但与实施例2中将微合金化、原位纳米复合化以及增压快速成型相结合制备的复合材料轮毂相比,性能仍有降低。

Claims (7)

  1. 一种重载轮毂用抗疲劳原位铝基复合材料,复合材料的化学成分,按照质量百分比计算为:Si 6.8-7.5,Zr 3.0-5.0,B 0.5-1.0,Mg 0.3-0.45,Er 0.18-0.25,Y 0.18-0.25,Cr0.15-0.22,Mn 0.1-0.12,Ti 0.1-0.15,Fe 0.08-0.12,Cu 0.05-0.1,余量为Al,其特征在于所述复合材料采用如下方法制备:先对A356.2铝合金熔体进行微合金化,再对微合金化的A356.2铝合金熔体进行原位纳米复合化,然后再对原位纳米复合化的A356.2铝合金熔体进行增压重力铸造快速顺序凝固成型,最后对铸造成型的轮毂进行热处理,将微合金化、原位纳米复合化以及增压重力铸造快速顺序凝固成型相结合,协同提高铝基复合材料轮毂的强韧性和抗疲劳性能。
  2. 如权利要求1所述的一种重载轮毂用抗疲劳原位铝基复合材料,其特征在于所述对A356.2铝合金熔体进行微合金化的步骤为:首先对熔化并保温的A356.2合金熔体精炼除气,然后在熔体表面均匀撒上一层覆盖剂,再将微合金化元素中间合金通过钟罩压入精炼除气后的A356.2铝合金熔体中,并用石墨转子搅拌均匀,静置待用。
  3. 如权利要求2所述的一种重载轮毂用抗疲劳原位铝基复合材料,其特征在于:所述熔化并保温的温度为750-760℃,所述微合金化元素中间合金为Al-Zr,Al-Er,Al-Y,Al-Cr和Al-Mn。
  4. 如权利要求2所述的一种重载轮毂用抗疲劳原位铝基复合材料,其特征在于:所述微合金化元素中间合金为Al-15Zr,Al-20Er,Al-20Y,Al-20Cr和Al-10Mn。
  5. 如权利要求1所述的一种重载轮毂用抗疲劳原位铝基复合材料,其特征在于对微合金化的A356.2铝合金熔体进行原位纳米复合化的步骤为:将含B合金或硼盐采用石墨钟罩压入微合金化的A356.2铝合金熔体中,同时启动石墨搅拌转子促进含B合金的熔化,或促进硼盐与A356.2铝合金熔体充分接触并有效吸收B元素,使引入的B元素与熔体微合金处理时引入的Zr元素原位反应合成ZrB2纳米陶瓷增强体,获得复合材料熔体并静置待用。
  6. 如权利要求2所述的一种重载轮毂用抗疲劳原位铝基复合材料,其特征在于:所述的微合金化,是调整A356.2合金的成分,将稀土元素Er和Y以及Zr元素作为添加成分,并提高Cr和Mn的含量,调整后使A356.2合金熔体中元素的质量百分比含量分别为Zr 3.0-5.0,Er 0.18-0.25,Y 0.18-0.25,Cr 0.15-0.22,Mn 0.1-0.12。
  7. 如权利要求5所述的一种重载轮毂用抗疲劳原位铝基复合材料,其特征在于:所述的原位纳米复合化,是指在微合金化后的熔体中引入B元素,使之与合金中引入的Zr 元素原位生成弥散的纳米ZrB2陶瓷增强体,ZrB2尺寸为15-75nm,含量为2.57-5.14wt.%。
PCT/CN2016/086358 2016-04-01 2016-06-20 一种重载轮毂用抗疲劳原位铝基复合材料及其制备方法 WO2017166444A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/771,432 US10781507B2 (en) 2016-04-01 2016-06-20 Anti-fatigue in-situ aluminum-based composite material for heavy-load hubs and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610203245.3A CN105861887B (zh) 2016-04-01 2016-04-01 一种重载轮毂用抗疲劳原位铝基复合材料及其制备方法
CN201610203245.3 2016-04-01

Publications (1)

Publication Number Publication Date
WO2017166444A1 true WO2017166444A1 (zh) 2017-10-05

Family

ID=56627920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086358 WO2017166444A1 (zh) 2016-04-01 2016-06-20 一种重载轮毂用抗疲劳原位铝基复合材料及其制备方法

Country Status (3)

Country Link
US (1) US10781507B2 (zh)
CN (1) CN105861887B (zh)
WO (1) WO2017166444A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110423905A (zh) * 2019-08-15 2019-11-08 四川环仕达节能环保科技有限公司 一种多重氧化还原合金材料的成型方法
CN111118355A (zh) * 2019-12-16 2020-05-08 南昌工学院 一种稀土元素铒改性铸造亚共晶Al-Mg2Si合金及其制备方法
CN113278831A (zh) * 2021-05-12 2021-08-20 南昌大学 一种废杂铝制备再生adc12铝合金的方法
CN114635053A (zh) * 2022-02-11 2022-06-17 江苏大学 内生ZrB2和Cr0.4NbTiVZr双相颗粒增强铝基复合材料及制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106435295A (zh) * 2016-11-07 2017-02-22 江苏理工学院 一种掺杂稀土元素铒的铸造铝合金及其制备方法
CN106756305B (zh) * 2017-01-03 2018-07-13 江苏理工学院 一种铝合金变质处理方法
CN107267817B (zh) * 2017-05-25 2019-04-19 江苏大学 一种高强抗疲劳原位纳米强化铝合金及其压铸方法
CN108559864B (zh) * 2018-03-20 2020-01-24 江苏大学 一种新能源汽车用原位纳米强化铝合金轮毂及制造方法
DE112020000616T5 (de) * 2019-02-01 2021-12-16 Delta Wheels, Llc Delta-Rad
CN111041291B (zh) * 2019-12-25 2021-02-19 佛山市三水凤铝铝业有限公司 一种高强度的铝合金材料及其制备方法
CN112549848B (zh) * 2020-11-26 2022-07-01 江苏珀然股份有限公司 一种高熵合金增强铝基梯度材料的轮毂及其制造方法
CN113231604B (zh) * 2021-05-11 2021-12-21 翰航劲铝(兰州)科技有限公司 一种采用高强度铝合金材料制造车轿轮毂的制造方法
CN114351000B (zh) * 2021-12-20 2023-04-18 江苏大学 原位纳米颗粒及稀土耦合强化铝基复合材料的制备方法
CN114959372B (zh) * 2022-03-08 2023-06-27 山东金马汽车装备科技有限公司 一种铝基复合材料轮毂及其制造方法
CN115044810B (zh) * 2022-06-17 2023-05-09 大连科天新材料有限公司 一种铝合金及其制备方法、汽车用材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915905A (en) * 1984-10-19 1990-04-10 Martin Marietta Corporation Process for rapid solidification of intermetallic-second phase composites
CN100376700C (zh) * 2005-01-19 2008-03-26 江苏大学 合成高性能铝基原位复合材料的Al-Zr-B-O反应体系及其合成的新材料
CN101514420A (zh) * 2009-04-13 2009-08-26 清华大学 汽车轮毂用铝合金

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52148412A (en) * 1976-06-07 1977-12-09 Hitachi Metals Ltd Aluminium alloy for casting and method of production thereof
US4842822A (en) 1986-12-19 1989-06-27 Howmet Corporation Aluminum-lithium alloy and method of investment casting an aluminum-lithium alloy
JPH1192849A (ja) * 1997-09-17 1999-04-06 Hitachi Metals Ltd ロードホイール及びその製造方法
JP2001252754A (ja) * 2000-03-09 2001-09-18 Hitachi Metals Ltd アルミホイール及びその製造方法
CN101418402A (zh) * 2008-12-12 2009-04-29 大亚科技股份有限公司 汽车轮毂用亚微米颗粒增强铝基复合材料及其制备方法
WO2011023059A1 (zh) * 2009-08-27 2011-03-03 贵州华科铝材料工程技术研究有限公司 多元高强耐热铝合金材料及其制备方法
CN101760656B (zh) * 2009-12-29 2011-11-16 江苏大学 一种节能短流程原位颗粒增强a356基复合材料轮毂制造方法
EP2881480B1 (de) * 2013-12-06 2020-10-14 Airbus Defence and Space GmbH Gebaute kolben für rotationskolbenmotoren
CN103773999A (zh) 2014-01-09 2014-05-07 马鞍山市恒毅机械制造有限公司 一种轮毂用稀土增强型铝合金材料及其制备方法
CN103774003A (zh) 2014-01-09 2014-05-07 马鞍山市恒毅机械制造有限公司 一种轮毂用铸造铝合金材料及其制备方法
CN103774001A (zh) 2014-01-09 2014-05-07 马鞍山市恒毅机械制造有限公司 一种轮毂用高冲击韧性铝合金材料及其制备方法
CN104550876B (zh) * 2015-01-05 2016-05-04 江苏苏美达车轮有限公司 一种汽车轮毂增压铸造设备及铸造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915905A (en) * 1984-10-19 1990-04-10 Martin Marietta Corporation Process for rapid solidification of intermetallic-second phase composites
CN100376700C (zh) * 2005-01-19 2008-03-26 江苏大学 合成高性能铝基原位复合材料的Al-Zr-B-O反应体系及其合成的新材料
CN101514420A (zh) * 2009-04-13 2009-08-26 清华大学 汽车轮毂用铝合金

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110423905A (zh) * 2019-08-15 2019-11-08 四川环仕达节能环保科技有限公司 一种多重氧化还原合金材料的成型方法
CN111118355A (zh) * 2019-12-16 2020-05-08 南昌工学院 一种稀土元素铒改性铸造亚共晶Al-Mg2Si合金及其制备方法
CN113278831A (zh) * 2021-05-12 2021-08-20 南昌大学 一种废杂铝制备再生adc12铝合金的方法
CN113278831B (zh) * 2021-05-12 2022-09-16 南昌大学 一种废杂铝制备再生adc12铝合金的方法
CN114635053A (zh) * 2022-02-11 2022-06-17 江苏大学 内生ZrB2和Cr0.4NbTiVZr双相颗粒增强铝基复合材料及制备方法

Also Published As

Publication number Publication date
US10781507B2 (en) 2020-09-22
US20190010580A1 (en) 2019-01-10
CN105861887B (zh) 2017-12-22
CN105861887A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2017166444A1 (zh) 一种重载轮毂用抗疲劳原位铝基复合材料及其制备方法
CN108796317B (zh) 适用于新能源汽车的可半固态挤压铸造铝合金及制备方法
WO2019090963A1 (zh) 一种车身用原位纳米强化铝合金挤压材及制备方法
WO2019178934A1 (zh) 一种新能源汽车用原位纳米强化铝合金轮毂及制造方法
CN104911416A (zh) 一种原位颗粒混杂增强铝基复合材料及其制备方法
WO2018214631A1 (zh) 一种汽车发动机减震部件用高强抗疲劳原位纳米强化铝合金及其高致密压铸方法
WO2004031424A1 (ja) 鋳造鍛造用アルミニウム合金、アルミニウム鋳造鍛造品及び製造方法
CN110000360A (zh) 基于挤压铸造工艺的高强韧高模量铝合金材料及其制备
CN104357715A (zh) 汽车变速器泵体专用铝合金及其制备方法
CN113957302A (zh) 一种新能源汽车电池箱非热处理强化高强韧压铸铝合金材料
EP1488017A1 (en) Aluminum alloy
CN102994784A (zh) 强磁场复合变质剂细化过共晶铝硅合金中相组织的方法
CN116200632B (zh) 一种高强韧压铸铝合金、其制备方法及其应用
CN111101031B (zh) 一种Al-Mg2Si-Mg-Mn-Y-B高强韧铝合金及其制备方法
CN112522555A (zh) 一种高强韧挤压铸造铝硅合金及其制备方法
CN102899517A (zh) 原位SiC-TiC颗粒混合增强铝基复合材料及其制备工艺
CN115786784A (zh) 一种高强韧铸造铝硅铜镁合金、其制备方法及应用
CN109837436A (zh) 一种车轮用压铸铝合金及其制备方法和产品
CN113652581B (zh) 一种铝合金及其制备方法和应用
CN106636791A (zh) 用于制备汽车车身的铝合金及其制备方法
CN112195358A (zh) 一种铝基合金、铝基复合材料及其制备方法与应用
CN110527874A (zh) 一种高强度耐磨铝合金材料及制作工艺
CN109868397A (zh) 一种高强韧高模量铝合金材料及其压铸工艺
CN111945041B (zh) 一种适用于新能源汽车的超高强高导热可半固态挤压铸造铝合金及其制备方法
CN115896514B (zh) 一种铝合金铸件的制备方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896217

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896217

Country of ref document: EP

Kind code of ref document: A1