WO2013082967A1 - 气压制动系统及轮胎式工程机械 - Google Patents

气压制动系统及轮胎式工程机械 Download PDF

Info

Publication number
WO2013082967A1
WO2013082967A1 PCT/CN2012/081942 CN2012081942W WO2013082967A1 WO 2013082967 A1 WO2013082967 A1 WO 2013082967A1 CN 2012081942 W CN2012081942 W CN 2012081942W WO 2013082967 A1 WO2013082967 A1 WO 2013082967A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
brake
air
pressure
width
Prior art date
Application number
PCT/CN2012/081942
Other languages
English (en)
French (fr)
Inventor
詹纯新
刘权
罗忠群
李义
王启涛
Original Assignee
中联重科股份有限公司
湖南中联重科专用车有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中联重科股份有限公司, 湖南中联重科专用车有限责任公司 filed Critical 中联重科股份有限公司
Publication of WO2013082967A1 publication Critical patent/WO2013082967A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/18Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle weight or load, e.g. load distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/683Electrical control in fluid-pressure brake systems by electrically-controlled valves in pneumatic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T15/00Construction arrangement, or operation of valves incorporated in power brake systems and not covered by groups B60T11/00 or B60T13/00
    • B60T15/02Application and release valves
    • B60T15/04Driver's valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/361Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force wherein the pilot valve is mounted in a circuit controlling an auxiliary fluid system

Definitions

  • the present invention relates to the field of construction machinery, and in particular to a brake system and a tire type construction machine with the same. Background technique
  • the multi-axle chassis brake system has large axle load, large axle load transfer during braking, and complicated braking pressure matching of each axle.
  • various load-carrying conditions on the road surface such as without boom.
  • Driving with half-jib travel, with full boom, and with full-load travel (boom + super boom), different vehicle center of gravity, axle load and brake axle load transfer under different loading conditions, this It is necessary to have different brake pressures to match, to ensure operational stability and safety during braking.
  • the brake system is a pneumatic brake system
  • the suspension mode is an oil and gas suspension
  • the brake pressure is usually only one pressure setting, and is super large for high-speed transportation of roads requiring variable load.
  • tonnage cranes it is obvious that the braking requirements cannot be met. In light load or heavy load, there will be a surplus of braking force or insufficient braking force, which may cause the wheels to lock or stop when braking, posing a safety hazard.
  • the present invention is directed to an air brake system and a tire type construction machine that are capable of adapting to a variety of load conditions.
  • a pneumatic brake system including an air reservoir, a brake damper, and at least one pneumatic brake unit, the brake cover including a first intake port and a first air outlet, the first air inlet and the first air inlet
  • the air cylinder is connected to each other;
  • the at least one air brake unit includes a relay width and at least one brake air chamber, and the relay width includes a second air inlet, a second air outlet, and a control port, the second The air outlet and the second air outlet are respectively connected to the air reservoir and the at least one brake air chamber through an air supply pipeline, and the control port is connected to the first air outlet of the brake through a control pipeline;
  • the at least one pneumatic brake unit further includes a pressure adjustment unit for enabling the relay width to output different brake pressures.
  • the at least one pneumatic brake unit further comprises detection means for detecting different loads, and controlling the relay width to output different brake pressures according to different loads.
  • the pressure regulating unit includes a third air inlet, a third air outlet, and at least two branches connected in parallel between the third air inlet and the third air outlet, the at least two branches.
  • the compressed gas is selectively passed, and after the compressed gas enters through the third air inlet, the pressures through the different branches to the third air outlet are different, so that the relay width can output different brake pressures.
  • the pressure regulating unit is disposed on the air supply line, the third air inlet is in communication with the air reservoir, and the third air outlet is in communication with the secondary air inlet.
  • the pressure adjusting unit is disposed on the control line, the third air inlet is in communication with the first air outlet of the brake, and the third air outlet is wider than the relay
  • the control port is connected to each other; the pressure regulating unit controls the relaying to output different brake pressures by outputting different control pressures to the relaying wide control port.
  • the at least two branches comprise a first branch, the pressure of the compressed gas after passing through the first branch is unchanged, and the first branch is provided with a first electromagnetic commutation width for controlling the first The switching of one road; the detecting device controls the first electromagnetic commutation to be wide or lose power.
  • the at least two branches comprise a second branch, and the first branch is provided with a first pressure regulating width.
  • the at least two branches comprise a second branch
  • the second branch comprises a third branch and a fourth branch connected in parallel, and is connected in series with the third branch and the fourth branch connected in parallel a second electromagnetic reversal; wherein the second branch and the fourth branch are respectively provided with two second pressure adjustments of different pressure levels; the second electromagnetic reversal is wide under the control of the detecting device Selective conduction
  • the third branch and the fourth branch are described.
  • the at least two branches comprise a first branch, the pressure of the compressed gas after passing through the first branch is unchanged, and the first branch is provided with a first electromagnetic commutation width for controlling the first The switching of one road; the detecting device controls the first electromagnetic commutation to be wide or lose power.
  • the pneumatic brake system includes two brake circuits, each of which includes an air reservoir and at least one air brake unit that simultaneously controls the opening and closing of the two brake circuits.
  • the brake is broadly a pedal-type dual-cavity brake, the brake includes a first chamber and a second chamber, and the first chamber and the second chamber are respectively connected to the In the first brake circuit and the second brake circuit.
  • the brake pressure of the pneumatic brake system of the present invention is adjustable, different brake pressures can be provided according to different load conditions, and can be well adapted to various load conditions. Transport driving requirements.
  • FIG. 1 is a schematic diagram of a pneumatic brake system in some embodiments of the present invention.
  • Figure 2 is a schematic diagram of the brake unit of the pneumatic brake system shown in Figure 1.
  • FIG. 3 is a schematic structural view of a boom with a detecting device according to some embodiments of the present invention.
  • 4 is a schematic diagram of a pressure regulating unit of a pneumatic brake system according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a boom with a detecting device according to another embodiment of the present invention.
  • Figure 6 is a schematic diagram of a pneumatic brake system in still other embodiments of the present invention.
  • FIG. 1 illustrates a pneumatic brake system in accordance with some embodiments of the present invention which can be applied to large tonnage wheeled cranes and is capable of adapting to a variety of load conditions.
  • the pneumatic brake system can be a dual circuit pneumatic brake system including a first brake circuit, a second brake circuit, and a brake rim 3 .
  • the first brake circuit can be a front axle brake circuit for braking of the front axle of the crane;
  • the second brake circuit can be a middle or rear axle brake circuit for braking of the middle or rear axle of the crane .
  • the pneumatic brake system can also be a single-loop pneumatic brake system, and it can also be applied to other tire-type construction machines having multiple load-carrying conditions during running. .
  • the brake width 3 can be a pedal-type double-cavity brake for controlling the opening and closing of the first brake circuit and the second brake circuit, and the brake width 3 includes the first chamber 31 and The second chamber 32, the first chamber 31 and the second chamber 32 are respectively connected to the first brake circuit and the second brake circuit.
  • the first brake circuit may include a first air reservoir 1 in communication with the first chamber 31, and a plurality of brake units 4 in communication with the first air reservoir 1 and the first chamber 31.
  • the second brake circuit may be A second air reservoir 2 in communication with the second chamber 32 and a plurality of brake units 4 in communication with the second air reservoir 2 and the second chamber 32 are included.
  • the brake unit 4 may include a relay width 41, two brake chambers 42 and a pressure adjustment unit 43 in some embodiments.
  • the relay width 41 includes an air inlet 411, an air outlet 412, and a control port 413.
  • the intake port 411 of the relay width 41 of each brake unit 4 communicates with the first air reservoir 1 through the air supply line 5, and the air outlet port 412 passes through the air supply line 5 and the brake gas.
  • the chamber 42 is in communication, and the control port 413 communicates with the air outlet of the first chamber 31 of the brake rib 3 through the control line 6, and the air inlet of the first chamber 31 communicates with the first air reservoir 1.
  • the intake port 411 of the relay width 41 of each brake unit 4 communicates with the second air reservoir 2 through the air supply line 5, and the air outlet port 412 communicates with the brake air chamber 42.
  • the control port 413 is connected to the air outlet of the second chamber 32 of the brake cylinder 3 through the control line 6, and the air inlet of the second chamber 32 is in communication with the second air reservoir 2.
  • the output of the air outlet 412 of the relay width 41 The magnitude of the discharge pressure is proportional to the magnitude of the control pressure of the control port 413.
  • the ratio of the two is 1:1. Therefore, by adjusting the magnitude of the control pressure, the purpose of adjusting the output pressure can be achieved.
  • the brake plenum 42 may, in some embodiments, be a spring energy storage dual chamber brake plenum for providing a braking torque to the crane axle.
  • the pressure regulating unit 43 is disposed on the control line 6 and between the relay width 41 and the brake width 3 for adjusting the control pressure of the control port 413 delivered to the relay width 41.
  • the pressure regulating unit 43 may include an air inlet 431, an air outlet 432, and a first branch 433 and a second branch 434 connected between the air inlet 431 and the air outlet 432.
  • the first branch 433 may be included in some embodiments.
  • the first electromagnetic reversal width 435 is disposed in the second branch 434, and the first pressure adjustment width 436 is set. The parameters of the first pressure adjustment width 436 can be adjusted according to different pressure requirements.
  • the first electromagnetic commutation wide 435 may be a two-position two-way electromagnetic commutation wide in some embodiments for controlling the on and off of the first branch 433.
  • the first electromagnetic commutation is 435
  • the first The road 433 is turned on, the air inlet 431 of the pressure adjusting unit 433 is equal to the air pressure of the air outlet 432; when the first electromagnetic commutation width 435 is de-energized, the first branch 433 is disconnected, and the second branch 434 is turned on.
  • the pressure of the compressed gas reaches the outlet port 432 after being adjusted by the pressure adjustment width 144.
  • the two pressure combinations can be realized by controlling the power and de-energization of the electromagnetic commutation width 143. It will be appreciated that other pressure adjustments other than the pressure level of the pressure adjustment width 144 may be used instead of the first electromagnetic commutation width 435 of the first branch 433 to achieve both pressure combinations.
  • the air brake system may further include a detecting device 7 for detecting two different loads and outputting a control signal to the pressure adjusting unit 43 according to two different loads.
  • the pressure adjustment unit 43 outputs different control pressures.
  • the detecting device 7 may include a sensor S1 mounted on a split assembly point of the crane boom for detecting whether the crane is traveling with a full boom.
  • the sensor S1 When the crane is running with the full boom, the sensor S1 generates an induction signal, and makes the first electromagnetic commutation wide 435 energized, the first branch 433 is turned on, and the second branch 434 is turned off; when the brake is wide 3
  • the compressed gas is sent to the control port 413 of the relay width 41 via the first electromagnetic commutation width 435 of the first branch 433, and the relay width 41 outputs the first brake pressure.
  • the sensor S1 When the heavy machine is driven with a half boom or without a boom, the sensor S1 does not generate an induction signal, the first electromagnetic commutation wide 435 is de-energized, the first branch 433 is disconnected, the second branch 434 is turned on, and the second branch is turned on.
  • the compressed gas is reduced by the first pressure adjustment width 436 in the second branch 434 and then sent to the control port 413 of the relay width 41, and the relay width 41 outputs the second brake pressure.
  • the air brake system can automatically output different brake pressures according to different loads.
  • the pressure adjusting unit 43' is similar to the above-described pressure adjusting unit 43, and the main difference between the two is that the pressure adjusting unit 43
  • the second pressure adjustment width 4361, 4362 and the second electromagnetic commutation width 437 using two different pressure levels replace the first pressure adjustment width 436 in the pressure adjustment unit 43 described above.
  • the second branch 434 of the pressure regulating unit 43 includes a third branch 4341 and a fourth branch 4342 connected in parallel, and a third branch 4341 and a fourth branch 4342 connected in parallel to the air inlet 431 and The second electromagnetic commutation between the air outlets 432 is 437.
  • the second electromagnetic commutation wide 437 can selectively turn on the third branch 4341 and the fourth branch 4342. Specifically, when the second electromagnetic commutation wide 437 is de-energized, the third branch 4341 is turned on. The fourth branch 4342 is disconnected; when the second electromagnetic commutation wide 437 is energized, the third branch 4341 is disconnected and the fourth branch 4342 is turned on.
  • the second electromagnetic commutation 437 may be a two-position three-way electromagnetic commutation in some embodiments.
  • the second pressure adjustment widths 4361, 4362 are respectively disposed in the third branch 4341 and the fourth branch 4342. Therefore, by controlling the power and power loss of the second electromagnetic commutation width 437, two different pressures can be further realized. combination.
  • the pressure regulating unit 43 can realize a combination of three different control pressures, thereby allowing the pneumatic brake system to have three different combinations of brake pressures.
  • FIG. 5 shows a detecting device T of a pneumatic brake system for detecting three different loads and outputting a control signal to the pressure adjusting unit 43 according to three different loads, in other embodiments of the present invention,
  • the pressure adjusting unit 43 outputs three different control pressures, respectively, so that the relay width 41 can respectively output three different brake pressures.
  • the detecting device 7' may include a sensor S1 mounted on a separate disassembly point of the crane boom and a sensor S2 mounted on the mounting point of the main arm pin hole, through a combination of sensors SI and S2 Can be used to detect lifting Whether the machine is in driving with a full boom, with a semi-lifting arm or without a boom, and outputting corresponding control signals to the pressure adjusting unit 43' according to the detected working condition, by the pressure adjusting unit 43' outputs the corresponding control pressure, which in turn controls the relay flange 41 to output the corresponding brake pressure.
  • the sensors S1 and S2 of the detecting device 7' simultaneously generate a sensing signal, and the detecting device 7' controls the first electromagnetic commutating width 435 to be powered, braking
  • the control pressure P1 is outputted to the control port 413 of the relay width 41;
  • the first electromagnetic The commutation wide 435 is de-energized, the first branch 433 is disconnected, the third branch 4341 is turned on, and the compressed gas in the control line is stepped down by the second pressure adjustment in the third branch 4341, and the output is controlled.
  • the pressure P2 is to the control port 413 of the relay width 41; when the crane is not driven by the boom, the sensors S1 and S2 do not generate the sensing signal, the second electromagnetic commutation is 437, and the third branch 4341 is disconnected.
  • the fourth branch 4342 is turned on, and the compressed gas in the control line is depressurized by the second pressure adjustment width 4362 in the fourth branch 4342, and the control pressure P3 is outputted to the control port 413 of the relay width 41.
  • the purpose of automatically outputting three different control pressures P1, P2 and P3 according to three different working conditions is realized. Understandably, depending on the different requirements of the crane operating conditions, more than three different control pressures can be achieved according to the similar method described above.
  • FIG. 6 shows a pneumatic brake system in still another embodiment of the present invention, which is similar to the pneumatic brake system shown in FIG. 1.
  • the main difference is that the pressure regulating unit 43 of the pneumatic brake system is disposed in succession.
  • the air supply line 5 connected to the air inlet 411 of the movable width 41 is connected to the air supply pipe
  • the air supply pressure of the road 5 achieves the purpose of adjusting the brake pressure of the relay width 41.
  • the adjustment method of the air supply pressure is basically the same as the above-mentioned control pressure adjustment method, and will not be described herein.

Abstract

一种气压制动系统及包括该气压制动系统的轮胎式工程机械。所述气压制动系统包括储气筒(1、2)、制动阀(3)以及至少一个气压制动单元(4),所述制动阀(3)包括第一进气口及第一出气口,所述第一进气口与所述储气筒(1、2)相连通;所述至少一个气压制动单元(4)包括继动阀(41)以及至少一个制动气室(42),所述继动阀(41)包括第二进气口(411)、第二出气口(412)以及控制口(413),所述第二进气口(411)及第二出气口(412)通过供气管路(5)分别与所述储气筒(1、2)及所述至少一个制动气室(42)相连通,所述控制口(413)通过控制管路(6)与所述制动阀(3)的第一出气口相连通;所述至少一个气压制动单元(4)还包括压力调节单元(43),用于使所述继动阀(41)能够输出不同的制动压力。

Description

气压制动系统及轮胎式工程机械
技术领域
本发明涉及一种工程机械领域, 特别涉及一种制动系统及带有该制动 系统的轮胎式工程机械。 背景技术
多轴底盘制动系统存在轴载大, 制动时轴荷转移大, 各轴制动压力匹 配复杂; 对超大吨位轮式起重机, 其路面行驶有多种带载工况, 如不带吊 臂行驶、带半吊臂行驶、带全吊臂行驶, 以及带全载行驶(吊臂 +超起臂架), 不同带载工况的整车重心、 轴荷和制动轴荷转移不同, 这就需要有不同的 制动压力与之匹配, 保证制动时操作稳定性和安全性。
相关技术中的全路面起重机多轴底盘, 制动系统都为气压式制动系统, 悬架方式为油气悬架, 其制动压力通常只有一种压力设置, 对于需要变载 荷公路高速运输的超大吨位起重机来说, 显然是不能满足制动要求的, 在 轻载或重载时会出现制动力富余或制动力不足, 导致制动时车轮抱死或刹 不住, 带来安全隐患。 发明内容
本发明旨在提供一种能够适应多种载荷工况的行驶要求的气压制动系 统及轮胎式工程机械。
提供一种气压制动系统, 包括储气筒、 制动阔以及至少一个气压制动 单元, 所述制动阔包括第一进气口及第一出气口, 所述第一进气口与所述 储气筒相连通; 所述至少一个气压制动单元包括继动阔以及至少一个制动 气室, 所述继动阔包括第二进气口、 第二出气口以及控制口, 所述第二进 气口及第二出气口通过供气管路分别与所述储气筒及所述至少一个制动气 室相连通, 所述控制口通过控制管路与所述制动阔的第一出气口相连通; 所述至少一个气压制动单元还包括压力调节单元, 用于使所述继动阔能够 输出不同的制动压力。
优选地, 所述至少一个气压制动单元还包括侦测装置, 用于侦测不同 的载荷, 并根据不同的载荷控制所述继动阔相应地输出不同的制动压力。
优选地, 所述压力调节单元包括第三进气口、 第三出气口以及并联于 所述第三进气口与第三出气口之间的至少两个支路, 所述至少两个支路可 供压缩气体选择性地通过, 且压缩气体由第三进气口进入后, 经过不同的 支路到达第三出气口的压力不同, 从而使所述继动阔能够输出不同的制动 压力。
优选地, 所述压力调节单元设置在所述供气管路上, 第三进气口与所 述储气筒相连通, 第三出气口与所述继动阔的进气口相连通。
优选地, 所述压力调节单元设置在所述控制管路上, 所述第三进气口 与所述制动阔的第一出气口相连通, 所述第三出气口与所述继动阔的控制 口相连通; 该压力调节单元通过输出不同的控制压力给所述继动阔的控制 口, 控制所述继动阔输出不同的制动压力。
优选地, 所述至少两个支路包括第一支路, 压缩气体经过第一支路后 压力不变, 所述第一支路中设置有第一电磁换向阔, 用于控制所述第一支 路的通断; 所述侦测装置控制该第一电磁换向阔得电或失电。
优选地, 所述至少两个支路包括第二支路, 所述第二支路中设置有第 一压力调节阔。
优选地, 所述至少两个支路包括第二支路, 所述第二支路包括并联的 第三支路及第四支路, 以及与并联的第三支路与第四支路串联的第二电磁 换向阔; 所述第三支路及第四支路中分别设置两个不同压力级别的第二压 力调节阔; 所述第二电磁换向阔在所述侦测装置的控制下选择性地导通所 述第三支路及第四支路。
优选地, 所述至少两个支路包括第一支路, 压缩气体经过第一支路后 压力不变, 所述第一支路中设置有第一电磁换向阔, 用于控制所述第一支 路的通断; 所述侦测装置控制该第一电磁换向阔得电或失电。
优选地, 该气压制动系统包括两个制动回路, 每一个制动回路均包括 一个储气筒以及至少一个气压制动单元, 所述制动阔同时控制该两个制动 回路的通断。
优选地, 所述制动阔为脚踏式双腔制动阔, 所述制动阔包括第一腔室 及第二腔室, 所述第一腔室及第二腔室分别连接于所述第一制动回路及第 二制动回路中。
还提供一种轮胎式工程机械, 包括上述任一项的气压制动系统。
与相关技术相比, 由于本发明中的气压制动系统的制动压力是可调的, 可以根据不同的载荷工况提供不同的制动压力, 能够较好地能适应多种载 荷工况的运输行驶要求。 附图说明
图 1为本发明一些实施例中的气压制动系统的原理图。
图 2为图 1所示气压制动系统的制动单元的原理图。
图 3为本发明一些实施例中的带有侦测装置的吊臂的结构示意图。 图 4为本发明另一些实施例中的气压制动系统的压力调节单元的原理 图 5为本发明另一些实施例中的带有侦测装置的吊臂的结构示意图。 图 6为本发明再一些实施例中的气压制动系统的原理图。 具体实施方式
为使本领域技术人员更清楚地理解本发明, 下面结合附图做更详细的 说明。
图 1 示出了本发明一些实施例中的气压制动系统, 该气压制动系统可 应用于大吨位轮式起重机上, 并能够适应多种载荷工况的行驶要求。 该气 压制动系统可为双回路气压制动系统, 其包括第一制动回路、 第二制动回 路以及制动阔 3。第一制动回路可为前桥制动回路,用于起重机前桥的制动; 第二制动回路可为中桥或后桥制动回路, 用于起重机的中桥或后桥的制动。 可以理解地, 在其他一些实施例中, 该气压制动系统也可以为单回路气压 制动系统, 并且其也可以适用于在行驶过程中具有多种带载工况的其他轮 胎式工程机械上。
如图 1所示, 制动阔 3可为脚踏式双腔制动阔, 用于控制第一制动回 路及第二制动回路的通断, 制动阔 3包括第一腔室 31及第二腔室 32, 第一 腔室 31及第二腔室 32分别连接于第一制动回路及第二制动回路中。 第一 制动回路可包括与第一腔室 31相连通的第一储气筒 1, 以及与第一储气筒 1及第一腔室 31相连通的若干制动单元 4, 第二制动回路可包括与第二腔 室 32相连通的第二储气筒 2,以及与第二储气筒 2及第二腔室 32相连通的 若干制动单元 4。
一同参阅图 2, 制动单元 4在一些实施例中可包括继动阔 41、 两制动 气室 42以及压力调节单元 43, 继动阔 41包括进气口 411、 出气口 412以 及控制口 413。 在第一制动回路中, 每一制动单元 4的继动阔 41的进气口 411通过供气管路 5与第一储气筒 1相连通,出气口 412通过供气管路 5与 制动气室 42相连通,控制口 413通过控制管路 6与制动阔 3的第一腔室 31 的出气口相连通, 第一腔室 31的进气口与第一储气筒 1相连通。 在第二制 动回路中, 每一制动单元 4的继动阔 41的进气口 411通过供气管路 5与第 二储气筒 2相连通, 出气口 412与制动气室 42相连通, 控制口 413则通过 控制管路 6与制动阔 3的第二腔室 32的出气口相连, 第二腔室 32的进气 口与第二储气筒 2相连通。 在一些实施例中, 继动阔 41的出气口 412的输 出压力的大小与控制口 413 的控制压力的大小的成正比, 优选地, 两者比 例为 1:1, 因此, 通过调节控制压力的大小, 即可实现调节输出压力大小的 目的。 制动气室 42在一些实施例中可为弹簧储能双腔制动气室, 用于为起 重机车桥提供制动力矩。 压力调节单元 43设置于控制管路 6上, 并位于继 动阔 41与制动阔 3之间, 用于调节输送至继动阔 41的控制口 413的控制 压力。
压力调节单元 43在一些实施例中可包括进气口 431、 出气口 432以及 并联于进气口 431与出气口 432之间的第一支路 433及第二支路 434,第一 支路 433中设置有第一电磁换向阔 435,第二支路 434中设置有第一压力调 节阔 436, 第一压力调节阔 436的参数可根据不同的压力需求进行调节。第 一电磁换向阔 435在一些实施例中可为二位二通电磁换向阔, 用于控制第 一支路 433的通断, 当第一电磁换向阔 435得电时, 第一支路 433导通, 压力调节单元 433的进气口 431与出气口 432的气压相等; 当第一电磁换 向阔 435失电时, 第一支路 433断开, 第二支路 434导通, 压缩气体经过 压力调节阔 144调节后到达出气口 432的压力下降, 如此, 通过控制电磁 换向阔 143 的得电和失电即可实现两种压力组合。 可以理解地, 也可以采 用不同于压力调节阔 144的压力级别的其他压力调节阔来替代第一支路 433 中的第一电磁换向阔 435来实现两种压力组合。
一同参阅图 3, 该气压制动系统在一些实施例中还可包括侦测装置 7, 用于侦测两种不同的载荷, 并根据两种不同的载荷输出控制信号给压力调 节单元 43, 由压力调节单元 43输出不同的控制压力。 以起重机为例, 该侦 测装置 7可包括安装于起重机吊臂的分体拆装点上的传感器 S1 , 用于侦测 起重机是否为带全吊臂行驶。 当起重机带全吊臂行驶时, 传感器 S1产生感 应信号, 并使得第一电磁换向阔 435得电, 第一支路 433导通, 第二支路 434断开; 踩下制动阔 3时, 压缩气体经第一支路 433的第一电磁换向阔 435后输送至继动阔 41的控制口 413, 继动阔 41输出第一制动压力。 当起 重机带半吊臂或不带吊臂行驶时, 传感器 S1不产生感应信号, 第一电磁换 向阔 435失电, 第一支路 433断开, 第二支路 434导通, 踩下制动阔 3时, 压缩气体经过第二支路 434中的第一压力调节阔 436降压后输送至继动阔 41的控制口 413, 继动阔 41输出第二制动压力。 如此, 通过侦测装置 7的 设置, 气压制动系统可根据不同的载荷自动输出不同的制动压力。
图 4 示出了本发明另一些实施例中的气压制动系统的压力调节单元 43', 该压力调节单元 43'与上述压力调节单元 43类似, 两者的主要区别在 于, 该压力调节单元 43'采用两个不同压力级别的第二压力调节阔 4361、 4362和第二电磁换向阔 437替代上述压力调节单元 43中的第一压力调节阔 436。该压力调节单元 43,的第二支路 434中包括并联的第三支路 4341和第 四支路 4342, 以及与并联的第三支路 4341和第四支路 4342串联于进气口 431与出气口 432之间的第二电磁换向阔 437。 该第二电磁换向阔 437可选 择性地导通第三支路 4341和第四支路 4342, 具体而言, 当第二电磁换向阔 437失电时, 第三支路 4341导通, 第四支路 4342断开; 当第二电磁换向阔 437得电时, 第三支路 4341 断开, 第四支路 4342导通。 第二电磁换向阔 437在一些实施例中可为二位三通电磁换向阔。第二压力调节阔 4361、 4362 分别设置于第三支路 4341和第四支路 4342中, 因此, 通过控制第二电磁 换向阔 437 的得电与失电, 可以进一步实现两种不同压力的组合。 如此, 再加上第一电磁换向阔 435的控制, 压力调节单元 43,可以实现三种不同控 制压力的组合, 进而使得气压制动系统具备三种不同的制动压力组合。
图 5示出了本发明另一些实施例中的气压制动系统的侦测装置 T , 用 于侦测三种不同的载荷, 并根据三种不同的载荷输出控制信号给压力调节 单元 43,, 令压力调节单元 43,分别输出三种不同的控制压力, 进而使继动 阔 41能够分别输出三种不同的制动压力。 同样以起重机为例, 该侦测装置 7'可包括安装于起重机吊臂的分体拆装点上的传感器 S1以及安装于主臂销 孔安装点上的传感器 S2, 通过传感器 SI及 S2的组合, 可以用来侦测起重 机是否处于带全吊臂行驶、 带半吊臂行驶或不呆吊臂行驶等三种工况, 并 根据侦测到的工况输出相应的控制信号给压力调节单元 43', 由压力调节单 元 43'输出相应的控制压力, 进而控制继动阔 41输出相应的制动压力。
以下结合表格进
Figure imgf000009_0001
如上表所示, 当起重机带全吊臂行驶时, 侦测装置 7'的传感器 S1 及 S2同时产生感测信号, 此时侦测装置 7'控制第一电磁换向阔 435得电, 制 动时, 控制管路中的压缩气体经过第一支路 433, 输出控制压力 P1至继动 阔 41的控制口 413;当起重机带半吊臂行驶时,仅传感器 S2产生感测信号, 第一电磁换向阔 435失电, 第一支路 433断开, 第三支路 4341导通, 控制 管路中的压缩气体经过第三支路 4341 中的第二压力调节阔 4361降压后, 输出控制压力 P2至继动阔 41的控制口 413 ; 当起重机不带吊臂行驶时,传 感器 S1及 S2均不产生感测信号,第二电磁换向阔 437得电,第三支路 4341 断开, 第四支路 4342导通, 控制管路中的压缩气体经过第四支路 4342中 的第二压力调节阔 4362降压后, 输出控制压力 P3至继动阔 41 的控制口 413。 如此, 实现了自动根据三种不同工况输出三种不同控制压力 Pl、 P2 及 P3的目的。 可以理解地, 根据起重机工况的不同需求, 依据上述类似方 法, 也可以实现三个以上的不同控制压力。
图 6示出了本发明再一些实施例中的气压制动系统, 其与图 1所示气 压制动系统类似, 主要区别点在于, 该气压制动系统的压力调节单元 43" 设置于与继动阔 41的进气口 411相连的供气管路 5上, 以通过调节供气管 路 5的供气压力实现调节继动阔 41输出的制动压力的目的, 其供气压力的 调节方法与上述的控制压力的调节方法基本相同, 在此就不再赘述。
以上所述仅是本发明的优选实施方式, 本发明的保护范围并不仅局限 于上述实施例, 凡属于本发明思路下的技术方案均属于本发明的保护范围。 应当指出, 对于本技术领域的普通技术人员来说, 在不脱离本发明原理前 提下的若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权利要求
1. 一种气压制动系统, 包括储气筒、 制动阔以及至少一个气压制动单 元, 所述制动阔包括第一进气口及第一出气口, 所述第一进气口与所述储 气筒相连通; 所述至少一个气压制动单元包括继动阔以及至少一个制动气 室, 所述继动阔包括第二进气口、 第二出气口以及控制口, 所述第二进气 口及第二出气口通过供气管路分别与所述储气筒及所述至少一个制动气室 相连通, 所述控制口通过控制管路与所述制动阔的第一出气口相连通; 其 特征在于, 所述至少一个气压制动单元还包括压力调节单元, 用于使所述 继动阔能够输出不同的制动压力。
2. 根据权利要求 1所述的气压制动系统, 其特征在于, 所述至少一个 气压制动单元还包括侦测装置, 用于侦测不同的载荷, 并根据不同的载荷 控制所述继动阔相应地输出不同的制动压力。
3. 根据权利要求 2所述的气压制动系统, 其特征在于, 所述压力调节 单元包括第三进气口、 第三出气口以及并联于所述第三进气口与第三出气 口之间的至少两个支路, 所述至少两个支路可供压缩气体选择性地通过, 且压缩气体由第三进气口进入后, 经过不同的支路到达第三出气口的压力 不同, 从而使所述继动阔能够输出不同的制动压力。
4. 根据权利要求 3所述的气压制动系统, 其特征在于, 所述压力调节 单元设置在所述供气管路上, 第三进气口与所述储气筒相连通, 第三出气 口与所述继动阔的进气口相连通。
5. 根据权利要求 3所述的气压制动系统, 其特征在于, 所述压力调节 单元设置在所述控制管路上, 所述第三进气口与所述制动阔的第一出气口 相连通, 所述第三出气口与所述继动阔的控制口相连通; 该压力调节单元 通过输出不同的控制压力给所述继动阔的控制口, 控制所述继动阔输出不 同的制动压力。
6. 根据权利要求 3-5任一项所述的气压制动系统, 其特征在于, 所述 至少两个支路包括第一支路, 压缩气体经过第一支路后压力不变, 所述第 一支路中设置有第一电磁换向阔, 用于控制所述第一支路的通断; 所述侦 测装置控制该第一电磁换向阔得电或失电。
7. 根据权利要求 6所述的气压制动系统, 其特征在于, 所述至少两个 支路包括第二支路, 所述第二支路中设置有第一压力调节阔。
8. 根据权利要求 3-5任一项所述的气压制动系统, 其特征在于, 所述 至少两个支路包括第二支路, 所述第二支路包括并联的第三支路及第四支 路, 以及与并联的第三支路与第四支路串联的第二电磁换向阔; 所述第三 支路及第四支路中分别设置两个不同压力级别的第二压力调节阔; 所述第 二电磁换向阀在所述侦测装置的控制下选择性地导通所述第三支路及第四 支路。
9. 根据权利要求 8所述的气压制动系统, 其特征在于, 所述至少两个 支路包括第一支路, 压缩气体经过第一支路后压力不变, 所述第一支路中 设置有第一电磁换向阔, 用于控制所述第一支路的通断; 所述侦测装置控 制该第一电磁换向阔得电或失电。
10. 根据权利要求 3-5任一项所述的气压制动系统, 其特征在于, 该气 压制动系统包括两个制动回路, 每一个制动回路均包括一个储气筒以及至 少一个气压制动单元, 所述制动阔同时控制该两个制动回路的通断。
11. 根据权利要求 10所述的气压制动系统, 其特征在于, 所述制动阔 为脚踏式双腔制动阔, 所述制动阔包括第一腔室及第二腔室, 所述第一腔 室及第二腔室分别连接于所述第一制动回路及第二制动回路中。
12. 一种轮胎式工程机械, 其特征在于, 包括权利要求 1-11任一项所 述气压制动系统。
PCT/CN2012/081942 2011-12-05 2012-09-25 气压制动系统及轮胎式工程机械 WO2013082967A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110398817 CN102490710B (zh) 2011-12-05 2011-12-05 气压制动系统及轮胎式工程机械
CN201110398817.5 2011-12-05

Publications (1)

Publication Number Publication Date
WO2013082967A1 true WO2013082967A1 (zh) 2013-06-13

Family

ID=46182585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081942 WO2013082967A1 (zh) 2011-12-05 2012-09-25 气压制动系统及轮胎式工程机械

Country Status (2)

Country Link
CN (1) CN102490710B (zh)
WO (1) WO2013082967A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106080563A (zh) * 2016-07-05 2016-11-09 徐州重型机械有限公司 行车制动控制系统和车辆

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102490710B (zh) * 2011-12-05 2013-09-11 中联重科股份有限公司 气压制动系统及轮胎式工程机械
CN103350695B (zh) * 2013-07-31 2015-08-12 中联重科股份有限公司 车桥制动装置、方法和车辆
CN103523001B (zh) * 2013-10-16 2016-04-27 徐州重型机械有限公司 工程车辆底盘制动控制系统以及起重机
CN104163167B (zh) * 2014-08-15 2017-02-01 中联重科股份有限公司 气压制动控制系统、方法、装置及轮式工程机械
CN105151033B (zh) * 2015-10-08 2018-10-02 威伯科汽车控制系统(中国)有限公司 前桥驻车脚制动阀、制动系统及驻车制动功能的检测方法
CN110194135B (zh) * 2019-05-21 2021-08-20 西安翔迅科技有限责任公司 适用于3至5节车厢的铰接式胶轮无轨电车制动系统
CN112455414B (zh) * 2021-01-26 2021-04-16 天津所托瑞安汽车科技有限公司 桥模块、制动系统、制动方法和存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2498142A1 (fr) * 1981-01-22 1982-07-23 Bosch Gmbh Robert Dispositif de commande de frein retardateur, en particulier pour vehicules utilitaires lourds
US4861115A (en) * 1985-01-16 1989-08-29 Wabco Westinghouse Fahrzeugbremsen Gmbh Electrically-controlled motor vehicle brake system
JPH08127322A (ja) * 1994-10-31 1996-05-21 Nissan Shatai Co Ltd パーキングブレーキ装置
CN1122758A (zh) * 1994-11-10 1996-05-22 安源基 有载-无载制动控制装置
US6273524B1 (en) * 1999-06-09 2001-08-14 Hyundai Motor Company Braking force control valve and air brake system with the same
CN2797145Y (zh) * 2004-11-23 2006-07-19 山东时风(集团)有限责任公司 单气室双回路气压制动装置
CN201009874Y (zh) * 2007-06-15 2008-01-23 康亚君 汽车刹车变压调控装置
CN201677869U (zh) * 2010-03-18 2010-12-22 三一重机有限公司 一种矿用自卸车气压制动装置
CN102490710A (zh) * 2011-12-05 2012-06-13 中联重科股份有限公司 气压制动系统及轮胎式工程机械

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2498142A1 (fr) * 1981-01-22 1982-07-23 Bosch Gmbh Robert Dispositif de commande de frein retardateur, en particulier pour vehicules utilitaires lourds
US4861115A (en) * 1985-01-16 1989-08-29 Wabco Westinghouse Fahrzeugbremsen Gmbh Electrically-controlled motor vehicle brake system
JPH08127322A (ja) * 1994-10-31 1996-05-21 Nissan Shatai Co Ltd パーキングブレーキ装置
CN1122758A (zh) * 1994-11-10 1996-05-22 安源基 有载-无载制动控制装置
US6273524B1 (en) * 1999-06-09 2001-08-14 Hyundai Motor Company Braking force control valve and air brake system with the same
CN2797145Y (zh) * 2004-11-23 2006-07-19 山东时风(集团)有限责任公司 单气室双回路气压制动装置
CN201009874Y (zh) * 2007-06-15 2008-01-23 康亚君 汽车刹车变压调控装置
CN201677869U (zh) * 2010-03-18 2010-12-22 三一重机有限公司 一种矿用自卸车气压制动装置
CN102490710A (zh) * 2011-12-05 2012-06-13 中联重科股份有限公司 气压制动系统及轮胎式工程机械

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106080563A (zh) * 2016-07-05 2016-11-09 徐州重型机械有限公司 行车制动控制系统和车辆

Also Published As

Publication number Publication date
CN102490710A (zh) 2012-06-13
CN102490710B (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
WO2013082967A1 (zh) 气压制动系统及轮胎式工程机械
CN105383467B (zh) 驻车制动装置
CN102470848B (zh) 用于车辆制动设备的控制器以及具有该控制器的制动设备
CN200939875Y (zh) 中重型汽车电子控制制动系统
CN101970270A (zh) 汽车的制动设备
CN202827257U (zh) 一种矿用自卸车的液压举升控制系统及一种矿用自卸车
CN104163167B (zh) 气压制动控制系统、方法、装置及轮式工程机械
CN107531224B (zh) 拖车制动系统
CN205202987U (zh) 8×8越野车的abs防抱死系统
CN203739577U (zh) 一种汽车机械式空气悬挂控制系统
CN104553665A (zh) 一种随动转向桥复合悬架气路控制系统
CN201863831U (zh) 一种中型载货车复合悬架式支撑桥的承载、制动控制系统
CN203946079U (zh) 一种半挂车及其制动系统
CN103481884B (zh) 工程车辆底盘气路控制系统以及全地面起重机
CN114212064B (zh) 作业机械及制动系统
CN2700148Y (zh) 汽车空气悬挂电控升降及侧倾装置
JPH1044803A (ja) 油圧式四駆車両
CN103523001B (zh) 工程车辆底盘制动控制系统以及起重机
WO2020045097A1 (ja) サスペンション装置
CN202507886U (zh) 三桥半挂车车桥悬挂举升电磁气控装置
CN204415076U (zh) 一种随动转向桥复合悬架气路控制系统
JP4076218B2 (ja) 発進補助装置
CN113062904B (zh) 后桥转向锁止阀及液压系统和汽车起重机
CN213862205U (zh) 一种汽车的气动制动装置
CN217921239U (zh) 起重机的制动控制系统和起重机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854584

Country of ref document: EP

Kind code of ref document: A1