WO2013081396A1 - 수냉식 이차전지 - Google Patents

수냉식 이차전지 Download PDF

Info

Publication number
WO2013081396A1
WO2013081396A1 PCT/KR2012/010246 KR2012010246W WO2013081396A1 WO 2013081396 A1 WO2013081396 A1 WO 2013081396A1 KR 2012010246 W KR2012010246 W KR 2012010246W WO 2013081396 A1 WO2013081396 A1 WO 2013081396A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant pipe
water
secondary battery
battery
battery cells
Prior art date
Application number
PCT/KR2012/010246
Other languages
English (en)
French (fr)
Inventor
황재일
임동훈
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to CN201280058750.3A priority Critical patent/CN103959554B/zh
Priority to US14/362,171 priority patent/US10514209B2/en
Publication of WO2013081396A1 publication Critical patent/WO2013081396A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0043Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a water-cooled secondary battery, and more particularly, a refrigerant pipe is integrally formed at an edge portion of a heat sink that is interposed between a plurality of battery cells stacked side by side, thereby improving thermal conductivity, thereby improving the thermal conductivity of the battery cells.
  • the present invention relates to a water-cooled secondary battery having improved cooling efficiency.
  • a battery pack is in close contact with a thermally conductive plate interposed between a plurality of battery cells to cool heat generated during charging or discharging, and one side of the thermally conductive plate is coupled to a cooling tube.
  • the heat exchange medium such as air or cooling water, passes through the cooling tube and absorbs heat transferred from the thermally conductive plate to cool the battery cells.
  • thermally conductive plate and the cooling tube are made of aluminum (Al) or copper (Cu) having high thermal conductivity for cooling the battery cell, it is difficult to combine the thermally conductive plate and the cooling tube.
  • a welding groove or a coupling groove 31 is formed in the cooling tube 30 as shown in FIG. 1, and one side of the thermal conductive plate 20 is bent.
  • the bent portion 21 can be coupled to the structure that is inserted into the coupling groove (31).
  • an object of the present invention is a refrigerant pipe integrally formed at the edge of the heat sink is interposed between a plurality of battery cells stacked side by side, integrally formed, heat conduction It is to provide a water-cooled secondary battery that can improve the degree of cooling efficiency.
  • a plurality of battery cells are formed side by side spaced apart at a certain distance; And a heat dissipation plate interposed between the battery cells to be in close contact with each other and formed to be wider than an electrode body of the battery cell.
  • the heat sink is characterized in that the refrigerant pipe is integrally formed on the rim, the refrigerant pipe is formed to be disposed on the outside of the electrode body.
  • a heat sink is interposed between the pair of battery cells and closely adhered to each other to form a sub module, and a plurality of the sub modules are stacked, but the heat sink is formed by the electrode body of the battery cell.
  • the refrigerant pipe is integrally formed on the rim, characterized in that the refrigerant pipe is formed to be disposed outside the electrode body.
  • the inlet manifold is connected to the inlet of the refrigerant pipes inlet pipe is formed on one side;
  • a refrigerant pipe is integrally formed at an edge portion of a heat sink that is interposed between a plurality of battery cells stacked side by side, the heat conductivity of a portion where the heat sink and the refrigerant pipe are in contact is improved. There is an advantage that the cooling efficiency of the cells is increased.
  • FIG. 1 is a schematic view showing a cooling structure of a conventional battery pack.
  • FIGS. 2 and 3 are an exploded perspective view and an assembled perspective view showing a water-cooled secondary battery of the present invention.
  • FIG. 4 is a cross-sectional view along the AA 'direction of FIG.
  • Figure 5 is a cross-sectional view AA 'showing another embodiment of a water-cooled secondary battery of the present invention.
  • FIG. 6 is a plan view showing a heat sink according to the present invention.
  • FIGS. 2 and 3 are an exploded perspective view and an assembled perspective view of the water-cooled secondary battery of the present invention.
  • the water-cooled secondary battery 1000 of the present invention includes a plurality of battery cells 100 formed side by side at a predetermined distance from each other; And a heat dissipation plate 200 interposed between the battery cells 100 to be in close contact with each other and formed to be wider than the electrode body 110 of the battery cell 100. It is made, including the, the heat dissipation plate 200 is formed so that the refrigerant pipe 210 is integrally formed on the edge, the refrigerant pipe 210 is formed to be disposed outside the electrode body (110).
  • the battery cells 100 are formed side by side with a predetermined distance spaced apart, the battery cell 100 is formed with electrode tabs 120 on one side or both sides of the electrode body 110 is formed in a plate shape, the battery cell 100 The electrode tabs 120) are electrically connected in series or in parallel with the electrode tabs 120 of the neighboring battery cells 100.
  • the heat sink 200 is formed in a plate shape and is interposed between the battery cells 100 so as to be in close contact with each other so that heat generated in the charging or discharging process of the battery cells 100 can be quickly transferred to the heat sink 200. .
  • the heat sink 200 may be made of a material having high thermal conductivity, such as aluminum or copper, and may be made of a material capable of quickly transferring heat generated from the battery cell 100.
  • the heat sink 200 is formed wider than the electrode body 110 of the battery cell 100.
  • the heat sink 200 has a coolant pipe 210 integrally formed at an edge thereof, and the coolant pipe 210 is disposed outside the battery cell 100.
  • the refrigerant pipe 210 formed at the edge of the heat sink 200 is formed to surround the outside of the electrode body 110 of the battery cell 100 as shown in FIGS. 3 and 4.
  • the refrigerant pipe 210 is formed with an inlet 211 and an outlet 212, respectively, so that the refrigerant passes through the refrigerant pipe 210 and causes heat exchange.
  • the inlet 211 and the outlet 212 are formed on one side of the heat dissipation plate 200.
  • the inlet 211 and the outlet 212 may be formed in various ways depending on the shape of the battery cell 100 and the position of the electrode tab 120. can be changed.
  • the refrigerant pipe 210 is integrally formed with the heat sink 200, the cooling efficiency of the battery cell 100 is increased.
  • the thermal conductivity is lowered because a complete contact is not made at the portion to be joined. Since it is difficult and deformation occurs in the heat sink 200 due to welding, it is possible that a complete contact with the battery cell 100 may not be made.
  • the heat sink 200 and the refrigerant pipe 210 according to the present invention are integrally formed. As a result, the thermal conductivity is improved, thereby increasing the cooling efficiency.
  • the heat dissipation plate 200 is interposed between the pair of battery cells 100 and closely adhered to each other to form a sub module 500.
  • the heat dissipation plate 200 is formed to be laminated, the heat sink 200 is wider than the electrode body 110 of the battery cell 100 and the refrigerant pipe 210 is integrally formed at the edge, the refrigerant pipe 210 is the electrode It may be formed to be disposed outside the sieve 110.
  • the heat sink 200 is formed to be wider than the electrode body 110 of the battery cell 100 and the refrigerant pipe 210 is formed on the edge of the heat sink 200 as in the former embodiment, but the battery cell 100 is the same.
  • One heat sink 200 per two sheets is interposed to be in close contact.
  • the heat sink 200 is interposed between the battery cells 100 stacked one by one as shown in FIG. 5.
  • one secondary battery 1000 may be configured and thus may be conveniently assembled.
  • the diameter of the refrigerant pipe 210 formed at the edge of the heat sink 200 may be larger than that of the former embodiment, thereby increasing the cooling efficiency.
  • the secondary battery 1000 is stacked as in the former or the latter embodiment, the inlet manifold 300 is connected to the inlet 211 of the refrigerant pipe 210, the inlet pipe 310 is formed on one side; And an outlet manifold 400 connected to the outlet 212 of the refrigerant pipes 210 and having an outlet tube 410 formed at one side thereof. It may be made to include more.
  • the refrigerant flowing through the inlet pipe 310 flows along the inlet manifold 300 to enter each inlet 211, passes through the plurality of refrigerant pipes 210, and is heat exchanged, and then each outlet 212. As it is discharged to the outlet manifold 400 is collected through the outlet pipe 410, the number of battery cells 100 can be evenly cooled.
  • the inlet 211 and the outlet 212 are connected to a heat exchanger configured as a hose or a pipe, the refrigerant cooled by passing through the heat exchanger while cooling the heated refrigerant while circulating the refrigerant pipe 210 is cooled again the refrigerant pipe It may be configured to flow into (210).
  • a heat exchanger configured as a hose or a pipe
  • water may be generally used, and a separate refrigerant having high heat exchange efficiency may be used according to the characteristics and use of the battery.
  • a metal plate material having a clad layer formed on one surface thereof is pressed to form grooves on the edge. After joining the plate materials to face each other and brazing the cladding layer to be welded to each other to form a heat sink is formed integrally with the grooves facing each other formed of a refrigerant pipe.
  • the metal plate may be pressed to form grooves on the rim, and a refrigerant pipe having a cladding layer formed on the outside to correspond to the shape of the grooves may be inserted into the grooves and then brazed to form a single body.
  • electrode body 120 electrode tab

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 수냉식 이차전지에 관한 것으로서, 보다 상세하게는 나란하게 적층되는 다수개의 전지 셀들 사이에 각각 개재되어 밀착되는 방열판의 테두리부에 냉매 파이프가 일체형으로 형성되어, 열전도성을 향상시켜 전지 셀들의 냉각 효율을 높인 수냉식 이차전지에 관한 것이다.

Description

수냉식 이차전지
본 발명은 수냉식 이차전지에 관한 것으로서, 보다 상세하게는 나란하게 적층되는 다수개의 전지 셀들 사이에 각각 개재되어 밀착되는 방열판의 테두리부에 냉매 파이프가 일체형으로 형성되어, 열전도성을 향상시켜 전지 셀들의 냉각 효율을 높인 수냉식 이차전지에 관한 것이다.
일반적으로 배터리 팩은 충전 또는 방전시 발생하는 열을 냉각시키기 위해 다수개의 전지 셀들 사이에 각각 열전도성 플레이트가 개재되어 밀착되고 상기 열전도성 플레이트의 일측이 냉각튜브에 결합된다.
그리고 공기 또는 냉각수 등의 열교환매체가 상기 냉각튜브를 통과하며 상기 열전도성 플레이트로부터 전달되는 열을 흡수하여 상기 전지 셀들의 냉각이 이루어진다.
그런데 상기 열전도성 플레이트 및 냉각튜브는 상기 전지 셀의 냉각을 위해 열전도도가 높은 알루미늄(Al) 또는 구리(Cu) 재질로 이루어지므로, 상기 열전도성 플레이트와 냉각튜브를 결합시키는데 어려움이 있다.
즉, 금속 재질의 상기 열전도성 플레이트와 냉각튜브를 접합하기 위해서는 용접을 하거나 또는 도 1과 같이 상기 냉각튜브(30)에 결합홈(31)을 형성하고 상기 열전도성 플레이트(20)의 일측을 절곡하여 절곡부(21)가 결합홈(31)에 삽입되는 구조로 결합될 수 있다.
그러나 이는 상기 열전도성 플레이트(20)와 냉각튜브(30)를 결합하기 위한 구조가 복잡해져 제작비용이 증가되며, 또한 상기 열전도성 플레이트(20)와 냉각튜브(30)가 결합되어 접촉되는 면이 완전히 밀착되기 어려우므로 열전도도가 낮아져 냉각 효율이 저하되는 문제점이 있다.
[선행기술문헌]
[특허문헌]
KR 10-2010-0119499 A (2010.11.09.) 도3, 도11, 도12
본 발명은 상술한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 나란하게 적층되는 다수개의 전지 셀들 사이에 각각 개재되어 밀착되는 방열판의 테두리부에 냉매 파이프가 일체형으로 형성되어, 열전도도를 향상시켜 냉각 효율을 높일 수 있는 수냉식 이차전지를 제공하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 수냉식 이차전지는, 일정거리 이격되어 나란히 형성되는 다수개의 전지 셀; 및 상기 전지 셀들 사이에 각각 개재되어 밀착되며, 상기 전지 셀의 전극체보다 넓게 형성되는 방열판; 을 포함하여 이루어지되, 상기 방열판은 테두리에 냉매 파이프가 일체형으로 형성되어, 상기 냉매 파이프가 상기 전극체의 외측에 배치되도록 형성되는 것을 특징으로 한다.
또한, 본 발명의 수냉식 이차전지는, 한 쌍의 전지 셀 사이에 방열판이 개재되고 밀착되어 서브 모듈이 형성되며, 상기 서브 모듈이 다수개가 적층되어 이루어지되, 상기 방열판은 상기 전지 셀의 전극체보다 넓게 형성되고 테두리에 냉매 파이프가 일체형으로 형성되어, 상기 냉매 파이프가 상기 전극체의 외측에 배치되도록 형성되는 것을 특징으로 한다.
또한, 상기 냉매 파이프들의 유입구에 연결되어 일측에 유입관이 형성되는 입구 매니폴드; 및 상기 냉매 파이프들의 유출구에 연결되어 일측에 유출관이 형성되는 출구 매니폴드; 를 더 포함하여 이루어지는 것을 특징으로 한다.
본 발명의 수냉식 이차전지는 나란하게 적층되는 다수개의 전지 셀들 사이에 각각 개재되어 밀착되는 방열판의 테두리부에 냉매 파이프가 일체형으로 형성되므로, 방열판과 냉매 파이프가 접촉되는 부분의 열전도도가 향상되어 전지 셀들의 냉각 효율이 높아지는 장점이 있다.
도 1은 종래의 배터리 팩의 냉각 구조를 나타낸 개략도.
도 2 및 도 3은 본 발명의 수냉식 이차전지를 나타낸 분해사시도 및 조립사시도.
도 4는 도 3의 AA'방향 단면도.
도 5는 본 발명의 수냉식 이차전지의 다른 실시 예를 나타낸 AA'방향 단면도.
도 6은 본 발명에 따른 방열판을 나타낸 평면도.
이하, 상기한 바와 같은 본 발명의 수냉식 이차전지를 첨부된 도면을 참고하여 상세하게 설명한다.
도 2 및 도 3은 본 발명의 수냉식 이차전지를 나타낸 분해사시도 및 조립사시도이다.
도시된 바와 같이 본 발명의 수냉식 이차전지(1000)는, 일정거리 이격되어 나란히 형성되는 다수개의 전지 셀(100); 및 상기 전지 셀(100)들 사이에 각각 개재되어 밀착되며, 상기 전지 셀(100)의 전극체(110) 보다 넓게 형성되는 방열판(200); 을 포함하여 이루어지되, 상기 방열판(200)은 테두리에 냉매 파이프(210)가 일체형으로 형성되어, 상기 냉매 파이프(210)가 상기 전극체(110)의 외측에 배치되도록 형성된다.
우선, 전지 셀(100)들은 일정거리 이격되어 나란하게 형성되고, 전지 셀(100)은 판형으로 형성되는 전극체(110)의 일측 또는 양측에 전극탭(120)이 형성되며, 전지 셀(100)들의 전극탭(120)은 서로 이웃하는 전지 셀(100)의 전극탭(120)과 전기적으로 직렬 또는 병렬로 연결된다.
방열판(200)은 판형으로 형성되어 전지 셀(100)들 사이에 각각 개재된 후 밀착되어 전지 셀(100)들의 충전 또는 방전 과정에서 발생되는 열이 방열판(200)으로 빠르게 전달될 수 있도록 구성된다.
그리고 방열판(200)은 알루미늄 또는 구리와 같이 열전도도가 높은 재질로 이루어질 수 있으며, 전지 셀(100)에서 발생되는 열이 빠르게 전달될 수 있는 재질로 이루어지는 것이 바람직하다.
이때, 방열판(200)은 전지 셀(100)의 전극체(110) 보다 넓게 형성된다. 그리고 방열판(200)은 테두리에 냉매 파이프(210)가 일체형으로 형성되어, 냉매 파이프(210)가 전지 셀(100)의 외측에 배치되도록 형성된다.
이와 같이 방열판(200)의 테두리에 형성되는 냉매 파이프(210)는 도 3 및 도 4와 같이 전지 셀(100)의 전극체(110) 외측을 둘러싸는 형태로 형성된다.
또한, 냉매 파이프(210)는 유입구(211)와 유출구(212)가 각각 형성되어, 냉매가 냉매 파이프(210)를 통과하며 열 교환을 일으킬 수 있도록 구성된다. 도 2 및 3에서는 유입구(211) 및 유출구(212)가 방열판(200)의 일측에 구성되는 형태를 나타내었으나, 전지 셀(100)의 형상 및 전극탭(120)이 형성되는 위치에 따라 다양하게 변경될 수 있다.
그리하여 전지 셀(100)의 충전 또는 방전 시 전극체(110)에서 발생되는 열이 방열판(200)을 통해 냉매 파이프(210)로 전달되고, 냉매 파이프(210)의 내부를 통과하는 냉매로 전달되어 전지 셀(100)이 냉각된다.
이때, 냉매 파이프(210)는 방열판(200)과 일체형으로 형성되므로, 전지 셀(100)의 냉각 효율이 증가된다.
즉, 방열판(200)과 냉매 파이프(210)를 별도로 형성하고 이들을 조립하여 결합하는 경우에는 결합되는 부분에서 완전한 접촉이 이루어지지 않아 열전도도가 저하되며, 용접하여 결합하는 경우에는 완전히 접촉되도록 용접하기가 어려우며 용접으로 인한 방열판(200)에 변형이 발생하여 전지 셀(100)과의 완전한 밀착이 이루어지지 않을 가능성이 발생하므로, 본 발명에 따른 방열판(200) 및 냉매 파이프(210)는 일체형으로 형성되어 열전도도가 향상되므로 냉각 효율이 증가된다.
그리고 본 발명의 수냉식 이차전지(1000)의 다른 예로, 한 쌍의 전지 셀(100) 사이에 방열판(200)이 개재되고 밀착되어 서브 모듈(500)이 형성되며, 상기 서브 모듈(500)이 다수개가 적층되어 이루어지되, 상기 방열판(200)은 상기 전지 셀(100)의 전극체(110) 보다 넓게 형성되고 테두리에 냉매 파이프(210)가 일체형으로 형성되어, 상기 냉매 파이프(210)가 상기 전극체(110)의 외측에 배치되도록 형성될 수 있다.
이는 전자의 실시 예와 마찬가지로 방열판(200)이 전지 셀(100)의 전극체(110) 보다 넓게 형성되고 방열판(200)의 테두리에 냉매 파이프(210)가 형성되는 것은 동일하나, 전지 셀(100) 두 장당 하나의 방열판(200)이 개재되어 밀착되도록 구성된다.
즉, 도 5와 같이 적층되는 전지 셀(100)들 사이에 하나 걸러 하나씩 방열판(200)이 개재되는 형태로 구성된다.
그리하여 방열판(200)이 포함된 서브 모듈(500)을 다수개를 적층하여 하나의 이차전지(1000)를 구성할 수 있어 편리하게 조립이 가능하다. 또한, 서브 모듈(500)을 구성함에 있어서 방열판(200)의 테두리에 형성되는 냉매 파이프(210)의 직경을 전자의 실시 예에 비해 크게 형성할 수 있어 냉각 효율을 높일 수 있다.
그리고 전자 또는 후자의 실시 예와 같이 적층 형성되는 이차전지(1000)는, 냉매 파이프(210)들의 유입구(211)에 연결되어 일측에 유입관(310)이 형성되는 입구 매니폴드(300); 및 냉매 파이프(210)들의 유출구(212)에 연결되어 일측에 유출관(410)이 형성되는 출구 매니폴드(400); 를 더 포함하여 이루어질 수 있다.
이는 다수개의 방열판(200)이 적층되어 일측에 냉매 파이프(210)의 유입구(211) 및 유출구(212)가 나란히 형성되어, 유입구(211)들이 연통되도록 길게 입구 매니폴드(300)가 결합되고 유출구(212)들이 연통되도록 길게 출구 매니폴드(400)가 결합되는 구성이다.
그리하여 유입관(310)을 통해 유입된 냉매가 입구 매니폴드(300)를 따라 유동되어 각각의 유입구(211)로 유입되어 다수개의 냉매 파이프(210)를 통과하며 열교환 된 후 각각의 유출구(212)로 배출되어 출구 매니폴드(400)로 모여 유출관(410)을 통해 배출되므로, 대수개의 전지 셀(100)을 고르게 냉각시킬 수 있다.
이때, 유입구(211) 및 유출구(212)는 별도로 구성되는 열교환기에 호스 또는 파이프로 연결되어, 냉매 파이프(210)를 순환하면서 가열된 냉매를 열교환기를 통과시켜 냉각한 후 다시 차가워진 냉매가 냉매 파이프(210)로 유입되도록 구성될 수 있다.
또한, 냉매는 일반적으로 물을 사용할 수 있으며, 전지의 특성 및 용도에 따라서 열교환 효율이 높은 별도의 냉매를 사용할 수도 있다.
또한, 방열판(200)의 테두리에 형성되는 냉매 파이프(210)를 일체형으로 형성하는 방법으로, 일면에 클래드층이 형성된 금속 판재를 프레스 가공하여 테두리에 홈이 형성되도록 하고, 이와 같이 가공된 두 장의 판재를 서로 마주보도록 결합한 후 브레이징하여 클래드층이 녹으며 용접되도록 하여 서로 마주보는 홈이 냉매 파이프로 형성되어 일체형으로 형성되는 방열판을 제작할 수 있다.
그리고 금속 판재를 프레스 가공하여 테두리에 홈이 형성되도록 하고, 홈의 형상에 대응되도록 외측에 클래드층이 형성된 냉매 파이프를 제작하여 상기 홈에 삽입한 후 브레이징하여 일체형으로 형성되도록 할 수 있다.
본 발명은 상기한 실시 예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.
[부호의 설명]
1000 : (본 발명의) 수냉식 이차전지
100 : 전지 셀
110 : 전극체 120 : 전극탭
200 : 방열판
210 : 냉매 파이프
211 : 유입구 212 : 유출구
300 : 입구 매니폴드 310 : 유입관
400 : 출구 매니폴드 410 : 유출관
500 : 서브 모듈

Claims (3)

  1. 일정거리 이격되어 나란히 형성되는 다수개의 전지 셀; 및
    상기 전지 셀들 사이에 각각 개재되어 밀착되며, 상기 전지 셀의 전극체보다 넓게 형성되는 방열판; 을 포함하여 이루어지되,
    상기 방열판은 테두리에 냉매 파이프가 일체형으로 형성되어, 상기 냉매 파이프가 상기 전극체의 외측에 배치되도록 형성되는 수냉식 이차전지.
  2. 한 쌍의 전지 셀 사이에 방열판이 개재되고 밀착되어 서브 모듈이 형성되며, 상기 서브 모듈이 다수개가 적층되어 이루어지되,
    상기 방열판은 상기 전지 셀의 전극체보다 넓게 형성되고 테두리에 냉매 파이프가 일체형으로 형성되어, 상기 냉매 파이프가 상기 전극체의 외측에 배치되도록 형성되는 수냉식 이차전지.
  3. 제1항 또는 제2항에 있어서,
    상기 냉매 파이프들의 유입구에 연결되어 일측에 유입관이 형성되는 입구 매니폴드; 및 상기 냉매 파이프들의 유출구에 연결되어 일측에 유출관이 형성되는 출구 매니폴드; 를 더 포함하여 이루어지는 수냉식 이차전지.
PCT/KR2012/010246 2011-12-02 2012-11-29 수냉식 이차전지 WO2013081396A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280058750.3A CN103959554B (zh) 2011-12-02 2012-11-29 水冷式二次电池
US14/362,171 US10514209B2 (en) 2011-12-02 2012-11-29 Water-cooling type secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110128464A KR101750066B1 (ko) 2011-12-02 2011-12-02 수냉식 이차전지
KR10-2011-0128464 2011-12-02

Publications (1)

Publication Number Publication Date
WO2013081396A1 true WO2013081396A1 (ko) 2013-06-06

Family

ID=48535780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010246 WO2013081396A1 (ko) 2011-12-02 2012-11-29 수냉식 이차전지

Country Status (4)

Country Link
US (1) US10514209B2 (ko)
KR (1) KR101750066B1 (ko)
CN (1) CN103959554B (ko)
WO (1) WO2013081396A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140363720A1 (en) * 2013-06-07 2014-12-11 Robert Bosch Gmbh Housing device for at least one energy store cell and method for prducing an housing device for at least one energy store cell
US20150207187A1 (en) * 2014-01-23 2015-07-23 Lg Chem, Ltd. Battery cell assembly and method for coupling a cooling fin to first and second cooling manifolds
JP2015537344A (ja) * 2012-10-31 2015-12-24 エルジー・ケム・リミテッド 電池セルアセンブリー及び電池セルアセンブリー用冷却フィンの製造方法
US9960465B2 (en) 2015-07-30 2018-05-01 Lg Chem, Ltd. Battery pack
US10084218B2 (en) 2014-05-09 2018-09-25 Lg Chem, Ltd. Battery pack and method of assembling the battery pack
CN109638378A (zh) * 2018-11-15 2019-04-16 江苏科技大学 一种新能源汽车电池动力系统的热管理装置
US10770762B2 (en) 2014-05-09 2020-09-08 Lg Chem, Ltd. Battery module and method of assembling the battery module

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101601149B1 (ko) 2013-10-17 2016-03-08 주식회사 엘지화학 2이상의 분리된 유로를 가진 히트싱크
KR101601142B1 (ko) 2013-10-18 2016-03-08 주식회사 엘지화학 단열재를 포함하여 2이상의 분리된 유로를 가진 히트싱크
KR101642326B1 (ko) 2013-10-18 2016-07-26 주식회사 엘지화학 수직 배치된 공통 출입구가 형성된 2이상의 분리된 유로를 가진 히트싱크
KR101833526B1 (ko) * 2014-05-29 2018-02-28 주식회사 엘지화학 수냉식 냉각구조를 포함하는 전지모듈
KR102321512B1 (ko) * 2014-09-11 2021-11-04 현대모비스 주식회사 수냉식 배터리모듈 및 이를 이용한 수냉식 배터리 냉각장치
KR101840417B1 (ko) * 2014-09-15 2018-03-20 주식회사 엘지화학 냉매 유로의 절곡이 최소화된 냉각 구조를 포함하는 전지모듈
CN105990620A (zh) * 2015-02-10 2016-10-05 广东万锦科技股份有限公司 一种相变材料棒
CA2976877C (en) * 2015-02-18 2022-06-21 Ttb Holding Company Limited Lithium ion battery module with cooling system
EP3266056B1 (en) 2015-03-06 2020-07-15 Sterling PBES Energy Solutions Ltd. Battery module with thermal runaway and gas exhaust management system
KR101780037B1 (ko) * 2015-04-22 2017-09-19 주식회사 엘지화학 배터리 셀 냉각장치 및 이를 포함하는 배터리 모듈
KR102324346B1 (ko) 2015-04-29 2021-11-10 삼성에스디아이 주식회사 배터리 냉각 시스템
CN104993183B (zh) * 2015-05-22 2017-10-03 江苏科技大学 一种电池模块、电池模组及电池模组封装方法
US9995535B2 (en) 2015-06-30 2018-06-12 Faraday&Future Inc. Heat pipe for vehicle energy-storage systems
US10505163B2 (en) * 2015-06-30 2019-12-10 Faraday & Future Inc. Heat exchanger for vehicle energy-storage systems
DE102015217780A1 (de) * 2015-09-17 2017-03-23 Robert Bosch Gmbh Verfahren zur Herstellung einer Kühlvorrichtung zur Kühlung von Batterien
KR102259414B1 (ko) 2015-11-20 2021-06-01 주식회사 엘지에너지솔루션 히트싱크 및 이를 포함하는 배터리 모듈
US10469209B2 (en) 2016-02-01 2019-11-05 Ofinno, Llc Downlink control information in a wireless device and wireless network
US10477528B2 (en) 2016-02-02 2019-11-12 Ofinno, Llc Downlink control information in a wireless device and wireless network
US10511413B2 (en) 2016-02-03 2019-12-17 Ofinno, Llc Hybrid automatic repeat requests in a wireless device and wireless network
KR102413433B1 (ko) 2016-07-13 2022-06-28 에스케이온 주식회사 배터리 모듈
CN114421062B (zh) 2016-12-06 2024-04-12 Sk新能源株式会社 二次电池模块
CN106602170A (zh) * 2016-12-16 2017-04-26 中国矿业大学 一种可变接触式电池热管理系统
CN106941200A (zh) * 2017-03-14 2017-07-11 深圳市丰顺泰和投资合伙企业(有限合伙) 软包电池散热水冷板及电池模组
CN107394310B (zh) * 2017-08-01 2019-09-03 天津市捷威动力工业有限公司 动力电池冷却结构及系统
CN107895823B (zh) * 2017-09-29 2019-09-27 北京北交新能科技有限公司 一种锂离子电池温度控制方法
GB2570300B (en) * 2018-01-17 2020-11-25 Siemens Ag Energy storage system
KR102080148B1 (ko) 2018-03-16 2020-02-21 박지암 수냉식 방열장치
KR102277035B1 (ko) * 2018-03-21 2021-07-13 주식회사 엘지에너지솔루션 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
KR20200027709A (ko) 2018-09-05 2020-03-13 현대모비스 주식회사 전기자동차의 배터리모듈
KR102358425B1 (ko) * 2018-09-18 2022-02-03 주식회사 엘지에너지솔루션 전지 모듈
KR20200140011A (ko) * 2019-06-05 2020-12-15 주식회사 엘지화학 배터리 랙 및 이를 포함하는 전력 저장 장치
KR102172449B1 (ko) * 2020-06-05 2020-10-30 김광섭 상변화 물질의 잠열을 이용한 배터리 시스템의 화재 방지 장치 및 이를 포함하는 배터리 시스템
CN111934047B (zh) * 2020-06-09 2024-03-29 江苏久泰电池科技有限公司 一种新型软包电池模组
CN113745694B (zh) * 2021-08-24 2023-05-26 三一重工股份有限公司 电池模组及车辆
KR102667183B1 (ko) * 2021-12-27 2024-05-17 주식회사 엘지에너지솔루션 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩, 이러한 배터리 팩을 포함하는 에너지 저장 장치 및 자동차

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3426701B2 (ja) * 1994-05-31 2003-07-14 株式会社東芝 燃料電池
JP2009009889A (ja) * 2007-06-29 2009-01-15 Sanyo Electric Co Ltd 車両用の電源装置
KR20110126764A (ko) * 2010-05-18 2011-11-24 주식회사 엘지화학 콤팩트하고 안정성이 우수한 냉각부재와 이를 포함하는 전지모듈
KR20110126765A (ko) * 2010-05-18 2011-11-24 주식회사 엘지화학 신규한 구조의 냉각부재와 이를 포함하는 전지모듈

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8852778B2 (en) 2009-04-30 2014-10-07 Lg Chem, Ltd. Battery systems, battery modules, and method for cooling a battery module
KR101130043B1 (ko) 2009-07-27 2012-03-28 주식회사 엘지화학 냉각 효율성이 향상된 전지모듈

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3426701B2 (ja) * 1994-05-31 2003-07-14 株式会社東芝 燃料電池
JP2009009889A (ja) * 2007-06-29 2009-01-15 Sanyo Electric Co Ltd 車両用の電源装置
KR20110126764A (ko) * 2010-05-18 2011-11-24 주식회사 엘지화학 콤팩트하고 안정성이 우수한 냉각부재와 이를 포함하는 전지모듈
KR20110126765A (ko) * 2010-05-18 2011-11-24 주식회사 엘지화학 신규한 구조의 냉각부재와 이를 포함하는 전지모듈

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015537344A (ja) * 2012-10-31 2015-12-24 エルジー・ケム・リミテッド 電池セルアセンブリー及び電池セルアセンブリー用冷却フィンの製造方法
US20140363720A1 (en) * 2013-06-07 2014-12-11 Robert Bosch Gmbh Housing device for at least one energy store cell and method for prducing an housing device for at least one energy store cell
CN104332566A (zh) * 2013-06-07 2015-02-04 罗伯特·博世有限公司 用于至少一个蓄能电池单体的壳体装置和用来制造用于至少一个蓄能电池单体的壳体装置的方法
US9991573B2 (en) * 2013-06-07 2018-06-05 Robert Bosch Gmbh Housing device for at least one energy store cell and method for producing an housing device for at least one energy store cell
US20150207187A1 (en) * 2014-01-23 2015-07-23 Lg Chem, Ltd. Battery cell assembly and method for coupling a cooling fin to first and second cooling manifolds
US9444124B2 (en) * 2014-01-23 2016-09-13 Lg Chem, Ltd. Battery cell assembly and method for coupling a cooling fin to first and second cooling manifolds
US10084218B2 (en) 2014-05-09 2018-09-25 Lg Chem, Ltd. Battery pack and method of assembling the battery pack
US10770762B2 (en) 2014-05-09 2020-09-08 Lg Chem, Ltd. Battery module and method of assembling the battery module
US9960465B2 (en) 2015-07-30 2018-05-01 Lg Chem, Ltd. Battery pack
CN109638378A (zh) * 2018-11-15 2019-04-16 江苏科技大学 一种新能源汽车电池动力系统的热管理装置

Also Published As

Publication number Publication date
CN103959554B (zh) 2017-11-14
US10514209B2 (en) 2019-12-24
KR20130062056A (ko) 2013-06-12
US20140335390A1 (en) 2014-11-13
KR101750066B1 (ko) 2017-06-23
CN103959554A (zh) 2014-07-30

Similar Documents

Publication Publication Date Title
WO2013081396A1 (ko) 수냉식 이차전지
WO2011145830A2 (ko) 콤팩트하고 안정성이 우수한 냉각부재와 이를 포함하는 전지모듈
WO2011083968A2 (ko) 냉각 효율성이 향상된 중대형 전지팩
CN106992332B (zh) 电池冷却换热器
WO2012102496A2 (ko) 조립 생산성이 향상된 냉각부재와 이를 포함하는 전지모듈
WO2012023753A2 (ko) 콤팩트한 구조와 우수한 방열 특성의 전지모듈 및 그것을 포함하는 중대형 전지팩
WO2011145831A2 (ko) 신규한 구조의 냉각부재와 이를 포함하는 전지모듈
WO2010067943A1 (en) Battery module having excellent heat dissipation ability and battery pack employed with the same
WO2018062869A1 (ko) 냉각 유로가 개선된 배터리 모듈 및 이를 위한 프레임 어셈블리
CN212907888U (zh) 一种软包电池散热模组
EP2366202A2 (en) Battery module having cooling means, and middle or large-sized battery pack containing the same
WO2013165098A1 (en) Battery module and method for manufacturing the same
WO2015130057A1 (ko) 전지모듈
WO2024021481A1 (zh) 液冷板及电池包
CN111490313B (zh) 用于动力电池组的逆流式冷却系统及动力电池组
CN218827504U (zh) 电池包和具有其的车辆
JP7098191B2 (ja) 電池モジュール
CN210073975U (zh) 一种高效散热的软包电池模组
CN214281963U (zh) 一种液冷散热器
WO2018182162A1 (ko) 배터리 모듈
CN115207527A (zh) 电池冷却结构、电池包及电动交通工具
CN219811557U (zh) 一种电池模组
CN218241977U (zh) 换热器和具有其的其电池包、车辆
CN217009318U (zh) 一种电池包冷却结构及电池包
CN219476803U (zh) 自带冷却水道的电池包、应用该电池包的车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14362171

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12853606

Country of ref document: EP

Kind code of ref document: A1