WO2013081395A1 - 고온용 진공단열재 - Google Patents

고온용 진공단열재 Download PDF

Info

Publication number
WO2013081395A1
WO2013081395A1 PCT/KR2012/010245 KR2012010245W WO2013081395A1 WO 2013081395 A1 WO2013081395 A1 WO 2013081395A1 KR 2012010245 W KR2012010245 W KR 2012010245W WO 2013081395 A1 WO2013081395 A1 WO 2013081395A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum insulation
temperature vacuum
layer
insulation material
high temperature
Prior art date
Application number
PCT/KR2012/010245
Other languages
English (en)
French (fr)
Inventor
전승민
황승석
한정필
민병훈
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Priority to CN201280058506.7A priority Critical patent/CN103958954B/zh
Priority to US14/359,200 priority patent/US9404663B2/en
Priority to EP12852869.2A priority patent/EP2787268B1/en
Priority to JP2014544667A priority patent/JP5946150B2/ja
Publication of WO2013081395A1 publication Critical patent/WO2013081395A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/029Shape or form of insulating materials, with or without coverings integral with the insulating materials layered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/34Elements and arrangements for heat storage or insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/04Arrangements using dry fillers, e.g. using slag wool which is added to the object to be insulated by pouring, spreading, spraying or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B1/00Stoves or ranges
    • F24B1/20Ranges
    • F24B1/24Ranges with built-in masses for heat storage or heat insulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6402Aspects relating to the microwave cavity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/239Complete cover or casing

Definitions

  • the present invention relates to a vacuum insulation material consisting of a core material and an outer shell material, and more particularly, to a high temperature vacuum insulation material that can be used in a high temperature region.
  • insulators used in high temperature environments such as water purifiers use inorganic insulators that are easy to handle and flame retardant, such as glass wool, but they have many problems in improving power consumption efficiency due to insufficient insulation performance. .
  • the most representative example is the core material using porous inorganic material such as fumed silica, which minimizes heat transfer inside the vacuum insulator, thereby improving long-term performance. Development focuses on maintenance.
  • the vacuum insulator When the vacuum insulator is used for high temperature applications, the long-term thermal insulation performance and extreme degradation of the barrier performance of the shell material are caused by the high temperature environment.
  • a heat resistant jacket film structure capable of minimizing the degradation of the barrier performance of the jacket and a getter material capable of strongly adsorbing external gas and wet steam introduced from a high temperature environment are required.
  • the physical properties of the vacuum insulation material having a flame retardant performance and self-extinguishing property is required.
  • An object of the present invention is to provide a high temperature vacuum insulation material that can be continuously used in a high temperature region.
  • Another object of the present invention is to provide a high temperature vacuum insulating material having excellent flame retardancy under a high temperature environment.
  • the inorganic core material as a glass fiber (glass fiber) component; And a thermal welding layer in close contact with the surface of the inorganic core material, a protective layer for absorbing and dispersing an external impact, and a barrier layer for blocking penetration of gas or moisture between the thermal welding layer and the protective layer.
  • a thermal welding layer in close contact with the surface of the inorganic core material, a protective layer for absorbing and dispersing an external impact, and a barrier layer for blocking penetration of gas or moisture between the thermal welding layer and the protective layer.
  • It consists of a film, it provides a high-temperature vacuum insulation material comprising; an outer shell material for sealing the inorganic core material.
  • the envelope may include at least one flame retardant additive selected from phosphorus compounds, nitrogen compounds, aluminum hydroxide and antimony trioxide in the composite film.
  • the shell material may be a composition of 10 to 90% by weight of at least one flame retardant additive selected from phosphorus compounds, nitrogen compounds, aluminum hydroxide and antimony trioxide and 10 to 90% by weight of the polymer resin and the organic solvent on the outer surface of the protective layer. It may further include a flame retardant layer formed by coating.
  • the outer cover material further comprises a flame retardant layer formed by coating a composition of 5 to 50% by weight of phosphorus compound, 5 to 50% by weight of nitrogen compound and 40 to 90% by weight of polymer resin and organic solvent on the outer surface of the protective layer. It may include.
  • the inorganic core material is used in which one or more laminated boards (Board) of the glass fiber (Glass fiber) agitated in an aqueous solution containing water or an organic compound laminated one or more,
  • One or more laminated boards made of a glass fiber aggregate having a diameter of 1 to 10 ⁇ m and an inorganic binder containing silica are used, or
  • Glass wool may be used in which one or more laminated mats having a needling process are laminated.
  • it may further include a getter material (Getter) is inserted into the inner space sealed with the outer cover material.
  • a getter material (Getter) is inserted into the inner space sealed with the outer cover material.
  • a vacuum insulation material to a home appliance that intends to implement flame retardancy and heat insulation separately or simultaneously in a high temperature environment, and based on this, it is applied to an entire industry such as building interior / exterior materials, home appliances, transportation equipment, and industrial equipment. And easy to expand.
  • thermos hot water supply
  • quenching water in the water purifier and vending machine, etc.
  • the high-temperature vacuum insulation material according to the present invention has a thermal conductivity of 0.01 W / mK or less, and when the two sides of the hot water reservoir of the water purifier are insulated using the same, the power consumption is improved by about 10% or more. Insulation of the five sides of the hot water reservoir also brings about 25% more power consumption improvement.
  • FIG. 1 is a cross-sectional view showing the structure of a high-temperature vacuum insulating material according to the present invention
  • FIG. 2 is a cross-sectional view showing the outer shell material of the high-temperature vacuum insulation material according to the present invention.
  • Figure 3 is a cross-sectional view showing the structure of the protective layer of the outer shell material of the high-temperature vacuum insulation material according to the present invention
  • Figure 4 is a cross-sectional view showing the structure of the barrier layer of the outer shell material of the high-temperature vacuum insulation material according to the present invention.
  • FIG. 1 is a cross-sectional view showing the structure of a high-temperature vacuum insulating material according to the present invention.
  • the high-temperature vacuum insulation material 100 includes an inorganic core 120 including glass fiber as a component, and an outer shell 140 for sealing the inorganic core.
  • getter material 160 may be inserted into the space sealed by the shell material 140 for the purpose of removing moisture in the inner space sealed by the shell material 140.
  • the outer cover material includes various functional layers, and may be made of a composite film material.
  • the functional layer includes a thermal welding layer for securing adhesion to the surface of the inorganic core material, a protective layer for absorbing and dispersing external impacts, a barrier layer for blocking gas or moisture penetration, and a flame retardant layer for securing flame retardant performance. Etc.
  • the inorganic core material 120 of the high-temperature vacuum insulation material 100 according to the present invention can be used without limitation as long as it is a known core material mainly composed of glass fibers.
  • the inorganic core material 120 may be formed by laminating one or more boards (Board) that are thermo-compression-bonded agitated glass fibers in an aqueous solution containing water or organic compounds, diameter
  • One or more plate-shaped boards (Board) made of a glass fiber aggregate of 1 to 10 ⁇ m and an inorganic binder containing silica may be formed by being stacked.
  • the inorganic core material 120 may be formed by laminating one or more mats of glass wool (Needling) plated mat.
  • the density of the mat is preferably 100 ⁇ 300 g / mm 3 .
  • the density of the mat is less than 100 g / mm 3 , it is difficult to secure sufficient thermal insulation performance.
  • the mat has a density of more than 300 g / mm 3 , there is a disadvantage in that the handling is not easy and the bending property of the vacuum insulation material is lowered.
  • the high temperature vacuum insulation material 100 may use the getter material 160 for the purpose of absorbing moisture in the inner space in which the inorganic core material 120 is accommodated.
  • the getter material 160 may be attached to the inorganic core material 120 or inserted into the inorganic core material 120.
  • the outer cover material 140 has a form in which functional layers are stacked and has a form of a composite film. The configuration of the outer cover material 140 will be described later.
  • the getter material 160 may include a quicklime (CaO) powder having a purity of 95% or more, and is selected from zeolite, cobalt, lithium, activated carbon, aluminum oxide, barium, calcium chloride, magnesium oxide, magnesium chloride, iron oxide, zinc, and zirconium. It is desirable to include one or more materials.
  • a quicklime (CaO) powder having a purity of 95% or more, and is selected from zeolite, cobalt, lithium, activated carbon, aluminum oxide, barium, calcium chloride, magnesium oxide, magnesium chloride, iron oxide, zinc, and zirconium. It is desirable to include one or more materials.
  • the inorganic core material 120 and the getter material 160 are inserted into the envelope material 140 and the inside of the envelope material 140 is reduced in pressure, and then the heat welding part 140a of the envelope material 140 is sealed.
  • the manufactured high temperature vacuum insulation material 100 is used after folding the heat welding portion 140a to correspond to the outer surface of the inorganic core material 120.
  • the width of the heat welding part 140a is preferably 6 to 15 mm.
  • FIG. 2 is a cross-sectional view showing the outer shell material of the high temperature vacuum insulation material according to the present invention
  • Figure 3 is a cross-sectional view showing the structure of the protective layer of the outer shell material of the high temperature vacuum insulation material according to the present invention
  • Figure 4 is It is sectional drawing which shows the structure of the barrier layer among the outer shell materials of the high temperature vacuum insulation material.
  • the envelope 140 formed of the composite film includes a heat welding layer 142, a barrier layer 144, a protective layer 146, and a flame retardant layer 148 from the bottom contacting the inorganic core material.
  • the "upper” means the surface facing the outside of the high-temperature vacuum insulation
  • the “lower” means the surface in the inner direction toward the inorganic core of the vacuum insulation.
  • the heat welding layer 142 is adhered to the lower portion of the barrier layer 144, and is in close contact with the surface of the non-core material (120 of FIG. 1) of the high temperature vacuum insulator.
  • the thermal welding layer 142 may be easily thermally welded at the thermal welding portion (140a of FIG. 1), and also has excellent sealing property, linear low-density polyethylene (LLDPE), low density polyethylene (LDPE), and high density density (HDPE).
  • LLDPE linear low-density polyethylene
  • LDPE low density polyethylene
  • HDPE high density density
  • Polyethylene), CPP (Casting Polypropylene) or the like is preferably formed of a film consisting of a mixture of two or more kinds.
  • the thickness of the heat welding layer 142 is preferably 50 ⁇ 80 ⁇ m. If the thickness of the heat welding layer 142 is less than 50 ⁇ m the peel strength of the heat welding layer is not effective to play the role of the layer, and if the thickness of the heat welding layer 142 exceeds 80 ⁇ m cost problems and heat welding The amount of gas or water vapor that enters through the layer increases, which causes the long-term durability of the vacuum insulator.
  • the thermal welding layer 142 has a crystallinity of 30% or more, and preferably has a softening point of 70 to 130 ° C and a melting point of 100 to 170 ° C.
  • the crystallinity of the thermal welding layer 142 is less than 30%, the binding force between molecules is easily weakened at a high temperature, so that the barrier performance is lowered, thereby lowering the internal vacuum degree.
  • the softening point of the heat welding layer 142 is less than 70 °C, when using a vacuum insulating material at a high temperature, there is a disadvantage that the intermolecular bonding strength of the heat welding layer is loosened, the barrier performance of the outer cover material is degraded, and the heat welding layer is reduced (Shrink There is a problem in that the internal vacuum of the vacuum insulation material is dismantled by causing a leak such as) to cause a leak (leak) to the outer cover material. If the softening point of the heat welding layer 142 exceeds 130 °C, there is a disadvantage in that excessive heat and pressure must be applied to seal the heat welding layer.
  • the protective layer 146 absorbs and disperses an external shock, and serves to protect the surface or the core inside the vacuum insulator from the external shock. Therefore, the protective layer 146 is preferably formed of a material excellent in impact resistance.
  • a polycarbonate film, a polyimide film, a nylon film, or a polyethylene terephthalate (PET) film may be provided. At least one of the films may be selected and used as a laminate, and for example, a nylon film and a PET film may be adhered to each other to be used as a protective layer.
  • the films are preferably used in a thickness of 12 to 25 ⁇ m each. If the thickness of the film is less than 12 ⁇ m is likely to be damaged by external impact or scratches, such as does not exhibit the unique function of the protective layer, when each film exceeds 25 ⁇ m the cost increases, flexibility is reduced There are disadvantages such as being.
  • an inorganic layer 200b made of aluminum (Al) or inorganic silica (Si 2 O 3, etc.) may be formed on one surface of the film forming the protective layer 146.
  • the inorganic layer 200b may be added in terms of impact resistance, heat resistance, cold resistance, scratch resistance, water barrier property, gas barrier property, and flexibility, and the thickness thereof is preferably 500 nm or less, and 5 to 300 nm. It is more preferable to form. When the thickness of the inorganic layer 200b is less than 5 nm, barrier performance against gas, moisture, or the like may not be properly exhibited. In addition, when the thickness of the inorganic layer 200b exceeds 300nm, the barrier performance can be sufficiently exhibited, but it is not preferable because excessive process cost is required to form the inorganic layer.
  • the inorganic layer 200b may be formed by depositing aluminum (Al) or inorganic silica (Si 2 O 3, etc.).
  • the barrier layer 144 is adhered to the lower portion of the protective layer 146 and serves to maintain the internal vacuum degree and block inflow of external gas or moisture.
  • an aluminum foil (Al foil) having excellent barrier property is used as the material of the barrier layer 144, and among aluminum foils, iron (Fe) content of 0.65% by weight or less may be used. In the case of aluminum foil having an iron (Fe) content of more than 0.65% by weight, the increase in manufacturing cost is much larger than the improvement of barrier property, which is not preferable.
  • the thickness of the said aluminum foil is 6-12 micrometers. If the thickness of the aluminum foil is less than 6 ⁇ m, there is a problem that cracks or defects may occur in the rolling process, if the thickness of the aluminum foil exceeds 12 ⁇ m heat is transferred along the aluminum foil with high thermal conductivity, the heat insulation effect There is a problem that can be degraded.
  • PET film or EVOH (Ethylene Vinyl Alcohol) film may be adhered to the aluminum foil and used as a protective layer.
  • a PET film or an ethylene vinyl alcohol (EVOH) film in which an inorganic layer 144c made of aluminum or silica is formed may be used.
  • the thickness of the said PET film or EVOH film is 12-16 micrometers. If the thickness of the film is less than 12 ⁇ m there is a problem that a defect may occur or tear when forming the film, if the film exceeds 16 ⁇ m there is a problem that the workability is lowered, the overall film manufacturing cost rises.
  • the inorganic layer 144c may be added in terms of impact resistance, heat resistance, cold resistance, scratch resistance, water barrier property, gas barrier property, and flexibility, and the thickness thereof is preferably 500 nm or less, and 5 to 300 nm. It is more preferable to form. When the thickness of the inorganic layer 144c is less than 5 nm, barrier performance against gas, moisture, or the like may not be properly exhibited. In addition, when the thickness of the inorganic layer 144c exceeds 300nm, the barrier performance can be sufficiently exhibited, but it is not preferable because excessive process cost is required to form the inorganic layer 144c.
  • the inorganic layer 144c may be formed by depositing aluminum (Al) or inorganic silica (Si 2 O 3, etc.).
  • the barrier layer 144 may include an EVOH film 144b in which the inorganic layer 144c is formed, and is bonded to the thermal welding layer 142 by being positioned inward from the outer cover material of the vacuum insulation material.
  • the aluminum foil 144a is positioned on the outer side so that the aluminum foil 144a is bonded to the protective layer 210.
  • the aluminum foil is much excellent in the barrier performance except the edge portion is located outside to act as a barrier for gas or moisture, EVOH This is because the film 144b preferably acts as a barrier only against the gas, moisture, and the like that are penetrated by the tearing of the aluminum foil 144a.
  • the flame retardant layer 148 serves to protect from external heat when the vacuum insulator is applied in a high temperature environment.
  • the flame retardant layer 148 contains a flame retardant, may be formed by coating on the upper portion of the protective layer 146, or by adding a flame retardant to the protective layer 146 or the like to impart flame retardancy.
  • the outer shell material 140 for the high temperature vacuum insulation material according to the present invention is formed with a flame retardant layer 148 containing a flame retardant to solve this problem.
  • the flame retardant layer 148 is added with a flame retardant to impart flame retardancy.
  • the flame retardant is not particularly limited as long as the material is imparted with flame retardancy, but preferably one or more materials selected from non-halogen type phosphorus compounds, nitrogen compounds, aluminum hydroxide, and antimony trioxide may be used.
  • the nitrogen compound is a generic term for flame retardants such as melamine, urea, amine, amide, and the like
  • the phosphorus compound is a generic term for phosphorus flame retardants such as phosphorus and phosphate esters.
  • a mixture of a nitrogen compound and a phosphorus compound can be synergistic effect of flame retardant performance.
  • aluminum hydroxide is preferred as a flame retardant used in the present invention because it is less corrosive, excellent electrical insulation and economically advantageous, antimony trioxide has a great advantage in synergistic effect when used simultaneously with other flame retardants.
  • the flame retardant layer 148 may be formed by coating a surface of the protective layer 146 with a coating composition consisting of 10 to 90% by weight of the flame retardant and 10 to 90% by weight of a polymer resin and an organic solvent.
  • a coating composition consisting of 10 to 90% by weight of the flame retardant and 10 to 90% by weight of a polymer resin and an organic solvent.
  • the phosphorus compound is added in less than 5% by weight, or when the nitrogen compound is added in less than 5% by weight, it is difficult to secure sufficient flame retardancy.
  • the phosphorus compound when added in excess of 50% by weight or the nitrogen compound is added in excess of 50% by weight, the content of other substances other than the flame retardant component may be reduced, thereby making it difficult to form the flame retardant layer.
  • the polymer resin and the organic solvent are preferably added in an amount of 40 to 90% by weight, and when added in an amount less than 40% by weight, difficulty in forming a flame retardant layer may be generated. It is difficult.
  • the polymer resin may be a polymer resin such as polyester or polyurethane, and the organic solvent may be used without limitation as long as it is an organic solvent used in a general coating composition.
  • the coating method in which the flame retardant layer 148 is formed is not particularly limited. Preferably it may be coated by spray coating, roll coating, gravure printing.
  • the thickness of the flame retardant layer 148 is also not particularly limited, but the limitation of a certain thickness is required according to the characteristics of the composite film to be manufactured and the thinning of the vacuum insulator. Therefore, it is preferable that the thickness of the flame-retardant layer 148 is 0.5-10 micrometers.
  • the films forming each layer are adhered to each other by an adhesive layer (not shown).
  • the interlayer adhesive strength is 200 gf / 15 mm or more when used as the outer cover material for the vacuum insulation. If the adhesive strength is less than 200gf / 15mm, there may be a problem that peeling when applied to the outer shell material for vacuum insulation.
  • the adhesive that can be used to form the adhesive layer may be used alone or in combination of two or more polyester-based adhesives, polyurethane-based adhesives.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Laminated Bodies (AREA)
  • Thermal Insulation (AREA)
  • Drying Of Gases (AREA)

Abstract

본 발명은 심재와 외피재로 이루어지는 진공단열재에 관한 것으로, 보다 상세하게는 고온영역에서 사용이 가능한 고온용 진공단열재에 관한 것이다. 본 발명은, 유리섬유(glass fiber)를 성분으로 하는 무기심재; 및 상기 무기심재의 표면에 밀착되는 열용착층과, 외부 충격을 흡수 및 분산하는 보호층과, 상기 열용착층과 상기 보호층의 사이에서 가스 또는 수분의 침투를 차단하는 배리어층을 포함하는 복합필름으로 구성되어, 상기 무기심재를 밀봉하는 외피재;를 포함하는 고온용 진공단열재를 제공한다.

Description

고온용 진공단열재
본 발명은 심재와 외피재로 이루어지는 진공단열재에 관한 것으로, 보다 상세하게는 고온영역에서 사용이 가능한 고온용 진공단열재에 관한 것이다.
국내의 경우 정수기 등과 같이 고온 환경에서 사용하는 단열재는 글라스 울(Glass wool)과 같이 취급 용이 및 난연성을 갖는 무기 단열재를 사용하고 있지만 단열 성능이 부족하여 소비 전력효율을 개선하기에 많은 문제점을 가지고 있다.
최근 국내에서도 고온 용도로 적용하기 위한 진공단열재의 개발이 진행되고 있으며, 가장 대표적인 예로 심재를 퓸드 실리카(Fumed Silica)와 같은 다공성 무기 소재를 사용하여 진공단열재 내부의 열전달을 최소화하여 초기 성능 보다는 장기적인 성능 유지 관점에서 개발을 주력하고 있다.
그러나, 이들의 근본적인 성능 향상을 위해서는 외피재의 내열성, 난연성 부여 측면과 외부 가스 및 습증기로 인한 진공단열재 내부 압력 상승 요인에 대해서는 해결책을 찾지 못하고 있는 실정이다.
일본의 경우, 전기포트 및 전기레인지 등의 고온용 가전기기에 있어서, 외피재의 내열구조 및 게터재의 특성을 통해 진공단열재를 제조후 사용하는 예가 있지만 장기적인 성능 특성, 원가의 증가 및 비난연성의 문제점을 가지고 있다.
진공단열재를 고온 용도로 사용할 경우, 고온의 온도 환경에 따라 장기적인 단열성능 및 외피재의 배리어(barrier) 성능의 극심한 열화가 초래된다.
따라서 진공단열재를 고온 용도로 사용하기 위해서는 외피재의 배리어 성능 저하를 최소화할 수 있는 내열 외피재 필름 구조 및 고온 환경에서 유입되는 외부 가스 및 습증기를 강하게 흡착할 수 있는 게터(getter) 소재가 필요하다.
특히, 가전기기에 사용하기 위해서는 난연 성능 및 자기 소화성을 갖는 진공단열재의 물성이 요구된다.
본 발명의 목적은 고온영역에서 지속적인 사용이 가능한 고온용 진공단열재를 제공함에 있다.
본 발명의 다른 목적은 고온의 환경하에서 난연성이 우수한 고온용 진공단열재를 제공함에 있다.
이러한 목적을 달성하기 위한 본 발명은, 유리섬유(glass fiber)를 성분으로 하는 무기심재; 및 상기 무기심재의 표면에 밀착되는 열용착층과, 외부 충격을 흡수 및 분산하는 보호층과, 상기 열용착층과 상기 보호층의 사이에서 가스 또는 수분의 침투를 차단하는 배리어층을 포함하는 복합필름으로 구성되어, 상기 무기심재를 밀봉하는 외피재;를 포함하는 고온용 진공단열재를 제공한다.
상기 외피재는 상기 복합필름에 인 화합물, 질소 화합물, 수산화 알루미늄 및 삼산화 안티몬 중에서 선택되는 하나 이상의 난연 첨가제를 포함할 수 있다.
다른 방식으로, 상기 외피재는 상기 보호층의 외면에 인 화합물, 질소 화합물, 수산화 알루미늄 및 삼산화 안티몬 중에서 선택되는 하나 이상의 난연 첨가제 10 ~ 90 중량% 및 고분자 수지와 유기 용제 10 ~ 90 중량%의 조성물로 코팅되어 형성되는 난연층을 더 포함할 수 있다.
또 다른 방식으로 상기 외피재는 상기 보호층의 외면에 인 화합물 5 ~ 50 중량%, 질소 화합물 5 ~ 50 중량% 및 고분자 수지와 유기 용제 40 ~ 90 중량%의 조성물로 코팅되어 형성되는 난연층을 더 포함할 수 있다.
한편, 상기 무기심재는 물 또는 유기 화합물을 포함하는 수용액 내에서 교반된 글라스 섬유(Glass fiber)를 열압착시킨 판상의 보드(Board)가 하나 이상 적층된 것을 사용하거나,
직경이 1 ~ 10 ㎛인 글라스 섬유 집합체 및 실리카를 포함하는 무기 바인더로 이루어지는 판상의 보드(Board)가 하나 이상 적층된 것을 사용하거나,
글라스 울(Glass wool)이 니들링(Needling) 처리된 판상의 매트(Mat)가 하나 이상 적층된 것을 사용할 수 있다.
아울러, 상기 외피재로 밀봉되는 내부공간에 삽입되는 게터재(Getter)를 더 포함할 수 있다.
본 발명을 통해 고온 환경에서 난연성과 단열성을 개별 또는 동시에 구현하고자 하는 가전기기에 진공단열재의 적용이 가능하며, 이를 기반으로 건축 내/외장재, 가전기기, 수송기기 및 산업기기 등의 산업 전반에 적용 및 확장이 용이하다.
특히, 정수기 및 자판기등 내부에 물을 급탕 또는 급냉하고 열 및 냉기를 보존하는 보온통(보온수도)과 같이 난연성과 단열성을 필요로 하는 용도에 진공단열재의 적용이 가능하다.
본 발명에 따른 고온용 진공단열재는 0.01W/mK 이하의 열전도율을 가지며, 이를 이용하여 정수기의 온수저정통의 2면을 단열할 경우 약 10% 이상의 소비전력 개선효과를 가져온다. 또한 온수저장통의 5면을 단열할 경우에는 약 25% 이상의 소비전력 개선효과를 가져온다.
도 1은 본 발명에 따른 고온용 진공단열재의 구조를 나타낸 단면도,
도 2는 본 발명에 따른 고온용 진공단열재의 외피재를 나타낸 단면도
도 3은 본 발명에 따른 고온용 진공단열재의 외피재 중 보호층의 구조를 나타낸 단면도
도 4는 본 발명에 따른 고온용 진공단열재의 외피재 중 배리어층의 구조를 나타낸 단면도임.
도 1은 본 발명에 따른 고온용 진공단열재의 구조를 나타낸 단면도이다.
도시된 바와 같이, 고온용 진공단열재(100)는, 유리섬유(glass fiber)를 성분으로 하는 무기심재(120)와, 상기 무기심재를 밀봉하는 외피재(140)를 포함한다.
또한, 상기 외피재(140)로 밀봉되는 내부공간의 수분을 제거할 목적으로 상기 외피재(140)로 밀봉되는 공간에 게터재(160)를 삽입할 수 있다.
외피재는 다양한 기능성층을 포함하는 것으로, 복합필름 재질로 이루어질 수 있다.
기능성층에는 무기심재의 표면과의 밀착성을 확보하기 위한 열용착층, 외부에서 가해지는 충격을 흡수 및 분산하는 보호층, 가스 또는 수분의 침투를 차단하는 배리어층, 난연성능을 확보하기 위한 난연층 등이 있다.
본 발명에 따른 고온용 진공단열재(100)의 무기심재(120)는 유리섬유를 주성분으로 하는 공지의 심재라면 제한 없이 사용될 수 있다.
바람직하게는, 상기 무기심재(120)는 물 또는 유기 화합물을 포함하는 수용액 내에서 교반된 글라스 섬유(Glass fiber)를 열압착시킨 판상의 보드(Board)가 하나 이상 적층되어 형성될 수 있으며, 직경이 1 ~ 10 ㎛인 글라스 섬유 집합체 및 실리카를 포함하는 무기 바인더로 이루어지는 판상의 보드(Board)가 하나 이상 적층되어 형성될 수 있다.
또한, 상기 무기심재(120)는 글라스 울(Glass wool)이 니들링(Needling) 처리된 판상의 매트(Mat)가 하나 이상 적층되어 형성될 수 있다. 상기 매트의 밀도는 100 ~ 300 g/mm3 인 것이 바람직하다. 상기 매트의 밀도가 100 g/mm3 미만인 경우 충분한 단열 성능의 확보가 어렵고, 300 g/mm3 를 초과하는 경우, 취급이 용이하지 않고 진공단열재의 굽힘성 등이 저하되는 단점이 있다.
본 발명에 따른 고온용 진공단열재(100)는 무기심재(120)가 수용된 내부 공간의 수분 흡수를 목적으로 게터재(160)를 사용할 수 있다. 게터재(160)는 무기심재(120)에 부착되거나, 무기심재(120)의 내부에 삽입될 수 있다.
외피재(140)는 기능성층들이 적층된 형태로, 복합필름의 형태를 가진다. 외피재(140)의 구성은 후술한다.
게터재(160)는 순도 95% 이상의 생석회(CaO) 분말을 포함할 수 있고, 제올라이트, 코발트, 리튬, 활성탄, 산화알루미늄, 바륨, 염화칼슘, 산화마그네슘, 염화마그네슘, 산화철, 아연 및 지르코늄 중에서 선택되는 하나 이상의 물질을 포함하는 것이 바람직하다.
무기심재(120) 및 게터재(160)를 외피재(140) 봉지체에 삽입하고 상기 외피재(140)의 내부를 감압한 후, 상기 외피재(140)의 열용착부(140a)를 실링하여 고온용 진공단열재(100)를 제조한다. 제조된 고온용 진공단열재(100)는 상기 열용착부(140a)를 무기심재(120)의 외면에 대응하도록 접은 후 사용하게 된다.
본 발명에 따른 진공단열재가 3 mm 이하의 얇은 두께로 되는 박막형으로 제조되어 가전 기기 등에 적용 시, 상기 열용착부(140a)의 폭은 6 ~ 15 mm 인 것이 바람직하다.
도 2는 본 발명에 따른 고온용 진공단열재의 외피재를 나타낸 단면도이고, 도 3은 본 발명에 따른 고온용 진공단열재의 외피재 중 보호층의 구조를 나타낸 단면도이고, 도 4는 본 발명에 따른 고온용 진공단열재의 외피재 중 배리어층의 구조를 나타낸 단면도이다.
복합필름으로 형성되는 외피재(140)는 무기심재와 접촉하는 아래쪽으로부터 열용착층(142), 배리어층(144), 보호층(146) 및 난연층(148)을 포함한다.
이하에서 “상부”는 고온용 진공단열재의 외부를 향하는는 면을 의미하고, “하부”는 진공단열재의 무기심재를 향하는 안쪽 방향에 있는 면을 의미한다.
열용착층(142)
열용착층(142)은 배리어층(144) 하부에 접착되며, 고온용 진공단열재의 무시심재(도 1의 120) 표면에 밀착된다.
상기 열용착층(142)은 열용착부(도 1의 140a)에서 열용착이 쉽게 이루어질 수 있으면서 또한 실링성이 우수한 LLDPE(Linear Low-Density Polyethylene), LDPE(Low Density Polyethylene), HDPE(High Density Polyethylene), CPP(Casting Polypropylene) 등이 단독으로 혹은 2종 이상이 혼합되어 이루어진 필름으로 형성되는 것이 바람직하다.
상기 열용착층(142)의 두께는 50~80㎛인 것이 바람직하다. 열용착층(142)의 두께가 50㎛ 미만일 경우 열용착층의 박리강도가 떨어져서 해당층의 역할을 발휘하지 못하며, 열용착층(142)의 두께가 80㎛를 초과할 경우 비용 문제 및 열용착층을 통해 외부의 가스나 수증기가 들어오는 양이 많아져서 진공단열재의 장기 내구성을 저하시키는 요인이 된다.
또한, 상기 열용착층(142)은 결정화도가 30% 이상이고, 70 ~ 130 ℃의 연화점(softening point) 및 100 ~ 170 ℃의 녹는점(melting point)을 갖는 것이 바람직하다.
상기 열용착층(142)의 결정화도가 30% 미만일 경우 고온에서 분자간의 결합력이 쉽게 약해져 배리어 성능이 저하되고, 이로인해 내부 진공도가 저하되는 단점이 있다.
상기 열용착층(142)의 연화점이 70 ℃ 미만인 경우, 고온에서 진공단열재를 사용 때, 열용착층의 분자간 결합력이 느슨해져 외피재의 배리어 성능이 열화되는 단점이 있고, 또한 열용착층이 줄어드는(Shrink) 등의 문제가 발생하여 외피재에 리크(leak)를 야기시킴으로써 진공단열재의 내부 진공을 해체시키는 단점이 있다. 상기 열용착층(142)의 연화점이 130 ℃를 초과하는 경우, 열용착층의 실링을 위해 과도한 열과 압력을 가해야 하는 단점이 있다.
그리고 상기 열용착층(142)의 녹는점이 100 ℃ 미만인 경우, 고온에서 열용착층이 Melting함으로 인해 열용착층이 파괴되어 내부 진공이 해체되는 단점이 있으며, 170 ℃를 초과하는 경우 열용착층의 실링을 위해 과도한 열과 압력을 가해야 하는 단점이 있다.
보호층(146)
보호층(146)은 외부 충격을 흡수 및 분산하여, 외부 충격으로부터 표면이나 진공단열재 내부의 심재 등을 보호하는 역할을 한다. 따라서, 보호층(146)은 내충격성이 우수한 재질로 형성되는 것이 바람직하다.
상기 보호층(146)의 재질로는 폴리카보네이트 필름, 폴리이미드 필름, 나일론 필름이나 PET(Polyethylene Terephthalate) 필름을 제시할 수 있다. 상기 필름들 가운데 하나 이상의 필름을 선택하여 적층체로서 이용할 수 있으며, 바람직한 예를 들면 나일론 필름과 PET 필름을 접착하여 보호층으로 이용할 수 있다.
상기 필름들은 각각 12 ~ 25 ㎛의 두께로 이용되는 것이 바람직하다. 상기 필름들의 두께가 12 ㎛ 미만인 경우 외부의 충격이나 스크래치 등에 의해 파손될 가능성이 커서 보호층 고유의 기능을 발휘하지 못하며, 각각의 필름이 상기 제시된 25 ㎛ 를 초과하는 경우 원가가 상승하고, 유연성이 저하되는 등의 단점이 있다.
또한, 도3에서 나타낸 바와 같이, 상기 보호층(146)을 이루는 필름의 어느 한면에는 알루미늄(Al) 또는 무기 실리카(Si2O3 등)로 이루어진 무기질층(200b)이 형성될 수 있다.
상기 무기질층(200b)은 내충격성, 내열성, 내한성, 내스크래치성, 수분차단성, 가스차단성 및 유연성 측면에서 부가될 수 있고, 그 두께는 500 nm 이하로 형성되는 것이 바람직하며, 5~300 nm로 형성되는 것이 더욱 바람직하다. 무기질층(200b)의 두께가 5nm 미만일 경우 가스나 수분 등에 대한 배리어 성능을 제대로 발휘할 수 없다. 또한 무기질층(200b)의 두께가 300nm를 초과할 경우, 배리어 성능은 충분히 발휘할 수 있으나, 무기질층 형성을 위하여 과다한 공정비용이 소요되어 바람직하지 못하다.
상기 무기질층(200b)은 상기 알루미늄(Al) 또는 무기 실리카(Si2O3 등)가 증착되어 형성될 수 있다.
배리어층(144)
배리어층(144)은 보호층(146)의 하부에 접착되며, 내부 진공도 유지 및 외부의 가스 또는 수분 등의 유입을 차단하는 역할을 한다.
본 발명에서는 배리어층(144)의 재질로 배리어성이 우수한 알루미늄 호일(Al foil)을 이용하며, 알루미늄 호일 중에서, 철(Fe)의 함량이 0.65중량% 이하인 것을 이용할 수 있다. 철(Fe)의 함량이 0.65중량%를 초과하는 알루미늄 호일의 경우 배리어성의 향상에 비하여 제조 비용 상승 폭이 훨씬 크므로 바람직하지 못하다.
상기 알루미늄 호일의 두께는 6~12㎛인 것이 바람직하다. 알루미늄 호일의 두께가 6㎛ 미만일 경우, 압연 공정에서 균열이나 결함이 발생할 수 있는 문제점이 있으며, 알루미늄 호일의 두께가 12㎛를 초과할 경우 열전도도가 높은 알루미늄 호일을 따라 열이 전달되어 단열 효과가 저하될 수 있는 문제점이 있다.
한편, 알루미늄 호일이 찢어질 경우, 찢어진 부위를 통하여 가스나 수분 등이 침투하여 진공단열재의 장기 내구성을 저해할 수 있다.
따라서, 본 발명에서는 알루미늄 호일의 배리어 성능을 보완하기 위하여, 상기 알루미늄 호일에 PET 필름 또는 EVOH(Ethylene Vinyl Alcohol) 필름을 접착하여 보호층으로 이용할 수 있다.
또한, 본 발명에서는 알루미늄 또는 실리카로 이루어진 무기질층(144c)이 형성되어 있는 PET 필름 또는 EVOH(Ethylene Vinyl Alcohol) 필름을 이용할 수 있다.
상기 PET 필름 또는 EVOH 필름의 두께는 12 ~ 16 ㎛인 것이 바람직하다. 상기 필름의 두께가 12㎛ 미만일 경우 필름 형성시 결함이 발생하거나 찢어질 수 있는 문제가 있고, 상기 필름이 16㎛를 초과하는 경우 가공성이 저하되며, 전체적인 필름 제조 비용이 상승하는 문제가 있다.
상기 무기질층(144c)은 내충격성, 내열성, 내한성, 내스크래치성, 수분차단성, 가스차단성 및 유연성 측면에서 부가될 수 있고, 그 두께는 500 nm 이하로 형성되는 것이 바람직하며, 5~300 nm로 형성되는 것이 더욱 바람직하다. 상기 무기질층(144c)의 두께가 5nm 미만일 경우 가스나 수분 등에 대한 배리어 성능을 제대로 발휘할 수 없다. 또한 무기질층(144c)의 두께가 300nm를 초과할 경우, 배리어 성능은 충분히 발휘할 수 있으나, 무기질층(144c) 형성을 위하여 과다한 공정비용이 소요되어 바람직하지 못하다.
상기 무기질층(144c)은 상기 알루미늄(Al) 또는 무기 실리카(Si2O3 등)가 증착 방식으로 형성될 수 있다.
배리어층(144)은 도 4에 도시된 예와 같이, 무기질층(144c)이 형성되어 있는 EVOH 필름(144b)이 진공단열재의 외피재에서 내측에 위치하여 열용착층(142)에 접착되고, 알루미늄 호일(144a)이 상대적으로 외측에 위치하여 보호층(210)에 접착되도록 하는 것이 바람직하다.
이는 본 발명에서 EVOH 필름(144b)의 경우 알루미늄 호일의 배리어 성능을 보완하는 것이므로, 모서리 부분을 제외하고는 배리어 성능이 훨씬 우수한 알루미늄 호일이 외측에 위치하여 가스나 수분 등의 배리어로서 작용하고, EVOH 필름(144b)은 알루미늄 호일(144a)의 찢어짐에 의하여 침투되는 가스나 수분 등에 대하여만 배리어로서 작용하는 것이 바람직하기 때문이다.
난연층(148)
난연층(148)은 진공단열재가 고온의 환경하에서 적용될 때 외부열로부터 보호하는 역할을 한다. 상기 난연층(148)은 난연제가 포함되어 있으며, 상기 보호층(146)의 상부에 코팅되어 형성되거나, 상기 보호층(146) 등에 난연제를 첨가하여 난연성을 부여할 수도 있다.
고온 진공단열재가 70 ~ 140 ℃의 비교적 고온 환경을 갖는 가전기기 등의 내부에 사용될 때, 급작스런 발연 또는 고열로 인해 발생하는 외피재의 손상 등의 문제가 발생할 수 있다. 본 발명에 따른 고온 진공단열재용 외피재(140)는 이와 같은 문제점을 해결하기 위해 난연제가 포함된 난연층(148)이 형성되어 있다.
상기 난연층(148)은 난연성의 부여를 위해 난연제가 첨가된다. 상기 난연제는 난연성이 부여되는 물질이라면 특별히 제한되는 것은 아니지만, 바람직하게는 비할로겐 타입의 인화합물, 질소화합물, 수산화 알루미늄 및 삼산화 안티몬 가운데 선택되는 하나 이상의 물질이 사용될 수 있다.
여기서 질소화합물은 멜라민계, 우레아계, 아민계, 아마이드계 등의 난연제를 총칭하는 것이며, 인화합물은 적인과 인산 에스테르 등의 인계 난연제를 총칭하는 것이다. 바람직하게는 질소화합물과 인화합물을 혼합하여 사용함으로써 난연 성능의 시너지효과를 얻을 수 있다.
또한, 수산화 알루미늄은 부식성이 적고 전기 절연성도 우수하며 경제적인 측면에서도 유리하기 때문에 본 발명에 사용되는 난연제로서 바람직하며, 삼산화 안티몬은 타 난연제와 동시에 사용하는 경우 난연 상승효과가 큰 장점이 있다.
상기 난연층(148)은 상기 난연제 10 ~ 90 중량% 및 고분자 수지와 유기용제 10~90 중량%로 이루어진 코팅 조성물을 보호층(146)의 표면에 코팅시켜서 형성할 수 있다. 또한, 바람직하게는 상기 인 화합물 5 ~ 50 중량%와 질소 화합물 5 ~ 50 중량% 및 고분자 수지와 유기 용제 40 ~ 90 중량%의 코팅 조성물을 이용하여 보호층(146)의 상부에 코팅시켜 형성할 수 있다. 상기 인 화합물이 5 중량% 미만으로 첨가되거나, 질소 화합물이 5 중량% 미만으로 첨가되는 경우, 충분한 난연성 확보가 어려운 문제점이 있다. 또한, 상기 인 화합물이 50 중량%를 초과하거나, 질소 화합물이 50 중량%를 초과하여 첨가되는 경우 난연 성분 외 다른 물질의 함량이 줄어들어 난연층의 형성에 어려움이 있을 수 있다. 상기 고분자 수지와 유기 용제는 합쳐서 40 ~ 90 중량%로 첨가되는 것이 바람직하며, 40 중량% 미만으로 첨가되는 경우 난연층 형성에 어려움이 발생할 수 있고, 90중량%를 초과하여 첨가되는 경우 난연성 확보가 어렵다.
상기 고분자 수지는 폴리에스터계 또는 폴리우레탄계 등의 고분자 수지가 사용될 수 있고, 상기 유기 용제는 일반 코팅 조성물에 사용되는 유기 용제라면 제한되지 않고 사용될 수 있다.
상기 난연층(148)이 형성되는 코팅 방법이 특별히 제한되는 것은 아니다. 바람직하게는 스프레이 코팅 방식이나, 롤 코팅 방식, 그라비아 인쇄 방식으로 코팅될 수 있다.
또한, 난연층(148)의 두께 역시 특별히 제한되는 것은 아니나, 제조되는 복합 필름 특성 및 진공단열재의 박막화 등의 요구에 따라 일정한 두께의 한정이 요구된다. 따라서, 난연층(148)의 두께는 0.5 ~ 10 ㎛ 인 것이 바람직하다.
한편, 각각의 층을 형성하는 필름들은 접착층(미도시)에 의하여 서로 접착된다. 여기서 본 발명에 따른 복합 필름은 상기 층간 접착 강도를 200gf/15mm 이상으로 하는 것이 진공단열재용 외피재로 사용할 때 바람직하다. 접착 강도가 200gf/15mm 미만인 경우, 진공단열재용 외피재에 적용시 박리가 되는 문제점이 발생할 수 있다.
이때 접착층을 형성하기 위하여 이용할 수 있는 접착제는 폴리에스터계 접착제, 폴리우레탄계 접착제 단독으로 혹은 2 종류 이상 혼합하여 이용할 수 있다.

Claims (18)

  1. 유리섬유(glass fiber)를 성분으로 하는 무기심재; 및
    상기 무기심재의 표면에 밀착되는 열용착층과, 외부 충격을 흡수 및 분산하는 보호층과, 상기 열용착층과 상기 보호층의 사이에서 가스 또는 수분의 침투를 차단하는 배리어층을 포함하는 복합필름으로 구성되어, 상기 무기심재를 밀봉하는 외피재;를 포함하는 고온용 진공단열재.
  2. 제 1 항에 있어서,
    상기 외피재는
    상기 복합필름에 인 화합물, 질소 화합물, 수산화 알루미늄 및 삼산화 안티몬 중에서 선택되는 하나 이상의 난연 첨가제를 포함하는 것을 특징으로 하는 고온용 진공단열재.
  3. 제1항에 있어서,
    상기 외피재는
    상기 보호층의 외면에
    인 화합물, 질소 화합물, 수산화 알루미늄 및 삼산화 안티몬 중에서 선택되는 하나 이상의 난연 첨가제 10 ~ 90 중량% 및 고분자 수지와 유기 용제 10 ~ 90 중량%의 조성물로 코팅되어 형성되는 난연층을 더 포함하는 것을 특징으로 하는 고온용 진공단열재.
  4. 제 1 항에 있어서,
    상기 외피재는
    상기 보호층의 외면에
    인 화합물 5 ~ 50 중량%, 질소 화합물 5 ~ 50 중량% 및
    고분자 수지와 유기 용제 40 ~ 90 중량%의 조성물로 코팅되어 형성되는 난연층을 더 포함하는 것을 특징으로 하는 고온용 진공단열재.
  5. 제1항에 있어서,
    상기 무기심재는
    물 또는 유기 화합물을 포함하는 수용액 내에서 교반된 글라스 섬유(Glass fiber)를 열압착시킨 판상의 보드(Board)가 하나 이상 적층된 것을 특징으로 하는 고온용 진공단열재.
  6. 제1항에 있어서,
    상기 무기심재는
    직경이 1 ~ 10 ㎛인 글라스 섬유 집합체 및 실리카를 포함하는 무기 바인더로 이루어지는 판상의 보드(Board)가 하나 이상 적층된 것을 특징으로 하는 고온용 진공단열재.
  7. 제 1 항에 있어서,
    상기 무기심재는
    글라스 울(Glass wool)이 니들링(Needling) 처리된 판상의 매트(Mat)가 하나 이상 적층된 것을 특징으로 하는 고온용 진공단열재.
  8. 제 7 항에 있어서,
    상기 매트의 밀도는 100 ~ 300 g/mm3 인 것을 특징으로 하는 고온용 진공단열재.
  9. 제1항에 있어서,
    상기 외피재로 밀봉되는 내부공간에 삽입되는 게터재(Getter)를 더 포함하는 것을 특징으로 하는 고온용 진공단열재.
  10. 제9항에 있어서,
    상기 게터재는
    순도 95% 이상의 생석회(CaO) 분말을 포함하는 것을 특징으로 하는 고온용 진공단열재.
  11. 제9항에 있어서,
    상기 게터재는
    제올라이트, 코발트, 리튬, 활성탄, 산화알루미늄, 바륨, 염화칼슘, 산화마그네슘, 염화마그네슘, 산화철, 아연 및 지르코늄 중에서 선택되는 하나 이상의 물질을 포함하는 것을 특징으로 하는 고온용 진공단열재.
  12. 제1항에 있어서,
    상기 보호층은
    폴리카보네이트 필름, 폴리이미드 필름, 나일론 필름 및 PET(Polyethylene Terephthalate) 필름 중에서 선택되는 하나 이상의 필름이 각각 12 ~ 25 ㎛의 두께로 적층되어 형성되는 것을 특징으로 하는 고온용 진공단열재.
  13. 제12항에 있어서,
    상기 보호층은
    알루미늄 또는 실리카를 포함하되 500nm 이하의 두께를 가지는 무기질층을 더 포함하는 것을 특징으로 하는 고온용 진공단열재.
  14. 제1항에 있어서,
    상기 배리어층은
    6 ~ 12 ㎛의 두께를 갖는 알루미늄 호일과 각각 6 ~ 12 ㎛의 두께를 갖는 PET 필름 또는 EVOH(Ethylene Vinyl Alcohol) 필름이 접착되어 형성되는 것을 특징으로 하는 고온용 진공단열재.
  15. 제14항에 있어서,
    상기 배리어층은
    알루미늄 또는 실리카로 이루어진 무기질층을 더 포함하는 것을 특징으로 하는 고온용 진공단열재.
  16. 제1항에 있어서,
    상기 열용착층은
    LLDPE(Linear Low-Density Polyethylene), LDPE(Low Density Polyethylene), HDPE(High Density Polyethylene) 및 CPP(Casting Polypropylene) 중에서 선택되는 하나 이상의 재질로 이루어진 필름으로 형성되는 것을 특징으로 하는 고온용 진공단열재.
  17. 제 16 항에 있어서,
    상기 열용착층은
    50 ~ 80 ㎛의 두께를 가지며,
    결정화도(degree of crystallization) 30% 이상, 연화점(softening point) 70 ~ 130 ℃ 및 녹는점(melting point) 100 ~ 160 ℃ 의 물성을 갖는 것을 특징으로 하는 고온용 진공단열재.
  18. 제 1 항에 있어서,
    상기 보호층, 배리어층 및 열용착층은 각각 폴리우레탄계 수지 또는 폴리에스테르계 수지에 의해서 접착되며, 층간 접착 강도는 200 gf/15 mm 이상인 것을 특징으로 하는 고온용 진공단열재.
PCT/KR2012/010245 2011-12-02 2012-11-29 고온용 진공단열재 WO2013081395A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280058506.7A CN103958954B (zh) 2011-12-02 2012-11-29 高温用真空绝热材料
US14/359,200 US9404663B2 (en) 2011-12-02 2012-11-29 High temperature vacuum insulation panel
EP12852869.2A EP2787268B1 (en) 2011-12-02 2012-11-29 High temperature vacuum insulation panel
JP2014544667A JP5946150B2 (ja) 2011-12-02 2012-11-29 高温用真空断熱材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110128566A KR101447767B1 (ko) 2011-12-02 2011-12-02 고온용 진공단열재
KR10-2011-0128566 2011-12-02

Publications (1)

Publication Number Publication Date
WO2013081395A1 true WO2013081395A1 (ko) 2013-06-06

Family

ID=48535779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010245 WO2013081395A1 (ko) 2011-12-02 2012-11-29 고온용 진공단열재

Country Status (7)

Country Link
US (1) US9404663B2 (ko)
EP (1) EP2787268B1 (ko)
JP (1) JP5946150B2 (ko)
KR (1) KR101447767B1 (ko)
CN (1) CN103958954B (ko)
TW (1) TWI571507B (ko)
WO (1) WO2013081395A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105257952A (zh) * 2014-07-09 2016-01-20 三菱电机株式会社 真空隔热材料的制造方法及用该方法制造的真空隔热材料
US20160326741A1 (en) * 2013-12-19 2016-11-10 3M Innovative Properties Company Barrier films and vacuum insulated panels employing same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101472177B1 (ko) * 2012-04-10 2014-12-12 (주)엘지하우시스 장섬유를 이용한 단열재 제조 방법
CN105637297A (zh) * 2013-10-31 2016-06-01 伊莱克斯家用电器股份公司 用于烘焙烤箱的隔热体和带有这种隔热体的烘焙烤箱
KR101394871B1 (ko) * 2013-11-20 2014-05-27 삼아알미늄 (주) 진공단열재용 복합강화 난연성 외포재, 이의 제조방법 및 이를 포함하는 진공단열재
KR101752669B1 (ko) 2013-12-10 2017-06-30 삼성전자주식회사 진공단열재 및 이를 포함하는 냉장고
US9957380B2 (en) * 2015-04-17 2018-05-01 Johns Manville Formaldehyde-free smoke reduction agents for binders
KR20180019153A (ko) * 2015-06-16 2018-02-23 쓰리엠 이노베이티브 프로퍼티즈 캄파니 배리어 필름, 이를 채용하는 진공 단열 패널 및 수분 배리어 백
WO2016208193A1 (ja) * 2015-06-24 2016-12-29 パナソニックIpマネジメント株式会社 気体吸着デバイスおよびこれを用いた真空断熱材
US10029628B2 (en) 2015-12-09 2018-07-24 Hyundai Motor Company Insulation fiber composite with excellent formability and surface property, and manufacturing method for the same
CN106195515B (zh) * 2016-07-14 2018-10-02 中国人民解放军装甲兵工程学院 一种中温固化复合材料自加热成型修补装置
KR101787281B1 (ko) * 2016-08-31 2017-10-18 씨제이제일제당 (주) 진공단열재용 외피재
DE202016006810U1 (de) * 2016-11-08 2018-02-12 Va-Q-Tec Ag Vakuumisolationspaneel
AU2017424996B2 (en) * 2017-07-25 2021-03-11 Mitsubishi Electric Corporation Vacuum insulation material, heat insulation box, and method for producing vacuum insulation material
KR102335441B1 (ko) * 2017-11-30 2021-12-03 (주)엘엑스하우시스 난연성을 갖는 진공단열재용 외피재 및 이를 포함하는 진공단열재
CN109837750B (zh) * 2019-03-06 2021-05-18 苏州大学 基于酪蛋白磷酸肽的蚕丝耐久性阻燃整理方法及阻燃蚕丝
JP2021004647A (ja) * 2019-06-26 2021-01-14 大日本印刷株式会社 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
CN114108851A (zh) * 2020-08-27 2022-03-01 扬中市华龙橡塑电器有限公司 一种便于拆装的防火型真空绝热板
CN112693196A (zh) * 2020-12-23 2021-04-23 四川迈科隆真空新材料有限公司 一种耐高温的真空绝热板及其制备方法
CN112644125A (zh) * 2020-12-23 2021-04-13 四川迈科隆真空新材料有限公司 一种耐高温的真空阻隔复合膜及其制备方法
KR102479990B1 (ko) * 2021-12-03 2022-12-22 (주)제이솔루션 공기층을 구비한 에너지 절감형 배관용 히팅자켓

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050115291A (ko) * 2003-04-18 2005-12-07 마쯔시다덴기산교 가부시키가이샤 진공 단열재와 이를 사용한 기기
JP2010060048A (ja) * 2008-09-03 2010-03-18 Panasonic Corp 真空断熱材用芯材とそれを用いた真空断熱材及び真空断熱材用芯材の製造方法
KR100950834B1 (ko) * 2006-03-30 2010-04-02 히타치 어플라이언스 가부시키가이샤 진공 단열재, 진공 단열재를 이용한 급탕 기기 및 전기식수가열 기기
KR20110072795A (ko) * 2009-12-23 2011-06-29 (주)엘지하우시스 진공 단열재용 복합 필름 및 이를 적용한 진공 단열재
KR20110101786A (ko) * 2010-03-09 2011-09-16 (주)엘지하우시스 진공 단열 패널용 심재 및 이를 제조하는 방법

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100646146B1 (ko) 1997-12-16 2007-03-02 스미또모 가가꾸 가부시끼가이샤 진공단열재
JP2000013952A (ja) * 1998-06-17 2000-01-14 Furukawa Electric Co Ltd:The 難燃性電線管
JP2000343634A (ja) * 1999-06-07 2000-12-12 Mitsubishi Chemicals Corp 耐熱性マット
CN1157284C (zh) * 1999-06-30 2004-07-14 松下电器产业株式会社 真空绝热材料、使用真空绝热材料的保温设备和电热水器
JP3507776B2 (ja) 2000-08-07 2004-03-15 松下冷機株式会社 冷蔵庫
JP2003119392A (ja) * 2001-08-09 2003-04-23 Toray Ind Inc 難燃性樹脂組成物及びそれを用いたフレキシブル印刷回路基板並びにカバーレイフィルム
EP1643180B1 (en) * 2003-07-04 2014-08-13 Panasonic Corporation Vacuum thermal insulation material and equipment using the same
JP2005106312A (ja) * 2003-09-29 2005-04-21 Hitachi Home & Life Solutions Inc 冷蔵庫並びに真空断熱パネル及びその製造方法
JP2005121704A (ja) * 2003-10-14 2005-05-12 Matsushita Electric Ind Co Ltd プロジェクタ
US7862876B2 (en) * 2004-01-20 2011-01-04 Panasonic Corporation Film for suppressing conduction of radiation heat and heat insulating material using the same
JP2005344900A (ja) * 2004-06-07 2005-12-15 Matsushita Electric Ind Co Ltd 真空断熱材
DE102004028756A1 (de) * 2004-06-16 2005-12-29 Wipak Walsrode Gmbh & Co. Kg Folienlaminat mit wenigstens einer Diffusionssperrschicht und deren Verwendung bei Vakuumisolationspaneelen im Baubereich
JP2006077799A (ja) * 2004-09-07 2006-03-23 Toppan Printing Co Ltd 真空断熱材用バリア性外装材料および真空断熱材
US9855725B2 (en) * 2005-05-23 2018-01-02 Panasonic Corporation Vacuum heat insulator and testing method for the glass fiber laminate to be used in the insulator
JP2007138976A (ja) * 2005-11-15 2007-06-07 Nisshinbo Ind Inc 真空断熱材及びその製造方法
US8524161B2 (en) * 2007-08-31 2013-09-03 Unifrax I Llc Multiple layer substrate support and exhaust gas treatment device
CN101737589A (zh) * 2008-11-21 2010-06-16 尤尼吉可纺织品株式会社 吸音绝热材料
JP2011005693A (ja) * 2009-06-24 2011-01-13 Dainippon Printing Co Ltd 真空断熱材用ガスバリア性積層フィルムおよび難燃性真空断熱材
JP5624305B2 (ja) * 2009-11-11 2014-11-12 三菱電機株式会社 断熱容器
EP2508785A4 (en) * 2009-12-04 2014-01-15 Okura Industrial Co Ltd FILM FOR A VACUUM HEAT INSULATION MATERIAL AND VACUUM HEAT INSULATION MATERIAL
WO2011133778A2 (en) 2010-04-23 2011-10-27 Unifrax I Llc Multi-layer thermal insulation composite
JP2011241988A (ja) * 2010-05-14 2011-12-01 Hitachi Appliances Inc 断熱箱体および冷蔵庫

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050115291A (ko) * 2003-04-18 2005-12-07 마쯔시다덴기산교 가부시키가이샤 진공 단열재와 이를 사용한 기기
KR100950834B1 (ko) * 2006-03-30 2010-04-02 히타치 어플라이언스 가부시키가이샤 진공 단열재, 진공 단열재를 이용한 급탕 기기 및 전기식수가열 기기
JP2010060048A (ja) * 2008-09-03 2010-03-18 Panasonic Corp 真空断熱材用芯材とそれを用いた真空断熱材及び真空断熱材用芯材の製造方法
KR20110072795A (ko) * 2009-12-23 2011-06-29 (주)엘지하우시스 진공 단열재용 복합 필름 및 이를 적용한 진공 단열재
KR20110101786A (ko) * 2010-03-09 2011-09-16 (주)엘지하우시스 진공 단열 패널용 심재 및 이를 제조하는 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160326741A1 (en) * 2013-12-19 2016-11-10 3M Innovative Properties Company Barrier films and vacuum insulated panels employing same
CN105257952A (zh) * 2014-07-09 2016-01-20 三菱电机株式会社 真空隔热材料的制造方法及用该方法制造的真空隔热材料
CN105257952B (zh) * 2014-07-09 2017-11-17 三菱电机株式会社 真空隔热材料的制造方法及用该方法制造的真空隔热材料

Also Published As

Publication number Publication date
CN103958954B (zh) 2016-01-20
CN103958954A (zh) 2014-07-30
JP5946150B2 (ja) 2016-07-05
JP2015504503A (ja) 2015-02-12
KR20130062133A (ko) 2013-06-12
TWI571507B (zh) 2017-02-21
EP2787268B1 (en) 2017-10-18
US9404663B2 (en) 2016-08-02
US20140322477A1 (en) 2014-10-30
EP2787268A1 (en) 2014-10-08
KR101447767B1 (ko) 2014-10-07
TW201323597A (zh) 2013-06-16
EP2787268A4 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2013081395A1 (ko) 고온용 진공단열재
KR101355675B1 (ko) 난연성 복합 필름 및 이를 적용한 진공단열재
WO2012023705A2 (ko) 진공단열재용 복합심재, 그 제조방법 및 이를 이용한 진공단열재
US20180309107A1 (en) Insulation barrier for electrochemical battery and electrochemical battery including same
WO2014007461A1 (ko) 터짐불량이 개선된 진공단열재 및 그의 제조방법
WO2011083948A2 (ko) 진공 단열 패널 및 이를 제조하는 방법
WO2014178540A1 (ko) 진공단열재용 외피재 및 이를 포함하는 고성능 진공단열재
WO2012043990A2 (en) Vacuum insulation material and insulation structure for refrigerator cabinet having the same
US20220069402A1 (en) Fire protection device with a composite system, composite system and battery pack with a fire protection device
US20180309095A1 (en) Housing material for pouch-type battery and pouch-type battery including same
US11607861B2 (en) Materials for fire protection
WO2012115400A2 (ko) 이너백을 포함하는 진공단열재 및 이를 제조하는 방법
US20050287370A1 (en) Film laminate with at least one diffusion-barrier layer and its use in vacuum insulation panels in the construction sector
WO2017200190A1 (ko) 샌드위치 패널 및 그 제조 방법
WO2014142441A1 (ko) 유리섬유를 포함하는 진공단열재용 외피재 및 이를 포함하는 진공단열재
WO2021019495A1 (en) Fire barriers for electric vehicle battery modules
WO2013125838A1 (ko) 내충격성 및 불연성이 우수한 진공단열재용 봉지부재
CA2838112A1 (en) Non-combustible film, dispersion liquid for non-combustible films, method for producing non-combustible film, solar cell back sheet, flexible board, and solar cell
KR20160113452A (ko) 진공 단열재용 심재 및 진공단열재
WO2016089101A1 (ko) 진공단열재용 외피재 및 이를 포함하는 진공단열재
KR20170027459A (ko) 진공단열재용 복합강화 난연성 외포재, 이의 제조방법 및 이를 포함하는 진공단열재
KR20180099442A (ko) 진공단열재 외피재용 적층재 및 이를 포함한 진공단열재 외피재
JP2005317414A (ja) フラットケーブル被覆材、及びフラットケーブル
WO2019103309A1 (ko) 진공단열재 외피재용 적층재 및 이를 포함한 진공단열재 외피재
WO2022230808A1 (ja) 消火用積層体、消火用積層体の製造方法及びエレクトロニクス部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852869

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012852869

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14359200

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014544667

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE