WO2013081128A1 - 薄膜トランジスタの半導体層用酸化物薄膜、薄膜トランジスタおよび表示装置 - Google Patents

薄膜トランジスタの半導体層用酸化物薄膜、薄膜トランジスタおよび表示装置 Download PDF

Info

Publication number
WO2013081128A1
WO2013081128A1 PCT/JP2012/081153 JP2012081153W WO2013081128A1 WO 2013081128 A1 WO2013081128 A1 WO 2013081128A1 JP 2012081153 W JP2012081153 W JP 2012081153W WO 2013081128 A1 WO2013081128 A1 WO 2013081128A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
thin film
igzo
atomic
semiconductor layer
Prior art date
Application number
PCT/JP2012/081153
Other languages
English (en)
French (fr)
Inventor
研太 廣瀬
釘宮 敏洋
剛彰 前田
博昭 田尾
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2013081128A1 publication Critical patent/WO2013081128A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Definitions

  • the present invention relates to an oxide thin film for a semiconductor layer of a thin film transistor used in a display device such as a liquid crystal display or an organic EL display, a thin film transistor including the thin film, and a display device including the thin film transistor.
  • Amorphous (amorphous) oxide semiconductors have higher carrier mobility than general-purpose amorphous silicon (a-Si), a large optical band gap, and can be deposited at low temperatures, resulting in large size, high resolution, and high speed. It is expected to be applied to next-generation displays that require driving and resin substrates with low heat resistance.
  • Patent Document 1 discloses an oxide semiconductor in which the density of the oxide semiconductor is appropriately controlled when the composition ratio (number of atoms) of In, Ga, and Zn is controlled to 0 to 1.
  • an oxide thin film of In: Ga: Zn 1.1: 1.1: 0.9 (atomic% ratio) is used for a semiconductor layer (active layer) of a thin film transistor (TFT). What has been disclosed.
  • TFT thin film transistor
  • a threshold voltage (a voltage at which the drain current starts to flow when a positive voltage is applied to the drain electrode and a positive or negative voltage is applied to the gate voltage) , which is also called a threshold voltage) is stable and does not change (meaning that it is uniform within the substrate surface).
  • an oxide thin film (IGZO film) containing In, Ga, and Zn a sputtering method is widely used because a thin film having excellent in-plane uniformity of components and film thickness can be easily formed. ing.
  • the present inventors examined the characteristics of the IGZO film formed by the sputtering method, it was found that sufficient TFT characteristics and stress resistance were not obtained.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an oxide thin film (IGZO film) suitable for a thin film transistor having good TFT characteristics and stress resistance.
  • IGZO film oxide thin film
  • the present invention that has achieved the above-mentioned object is an oxide thin film for a semiconductor layer of a thin film transistor, and the oxide thin film contains In, Ga, and Zn,
  • the In content of the film surface layer part The gist is that the average value of the amount (atomic%) is 1.5 times or less than the average value of the In content (atomic%) inside the film.
  • the average value of Ga content (atomic%) in the film surface layer portion is 0.5 times or more than the average value of Ga content (atomic%) in the film, It is also a preferred embodiment that the average value of Zn content (atomic%) in the film surface layer portion is 0.8 to 1.3 times the average value of Zn content (atomic%) inside the film. .
  • the oxide thin film for a semiconductor layer is obtained by heat-treating the oxide for a semiconductor layer at 250 to 450 ° C. for 5 minutes to 4 hours.
  • the present invention also includes a thin film transistor provided with the oxide thin film for a semiconductor layer of any of the above thin film transistors.
  • the present invention includes a display device including the above-described thin film transistor.
  • an oxide thin film for a semiconductor layer of a thin film transistor excellent in TFT characteristics and stress resistance could be provided.
  • FIG. 1 is an In profile based on the XPS measurement of the IGZO film of Experimental Example 1.
  • FIG. 2 is a Ga profile based on XPS measurement of the IGZO film of Experimental Example 1.
  • FIG. 3 is a Zn profile based on XPS measurement of the IGZO film of Experimental Example 1.
  • FIG. 4 is a graph showing the results of drain current-gate voltage characteristics (Id-Vg characteristics) of Experimental Example 2 (Sample 4).
  • FIG. 5 is a graph showing the results of drain current-gate voltage characteristics (Id-Vg characteristics) of Experimental Example 2 (Sample 5).
  • FIG. 6 is a schematic explanatory diagram of a TFT fabricated in Experimental Example 2.
  • FIG. 1 is an In profile based on the XPS measurement of the IGZO film of Experimental Example 1.
  • FIG. 2 is a Ga profile based on XPS measurement of the IGZO film of Experimental Example 1.
  • FIG. 3 is a Zn profile based on XPS
  • FIG. 7 is a schematic explanatory diagram of an etch stop type TFT manufactured in Experimental Example 3.
  • FIG. 8 is a diagram showing the relationship between the amount of change in threshold voltage and the time for applying stress for an example in which a pre-annealing process was performed at 350 ° C. for 60 minutes in the atmosphere in Experimental Example 3.
  • the cause of In segregation on the film surface side is considered as follows. That is, In has a low melting point and is easily bonded to oxygen to form an In oxide conductor. Therefore, when sputtering is performed using a sputtering target containing In—Ga—Zn, In can be easily bonded to oxygen even when the surface of the film tends to be unstable in bonding with oxygen compared to the inside of the film. It is considered that the In content on the film surface side increases because In has a higher binding force with oxygen than Ga.
  • the composition ratio shifts greatly between the position from the outermost surface of the film to the film thickness direction of 7 nm (film surface layer part) and the position from the outermost film surface to the film thickness direction of 10 nm to 15 nm (inside the film). It was found that when In segregates, more carrier traps are generated, and the TFT characteristics of the thin film transistor are deteriorated. This is presumed to be caused by an increase in trap levels when In is present excessively. Specifically, when In is segregated excessively, the number of donors increases, and when the electrons captured by the donor are excited to the conduction band to become conduction electrons, the donor loses the electrons and becomes an ionized (charged) state. It is considered that the electrons excited by are trapped by this charge and the TFT characteristics are deteriorated.
  • the difference between the average value (surface In concentration) of the In content (atomic%) in the surface layer portion of the IGZO film and the average value (internal In concentration) of the In content (atomic%) inside the film is solved by setting an index of In segregation expressed by the surface In concentration / internal In concentration to be 1.5 times or less.
  • the present inventors have found that an oxide thin film (IGZO film) suitable for a semiconductor layer of a thin film transistor that exhibits excellent TFT characteristics can be provided.
  • the difference in In concentration is as small as possible and is preferably as close to 1, specifically 1.5 times or less, preferably 1.4 times or less. Most preferably, it is 1 time.
  • the film surface layer portion is in the range from the film outermost surface (0 nm) to the film thickness direction 7 nm. In this range, indium concentration (or detachment of Ga from the film surface) is likely to occur. This is because the TFT characteristics are affected.
  • the composition is generally stable in the range exceeding 7 nm in the film thickness direction, and the average value of In content in the surface layer of the film is determined as the In content inside the film (specifically, 10-15 nm in the film thickness direction from the outermost surface). Since it is desirable to approximate the average value of the above from the viewpoint of improving the film characteristics, the value of the In concentration difference was set.
  • Ga concentration difference means an average value (surface Ga concentration) of Ga content (atomic%) in the surface layer portion of the IGZO film and an average value (internal Ga content) of Ga content (atomic%) inside the film. (Concentration) difference (expressed by surface Ga concentration / internal Ga concentration). The average value (surface Ga concentration) of the Ga content (atomic%) in the film surface layer portion tends to be lower than the average value (internal Ga concentration) of the Ga content (atomic%) inside the film.
  • the difference between the surface Ga concentration and the internal Ga concentration is preferably 0.5 times or more. More preferably, it is 0.6 times or more.
  • the upper limit of the Ga concentration difference is not particularly limited, and a value that allows the In concentration difference to fall within the above range can be adopted.
  • the concentration profile in the film thickness direction of Zn constituting the oxide thin film of the present invention is not particularly defined, but the total amount of In and Ga (atomic atoms) is calculated from the total content (atomic%) of metal elements in the film. %) Corresponds to the Zn content (atomic%). Therefore, from the viewpoint of improving the TFT characteristics by controlling the above In concentration difference and Ga concentration difference to an appropriate range, the average value (surface Zn concentration) of the Zn content (atomic%) of the film surface layer portion is determined in the inside of the film.
  • the Zn content (atomic%) is preferably 0.8 to 1.3 times the average value (internal Zn concentration). More preferably, it is 0.9 to 1.1 times.
  • the difference (surface Zn concentration) between the average value (surface Zn concentration) of the Zn content (atomic%) in the surface layer portion of the IGZO film and the average value (internal Zn concentration) of the Zn content (atomic%) inside the film may be referred to as “Zn concentration difference”.
  • the respective concentrations of In, Ga, and Zn (metal elements) contained in the IGZO film are measured by X-ray photoelectron spectroscopy (XPS method) described later.
  • the XPS method is known as a method that can measure the energy distribution of photoelectrons emitted by X-ray irradiation and detect the element type, abundance, chemical bond, and the like on the surface of a sample nondestructively.
  • a qualitative analysis is performed by the wide-area photoelectron spectrum on the outermost surface of the film, and then sputtering is performed in the depth direction from the surface by Ar + plasma. Measure the narrow-area photoelectron spectrum of the element and the element detected on the outermost surface.
  • the composition in the depth direction (atomic%) can be calculated from the area intensity ratio of the narrow-range photoelectron spectrum obtained at each depth and the relative sensitivity coefficient.
  • the ratio between the metal elements is particularly limited as long as the oxide (IGZO) containing these metal elements has an amorphous phase and exhibits semiconductor characteristics.
  • IGZO itself is known, and the ratio of each metal element that can form an amorphous phase (specifically, each molar ratio of InO, GaO, and ZnO) is described in Non-Patent Document 1, for example.
  • the ratio of In: Ga: Zn (atomic% ratio) is, for example, 2: 2: 1 or 1: 1: 1. It is recommended that the ratio of In: Ga: Zn with a low Ga content is 1: 1: 1.
  • the ratio of In: Ga: Zn is not strictly 1: 1: 1, and the ratio of each metal element may vary, but the ratio of each metal element is significantly different, and the ratio of Zn or In If it becomes extremely high, processing by wet etching becomes difficult and problems such as failure to show transistor characteristics occur. Therefore, the fluctuation range of the ratio of each metal element is preferably within the above range of ⁇ 20%. Preferably, it is within the range of ⁇ 10%, more preferably within the range of ⁇ 5%.
  • the oxide of the present invention contains the above In, Ga, and Zn, preferably composed of In, Ga, and Zn, and the balance: inevitable impurities.
  • oxide of the present invention has been described above. Next, a method for manufacturing an oxide semiconductor film (IGZO film) containing In, Ga, and Zn will be described.
  • IGZO film oxide semiconductor film
  • the IGZO film is provided directly on the substrate or via another layer (for example, a gate insulating film).
  • the IGZO film is formed by sputtering using a sputtering target of a polycrystalline sintered body of IGZO (hereinafter also referred to as “target”).
  • a sputtering target (single target) containing the above-described elements and having the same composition as the desired oxide may be used, or the composition may be obtained so as to obtain an oxide having a predetermined composition.
  • Two or more different targets may be used. Specifically, an oxide target composed of In, Ga, and Zn, and the balance: inevitable impurities is used as the target.
  • the film may be formed by using a Co-Sputter method in which an IGZO target alone or sputtering targets having different compositions are simultaneously discharged.
  • the target can be manufactured by, for example, a powder sintering method.
  • the average value of the In content (atomic%) in the film surface layer portion is 1. 5 times or less (preferably a Ga concentration difference of 0.5 times or more and a Zn concentration difference of 0.8 to 1.3 times).
  • sputtering conditions and It is preferable to control the (pre) annealing conditions after the film formation as follows.
  • sputtering conditions it is preferable to appropriately control the gas pressure at the time of film formation, the input power to the sputtering target, the gas flow rate, the atmosphere, and the like.
  • sputtered atoms can diffuse on the surface of the substrate (film) and replenish locations that may become defects such as holes and gaps in the film.
  • it is preferably 0.1 mTorr or more, more preferably 0.5 mTorr or more.
  • the gas pressure during film formation is too high, before the sputter atoms collide with the substrate (film) surface, the collision energy is lost and the sputter atoms are scattered. Therefore, it is desirable to control to 3 mTorr or less, more preferably 2 mTorr or less.
  • the higher the input power the better. It is recommended that the input power is set to 0.5 W / cm 2 or more at DC or RF.
  • the substrate temperature is not particularly limited and is preferably 20 ° C. or more and 200 ° C. or less, more preferably about room temperature (generally 20 ° C. or more and 25 ° C. or less).
  • the preferable film thickness of the oxide formed as described above is 10 nm or more and 300 nm or less, and more preferably 15 nm or more and 200 nm or less.
  • the annealing process is a heat treatment for improving the film quality of the IGZO film, and includes all processes in which the IGZO film is heated.
  • the annealing for the purpose of modifying the IGZO film is performed before the wiring film such as the source electrode / drain electrode (S / D) is formed. Treatment (pre-annealing) is included.
  • an annealing process for the purpose of modifying the IGZO film is performed before forming an etch stopper layer for protecting the surface of the IGZO film.
  • a pre-annealing process for the purpose of modifying the IGZO film is performed before forming an etch stopper layer for protecting the surface of the IGZO film.
  • the formation of the etch stopper layer can effectively prevent the escape of Zn element in the IGZO film.
  • other processes for heating the IGZO film include, for example, a heat treatment after patterning, a heat process accompanying the formation of another film such as an insulating film, and the like.
  • the amount of In (atomic%) concentrated in the surface layer portion of the IGZO film can be reduced.
  • the film quality of the IGZO film is improved such that the density of the level in the gap is reduced, and the TFT characteristics and stress resistance are improved.
  • the atmosphere for the annealing treatment may be an oxygen-containing atmosphere, such as an air atmosphere or a water vapor atmosphere containing oxygen. From the viewpoint of efficiently reducing the amount of In in the film surface layer portion by increasing the oxygen supply amount, a water vapor atmosphere is preferred. In the case of a steam atmosphere, it is desirable to appropriately control the amount of oxygen contained. In addition, when setting it as a water vapor atmosphere, what is necessary is just to introduce
  • the sealed container for example, quartz glass tube etc.
  • the annealing temperature is preferably 250 ° C. or higher, more preferably 300 ° C. or higher.
  • the temperature is preferably 450 ° C. or lower, more preferably 400 ° C. or lower.
  • the annealing time needs to be processed for a predetermined time in the above temperature range in order to obtain a desired effect. Specifically, although it may vary depending on the temperature of the annealing treatment, it is 5 minutes or more, preferably 30 minutes or more, more preferably 1 hour or more, and 4 hours or less, preferably 3 hours or less. If the annealing treatment time is too short, the effect of sufficiently reducing the In concentration of the surface layer portion of the IGZO film cannot be obtained. On the other hand, if the annealing treatment time is too long, the effect is saturated and productivity is lowered, which is not desirable.
  • controlling the atmosphere in the cooling step after the annealing treatment is also desirable from the viewpoint of improving oxygen defects. That is, oxygen defects can be reduced by controlling the atmosphere (for example, water vapor) containing O 2 and / or OH in the cooling process.
  • atmosphere for example, water vapor
  • the present invention provides an IGZO film having good surface properties in which defects such as carrier traps are reduced by paying attention to an In concentration difference between the film surface layer portion and the inside of the film and eliminating the In concentration difference. . Therefore, when the IGZO film of the present invention is used as a TFT semiconductor layer, excellent TFT characteristics are exhibited. Therefore, the IGZO film of the present invention can be suitably used as a semiconductor layer of TFT.
  • the present invention includes a TFT having the semiconductor layer.
  • Various known TFTs may be used.
  • the TFT may have at least a gate electrode, a gate insulating film, a semiconductor layer of the IGZO film, a source electrode, and a drain electrode on a substrate. If there is no particular limitation.
  • the present invention includes a display device including the TFT.
  • Examples of the display device include a liquid crystal display and an organic EL display.
  • sample 1 A sample 1 was obtained by forming an IGZO film (film thickness: 40 nm) on a low-resistance Si substrate (manufactured by SUMCO: surface orientation ⁇ 100>, resistance value 0.03 ⁇ cm or less, diameter 100 mm) under the following IGZO film formation conditions. (As-deposited).
  • Example 2 An IGZO film (film thickness: 40 nm) was formed on a low resistance Si substrate in the same manner as Sample 1. The obtained IGZO film was annealed. Annealing treatment was performed at 350 ° C. for 30 minutes in a steam atmosphere under atmospheric pressure (H 2 O partial pressure 50%: O 2 replaced with 1 L / min) to obtain Sample 2 (steam annealing treatment). .
  • composition distribution in the depth direction was calculated from the area intensity ratio of the narrow-range photoelectron spectrum obtained at each depth and the relative sensitivity coefficient.
  • sample 2 (example of the present invention) subjected to annealing treatment is sample 1 as it is (as-deposited) (conventional example), and sample 3 (as conventional) with process damage added to as-deposited It was found that the difference in In concentration was small compared to Example).
  • Sample 3 has a larger In concentration difference than Sample 1, but this is presumed to be caused by damage to the surface layer of the film caused by immersion in the etchant solution.
  • the sample 1 has a lower concentration difference of Ga and Zn than the sample 2. This is because the Ga and Zn contents were relatively reduced because the In content in the film surface layer portion of Sample 1 was large.
  • Sample 2 has a higher Zn concentration difference than the other samples. This is because the Zn content was relatively increased as a result of the suppression of the In content in the surface layer portion of Sample 2. .
  • Zn concentration does not greatly affect the film surface properties and has excellent TFT characteristics.
  • the difference in Zn concentration is suppressed. This is because the Zn content was relatively small because the In content in the film surface layer portion of Sample 3 was large.
  • Experimental example 2 In this example, the influence of the In concentration difference in the IGZO film on the TFT characteristics was examined. Specifically, using the IGZO film having the same In concentration difference as Sample 1 and Sample 2 used in Experimental Example 1, a thin film transistor (TFT) shown in FIG. 6 was manufactured, and TFT characteristics were evaluated. The following sample 4 corresponds to the sample 1 of the experimental example 1, and the following sample 5 corresponds to the sample 2 of the experimental example 1.
  • TFT thin film transistor
  • a Mo thin film of 100 nm as the gate electrode 2 and SiO 2 (200 nm) as the gate insulating film 3 were formed on a glass substrate (“Eagle 2000” by Corning, diameter 100 mm ⁇ thickness 0.7 mm) 1.
  • the gate electrode 2 was formed by a DC sputtering method using a pure Mo sputtering target.
  • the sputtering conditions were film formation temperature: room temperature, film formation power density: 3.8 W / cm 2 , carrier gas: Ar, gas pressure during film formation: 2 mTorr, and Ar gas flow rate: 20 sccm.
  • the gate insulating film 3 was formed by plasma CVD using a carrier gas: a mixed gas of SiH 4 and N 2 O, power: 100 W, and film formation temperature: 300 ° C.
  • the IGZO film 4 was formed under the same IGZO film formation conditions as those obtained for the sample 1 of the above experimental example 1 (conventional example) (only as-deposited).
  • patterning was performed by photolithography and wet etching.
  • wet etchant “ITO-07N” manufactured by Kanto Chemical Co., Ltd., which is an oxalic acid-based wet etching solution for oxide semiconductors, was used.
  • a source / drain electrode 5 was formed on a properly etched sample (Sample 4).
  • the source / drain electrodes 5 were made of pure Mo and formed by a lift-off method. Specifically, after patterning using a photoresist, a Mo thin film for source / drain electrodes was formed (film thickness: 100 nm) by DC sputtering (film formation power: DC 300 W). Next, an unnecessary photoresist was removed by applying an ultrasonic cleaner in an acetone solution, so that the TFT channel length was 10 ⁇ m and the channel width was 200 ⁇ m.
  • a protective film 6 was formed.
  • the protective film 6 a laminated film (total film thickness 400 nm) of SiO 2 (film thickness 200 nm) and SiN (film thickness 200 nm) was used.
  • the formation of SiO 2 and SiN was performed by plasma CVD using “PD-220NL” manufactured by Samco. After performing plasma treatment with N 2 O gas, SiO 2 and SiN films were sequentially formed.
  • a mixed gas of N 2 O and SiH 4 was used for forming the SiO 2 film, and a mixed gas of SiH 4 , N 2 , and NH 3 was used for forming the SiN film.
  • the film formation power was 100 W and the film formation temperature was 150 ° C.
  • contact holes 7 for probing for transistor characteristic evaluation were formed in the protective film 6 by photolithography and dry etching.
  • an ITO film 8 (film thickness: 80 nm) was formed using a DC sputtering method with a carrier gas: a mixed gas of argon and oxygen gas, a film formation power: 200 W, and a gas pressure: 5 mTorr, to manufacture a TFT.
  • transistor characteristics drain current-gate voltage characteristics, Id-Vg characteristics
  • carrier mobility cm 2 / Vs
  • drain current-gate voltage characteristics Id-Vg characteristics
  • Sample 4 is an example using an IGZO film having the same In concentration difference as Sample 1 (conventional example), and the carrier mobility was 0.6 cm 2 / Vs as shown in FIG.
  • Sample 5 is an example using an IGZO film having the same In concentration difference as Sample 2 (invention example), and the carrier mobility is as high as 5.16 cm 2 / Vs as shown in FIG. Indicated.
  • a TFT was fabricated in the same manner as in Sample 4 except that the wet etchant solution (“ITO-07N” manufactured by Kanto Chemical Co., Inc.) was changed to the wet etchant solution (AC101) used in Sample 3 in Experimental Example 2 above.
  • the carrier mobility could not be measured because it was not switched.
  • Experimental example 3 In this example, the etch stop type TFT shown in FIG. 7 was produced, and the TFT characteristics and stress resistance after the formation of the protective film (insulating film) were evaluated.
  • the TFT of FIG. 7 has an etch stopper layer (ESL) 9 for protecting the surface of the IGZO film 4 on the IGZO film 4, unlike the TFT of FIG. .
  • the etch stopper layer 9 is intended to prevent the IGZO film 4 from being damaged when the source / drain electrode 5 is wet-etched, and the surface of the IGZO film 4 from being defective to deteriorate the transistor characteristics. Formed with.
  • a Mo thin film of 100 nm as the gate electrode 2 and a SiO 2 (200 nm) as the gate insulating film 3 were sequentially formed on a glass substrate (Corning Eagle 2000, diameter 100 mm ⁇ thickness 0.7 mm) 1.
  • the gate electrode 2 was formed by a DC sputtering method using a pure Mo sputtering target.
  • the sputtering conditions were film formation temperature: room temperature, film formation power density: 3.8 W / cm 2 , carrier gas: Ar, gas pressure during film formation: 2 mTorr, and Ar gas flow rate: 20 sccm.
  • the gate insulating film 3 uses a plasma CVD method, carrier gas: a mixed gas of SiH 4 and N 2 O, film forming power density: 0.78 W / cm 2 , film forming temperature: 320 ° C., gas during film formation The pressure was 133 Pa.
  • the IGZO film 4 was formed by sputtering under the following conditions.
  • ⁇ Sputtering method DC sputtering ⁇
  • Oxygen partial pressure: O 2 / (Ar + O 2 ) 4% ⁇ Gas pressure: 1mTorr
  • IGZO film 4 After forming the IGZO film 4 as described above, patterning was performed by photolithography and wet etching.
  • wet etchant “ITO-07N” manufactured by Kanto Chemical Co., Ltd., which is an oxalic acid-based wet etching solution for oxide semiconductors, was used.
  • a pre-annealing process was performed to improve the film quality.
  • the pre-annealing treatment is performed under atmospheric pressure (in the atmosphere of air at a temperature of 23 ° C. and a humidity of 50%) or in a steam atmosphere (similar to Experimental Example 2, H 2 O partial pressure 50%: O 2 In a container replaced with 1 L / min), the temperature was changed from 250 to 400 ° C. and the time was changed from 5 minutes to 2 hours.
  • an etch stopper layer (ESL) 9 for protecting the back channel of the IGZO film 4 was formed by plasma CVD.
  • the film formation conditions were as follows: carrier gas: mixed gas of SiH 4 and N 2 O, film formation power density: 0.26 W / cm 2 , film formation temperature: 230 ° C., gas pressure during film formation: 133 Pa.
  • the etch stopper layer 9 was patterned by photolithography and dry etching.
  • pure Mo (thickness: 200 nm) was formed as a source / drain electrode 5 on the IGZO film 4 by a sputtering method.
  • the deposition conditions for pure Mo were as follows: input power: DC 300 W, gas pressure: 2 mTorr, substrate temperature: room temperature.
  • a protective film 6 was formed.
  • a laminated film (total film thickness 250 nm) of SiO 2 (film thickness 100 nm) and SiN (film thickness 150 nm) was used as the protective film.
  • the formation of SiOx and SiNx was performed in the same manner as the gate insulating film 3 and the etch stopper layer 9 described above.
  • a mixed gas of N 2 O and SiH 4 was used for forming the SiOx film, and a mixed gas of SiH 4 , N 2 , and NH 3 was used for forming the SiNx film.
  • the film formation power was 100 W and the film formation temperature was 150 ° C.
  • contact holes 7 for probing for transistor characteristic evaluation were formed in the protective film 6 by photolithography and dry etching.
  • an ITO film 8 (film thickness: 80 nm) was formed as a transparent conductive film using a DC sputtering method with a carrier gas: a mixed gas of argon and oxygen gas, a film formation power: 200 W, and a gas pressure: 5 mTorr. 7 TFTs were produced.
  • a TFT was fabricated by the same method as described above except that the pre-annealing treatment was not performed.
  • the stress resistance of each TFT thus obtained was measured and evaluated as follows.
  • the fluctuation value of the threshold voltage (Vth) before and after stress application for 2 hours was defined as a threshold voltage shift amount ⁇ Vth (V), which was used as an index of stress resistance in TFT characteristics.
  • ⁇ Vth (V) the better the stress resistance.
  • the threshold voltage is roughly the value of the gate voltage when the transistor shifts from an off state (a state where the drain current is low) to an on state (a state where the drain current is high).
  • a voltage when the drain current is in the vicinity of 1 nA between the on-current and the off-current is defined as a threshold voltage, and the threshold voltage of each TFT is measured.
  • ⁇ Vth in a TFT without pre-annealing was very high at 5.75V.
  • ⁇ Vth is at most 4. It was reduced to 25 V or less, and stress resistance was improved.
  • ⁇ Vth after pre-annealing at 250 ° C. for 60 minutes is 2.25 V; ⁇ Vth after 60 minutes at 300 ° C. is 1.75 V; pre-annealing at 350 ° C. for 5 minutes. ⁇ Vth after 3.75 V; ⁇ Vth after 30 minutes pre-annealing at 350 ° C. is 3 V; ⁇ Vth after 60 minutes pre-annealing at 350 ° C. is 1.25 V; ⁇ Vth after 120 minutes pre-annealing at 350 ° C. In all cases, ⁇ Vth was significantly reduced as compared with the comparative example.
  • FIG. 8 shows the relationship between the amount of change in threshold voltage and the stress application time for an example in which a pre-annealing treatment is performed at 350 ° C. for 60 minutes in an air atmosphere.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

 本発明に係る薄膜トランジスタの半導体層用酸化物薄膜は、In、Ga、およびZnを含むと共に、前記酸化物薄膜の最表面から膜厚方向7nmまでの膜表層部と、前記最表面から膜厚方向10nm~15nmの膜内部をX線光電子分光法で測定したとき、前記膜表層部のIn含有量(原子%)の平均値は、前記膜内部のIn含有量(原子%)の平均値に対して1.5倍以下を満足する。本発明によれば、TFT特性に優れた薄膜トランジスタの半導体層用酸化物薄膜を提供することができた。

Description

薄膜トランジスタの半導体層用酸化物薄膜、薄膜トランジスタおよび表示装置
 本発明は、液晶ディスプレイや有機ELディスプレイなどの表示装置に用いられる薄膜トランジスタの半導体層用酸化物薄膜、当該薄膜を備えた薄膜トランジスタ、および当該薄膜トランジスタを備えた表示装置に関するものである。
 アモルファス(非晶質)酸化物半導体は、汎用のアモルファスシリコン(a-Si)に比べて高いキャリア移動度を有し、光学バンドギャップが大きく、低温で成膜できるため、大型・高解像度・高速駆動が要求される次世代ディスプレイや、耐熱性の低い樹脂基板などへの適用が期待されている。
 酸化物半導体のなかでも特に、インジウム、ガリウム、亜鉛、および酸素を含むアモルファス酸化物半導体(In-Ga-Zn-O、以下「IGZO」と呼ぶ場合がある。)は、非常に高いキャリア移動度を有するため、好ましく用いられている。例えば特許文献1には、In、Ga、Znの組成比(原子数)を0~1に制御したとき、当該酸化物半導体の密度が適切に制御された酸化物半導体が開示されている。また非特許文献1および2には、In:Ga:Zn=1.1:1.1:0.9(原子%比)の酸化物薄膜を薄膜トランジスタ(TFT)の半導体層(活性層)に用いたものが開示されている。
特開2008-277326号公報
固体物理、VOL44、P621(2009) Nature、VOL432、P488(2004)
 酸化物薄膜を薄膜トランジスタ(TFT)の半導体層として用いる場合、キャリア濃度が高いだけでなく、TFTのスイッチング特性(「TFT特性」ということがある)に優れていることが要求される。具体的には、移動度が高いことに加えて、(1)オン電流(ゲート電極とドレイン電極に正電圧をかけたときの最大ドレイン電流)が高く、(2)オフ電流(ゲート電極に負電圧を、ドレイン電圧に正電圧を夫々かけたときのドレイン電流)が低く、(3)SS(Subthreshold Swing、サブスレッショルド スィング、ドレイン電流を1桁あげるのに必要なゲート電圧)値が低く、(4)電圧や光照射の負荷(ストレス)を長時間加えた場合にしきい値(ドレイン電極に正電圧をかけ、ゲート電圧に正負いずれかの電圧をかけたときにドレイン電流が流れ始める電圧であり、しきい値電圧とも呼ばれる)が変化せず安定であり(基板面内で均一であることを意味する)、などが要求される。
 In、Ga、およびZnを含む酸化物薄膜(IGZO膜)の成膜に当たっては、成分や膜厚の面内均一性に優れた薄膜を容易に形成できるなどの理由により、スパッタリング法が広く用いられている。しかしながら本発明者らがスパッタリング法で形成したIGZO膜の特性を調べたところ、十分なTFT特性やストレス耐性が得られていないことが分かった。
 本発明は上記事情に鑑みてなされたものであり、その目的は、TFT特性やストレス耐性が良好である薄膜トランジスタに好適な酸化物薄膜(IGZO膜)を提供することにある。
 上記課題を達成し得た本発明とは、薄膜トランジスタの半導体層用酸化物薄膜であって、前記酸化物薄膜は、In、Ga、およびZnを含むと共に、
 前記酸化物薄膜の最表面から膜厚方向7nmまでの膜表層部と、前記最表面から膜厚方向10nm~15nmの膜内部をX線光電子分光法で測定したとき、前記膜表層部のIn含有量(原子%)の平均値は、前記膜内部のIn含有量(原子%)の平均値に対して1.5倍以下であることに要旨を有する。
 また本発明は、前記膜表層部のGa含有量(原子%)の平均値は、前記膜内部のGa含有量(原子%)の平均値に対して0.5倍以上であることや、前記膜表層部のZn含有量(原子%)の平均値は、前記膜内部のZn含有量(原子%)の平均値に対して0.8~1.3倍であることも好ましい実施態様である。
 本発明の好ましい実施態様において、上記の半導体層用酸化物薄膜は、半導体層用酸化物を250~450℃で、5分~4時間加熱処理して得られる。
 本発明には、上記のいずれかに記載の薄膜トランジスタの半導体層用酸化物薄膜を備えた薄膜トランジスタも包含される。
 本発明には、上記の薄膜トランジスタを備えた表示装置も包含される。
 本発明によれば、TFT特性やストレス耐性に優れた薄膜トランジスタの半導体層用酸化物薄膜を提供することができた。
図1は、実験例1のIGZO膜のXPS測定に基づくInプロファイルである。 図2は、実験例1のIGZO膜のXPS測定に基づくGaプロファイルである。 図3は、実験例1のIGZO膜のXPS測定に基づくZnプロファイルである。 図4は、実験例2(試料4)のドレイン電流-ゲート電圧特性(Id-Vg特性)の結果を示すグラフである。 図5は、実験例2(試料5)のドレイン電流-ゲート電圧特性(Id-Vg特性)の結果を示すグラフである。 図6は、実験例2で作製したTFTの概略説明図である。 図7は、実験例3で作製したエッチストップ型TFTの概略説明図である。 図8は、実験例3において、大気雰囲気中にて350℃、60分のプレアニール処理を行なった例について、しきい値電圧の変化量とストレス印加時間の関係を示す図である。
 上記問題を解決すべく本発明者らが研究を重ねた結果、スパッタリング法によって成膜した場合、IGZO膜の表面側にInが偏析(濃化)しており、該表面側に偏析したInに起因してTFT特性が悪化していることがわかった。
 本発明者らの検討の結果、Inが膜表面側に偏析する原因は以下のように考えられる。すなわち、Inは融点が低く、また酸素と結合してIn酸化物導電体を形成し易い。そのためIn-Ga-Znを含むスパッタリングターゲットを用いてスパッタリングするとInは、膜内部と比べて酸素との結合が不安定になり易い膜表面でも、酸素と結合し易く、且つ後記するように膜表面での酸素との結合力はGaに比べてInの方が高いため、膜表面側のIn含有量が増加するものと考えられる。
 そして膜最表面から膜厚方向7nmまでの位置(膜表層部)と膜最表面から膜厚方向10nm~15nmの位置(膜内部)とで組成の構成割合のずれが大きくなって膜表層部でInが偏析すると、生成するキャリアトラップが多くなり、薄膜トランジスタのTFT特性が低下することがわかった。これは過剰にInが存在していると、トラップ準位が多くなることに起因すると推測される。詳細にはInが過度に偏析するとドナーが多くなり、ドナーに補足されている電子が伝導帯に励起されて伝導電子となると、ドナーが電子を失ってイオン化した(帯電)状態になるため、光で励起された電子がこの帯電に捕捉(トラップ)され、TFT特性が悪くなると考えられる。
 そこで本発明では、IGZO膜の膜表層部のIn含有量(原子%)の平均値(表面In濃度)と、膜内部のIn含有量(原子%)の平均値(内部In濃度)の差(表面In濃度/内部In濃度で表されるIn偏析の程度を表す指標であり、「In濃度差」と表記する場合がある。)を、1.5倍以下とすることによって、上記問題を解決し、優れたTFT特性を発揮する薄膜トランジスタの半導体層に適した酸化物薄膜(IGZO膜)を提供できることを見出し、本発明を完成した。
 上記In濃度差(In偏析)解消によるTFT特性向上の詳細なメカニズムは不明であるが、IGZO膜の表面In濃度と内部In濃度の差が縮小すると、IGZO膜中で余剰電子の原因となるキャリアトラップの発生抑制効果があると推察される。すなわち、膜表面In濃度と内部In濃度の差が縮小することにより、キャリアトラップが低減され、IGZO酸化物が安定な構造を有することになり、電圧や光などのストレスに対するストレス耐性なども向上すると考えられる。
 IGZO膜の表面In濃度と内部In濃度との差が大きいと、上記のように、キャリアトラップが生じて、TFT特性が悪化する。したがってIn濃度差はできるだけ少なく、1に近いほど望ましく、具体的には1.5倍以下、好ましくは1.4倍以下とする。最も好ましくは1倍である。
 なお、本発明において膜表層部を、膜最表面(0nm)から膜厚方向7nmまでの範囲としたのは、この範囲において特にInの濃化(あるいはGaの膜表面からの抜け)が生じ易く、TFT特性に影響しているからである。また膜厚方向7nmを超える範囲では組成がおおむね安定しており、膜表層部のIn含有量の平均値を、膜内部(具体的には最表面から膜厚方向10~15nm)のIn含有量の平均値に近似させることが、膜特性改善の観点から望ましいため、上記In濃度差の値を設定した。
 次にIGZO膜に含まれるGaについて説明する。本発明では上記In濃度差に加えて更にGa濃度差も抑制することが望ましい。ここで「Ga濃度差」とは、IGZO膜の膜表層部のGa含有量(原子%)の平均値(表面Ga濃度)と、膜内部のGa含有量(原子%)の平均値(内部Ga濃度)の差(表面Ga濃度/内部Ga濃度で表されるもの)を意味する。膜表層部のGa含有量(原子%)の平均値(表面Ga濃度)は、膜内部のGa含有量(原子%)の平均値(内部Ga濃度)と比べて低くなる傾向がある。これはIGZO膜を構成するGaは膜表面で酸素と十分に結合できず、雰囲気中に拡散してしまうため、膜表層部でのGa濃度が低下すると推測される。その結果、膜表層部ではGa含有量が減少するが、その減少に伴って、上記のように膜表面で酸素と結合するIn量が増えて膜表面でのIn濃度が一層高くなり、Inの偏析が生じるものと考えられる。したがってInの偏析を抑制する観点から、表面Ga濃度と内部Ga濃度との差は好ましくは0.5倍以上とする。より好ましくは0.6倍以上である。なお、Ga濃度差の上限は特に限定されず、上記In濃度差が上記範囲内に収まる値を採用し得る。
 次にIGZO膜に含まれるZnについて説明する。ZnはInと比べて表面に濃化してもTFT特性に大きな影響を与えることがない。したがって本発明では、本発明の酸化物薄膜を構成するZnの膜厚方向の濃度プロファイルは特に規定しないが、膜中の金属元素の合計含有量(原子%)からInとGaの合計量(原子%)を減じた値がほぼZn含有量(原子%)に該当する。そのため、上記In濃度差やGa濃度差を適切な範囲に制御してTFT特性を向上させる観点からは、膜表層部のZn含有量(原子%)の平均値(表面Zn濃度)は、膜内部のZn含有量(原子%)の平均値(内部Zn濃度)に対して、0.8~1.3倍であることが好ましい。より好ましくは0.9~1.1倍である。
 以下では、IGZO膜の膜表層部のZn含有量(原子%)の平均値(表面Zn濃度)と、膜内部のZn含有量(原子%)の平均値(内部Zn濃度)の差(表面Zn濃度/内部Zn濃度で表されるもの)を、「Zn濃度差」と呼ぶ場合がある。
 IGZO膜に含まれる上記In、Ga、およびZnの各(金属元素)濃度は、後記するX線光電子分光法(XPS法)で測定する。XPS法は、X線照射により放出される光電子のエネルギー分布を測定し、試料表面の元素の種類・存在量・化学結合などを非破壊的に検出できる方法として知られている。
 具体的には、X線光電子分光装置を用い、膜最表面の広域光電子スペクトルによる定性分析を実施し、その後、Ar+プラズマにより表面から深さ方向にスパッタリングし、一定深さ毎に膜の構成元素と最表面で検出された元素の狭域光電子スペクトルを測定する。各深さで得られた狭域光電子スペクトルの面積強度比と相対感度係数から深さ方向組成分布(原子%)を算出することができる。
 次に、本発明の酸化物を構成する成分である金属元素(In、Ga、およびZn)について説明する。
 上記金属元素(In、Ga、およびZn)について、各金属元素間の比率は、これら金属元素を含む酸化物(IGZO)がアモルファス相を有し、且つ、半導体特性を示す範囲であれば特に限定されない。IGZO自体は公知であり、アモルファス相を形成し得る各金属元素の比率(詳細には、InO、GaO、ZnOの各モル比)は、例えば前述した非特許文献1に記載されている。また代表的な組成として、In:Ga:Znの比(原子%比)が例えば2:2:1や、1:1:1のものが挙げられるが、原料コスト等を考慮すると高価なInやGaの含有量が少ないIn:Ga:Znの比が1:1:1のものが推奨される。もっとも、In:Ga:Znの比は厳密に1:1:1に限らず、各金属元素の比率が変動してもよいが、各金属元素の比率が大幅に異なり、ZnやInの比率が極端に高くなると、ウェットエッチングによる加工が困難になったり、トランジスタ特性を示さなくなるなどの問題が生じることから、各金属元素の比率の変動幅は、好ましくは上記比率±20%の範囲内、より好ましくは±10%の範囲内、更に好ましくは±5%の範囲内とすることが望ましい。本発明の酸化物は上記In、Ga、およびZnを含むものであり、好ましくはIn、Ga、およびZnからなり、残部:不可避的不純物である。
 以上、本発明の酸化物について説明した。次にIn、Ga、およびZnを含む酸化物半導体膜(IGZO膜)の製造方法について説明する。
 IGZO膜は、基板上に直接、又は他の層(例えばゲート絶縁膜)を介して設けられる。IGZO膜はスパッタリング法にて、IGZOの多結晶焼結体のスパッタリングターゲット(以下、「ターゲット」ということがある。)を用いて成膜する。
 スパッタリング法に用いられるターゲットとして、前述した元素を含み、所望の酸化物と同一組成のスパッタリングターゲット(単一のターゲット)を用いてもよいし、あるいは所定組成の酸化物が得られるように組成の異なる2以上の複数のターゲットを用いてもよい。具体的にはターゲットとして、In、Ga、およびZnからなり、残部:不可避的不純物である酸化物ターゲットを用いる。またスパッタリングに際しては、IGZOターゲット単独、あるいは組成の異なるスパッタリングターゲットを同時放電するCo-Sputter法を用いて成膜してもよい。ターゲットは、例えば粉末焼結法によって製造することができる。
 また本発明では、上記IGZO膜を成膜したときの、前記膜表層部のIn含有量(原子%)の平均値は、膜内部のIn含有量(原子%)の平均値に対して1.5倍以下(好ましくはGa濃度差を0.5倍以上、Zn濃度差を0.8~1.3倍)であるが、このようなIGZO膜を成膜するためには、スパッタリング条件、および成膜後の(プレ)アニール処理条件を以下のように制御することが好ましい。
 まず、スパッタリング条件について説明する。スパッタリング条件としては、成膜時のガス圧、スパッタリングターゲットへの投入パワー、ガス流量、雰囲気などを適切に制御することが好ましい。
 例えば成膜時のガス圧を制御することによって、スパッタ原子は基板(膜)表面上で拡散して膜の孔や隙間などの欠陥となり得る箇所を補充することができる。スパッタ原子の表面拡散を生じさせるためには、好ましくは0.1mTorr以上、より好ましくは0.5mTorr以上である。一方、成膜時のガス圧が高すぎると、スパッタ原子が基板(膜)表面と衝突する前に、衝突エネルギーが失われてスパッタ原子が散乱する。したがって好ましくは3mTorr以下、より好ましくは2mTorr以下に制御することが望ましい。
 また、投入パワーは高い程良く、おおむねDCまたはRFにて0.5W/cm2以上に設定することが推奨される。
 上記ターゲットを用いてスパッタリングするに当たっては、アルゴン(Ar)と酸素(O2)を導入しながら行う反応性スパッタが望ましい。酸素添加量は、スパッタリング装置の構成やターゲット組成などに応じて適切に制御すれば良いが、おおむね、酸化物半導体のキャリア濃度が1015~1016cm-3となるように酸素量を添加することが好ましい。酸素添加量は添加流量比で例えばO2/(Ar+O2)=2~8%とすることが推奨される。
 基板温度は特に限定されず、20℃以上、200℃以下が好ましく、より好ましくは室温程度(おおむね20℃以上、25℃以下)が望ましい。
 上記のようにして成膜される酸化物の好ましい膜厚は10nm以上、300nm以下であり、より好ましくは15nm以上、200nm以下である。
 更に本発明では、上記のようにIGZO膜を成膜した後、所定の条件でアニール処理を施すことが必要である。本明細書においてアニール処理とは、IGZO膜の膜質改善のための熱処理であって、IGZO膜が加熱される処理を全て含む。例えば、後記する実験例2のように、IGZO膜を成膜した後、ソース電極/ドレイン電極(S/D)等の配線膜を成膜する前に、IGZO膜の改質を目的とするアニール処理(プレアニール)が含まれる。或いは、後記する実験例3のように、IGZO膜の成膜後、IGZO膜の表面を保護するためのエッチストッパー層を成膜する前に、IGZO膜の改質を目的とするアニール処理(プレアニール)も含まれる。エッチストッパー層の形成により、IGZO膜中のZn元素の抜けなどを有効に防止できると考えられる。上記の他、IGZO膜が加熱される他の処理として、例えば、パターニング後の熱処理や、絶縁膜などの他の膜の成膜に伴う加熱処理等も含まれる。アニール処理を施すことによって、IGZO膜表層部に濃化しているIn量(原子%)を低減できる。その結果、ギャップ内準位の密度が低減されるなどIGZO膜の膜質が良好となり、TFT特性やストレス耐性が向上すると考えられる。
 アニール処理の雰囲気は酸素含有雰囲気であれば良く、大気雰囲気下や、酸素を含む水蒸気雰囲気などが挙げられる。酸素供給量を高めて膜表層部のIn量を効率的に低減する観点からは、水蒸気雰囲気が好適である。水蒸気雰囲気の場合は、含まれる酸素量を適切に制御することが望ましい。なお、水蒸気雰囲気とする際は、密封した容器(たとえば石英ガラス管など)内に水蒸気と酸素を導入して雰囲気を置換すればよく、その際、装置内の圧力は大気圧でよい。
 アニール処理の温度は、低すぎると酸素欠陥が生じることがあるため、好ましくは250℃以上、より好ましくは300℃以上とする。一方、温度が高くなりすぎるとZnが雰囲気中に拡散してしまい膜中濃度が低下することがあるため、好ましくは450℃以下、より好ましくは400℃以下とする。
 アニール処理の時間は、所望の効果を得るために上記温度域で所定時間処理する必要がある。詳細には、アニール処理の温度によっても相違し得るが、5分以上、好ましくは30分以上、より好ましくは1時間以上であって、4時間以下、好ましくは3時間以下である。アニール処理時間が短すぎるとIGZO膜表層部のIn濃度を十分に低減する効果が得られず、一方、アニール処理時間が長すぎると、効果が飽和して生産性を低下させるため望ましくない。
 更にアニール処理後の冷却工程における雰囲気を制御することも酸素欠陥を改善する観点からは望ましい。すなわち、冷却過程において、O2および/またはOHが含まれている雰囲気(例えば水蒸気)に制御することによって、酸素欠陥を低減できる。
 本発明は、膜表層部と膜内部とのIn濃度差に着目し、In濃度差を解消することによって、キャリアトラップなどの欠陥が減少した良好な表面性状を有するIGZO膜を提供するものである。そのため、本発明のIGZO膜をTFTの半導体層として用いると、優れたTFT特性を示す。したがって本発明のIGZO膜はTFTの半導体層として好適に利用できる。
 本発明には、上記半導体層を備えたTFTも包含される。TFTは各種公知のものでよく、例えば基板上に、ゲート電極、ゲート絶縁膜、上記IGZO膜の半導体層、ソース電極、ドレイン電極を少なくとも有していれば良く、その構成は通常用いられるものであれば特に限定されない。
 本発明には、上記TFTを備えた表示装置も含まれる。表示装置には、例えば液晶ディスプレイや有機ELディスプレイなどが包含される。
 本願は、2011年12月2日に出願された日本国特許出願第2011-264746号に基づく優先権の利益を主張するものである。2011年12月2日に出願された日本国特許出願第2011-264746号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 実験例1
 本実験例では、以下のようにして試料1(従来例)、試料2(本発明例)、試料3(従来例)を製造し、In濃度差、Ga濃度差、Zn濃度差を測定した。
 (試料1)
 低抵抗Si基板(SUMCO社製:面方位<100>、抵抗値0.03Ωcm以下、直径100mm)上に、下記IGZO成膜条件によってIGZO膜(膜厚40nm)を成膜して試料1を得た(アズデポ:as-deposited)。
 (試料2)
 試料1と同様にして低抵抗Si基板上にIGZO膜(膜厚:40nm)を成膜した。得られたIGZO膜にアニール処理を行った。アニール処理は、大気圧下で水蒸気雰囲気中(H2O分圧50%:O2を1L/分で置換した容器内)、350℃で30分間行って試料2を得た(水蒸気アニール処理)。
 (試料3)
 試料1と同様にして低抵抗Si基板上にIGZO膜(膜厚:40nm)を成膜した。得られたIGZO膜をエッチャント液((ナガセケムテックス社製のりん硝酸系液「AC101」):純水=100:7で希釈)に5秒間浸漬させた後、乾燥させて試料3を得た(AC101)。なお、試料3は、半導体層製造工程で薄膜に与えられるプロセスダメージを模擬してエッチャント液浸漬を行ったものである。
 IGZO膜成膜条件
 ・スパッタリングターゲット組成:In:Ga:Zn=1:1:1(原子%比)
 ・ターゲットサイズ:φ4インチ×5mm
 ・スパッタリング装置:株式会社アルバック社製「CS-200」
 ・スパッタ方法:DCスパッタリング
 ・基板温度:室温
 ・成膜パワー:200W
 ・酸素分圧:O2/(Ar+O2)=4%
 ・ガス圧:1mTorr
 (XPS分析)
 上記の様にして得られた試料1~3のIGZO膜中のIn、Ga、Znの各含有量(原子%)の深さ方向の分布を、XPS(X-ray Photoelectron Spectroscopy)法によって分析した(測定条件は以下の通り)。具体的には、Physical Electronics社製X線光電子分光装置Quantera SXMを用い、最表面の広域光電子スペクトルによる定性分析を実施した。その後、Ar+スパッタにより表面から深さ方向にエッチングし、一定深さ毎に膜の構成元素と最表面で検出された元素の狭域光電子スペクトルを測定した。各深さで得られた狭域光電子スペクトルの面積強度比と相対感度係数から深さ方向組成分布(原子%)を算出した。なお、In、Ga、Znの各組成分布(原子%)は、In=In/(In+Ga+Zn)、Ga=Ga/(In+Ga+Zn)、Zn=Zn/(In+Ga+Zn)によって算出した。結果を表1、及び図1~3に示す。
 測定条件
 ・X線源:Al Kα(1486.6eV)
 ・X線出力:25W
 ・X線ビーム径:100μm
 ・光電子取り出し角:45°
 ・装置:Quantera SXM
 Ar+スパッタ条件 
 ・入射エネルギー:1keV
 ・ラスター:2mm×2mm
 ・スパッタ速度:1.83nm/分(SiO2換算)
 ・スパッタ深さは全てSiO2換算の深さとする。
Figure JPOXMLDOC01-appb-T000001
 表1、及び図1~3より、アニール処理を施した試料2(本発明例)は、成膜まま(アズデポ)の試料1(従来例)、及びアズデポにプロセスダメージを加えた試料3(従来例)と比べて、In濃度差が小さいことがわかった。
 なお、試料3は、試料1よりもIn濃度差が大きくなっているが、これはエッチャント液浸漬によって膜表層部にダメージが与えられたことに起因すると推測される。
 また、Ga濃度差およびZn濃度差を参照すると、試料1は、試料2よりもGa及びZnの濃度差が抑えられている。これは試料1の膜表層部のIn含有量が多いために、相対的にGa及びZn含有量が少なくなったためである。試料2は、Zn濃度差が他の試料と比べて高くなっているが、これは試料2の膜表層部のIn含有量が抑えられた結果、相対的にZn含有量が多くなったためである。なお、Znが濃化しても膜表面性状に大きな影響を及ぼさず、TFT特性も優れていることは、後記実験例2に示されている。試料3は、Znの濃度差が抑えられているが、これは試料3の膜表層部のIn含有量が多いために、相対的にZn含有量が少なくなったためである。
 実験例2
 本実施例では、IGZO膜中のIn濃度差がTFT特性にどのような影響を与えるか調べた。詳細には、上記実験例1に用いた試料1、試料2と同じIn濃度差を有するIGZO膜を用いて、図6に示す薄膜トランジスタ(TFT)を作製し、TFT特性を評価した。以下の試料4は、上記実験例1の試料1に対応し、以下の試料5は、上記実験例1の試料2に対応する。
 (試料4、5)
 まず、ガラス基板(Corning社製「イーグル2000」、直径100mm×厚さ0.7mm)1上に、ゲート電極2としてMo薄膜を100nm、およびゲート絶縁膜3としてSiO2(200nm)成膜した。ゲート電極2は純Moのスパッタリングターゲットを使用し、DCスパッタ法により形成した。スパッタリング条件は、成膜温度:室温、成膜パワー密度:3.8W/cm2、キャリアガス:Ar、成膜時のガス圧:2mTorr、Arガス流量:20sccmとした。ゲート絶縁膜3はプラズマCVD法を用い、キャリアガス:SiH4とN2Oの混合ガス、パワー:100W、成膜温度:300℃にて成膜した。
 次に、上記実験例1の試料1(従来例)を得たのと同じIGZO膜成膜条件でIGZO膜4を成膜した(アズデポのみ)。IGZO膜を成膜した後、フォトリソグラフィおよびウェットエッチングによりパターニングを行った。ウェットエッチャント液としては、酸化物半導体用のシュウ酸系ウェットエッチング液である関東化学社製「ITO-07N」を使用した。パターニング後、適切にエッチングされた試料にソース・ドレイン電極5を形成した(試料4)。
 一方、試料5は、上記試料4と同様にしてIGZO膜を成膜し、フォトリソグラフィおよびウェットエッチングによりパターニングを行った後、大気圧下で水蒸気雰囲気中(H2O分圧50%:O2を1L/分で置換した容器内)、350℃で30分間のアニール処理をして上記実験例1の試料2と同じIn濃度差を有するIGZO膜としてから、ソース・ドレイン電極を形成した。
 ソース・ドレイン電極5は純Moを使用し、リフトオフ法により形成した。具体的にはフォトレジストを用いてパターニングを行った後、ソース・ドレイン電極用Mo薄膜をDCスパッタリング法(成膜パワー:DC300W)により成膜(膜厚は100nm)した。次いで、アセトン液中で超音波洗浄器にかけて不要なフォトレジストを除去し、TFTのチャネル長を10μm、チャネル幅を200μmとした。
 このようにしてソース・ドレイン電極5を形成した後、保護膜6を形成した。保護膜6として、SiO2(膜厚200nm)とSiN(膜厚200nm)の積層膜(合計膜厚400nm)を用いた。上記SiO2およびSiNの形成は、サムコ社製「PD-220NL」を用い、プラズマCVD法で行なった。N2Oガスによってプラズマ処理を行った後、SiO2、およびSiN膜を順次形成した。SiO2膜の形成にはN2OおよびSiH4の混合ガスを用い、SiN膜の形成にはSiH4、N2、NH3の混合ガスを用いた。いずれの場合も成膜パワーを100W、成膜温度を150℃とした。
 次にフォトリソグラフィ、およびドライエッチングにより、保護膜6にトランジスタ特性評価用プロービングのためのコンタクトホール7を形成した。次に、DCスパッタリング法を用い、キャリアガス:アルゴンおよび酸素ガスの混合ガス、成膜パワー:200W、ガス圧:5mTorrにてITO膜8(膜厚80nm)を成膜し、TFTを作製した。
 このようにして得られた各TFT(試料4、5)について、トランジスタ特性(ドレイン電流-ゲート電圧特性、Id-Vg特性)、およびキャリア移動度(cm2/Vs)を調べた。
 (1)トランジスタ特性の測定
 トランジスタ特性の測定はNational Instruments社製「4156C」の半導体パラメータアナライザーを使用した。詳細な測定条件は以下のとおりである。
  ソース電圧 :0V
  ドレイン電圧:10V
  ゲート電圧 :-30~30V(測定間隔:0.25V)
 ドレイン電流-ゲート電圧特性(Id-Vg特性)の結果を図4、図5に示す。
 (2)キャリア移動度(電界効果移動度)の測定
 キャリア移動度(電界効果移動度)は、Id∝(Vg-Vth)(Vth=しきい値電圧)の関係が成り立つ領域(線形領域)についてId∝(Vg-Vth)の傾きから算出した。
 試料4は、上記試料1(従来例)と同じIn濃度差を有するIGZO膜を用いた例であり、図4に示すようにキャリア移動度は0.6cm2/Vsであった。
 一方、試料5は、上記試料2(本発明例)と同じIn濃度差を有するIGZO膜を用いた例であり、図5に示すようにキャリア移動度は5.16cm2/Vsと高い値を示した。
 (参考例)
 上記実験例2において、ウェットエッチャント液(関東化学社製「ITO-07N」)を上記試料3で使用したウェットエッチャント液(AC101)に変更した以外は、試料4と同様にしてTFTを作製したが、スイッチングしなかったため、キャリア移動度を測定できなかった。
 実験例3
 本実施例では、図7に示すエッチストップ型TFTを作製し、保護膜(絶縁膜)形成後のTFT特性およびストレス耐性を評価した。
 図7のTFTは、前述した実験例2で作製した図6のTFTと異なり、IGZO膜4の上に、IGZO膜4の表面を保護するためのエッチストッパー層(ESL)9を有している。一般にエッチストッパー層9は、ソース・ドレイン電極5をウェットエッチングする際、IGZO膜4がエッチングされてダメージを受け、IGZO膜4の表面に欠陥が発生してトランジスタ特性が低下するのを防止する目的で形成される。
 まず、ガラス基板(コーニング社製イーグル2000、直径100mm×厚さ0.7mm)1上に、ゲート電極2としてMo薄膜を100nm、およびゲート絶縁膜3としてSiO2(200nm)を順次成膜した。ゲート電極2は純Moのスパッタリングターゲットを使用し、DCスパッタ法により形成した。スパッタリング条件は、成膜温度:室温、成膜パワー密度:3.8W/cm2、キャリアガス:Ar、成膜時のガス圧:2mTorr、Arガス流量:20sccmとした。また、ゲート絶縁膜3はプラズマCVD法を用い、キャリアガス:SiH4とN2Oの混合ガス、成膜パワー密度:0.78W/cm2、成膜温度:320℃、成膜時のガス圧:133Paとした。
 次に、IGZO膜4を下記条件のスパッタリング法によって成膜した。
 ・スパッタリングターゲット組成:In:Ga:Zn=1:1:1(原子%比)
 ・ターゲットサイズ:φ4インチ×5mm
 ・スパッタリング装置:株式会社アルバック社製「CS-200」
 ・スパッタ方法:DCスパッタリング
 ・基板温度:室温
 ・成膜パワー:200W
 ・酸素分圧:O2/(Ar+O2)=4%
 ・ガス圧:1mTorr
 上記のようにしてIGZO膜4を成膜した後、フォトリソグラフィおよびウェットエッチングによりパターニングを行った。ウェットエッチャント液としては、酸化物半導体用のシュウ酸系ウェットエッチング液である関東化学社製「ITO-07N」を使用した。
 IGZO膜4のパターニング後、ソース・ドレイン電極5を成膜する前に、膜質を向上させるため、プレアニール処理を行った。具体的にはプレアニール処理は、大気圧下、大気雰囲気中(温度23℃、湿度50%の大気を使用)または水蒸気雰囲気中(実験例2と同様、H2O分圧50%:O2を1L/分で置換した容器内)にて、温度:250~400℃、時間:5分~2時間の範囲で種々変化させて行った。
 次に、IGZO膜4のバックチャネルを保護するエッチストッパー層(ESL)9をプラズマCVD法により成膜した。成膜条件は、キャリアガス:SiH4とN2Oの混合ガス、成膜パワー密度:0.26W/cm2、成膜温度:230℃、成膜時のガス圧:133Paとした。次に、フォトリソグラフィおよびドライエッチングにより、エッチストッパー層9をパターニングした。
 次に、IGZO膜4の上に、ソース・ドレイン電極5として純Mo(膜厚200nm)を、スパッタリング法によって成膜した。純Moの成膜条件は投入パワー:DC300W,ガス圧:2mTorr,基板温度:室温とした。次いで、フォトリソグラフィにより、ソース・ドレイン電極5をパターニングした。具体的には、リン酸:硝酸:酢酸=70:2:10(質量比)の混合液からなる混酸エッチャントを用い、ウェットエッチングにより加工した。
 このようにしてソース・ドレイン電極5を形成した後、保護膜6を形成した。保護膜として、SiO2(膜厚100nm)とSiN(膜厚150nm)の積層膜(合計膜厚250nm)を用いた。上記SiOxおよびSiNxの形成は、前述したゲート絶縁膜3およびエッチストッパー層9と同様にして行った。SiOx膜の形成にはN2OおよびSiH4の混合ガスを用い、SiNx膜の形成にはSiH4、N2、NH3の混合ガスを用いた。いずれの場合も成膜パワーを100W、成膜温度を150℃とした。
 次にフォトリソグラフィ、およびドライエッチングにより、保護膜6にトランジスタ特性評価用プロービングのためのコンタクトホール7を形成した。次に、DCスパッタリング法を用い、キャリアガス:アルゴンおよび酸素ガスの混合ガス、成膜パワー:200W、ガス圧:5mTorrにて透明導電膜としてITO膜8(膜厚80nm)を成膜し、図7のTFTを作製した。
 本実験例では、プレアニールの有用性を調べるため、上記のプレアニール処理を行わなかったこと以外は上記と同様の方法により、TFTを作製した。
 このようにして得られた各TFTのストレス耐性を以下のようにして測定し、評価した。
 (ストレス耐性の評価)
 本実施例では、実際の液晶パネル駆動時の環境(ストレス)を模擬して、試料に光(白色光)を照射しながら、ゲート電極に負バイアスをかけ続けるストレス印加試験を行った。ストレス印加条件は以下のとおりである。
  ・ソース電圧:0V
  ・ドレイン電圧:10V
  ・ゲート電圧:-20V
  ・基板温度:60℃
  ・ストレス印加時間:2時間
  ・光源:白色LED(Yang電子System.co.Ltd製、 6”Back Light Hot Chuck System YSM-1410)
 本実施例では、2時間のストレス印加前後のしきい値電圧(Vth)の変動値をしきい値電圧シフト量ΔVth(V)とし、TFT特性におけるストレス耐性の指標とした。ΔVth(V)が小さい程、ストレス耐性に優れている。
 ここで、しきい値電圧とは、おおまかにいえば、トランジスタがオフ状態(ドレイン電流の低い状態)からオン状態(ドレイン電流の高い状態)に移行する際のゲート電圧の値である。本実施例では、ドレイン電流が、オン電流とオフ電流の間の1nA付近であるときの電圧をしきい値電圧と定義し、各TFTのしきい値電圧を測定した。
 その結果は以下のとおりである。
 まず、プレアニール無しのTFT(比較例)におけるΔVthは5.75Vと、非常に高いものであった。
 これに対し、本発明で規定するプレアニール条件(250~450℃で、5分~4時間の加熱処理)を行った場合、大気雰囲気中、水蒸気雰囲気中のいずれにおいても、ΔVthは最大でも4.25V以下に低減され、ストレス耐性が向上した。
 詳細には、大気雰囲気中の場合、250℃で60分のプレアニール処理後のΔVthは2.25V;300℃で60分のプレアニール処理後のΔVthは1.75V;350℃で5分のプレアニール処理後のΔVthは3.75V;350℃で30分のプレアニール処理後のΔVthは3V;350℃で60分のプレアニール処理後のΔVthは1.25V;350℃で120分のプレアニール処理後のΔVthは3Vであり、いずれも、上記比較例に比べてΔVthが著しく低下した。
 同様の傾向は、水蒸気雰囲気中でも見られ、雰囲気が異なっても本発明で規定するプレアニール処理を行なえば、ストレス耐性が向上することが分かった。すなわち、水蒸気雰囲気中では、250℃で60分のプレアニール処理後のΔVthは3.75V;350℃で30分のプレアニール処理後のΔVthは3.25V;350℃で60分のプレアニール処理後のΔVthは3V;350℃で120分のプレアニール処理後のΔVthは3.25V;400℃で60分のプレアニール処理後のΔVthは4.25Vであり、いずれも、上記比較例に比べてΔVthが低下した。
 参考のため、図8に、大気雰囲気中にて350℃、60分のプレアニール処理を行なった例について、しきい値電圧の変化量とストレス印加時間の関係を示す。
 また、ここには記載していないが、本発明に規定するアニール温度の上限(450℃)より高い温度では、IGZO膜4中のZn元素が抜け始め、IGZO膜表面の組成ずれが大きくなり、TFT特性やストレス耐性の低下などが見られることを確認している。
 1 基板
 2 ゲート電極
 3 ゲート絶縁膜
 4 IGZO膜
 5 ソース・ドレイン電極
 6 保護膜(絶縁膜)
 7 コンタクトホール
 8 ITO膜
 9 エッチストッパー層

Claims (7)

  1. 薄膜トランジスタの半導体層用酸化物薄膜であって、 前記酸化物薄膜は、In、Ga、およびZnを含むと共に、 前記酸化物薄膜の最表面から膜厚方向7nmまでの膜表層部と、前記最表面から膜厚方向10nm~15nmの膜内部をX線光電子分光法で測定したとき、前記膜表層部のIn含有量(原子%)の平均値は、前記膜内部のIn含有量(原子%)の平均値に対して1.5倍以下であることを特徴とする薄膜トランジスタの半導体層用酸化物薄膜。
  2. 前記膜表層部のGa含有量(原子%)の平均値は、前記膜内部のGa含有量(原子%)の平均値に対して0.5倍以上である請求項1に記載の薄膜トランジスタの半導体層用酸化物薄膜。
  3.  前記膜表層部のZn含有量(原子%)の平均値は、前記膜内部のZn含有量(原子%)の平均値に対して0.8~1.3倍である請求項1に記載の薄膜トランジスタの半導体層用酸化物薄膜。
  4.  前記膜表層部のZn含有量(原子%)の平均値は、前記膜内部のZn含有量(原子%)の平均値に対して0.8~1.3倍である請求項2に記載の薄膜トランジスタの半導体層用酸化物薄膜。
  5.  前記半導体層用酸化物薄膜は、半導体層用酸化物を250~450℃で、5分~4時間加熱処理して得られるものである請求項1~4のいずれかに記載の薄膜トランジスタの半導体層用酸化物薄膜。
  6.  請求項1~4のいずれかに記載の薄膜トランジスタの半導体層用酸化物薄膜を備えた薄膜トランジスタ。
  7.  請求項6に記載の薄膜トランジスタを備えた表示装置。
PCT/JP2012/081153 2011-12-02 2012-11-30 薄膜トランジスタの半導体層用酸化物薄膜、薄膜トランジスタおよび表示装置 WO2013081128A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011264746 2011-12-02
JP2011-264746 2011-12-02

Publications (1)

Publication Number Publication Date
WO2013081128A1 true WO2013081128A1 (ja) 2013-06-06

Family

ID=48535575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081153 WO2013081128A1 (ja) 2011-12-02 2012-11-30 薄膜トランジスタの半導体層用酸化物薄膜、薄膜トランジスタおよび表示装置

Country Status (3)

Country Link
JP (1) JP5856559B2 (ja)
TW (1) TWI486466B (ja)
WO (1) WO2013081128A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037692A1 (en) * 2013-09-13 2015-03-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN108780819A (zh) * 2016-03-11 2018-11-09 株式会社半导体能源研究所 复合体及晶体管

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3217137B2 (ja) * 1992-07-28 2001-10-09 株式会社日立製作所 映像信号記録装置、再生装置及び伝送装置
JP6235426B2 (ja) * 2014-07-10 2017-11-22 株式会社東芝 半導体装置およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281409A (ja) * 2005-09-16 2007-10-25 Canon Inc 電界効果型トランジスタ
JP2010287735A (ja) * 2009-06-11 2010-12-24 Fujifilm Corp 薄膜トランジスタ及びその製造方法、電気光学装置、並びにセンサー
JP2011091364A (ja) * 2009-07-27 2011-05-06 Kobe Steel Ltd 配線構造およびその製造方法、並びに配線構造を備えた表示装置
JP2011100982A (ja) * 2009-10-09 2011-05-19 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5354999B2 (ja) * 2007-09-26 2013-11-27 キヤノン株式会社 電界効果型トランジスタの製造方法
JP2010205798A (ja) * 2009-02-27 2010-09-16 Japan Science & Technology Agency 薄膜トランジスタの製造方法
JP5507133B2 (ja) * 2009-07-03 2014-05-28 富士フイルム株式会社 ボトムゲート構造の薄膜トランジスタの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281409A (ja) * 2005-09-16 2007-10-25 Canon Inc 電界効果型トランジスタ
JP2010287735A (ja) * 2009-06-11 2010-12-24 Fujifilm Corp 薄膜トランジスタ及びその製造方法、電気光学装置、並びにセンサー
JP2011091364A (ja) * 2009-07-27 2011-05-06 Kobe Steel Ltd 配線構造およびその製造方法、並びに配線構造を備えた表示装置
JP2011100982A (ja) * 2009-10-09 2011-05-19 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037692A1 (en) * 2013-09-13 2015-03-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9406761B2 (en) 2013-09-13 2016-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9842941B2 (en) 2013-09-13 2017-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN108780819A (zh) * 2016-03-11 2018-11-09 株式会社半导体能源研究所 复合体及晶体管
US11417771B2 (en) 2016-03-11 2022-08-16 Semiconductor Energy Laboratory Co., Ltd. Composite and transistor
US11869980B2 (en) 2016-03-11 2024-01-09 Semiconductor Energy Laboratory Co., Ltd. Composite and transistor

Also Published As

Publication number Publication date
TW201341549A (zh) 2013-10-16
JP2013138197A (ja) 2013-07-11
JP5856559B2 (ja) 2016-02-10
TWI486466B (zh) 2015-06-01

Similar Documents

Publication Publication Date Title
JP6043244B2 (ja) 薄膜トランジスタ
JP6018551B2 (ja) 薄膜トランジスタ
JP5723262B2 (ja) 薄膜トランジスタおよびスパッタリングターゲット
JP5977569B2 (ja) 薄膜トランジスタ構造、ならびにその構造を備えた薄膜トランジスタおよび表示装置
JP5718072B2 (ja) 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ
WO2012091126A1 (ja) 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ
WO2012070676A1 (ja) 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ
WO2011126093A1 (ja) 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ
WO2011132644A1 (ja) 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ
WO2012070675A1 (ja) 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ
TW202006955A (zh) 薄膜電晶體
WO2014061638A1 (ja) 薄膜トランジスタ
JP5856559B2 (ja) 薄膜トランジスタの半導体層用酸化物薄膜の製造方法
JP5645737B2 (ja) 薄膜トランジスタ構造および表示装置
JP2013207100A (ja) 薄膜トランジスタ
JP2016026389A (ja) 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854395

Country of ref document: EP

Kind code of ref document: A1