WO2013081103A1 - 耳介軟骨組織の製造方法及び耳介軟骨組織 - Google Patents

耳介軟骨組織の製造方法及び耳介軟骨組織 Download PDF

Info

Publication number
WO2013081103A1
WO2013081103A1 PCT/JP2012/081084 JP2012081084W WO2013081103A1 WO 2013081103 A1 WO2013081103 A1 WO 2013081103A1 JP 2012081084 W JP2012081084 W JP 2012081084W WO 2013081103 A1 WO2013081103 A1 WO 2013081103A1
Authority
WO
WIPO (PCT)
Prior art keywords
cartilage tissue
auricular
auricular cartilage
producing
average fiber
Prior art date
Application number
PCT/JP2012/081084
Other languages
English (en)
French (fr)
Inventor
典孝 磯貝
善仁 伊谷
明郎 萩原
森田 真一郎
恒祐 澤井
紘一 畠山
Original Assignee
グンゼ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グンゼ株式会社 filed Critical グンゼ株式会社
Priority to CN201280058451.XA priority Critical patent/CN103957950B/zh
Priority to US14/360,526 priority patent/US9550977B2/en
Priority to JP2013523410A priority patent/JP5320526B1/ja
Priority to DE112012005018.5T priority patent/DE112012005018B4/de
Publication of WO2013081103A1 publication Critical patent/WO2013081103A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0655Chondrocytes; Cartilage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3817Cartilage-forming cells, e.g. pre-chondrocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • A61L27/3852Cartilage, e.g. meniscus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/06Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus

Definitions

  • the present invention relates to a method for producing an auricular cartilage tissue capable of producing an auricular cartilage tissue having sufficient thickness and mechanical strength, and the auricular cartilage tissue produced by the method for producing an auricular cartilage tissue. About.
  • Patent Document 1 discloses a transplant base material composed of a collagen single yarn.
  • Patent Documents 2 and 3 disclose a bioabsorbable material foam, a cardiovascular tissue culture substrate reinforced with the same material, and a tube-shaped nerve regeneration substrate.
  • Patent Document 4 discloses a medical material having a gel in which cells are dispersed inside a skeleton made of a sponge-like or nonwoven-like polymer material molding.
  • the auricular cartilage tissue is required to have a relatively high mechanical strength in addition to a large and thick tissue.
  • the present invention relates to a method for producing an auricular cartilage tissue capable of producing an auricular cartilage tissue having sufficient thickness and mechanical strength, and the auricular cartilage tissue produced by the method for producing an auricular cartilage tissue.
  • the purpose is to provide.
  • the present invention provides a cell seeding step of seeding auricular chondrocytes on a nonwoven fabric made of a bioabsorbable material having an average fiber diameter of 0.90 to 7.00 ⁇ m, and a nonwoven fabric seeded with the auricular chondrocytes. It is a method for producing an auricular cartilage tissue having a forming step of adjusting a shape by combining with a mesh-shaped mold made of a non-absorbable material. The present invention is described in detail below.
  • the present inventors tried to regenerate auricular cartilage tissue by seeding auricular chondrocytes on a support having various materials and shapes.
  • a non-woven fabric made of a bioabsorbable material having an average fiber diameter of 0.90 to 7.00 ⁇ m is used, the auricular cartilage is remarkably compared to the case of using a support having another material or shape.
  • the regeneration of the organization is promoted.
  • after seeding the auricular chondrocytes on a non-woven fabric made of a bioabsorbable material having an average fiber diameter of 0.90 to 7.00 ⁇ m this was formed into a mesh-shaped formwork made of a non-bioabsorbable material.
  • the inventors have found that an auricular cartilage tissue having sufficient thickness and mechanical strength can be produced by compounding and molding, and the present invention has been completed.
  • the method for producing auricular cartilage tissue of the present invention seeds auricular chondrocytes on a nonwoven fabric (hereinafter also simply referred to as “nonwoven fabric”) made of a bioabsorbable material having an average fiber diameter of 0.90 to 7.00 ⁇ m. Cell seeding step.
  • a nonwoven fabric composed of such a specific average fiber diameter and a specific material, an auricular cartilage tissue having a sufficient thickness and mechanical strength can be produced.
  • the bioabsorbable material is not particularly limited.
  • polyglycolide, polylactide (D, L, DL form), polycaprolactone, glycolic acid-lactide (D, L, DL form) copolymer, glycolic acid- ⁇ - Examples include caprolactone copolymer, lactide (D, L, DL form) - ⁇ -caprolactone copolymer, poly (p-dioxanone) and the like. These may be used independently and may use 2 or more types together. Among these, polyglycolide or lactide (D, L, DL form) - ⁇ -caprolactone copolymer is preferable, and polyglycolide is more preferable.
  • the nonwoven fabric has an average fiber diameter of 0.90 to 7.00 ⁇ m.
  • the average fiber diameter of the nonwoven fabric is within this range, regeneration of the auricular cartilage tissue is promoted.
  • the average fiber diameter of the nonwoven fabric is 0.90 ⁇ m, the regeneration of the auricular cartilage tissue is particularly promoted.
  • the average fiber diameter of the nonwoven fabric is obtained by cutting out a part of the center of the nonwoven fabric, observing it using an electron microscope, and randomly extracting the focused fibers, It means a value obtained by averaging the diameters of the obtained 100 or more fibers when the diameter of the fibers is measured while changing the place until it becomes 100 or more.
  • the said nonwoven fabric has a preferable minimum of a fabric weight of 1 g / m ⁇ 2 >, and a preferable upper limit of 100 g / m ⁇ 2 >. If it is out of this range, the auricular cartilage tissue may not be sufficiently regenerated.
  • the more preferable lower limit of the basis weight of the nonwoven fabric is 5 g / m 2
  • the more preferable upper limit is 50 g / m 2 .
  • a method for producing a nonwoven fabric made of a bioabsorbable material having an average fiber diameter of 0.90 to 7.00 ⁇ m is not particularly limited.
  • electrospinning deposition method melt blow method, needle punch method, spun bond method, flash Conventionally known methods such as spinning method, hydroentanglement method, airlaid method, thermal bond method, resin bond method, and wet method can be used.
  • the melt blow method is preferable.
  • auricular chondrocytes are seeded on the nonwoven fabric.
  • the auricular chondrocytes can be collected by a conventionally known method. For example, after removing skin, connective tissue, and perichondrium from an auricle obtained from a human or an animal, etc., the auricular chondrocytes are isolated by cutting into small pieces of about 5 mm ⁇ 5 mm and then treating with collagenase. Can be separated.
  • the isolated auricular chondrocytes may be directly used for the method for producing auricular cartilage tissue of the present invention, or may be used for the method for producing auricular cartilage tissue of the present invention after being grown by culture.
  • the seeding method is not particularly limited, and a conventionally known seeding method can be used.
  • the seeding density at the time of sowing is not particularly limited, but a preferable lower limit is 2.0 ⁇ 10 7 cells / cm 2 and a preferable upper limit is 1.0 ⁇ 10 8 cells / cm 2 .
  • a preferable lower limit is 2.0 ⁇ 10 7 cells / cm 2
  • a preferable upper limit is 1.0 ⁇ 10 8 cells / cm 2 .
  • the cell seeding density is less than 2.0 ⁇ 10 7 cells / cm 2 , it may take time until an auricular cartilage tissue having sufficient thickness and mechanical strength is formed. Even if cells are seeded in excess of 10 8 cells / cm 2 , no further effect is observed.
  • a more preferable lower limit of the cell seeding density is 5.0 ⁇ 10 7 cells / cm 2 .
  • the non-woven fabric seeded with the auricular chondrocytes is preferably allowed to stand for about 10 minutes until the auricular chondrocytes adhere sufficiently. Moreover, you may culture
  • a culture solution for culturing for example, a serum-added medium in which about 1 to 10% by weight of fetal bovine serum is added to a general culture solution such as MEM or DMEM can be used.
  • the method for producing auricular cartilage tissue according to the present invention includes a molding step in which the nonwoven fabric seeded with the auricular chondrocytes is combined with a mesh-shaped mold made of a non-bioabsorbable material to adjust the shape.
  • a mesh-shaped mold made of a non-bioabsorbable material In order to regenerate the auricular cartilage tissue, it is necessary to form a large and thick tissue. It is also important to arrange the shape according to the transplant site.
  • the mesh-shaped formwork made of the non-bioabsorbable material plays a role of adjusting the obtained auricular cartilage tissue to an arbitrary shape and an arbitrary thickness.
  • the non-bioabsorbable material forming the mesh-shaped form is not particularly limited as long as it is not toxic to the living body and has appropriate hardness and elasticity.
  • polypropylene, polyethylene, polytetrafluoroethylene (PTEF) ), Nylon and the like are preferred.
  • the mesh-shaped formwork preferably has a shape corresponding to the auricular cartilage tissue to be regenerated.
  • a shape corresponding to the entire auricle it is preferable to have a shape corresponding to the entire auricle.
  • the entire auricle may be divided into a plurality of parts and combined into a shape corresponding to each of the parts to form the entire auricle.
  • the method of combining the nonwoven fabric seeded with the auricular chondrocytes and the mesh mold is not particularly limited, and the nonwoven fabric seeded with the auricular chondrocytes is sandwiched between two mesh molds. It may be molded into an arbitrary shape, or a non-woven fabric seeded with auricular chondrocytes may be wrapped so as to wrap a mesh-shaped formwork of an arbitrary shape.
  • the auricular cartilage tissue produced by the method for producing auricular cartilage tissue of the present invention By transplanting the auricular cartilage tissue produced by the method for producing auricular cartilage tissue of the present invention into a living body, the auricular cartilage tissue having sufficient thickness and mechanical strength is regenerated.
  • An auricular cartilage tissue composed of a non-woven fabric made of a bioabsorbable material having an average fiber diameter of 0.90 to 7.00 ⁇ m seeded with auricular chondrocytes and a mesh-like formwork made of a non-bioabsorbable material Moreover, it is one of the present inventions.
  • an auricular cartilage tissue manufacturing method capable of manufacturing an auricular cartilage tissue having sufficient thickness and mechanical strength, and an auricle manufactured by the auricular cartilage tissue manufacturing method.
  • Cartilage tissue can be provided.
  • Example 1 Preparation of non-woven fabric
  • the average fiber diameter is 0.67 ⁇ m (sample I), 0.90 ⁇ m by a method in which a non-woven fabric obtained by a melt-blowing method is drawn or spun into a non-woven fabric by a needle punch method.
  • Sample II A nonwoven fabric having a thickness of 0.13 to 0.30 mm made of polyglycolide of 3.10 ⁇ m (sample III), 7.00 ⁇ m (sample IV), and 20.60 ⁇ m (sample V) was obtained. .
  • FIG. 1 the bar below the photograph indicates 30 ⁇ m.
  • the focused fibers in the electron micrograph were randomly extracted and the diameter of each fiber was measured. The diameter of the fiber was measured while changing the location until the total of the measurement reached 100, and the diameter of the 100 obtained fibers was averaged to obtain an average fiber diameter of 3.10 ⁇ m. For other samples I, II, IV and V, the average fiber diameter was obtained in the same manner.
  • a sheet-like mesh having a size of 2 cm ⁇ 2 cm and a thickness of 0.34 ⁇ 0.007 mm made of a composite polypropylene with a mesh-shaped mold was prepared.
  • a non-woven fabric seeded with auricular chondrocytes was sandwiched between two sheet-like meshes to form a flat plate-like scaffold.
  • a three-dimensional shape maintenance confirmation sample a non-woven fabric seeded with auricular chondrocytes was formed into a pinna shape by sandwiching a non-woven fabric seeded with a seed-like mesh to obtain a human pinna shaped scaffold.
  • FIG. 1 shows a photograph of the appearance of a sample for confirmation of maintenance of the three-dimensional shape taken out and a stained photograph of the cross section.
  • the cross section of the sample is cut by the line portion in the upper diagram of FIG. 1 and then stained by the safranin O staining method.
  • a nonwoven fabric (samples II to V) having an average fiber diameter of 0.90 ⁇ m or more is used, the regenerated cartilage is sufficiently induced, whereas the average fiber diameter is 0.67 ⁇ m (sample I). It can be seen that the regenerated cartilage was insufficiently induced when the non-woven fabric of (1) was used.
  • the average fiber diameter was 0.67 ⁇ m (Sample I), 0.90 ⁇ m (Sample II), 3.10 ⁇ m (Sample III), 7.00 ⁇ m (Sample IV), and 20.60 ⁇ m (by the same method as in the experimental example)
  • a non-woven fabric having a thickness of 0.13 to 0.30 mm made of polyglycolide of sample V) was obtained.
  • Both pinna of beagle dogs (female, 6-8 weeks old) were cut under anesthesia.
  • the obtained small piece was first treated in a collagenase solution with a concentration of 0.3%, and then the auricular chondrocytes were isolated.
  • the isolated auricular chondrocytes were suspended in a phosphate buffer to obtain a cell suspension of 1.0 ⁇ 10 8 cells / mL. 200 ⁇ L of the obtained cell suspension was seeded on a nonwoven fabric cut to a size of 2 cm ⁇ 2 cm.
  • the non-woven fabric after sowing was divided into two groups, and fibrin glue (mixed solution of vibrinogen and thrombin) was sprayed on one group. After spraying fibrin glue, the mixture was allowed to stand for 5 minutes, and then both groups were immersed in a 2.5% glutaraldehyde solution to obtain a sample. After cutting out every 100 ⁇ m of the nonwoven fabric and staining with toluidine blue, the chondrocytes infiltrating into the nonwoven fabric were counted and the number of cells was counted. The results are shown in Table 2.
  • the average fiber diameter is 0.67 ⁇ m (sample I)
  • the cell density is low, there is a space in the middle, and there are not enough cells.
  • the average fiber diameter was 20.60 ⁇ m (sample V)
  • the cell density was low, and the cells were distributed only around the fiber bundle, which was not uniform.
  • the average fiber diameter was 0.90 ⁇ m (Sample II) to 7.00 ⁇ m (Sample IV)
  • a cell having a high cell density was obtained.
  • an auricular cartilage tissue manufacturing method capable of manufacturing an auricular cartilage tissue having sufficient thickness and mechanical strength, and an auricle manufactured by the auricular cartilage tissue manufacturing method.
  • Cartilage tissue can be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Rheumatology (AREA)
  • Organic Chemistry (AREA)
  • Botany (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Vascular Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Polymers & Plastics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials For Medical Uses (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、充分な厚みと力学的強度とを有する耳介軟骨組織を製造することができる耳介軟骨組織の製造方法、及び、該耳介軟骨組織の製造方法により製造された耳介軟骨組織を提供することを目的とする。 本発明は、平均繊維径が0.90~7.00μmの生体吸収性材料からなる不織布上に耳介軟骨細胞を播種する細胞播種工程と、前記耳介軟骨細胞が播種された不織布を、生体非吸収性材料からなるメッシュ状の型枠と複合化して形状を整える成形工程とを有する耳介軟骨組織の製造方法である。 

Description

耳介軟骨組織の製造方法及び耳介軟骨組織
本発明は、充分な厚みと力学的強度とを有する耳介軟骨組織を製造することができる耳介軟骨組織の製造方法、及び、該耳介軟骨組織の製造方法により製造された耳介軟骨組織に関する。
近年の細胞工学技術の進展によって、ヒト細胞を含む数々の動物細胞の培養が可能となり、また、それらの細胞を用いてヒトの組織や器官を再構築しようとする、いわゆる再生医療の研究が急速に進んでいる。再生医療においては、細胞が増殖分化して三次元的な生体組織様の構造物を構築できるかがポイントであり、細胞、成長因子を用いる方法、組織又は器官の再生の足場になる支持体を患者に移植する方法等がある。このような支持体としては、例えば、特許文献1に、コラーゲン単糸からなる移植用基材が開示されている。
また、特許文献2及び特許文献3には、生体吸収性素材の発泡体と、同様素材により補強した心血管系組織培養基材、並びにチューブ状の神経再生基材が開示されている。
更に、特許文献4には、スポンジ状または、不織布状の高分子材料成形物からなる骨格の内部に細胞を分散したゲルを有する医用材料が開示されている。
再生医療の対象の一つとして、耳介軟骨組織の再生が挙げられている。耳介軟骨組織は、大型で厚みのある組織であることに加え、比較的高い力学的強度が求められる。しかしながら、従来の支持体を用いた生体組織の製造方法では、このような大型で厚みのある耳介軟骨組織の製造は困難であった。
特開2003-193328号公報 特開2001-78750号公報 特開2003-19196号公報 特開2003-204807号公報
本発明は、充分な厚みと力学的強度とを有する耳介軟骨組織を製造することができる耳介軟骨組織の製造方法、及び、該耳介軟骨組織の製造方法により製造された耳介軟骨組織を提供することを目的とする。
本発明は、平均繊維径が0.90~7.00μmの生体吸収性材料からなる不織布上に耳介軟骨細胞を播種する細胞播種工程と、前記耳介軟骨細胞が播種された不織布を、生体非吸収性材料からなるメッシュ状の型枠と複合化して形状を整える成形工程とを有する耳介軟骨組織の製造方法である。
以下に本発明を詳述する。
本発明者らは、種々の材質及び形状を有する支持体に耳介軟骨細胞を播種して、耳介軟骨組織の再生を試みた。その結果、平均繊維径が0.90~7.00μmの生体吸収性材料からなる不織布を用いた場合には、他の材質や形状を有する支持体を用いた場合に比べて、著しく耳介軟骨組織の再生が促進されることを見出した。そして更に検討の結果、平均繊維径が0.90~7.00μmの生体吸収性材料からなる不織布に耳介軟骨細胞を播種した後、これを生体非吸収性材料からなるメッシュ状の型枠と複合化して成形することにより、充分な厚みと力学的強度とを有する耳介軟骨組織を製造することができることを見出し、本発明を完成した。
平均繊維径が0.90~7.00μmの生体吸収性材料からなる不織布を用いた場合、特に耳介軟骨組織の再生が促進される理由については明らかではない。本発明者らは、試みに平均繊維径の異なる複数のポリグリコリドからなる不織布に耳介軟骨細胞を播種した後、細胞の付着数を測定してみた。しかしながら、特に平均繊維径が0.90~7.00μmである場合に有意に細胞が付着したということはなかった。
本発明の耳介軟骨組織の製造方法は、平均繊維径が0.90~7.00μmの生体吸収性材料からなる不織布(以下、単に「不織布」ともいう。)上に耳介軟骨細胞を播種する細胞播種工程を有する。このような特定の平均繊維径、特定の材質からなる不織布を用いることにより、充分な厚みと力学的強度とを有する耳介軟骨組織を製造することができる。
上記生体吸収性材料は特に限定されず、例えば、ポリグリコリド、ポリラクチド(D、L、DL体)、ポリカプロラクトン、グリコール酸-ラクチド(D、L、DL体)共重合体、グリコール酸-ε-カプロラクトン共重合体、ラクチド(D、L、DL体)-ε-カプロラクトン共重合体、ポリ(p-ジオキサノン)等が挙げられる。これらは単独で用いられてもよく、2種以上を併用してもよい。なかでも、ポリグリコリド又はラクチド(D、L、DL体)-ε-カプロラクトン共重合体が好ましく、ポリグリコリドがより好ましい。
上記不織布の平均繊維径は0.90~7.00μmである。上記不織布の平均繊維径がこの範囲にある場合に、耳介軟骨組織の再生が促進される。なかでも、上記不織布の平均繊維径が0.90μmである場合には、特に耳介軟骨組織の再生が促進される。
なお、本明細書において不織布の平均繊維径は、不織布の生地の中央の一部を切り取り、電子顕微鏡を用いて観察し、焦点が合っている繊維を無作為に抽出して、測定の合計が100本以上となるまで場所を変えながら繊維の直径を測定したときに、得られた100本以上の繊維の直径を平均した値を意味する。
上記不織布は、目付の好ましい下限が1g/m、好ましい上限が100g/mである。この範囲外であると、充分な耳介軟骨組織の再生ができないことがある。上記不織布の目付のより好ましい下限は5g/m、より好ましい上限は50g/mである。
上記平均繊維径が0.90~7.00μmの生体吸収性材料からなる不織布を製造する方法は特に限定されず、例えば、エレクトロスピニングデポジション法、メルトブロー法、ニードルパンチ法、スパンボンド法、フラッシュ紡糸法、水流交絡法、エアレイド法、サーマルボンド法、レジンボンド法、湿式法等の従来公知の方法を用いることができる。なかでも、メルトブロー法が好適である。
上記細胞播種工程では、上記不織布上に耳介軟骨細胞を播種する。
上記耳介軟骨細胞は、従来公知の方法により採取することができる。例えば、人や動物等から得た耳介から、皮膚、結合織、軟骨膜を除去したうえで、5mm×5mm程度の小片に細切した後、コラゲナーゼ処理することにより、耳介軟骨細胞を単離することができる。単離した耳介軟骨細胞は、そのまま本発明の耳介軟骨組織の製造方法に供してもよく、培養により増殖させた後に本発明の耳介軟骨組織の製造方法に供してもよい。
上記播種の方法は特に限定されず、従来公知の播種方法を用いることができる。
上記播種の際の播種の密度は特に限定されないが、好ましい下限は2.0×10cells/cm、好ましい上限は1.0×10cells/cmである。細胞播種密度が2.0×10cells/cm未満であると、充分な厚みと力学的強度とを有する耳介軟骨組織が形成されるまでに時間がかかることがあり、1.0×10cells/cmを超えて細胞を播種しても、それ以上の効果は認められない。細胞播種密度のより好ましい下限は5.0×10cells/cmである。
上記耳介軟骨細胞を播種した不織布は、耳介軟骨細胞が充分に付着するまで、10分間程度静置することが好ましい。また、必要に応じて、数時間から数日間程度の間、培養を行ってもよい。培養を行う場合の培養液としては、例えば、MEM、DMEM等の一般的な培養液に、1~10重量%程度のウシ胎児血清を添加した血清添加培地を用いることができる。
本発明の耳介軟骨組織の製造方法は、上記耳介軟骨細胞が播種された不織布を、生体非吸収性材料からなるメッシュ状の型枠と複合化して形状を整える成形工程を有する。
耳介軟骨組織の再生には、大型で厚みのある組織が形成されることが必要である。また、移植部位に合わせた形状を整えることも重要である。上記生体非吸収性材料からなるメッシュ状の型枠は、得られる耳介軟骨組織を任意の形状、任意の厚みに調整する役割を果たすものである。
上記メッシュ状の型枠を形成する生体非吸収性材料は、生体に対する毒性がなく、適度な硬さと弾力性とを有するものであれば特に限定されないが、ポリプロピレン、ポリエチレン、ポリテトラフルオロエチレン(PTEF)、ナイロン等が好適である。
上記メッシュ状の型枠は、再生したい耳介軟骨組織に対応する形状を備えることが好ましい。例えば、耳介の全体を再生すべき場合には、耳介全体に対応する形状を備えることが好ましい。または、耳介の全体を複数のパーツに分割して、その各々のパーツに対応した形状として、その後に組み合わせて耳介の全体を構成してもよい。
上記耳介軟骨細胞が播種された不織布とメッシュ状の型枠との複合化の方法としては特に限定されず、2枚のメッシュ状の型枠間に耳介軟骨細胞が播種された不織布を挟み込んで任意の形状に成形してもよいし、任意の形状のメッシュ状の型枠を包み込むように耳介軟骨細胞が播種された不織布を巻きつけてもよい。
本発明の耳介軟骨組織の製造方法により製造された耳介軟骨組織を、生体内に移植することにより、充分な厚みと力学的強度とを有する耳介軟骨組織が再生される。
耳介軟骨細胞が播種された、平均繊維径が0.90~7.00μmの生体吸収性材料からなる不織布と、生体非吸収性材料からなるメッシュ状の型枠とからなる耳介軟骨組織もまた、本発明の1つである。
本発明によれば、充分な厚みと力学的強度とを有する耳介軟骨組織を製造することができる耳介軟骨組織の製造方法、及び、該耳介軟骨組織の製造方法により製造された耳介軟骨組織を提供することができる。
実験例で作製したサンプルIIIの不織布の生地の中央部の電子顕微鏡写真である。 移植5週間後の組織再生確認用サンプルの組織切片の写真である。
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。
(実験例)
(1)不織布の調製
メルトブロー法で得られた不織布を延伸、又は、紡糸された筒編み布をニードルパンチ法により不織布化する方法により、平均繊維径が0.67μm(サンプルI)、0.90μm(サンプルII)、3.10μm(サンプルIII)、7.00μm(サンプルIV)、及び、20.60μm(サンプルV)のポリグリコリドからなる、厚さ0.13~0.30mmの不織布を得た。
なお、サンプルIIIの不織布の生地の中央の一部を切り取り、電子顕微鏡を用いて観察した像を図1に示した(写真下のバーは30μmを示す)。
図1に示したように、電子顕微鏡写真中の焦点が合っている繊維を無作為に抽出し、各々の繊維の直径を測定した。測定の合計が100本となるまで場所を変えながら繊維の直径を測定し、得られた100本の繊維の直径を平均して、3.10μmという平均繊維径を得た。他のサンプルI、II、IV、Vについても同様の方法により平均繊維径を得た。
(2)耳介軟骨細胞の単離と播種
ビーグル犬(メス、6~8週齢)の両耳介を、麻酔下で切断した。得られた耳介から、皮膚、結合織、軟骨膜を除去したうえで、5mm×5mm程度の小片に細切した。得られた小片を、濃度0.3%のコラゲナーゼ溶液中で1晩処理した後、耳介軟骨細胞を単離した。単離した耳介軟骨細胞をリン酸バッファー中に懸濁させて、1.0×10cells/mLの細胞懸濁液を得た。
(3)メッシュ状の型枠との複合化
ポリプロピレンからなる大きさが2cm×2cm、厚さが0.34±0.007mmのシート状のメッシュを準備した。
曲げ強度測定用サンプルとして、耳介軟骨細胞が播種された不織布を2枚のシート状メッシュに挟んで複合化し、平板型のスカフォールドを作製した。
一方、3次元形状維持確認用サンプルとして、耳介軟骨細胞が播種された不織布を、シード状メッシュにて挟んだパーツを耳介形状に成形し、ヒト耳介形状のスカフォールドを得た。
(4)移植
得られた平板型のスカフォールド及びヒト耳介形状のスカフォールドを同一の個体(ビーグル犬、メス、6~8週齢)に自家移植した。全身麻酔後、後頸部に切開し、頭部筋膜間にスカフォールドを移植、固定した。移植後5週間後に犠牲死させて、各々のサンプルを取り出した。
(評価)
(1)曲げ強度の測定
取り出した曲げ強度測定用サンプルについて、ROYらの方法に従い、オートグラフを用いて曲げ強度を測定した。即ち、グリップ間を1cmに調整した後、20mm×5mmの大きさにしたサンプルを台座に固定し、垂直板を0.02mm/secの速度で下降させる条件により曲げ強度を測定した。
結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
表1より、平均繊維径が0.90μm以上の不織布(サンプルII~V)を用いた場合には、比較的高い曲げ強度が得られたのに対して、平均繊維径が0.67μmの不織布(サンプルI)を用いた場合には、著しく低い曲げ強度となったことが判る。
(2)耳介軟骨組織再生の評価
取り出した3次元形状維持確認用サンプルの外見の写真と、断面部の染色写真を図1に示した。サンプルの断面は、図1上図の線部分で切断した後、サフラニンO染色法により染色を行ったものである。
図1より、平均繊維径が0.90μm以上の不織布(サンプルII~V)を用いた場合には、再生軟骨の誘導が充分であるのに対して、平均繊維径が0.67μm(サンプルI)の不織布を用いた場合には、再生軟骨の誘導が不充分であったことが判る。
(参考実験)
実験例と同様の方法により、平均繊維径が0.67μm(サンプルI)、0.90μm(サンプルII)、3.10μm(サンプルIII)、7.00μm(サンプルIV)、及び、20.60μm(サンプルV)のポリグリコリドからなる、厚さ0.13~0.30mmの不織布の不織布を得た。
ビーグル犬(メス、6~8週齢)の両耳介を、麻酔下で切断した。得られた耳介から、皮膚、結合織、軟骨膜を除去したうえで、5mm×5mm程度の小片に細切した。得られた小片を、濃度0.3%のコラゲナーゼ溶液中の1番処理した後、耳介軟骨細胞を単離した。単離した耳介軟骨細胞をリン酸バッファー中に懸濁させて、1.0×10cells/mLの細胞懸濁液を得た。
得られた細胞懸濁液200μLを、2cm×2cmの大きさに切断した不織布上に播種した。
播種後の不織布を2つの群に分け、一方の群にフィブリン糊(ブィブリノーゲンとトロンビンとの混合液)を散布した。
フィブリン糊散布後、5分間静置した後、両群を2.5%グルタルアルデヒド溶液中に浸漬してサンプルを得た。
不織布100μm毎に切り出しを行い、トルイジンブルーにて染色を行った後、不織布内部に浸潤している軟骨細胞の計測を行い、細胞数を計数した。
結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
図1に示したように、平均繊維径が0.67μm(サンプルI)のときは細胞密度が低く、中間に空間があり充分に細胞が入っていない。また、平均繊維径が20.60μm(サンプルV)のときは細胞密度が低く、繊維束周辺のみに細胞が分布しており一様ではなかった。平均繊維径が0.90μm(サンプルII)~7.00μm(サンプルIV)のときに、細胞密度の高いものが得られた。
表1に示した曲げ強度の測定の結果から、平均繊維径が0.90μm以上(サンプルII~V)の不織布において比較的、高い強度が得られた。
表2に示した細胞密度の結果から、平均繊維径が0.90μm(サンプルII)~7.00μm(サンプルIV)で良好な結果が得られた。
よって、軟骨再生組織に利用する不織布の平均繊維径が0.90μm(サンプルII)~7.00μm(サンプルIV)のものが、耳介軟骨の再生には最適である。
本発明によれば、充分な厚みと力学的強度とを有する耳介軟骨組織を製造することができる耳介軟骨組織の製造方法、及び、該耳介軟骨組織の製造方法により製造された耳介軟骨組織を提供することができる。
 
 

Claims (4)

  1. 平均繊維径が0.90~7.00μmの生体吸収性材料からなる不織布上に耳介軟骨細胞を播種する細胞播種工程と、
    前記耳介軟骨細胞が播種された不織布を、生体非吸収性材料からなるメッシュ状の型枠と複合化して形状を整える成形工程とを有する
    ことを特徴とする耳介軟骨組織の製造方法。
  2. 生体吸収性材料からなる不織布の平均繊維径が0.90μmであることを特徴とする請求項1記載の耳介軟骨組織の製造方法。
  3. 生体吸収性材料がポリグリコリド又はラクチド(D、L、DL体)-ε-カプロラクトン共重合体であることを特徴とする請求項1又は2記載の耳介軟骨組織の製造方法。
  4. 耳介軟骨細胞が播種された、平均繊維径が0.90~7.00μmの生体吸収性材料からなる不織布と、生体非吸収性材料からなるメッシュ状の型枠とからなる耳介軟骨組織。
     
     
PCT/JP2012/081084 2011-12-02 2012-11-30 耳介軟骨組織の製造方法及び耳介軟骨組織 WO2013081103A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280058451.XA CN103957950B (zh) 2011-12-02 2012-11-30 耳廓软骨组织的制造方法和耳廓软骨组织
US14/360,526 US9550977B2 (en) 2011-12-02 2012-11-30 Method for producing auricular cartilage tissue
JP2013523410A JP5320526B1 (ja) 2011-12-02 2012-11-30 耳介軟骨組織の製造方法及び耳介軟骨組織
DE112012005018.5T DE112012005018B4 (de) 2011-12-02 2012-11-30 Verfahren zur Herstellung von aurikulärem Knorpelgewebe und aurikuläres Knorpelgewebe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011264787 2011-12-02
JP2011-264787 2011-12-02

Publications (1)

Publication Number Publication Date
WO2013081103A1 true WO2013081103A1 (ja) 2013-06-06

Family

ID=48535551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081084 WO2013081103A1 (ja) 2011-12-02 2012-11-30 耳介軟骨組織の製造方法及び耳介軟骨組織

Country Status (5)

Country Link
US (1) US9550977B2 (ja)
JP (1) JP5320526B1 (ja)
CN (1) CN103957950B (ja)
DE (1) DE112012005018B4 (ja)
WO (1) WO2013081103A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022265098A1 (ja) 2021-06-17 2022-12-22 学校法人近畿大学 人工耳介および人工軟骨組織の骨格構造およびそれを用いた人工耳介

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7017913B2 (ja) * 2017-12-04 2022-02-09 グンゼ株式会社 軟骨組織の製造方法及び軟骨組織
CN110327495B (zh) * 2019-07-02 2021-11-30 上海国睿生命科技有限公司 组织工程耳廓形态复合支架及其制备方法
CN113925048A (zh) * 2021-10-13 2022-01-14 北京大学 动物标本耳部和动物标本及二者的制作工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007236450A (ja) * 2006-03-06 2007-09-20 Teijin Ltd 培養人工骨
JP2008245844A (ja) * 2007-03-29 2008-10-16 Noritaka Isogai 組織再生材料およびその利用
WO2009019995A1 (ja) * 2007-08-09 2009-02-12 Gunze Limited 生体器官用補綴材
JP2011509786A (ja) * 2008-01-25 2011-03-31 スミス アンド ネフュー ピーエルシー 多層足場

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3603179B2 (ja) 1999-09-09 2004-12-22 グンゼ株式会社 心血管系組織培養用基材および組織再生法
JP4740482B2 (ja) 2001-07-09 2011-08-03 グンゼ株式会社 神経再生チューブ
JP2003193328A (ja) 2001-12-19 2003-07-09 Nipro Corp コラーゲン単糸の製造方法
JP3706070B2 (ja) 2002-01-15 2005-10-12 株式会社シマノ
JP2008154844A (ja) 2006-12-25 2008-07-10 Gunze Ltd 自動縫合器用縫合補強材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007236450A (ja) * 2006-03-06 2007-09-20 Teijin Ltd 培養人工骨
JP2008245844A (ja) * 2007-03-29 2008-10-16 Noritaka Isogai 組織再生材料およびその利用
WO2009019995A1 (ja) * 2007-08-09 2009-02-12 Gunze Limited 生体器官用補綴材
JP2011509786A (ja) * 2008-01-25 2011-03-31 スミス アンド ネフュー ピーエルシー 多層足場

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUSUHARA H ET AL.: "Tissue engineering a model for the human ear: assessment of size, shape, morphology, and gene expression following seeding of different chondrocytes.", WOUND REPAIR AND REGENERATION, vol. 17, no. 1, 2009, pages 136 - 146 *
TERADA ET AL.: "Saibo ni yoru Sanjigen Baiyo Jikai Nankotsu Sakusei no Kokoromi", KEISEI GEKA, vol. 47, no. 9, 2004, pages 975 - 982 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022265098A1 (ja) 2021-06-17 2022-12-22 学校法人近畿大学 人工耳介および人工軟骨組織の骨格構造およびそれを用いた人工耳介

Also Published As

Publication number Publication date
DE112012005018T5 (de) 2014-08-21
CN103957950B (zh) 2016-01-20
US20140302606A1 (en) 2014-10-09
JPWO2013081103A1 (ja) 2015-04-27
US9550977B2 (en) 2017-01-24
DE112012005018B4 (de) 2016-05-19
JP5320526B1 (ja) 2013-10-23
CN103957950A (zh) 2014-07-30

Similar Documents

Publication Publication Date Title
Wanjare et al. Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells
EP1835949B1 (en) Tissue engineering devices for the repair and regeneration of tissue
JP6450894B1 (ja) 生体適合長繊維不織布、その製造方法、細胞培養用立体足場及びこれを用いた細胞培養方法
Cai et al. Novel biodegradable three‐dimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering
Bonvallet et al. Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds
Fromstein et al. Seeding bioreactor-produced embryonic stem cell-derived cardiomyocytes on different porous, degradable, polyurethane scaffolds reveals the effect of scaffold architecture on cell morphology
US20060153815A1 (en) Tissue engineering devices for the repair and regeneration of tissue
Lin et al. In vitro and in vivo evaluation of the developed PLGA/HAp/Zein scaffolds for bone-cartilage interface regeneration
Bye et al. Development of bilayer and trilayer nanofibrous/microfibrous scaffolds for regenerative medicine
Edwards et al. Design of nonwoven scaffold structures for tissue engineering of the anterior cruciate ligament
JPH10234844A (ja) 軟骨組織再生用基材及びこれを用いた軟骨組織再生法
JP5320526B1 (ja) 耳介軟骨組織の製造方法及び耳介軟骨組織
JP2007325543A (ja) 細胞足場材料およびその製造方法
CN101288777A (zh) 聚己内酯/聚乙二醇组织工程支架材料及其制备
JP5247796B2 (ja) 細胞由来細胞外マトリックス支持体の製造方法
O'Sullivan et al. Adhesion and integration of tissue engineered cartilage to porous polyethylene for composite ear reconstruction
Demange et al. Survival of cord blood haematopoietic stem cells in a hyaluronan hydrogel for ex vivo biomimicry
EP4063477A1 (en) Cell aggregate, production method for cell aggregate, production kit for cell aggregate, and chemical compound evaluation method using cell aggregate
JP7444409B2 (ja) ゼラチン短繊維、その製造方法、それを含む細胞凝集体、細胞凝集体の製造方法及び作製キット
KR102189844B1 (ko) 고분자-세포 혼합 스페로이드, 이의 제조방법 및 이를 사용하는 방법
JP5492791B2 (ja) 歯の製造方法
JP4620110B2 (ja) 軟骨組織再生用シートの作製方法
JP7362652B2 (ja) 細胞シート、その製造方法及び作製キット
JP4102557B2 (ja) 人工組織用材料
JP2007236450A (ja) 培養人工骨

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013523410

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852497

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14360526

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012005018

Country of ref document: DE

Ref document number: 1120120050185

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12852497

Country of ref document: EP

Kind code of ref document: A1