WO2013080828A1 - 接合部品 - Google Patents

接合部品 Download PDF

Info

Publication number
WO2013080828A1
WO2013080828A1 PCT/JP2012/079974 JP2012079974W WO2013080828A1 WO 2013080828 A1 WO2013080828 A1 WO 2013080828A1 JP 2012079974 W JP2012079974 W JP 2012079974W WO 2013080828 A1 WO2013080828 A1 WO 2013080828A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
steel
carbon
brazing
carbide
Prior art date
Application number
PCT/JP2012/079974
Other languages
English (en)
French (fr)
Inventor
貴 新井
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP12853153.0A priority Critical patent/EP2786827B1/en
Priority to US14/361,539 priority patent/US10105778B2/en
Priority to CN201280057615.7A priority patent/CN103945972B/zh
Priority to JP2013547101A priority patent/JP5894189B2/ja
Publication of WO2013080828A1 publication Critical patent/WO2013080828A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0018Brazing of turbine parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/002Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of light metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/004Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a metal of the iron group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/005Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a refractory metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • F01D5/063Welded rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/24Ferrous alloys and titanium or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/026Shaft to shaft connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/236Diffusion bonding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a joining component in which a steel material member containing an alloy element containing C and Cr and a TiAl-based alloy member are joined via Ni brazing.
  • the present invention is a joint comprising a TiAl-based alloy member and a steel member in the manufacture of turbine wheels for passenger cars, small turbochargers for trucks, large turbochargers for ships, jet engines, industrial gas turbine blades, and the like. It relates to parts.
  • TiAl-based alloy member As a promising material for improving these performances, there is an alloy having an intermetallic compound TiAl as a main phase (referred to herein as a TiAl-based alloy member).
  • a TiAl-based alloy member is used as a turbine wheel, and a steel member that has a tenacity and is easy to process is used as a shaft. These are Ni brazed and brazed. Bonded parts are used.
  • carbon contained in the shaft of the joining component described in Patent Document 1 has a smaller atomic diameter than titanium, aluminum, and Ni.
  • carbon and nitrogen present in the shaft may move to the turbine wheel due to diffusion phenomenon, and titanium present in the turbine wheel and boron present in the Ni braze may move to the shaft. . Therefore, a lot of voids formed by the diffusion of carbon, a titanium carbide of carbide bonded with titanium and carbon, and a nitride bonded with boron and nitrogen are formed near the boundary between the shaft and the Ni brazing. As a result, there is a problem that the brazing strength is significantly reduced.
  • the linear expansion coefficients of the turbine wheel and the shaft are different.
  • the thermal stress caused by the difference in the linear expansion coefficient is concentrated on the boundary between the shaft and the Ni braze. Then, as shown in FIG. 7, this thermal stress may cause a crack and damage the turbine.
  • the present invention suppresses the diffusion of carbon and nitrogen contained in the steel member to the TiAl-based alloy part side, and the carbon and nitrogen contained in the steel member.
  • a bonded part that can suppress the generation of voids, titanium carbide and nitride caused by diffusion, and can prevent a reduction in brazing strength.
  • a joining component according to the present invention that solves the above-described problem is a joining component in which a steel material member containing an alloy element containing C and Cr and a TiAl-based alloy member are joined via Ni brazing. And In the steel member, carbide and nitride bonded to the alloy element are generated at least on the boundary side of the Ni brazing, and the carbide and nitride cause C and C to the Ni brazing side adjacent to the TiAl-based alloy member. N diffusion is prevented. In addition to Cr, Nb, V and the like are raised as the alloy element, and these may be any alloy elements that combine with C and N to generate carbides and nitrides.
  • the steel member may be a structural steel material containing 0.30 to 0.45% by weight of carbon and 0.85 to 1.25% by weight of carbon, or 0.15% by weight or less of carbon and 11.1% of Cr.
  • a martensitic stainless steel material containing 5 to 13% by weight, for example, a nitride and an alloy element containing Cr by a heat treatment, and carbon and nitrogen bonded to each other at least at the boundary between Ni and brazing metal in the structural steel material Carbide is present.
  • the nitrogen is nitrogen mixed at the time of manufacturing (dissolving) the steel material member, but a part of the nitrogen may be nitrogen contained in the steel material.
  • carbon in the steel member and a part of nitrogen are combined with the alloy element such as Cr by the heat treatment to become carbide and nitride.
  • the alloy element such as Cr
  • movement by diffusion is not easy.
  • carbon and nitrogen contained in the carbide and nitride cannot move by diffusion, and carbon and nitrogen diffuse from the steel member to the TiAl base alloy member side. Can be prevented.
  • carbonized_material carbon content decreases.
  • steel members have carbides
  • the steel members are subjected to heat treatment to homogenize the internal structure of the steel and spheroidize the carbides. Therefore, the strength of the steel members is low, like titanium carbide formed on conventional steel members. It does not become a part.
  • any of the steel members has a small amount of carbon contained in the steel member, the amount of carbon diffusing outside from the steel member is also reduced. Thereby, generation
  • the structural steel material contains 0.85-1.25% by weight of Cr, and the martensitic stainless steel material contains 11.5-13% by weight of Cr, greatly increasing the strength of steel members. Can be made.
  • the TiAl-based alloy member may be a turbine wheel of a turbine, and the steel member may be a turbine shaft.
  • the TiAl-based alloy member is a turbine wheel of a turbine and the steel member is a shaft of a turbine, it can be used for a supercharger such as a passenger car or a truck.
  • the present invention it is possible to suppress the diffusion of carbon and nitrogen contained in a steel material member to the TiAl-based alloy part side, and to form voids, titanium carbide and nitride resulting from the diffusion of carbon contained in the steel material member. Therefore, it is possible to provide a joining component that can suppress the occurrence of the occurrence of the brazing and prevent the brazing strength from being lowered.
  • FIG. 1 It is sectional drawing which shows the turbine for passenger car small superchargers which concerns on 1st embodiment of this invention. It is a schematic diagram which shows the relationship between C amount and Cr amount of structural steel materials, and the mechanical characteristic of a shaft.
  • A is a schematic diagram which shows the junction part of the turbine wheel and shaft of a turbine after operating a turbine under a high temperature state for a long time.
  • B is a schematic diagram showing a joint portion between a turbine wheel and a shaft of a normal turbine. It is the figure which showed the relationship between the amount of Cr and the structure
  • FIG. 1 is a cross-sectional view showing a passenger car small turbocharger turbine according to a first embodiment of the present invention.
  • a turbine component hereinafter referred to as a turbine main body 1 used for a passenger car small turbocharger turbine includes a turbine wheel 2 and a shaft 3.
  • a convex joint 2a is formed on the turbine wheel 2
  • a concave joint 3a is formed on the shaft 3
  • the convex joint 2a and the concave joint 3a are brought into a fitted state, and the turbine wheel 2 and the shaft 3 Are joined by Ni solder 4.
  • the turbine wheel 2 and the shaft 3 are joined by adding Ni brazing 4 between the turbine wheel 2 and the shaft 3 in a vacuum atmosphere.
  • the turbine wheel 2 is made of a TiAl-based alloy.
  • the TiAl-based alloy is an alloy containing Ti as a main constituent element, containing 28 to 35% by weight of Al, and optionally containing additional elements such as Nb, Cr, Mn, Si, W, C, and B.
  • the TiAl-based alloy contains 31.3 wt% Ti, 7.0 wt% Al, 1.3 wt% Nb, and 0.03 wt% C. After precision casting, the casting defect disappears. Therefore, what was subjected to HIP treatment at a temperature of 1200 ° C. or higher for a predetermined time was used.
  • the shaft 3 is made of a structural steel material.
  • the structural steel material contains Fe as a main constituent element, C is 0.30 to 0.45% by weight, Cr is 0.85 to 1.25% by weight, Mn is 0.30 to 1.65% by weight, P Is 0.030 wt% or less, and S is 0.030 wt% or less.
  • additive elements such as Ni and Mo and N of inevitable impurity levels may be included. Inevitable impurities are those that are present in raw materials in structural steel materials, or are inevitably mixed in in the manufacturing process, and are contained in trace amounts. Further, the inevitable impurity level is an amount such that the inevitable impurities do not affect the characteristics of the structural steel material.
  • manganese steel, manganese chrome steel, chrome steel, chrome molybdenum steel, nickel chrome steel, nickel chrome molybdenum steel, or the like can be used as the structural steel material.
  • SCM435 made of chromium molybdenum steel containing 0.33% by weight of C and 0.90% by weight of Cr was used as the structural steel material. The reason why the structural steel component is within the above composition range will be described below.
  • FIG. 2 is a schematic diagram showing the relationship between the C amount and Cr amount of the structural steel material and the mechanical characteristics of the shaft 3.
  • the legends (0.8, 1.0, 1.05, 1.1, 1.15) in FIG. 2 indicate the mechanical properties (0.2% proof stress) of the shaft 3 after heat treatment and the strength of the turbine wheel 2.
  • the spec ratio (hereinafter referred to as spec value) calculated by dividing by. From FIG. 2, the strength of the shaft 3 increases as the amount of C and the amount of Cr increase. That is, the spec value increases.
  • the minimum strength necessary to withstand centrifugal stress is defined as a specification value.
  • the minimum strength specification value is 1.0. In order to satisfy this minimum strength specification value, it is necessary to add at least a C amount of 0.30 wt% or more and a Cr amount of 0.85 wt% or more from the straight line of the specification value 1.0 in FIG. I understand that.
  • the structural steel material of the shaft 3 improves the mechanical properties after heat treatment when the amount of C and Cr increases, but generally the higher the strength, the higher the delayed crack sensitivity after heat treatment.
  • the strength of the shaft 3 is desirably a specification value of 1.15 or less. Therefore, the upper limit of the amount of C contained in the shaft 3 is set to 0.45 wt% and the upper limit of the amount of Cr is set to 1.25 wt% from the straight line of the specification value 1.15 in FIG.
  • High-strength shaft 3 can be manufactured by quenching and tempering the structural steel material having the above-described composition.
  • FIG. 3 (A) is a schematic view showing a joint portion between the turbine wheel 2 and the shaft 3 of the turbine body 1 after operating the turbine body 1 under a high temperature state for a long time
  • FIG. FIG. 2 is a schematic diagram showing a joint portion between a turbine wheel 2 and a shaft 3 of a normal turbine body 1.
  • the turbine wheel 2 and the shaft 3 are joined by Ni brazing 4.
  • FIG. 3 (A) almost no voids, titanium carbide and nitride are formed in the shaft 3 and the Ni braze 4 after the turbine body 1 has been operated under a high temperature condition for a long time.
  • FIG. 3B it was confirmed that the normal state was maintained.
  • the joining component having the above-described composition Cr contained in the shaft 3 is combined with a part of C to form chromium carbide and chromium nitride, so that a void is formed in the vicinity of the boundary between the shaft 3 and the Ni brazing filler metal 4. Further, generation of titanium carbide and chromium nitride can be suppressed.
  • C and N in the shaft 3 are diffused toward the turbine wheel 2 due to the diffusion phenomenon, so that voids generated by the diffusion of C and Ti and C are formed near the boundary between the shaft 3 and the Ni brazing filler metal 4.
  • the shaft 3 contains Cr, although the amount of C is small, the strength of the shaft 3 can be increased. Since diffusion of C can be suppressed, the turbine body 1 is not damaged even when used at a high temperature of about 900 ° C. to 1000 ° C. for a long time.
  • the shaft 3 has chromium carbide which is a carbide, the shaft 3 is subjected to heat treatment to homogenize the structure in the steel and spheroidize the carbide, so that the titanium carbide formed on the conventional steel member is made of It does not become a weak part of strength.
  • the shaft 3 of the turbine body 1 according to the second embodiment is made of martensitic stainless steel.
  • the structural steel material is used as the shaft 3 to suppress the diffusion of C and prevent the brazing strength from being lowered.
  • the exhaust gas temperature has increased to about 1000 ° C.
  • the Ni braze 4 of the turbine body 1 is also exposed to a high temperature.
  • the brazing strength may be reduced after a long time operation. Therefore, when the turbine body 1 is exposed to a high temperature for a long time, martensitic stainless steel is used as the shaft 3.
  • a turbine main body 1 according to the second embodiment includes a turbine wheel 2 and a shaft 3.
  • the turbine wheel 2 is made of a TiAl-based alloy as in the first embodiment.
  • the shaft 3 is made of martensitic stainless steel. Martensitic stainless steel has Fe as a main constituent element, C is 0.15 wt% or less, Cr is 11.5 to 13 wt%, Si is 1.00 wt% or less, and Mn is 1.25 wt%.
  • P is contained in an amount of 0.060% by weight or less.
  • additive elements such as S, Ni, Mo, and Pb, and N at an unavoidable impurity level may be included.
  • SUS403 As the martensitic stainless steel, chromium-based SUS403, SUS410, SUS410J1, SUS410F2, SUS416, SUS420J1, SUS420J2, SUS420F, SUS420F2, SUS431, SUS440A, SUS440B, SUS440C, SUS440F, or the like can be used.
  • the C amount needs to be smaller than that of the structural steel material.
  • the strength of the shaft 3 is ensured by adding a large amount of Cr, C is set to 0.15 wt% or less, and voids and titanium carbide are present in the vicinity of the boundary between the shaft 3 and the Ni braze 4. Prevent it from occurring.
  • About Cr Add 11.5% by weight or more of Cr in order to compensate for the decrease in the strength of the shaft 3 due to the decrease in the amount of C.
  • FIG. 4 is a diagram showing the relationship between the amount of Cr and the structure in each temperature range when martensitic stainless steel contains 0.1 mass% of C. The hatched area in FIG. 4 is the ⁇ phase. As shown in FIG.
  • the Cr amount is set to 13% by weight or less. As described above, in the present invention, the Cr content is 11.5 to 13% by weight.
  • a high-strength shaft 3 can be manufactured by quenching martensitic stainless steel having the above-described composition at a temperature of about 800 to 1200 ° C. and tempering at a temperature of 800 ° C. or lower.
  • the joining component having the above-described composition since the amount of C contained in the shaft 3 is small, diffusion of C can be suppressed as compared with general stainless steel having a large amount of C added. Therefore, almost no voids and titanium carbide are generated near the boundary between the shaft 3 and the Ni braze 4. Thereby, it is possible to prevent a crack from occurring near the boundary between the shaft 3 and the Ni solder 4. Moreover, although the amount of C contained in the shaft 3 is small, the strength of the shaft 3 can be increased because a large amount of Cr is contained. Further, a part of C contained in the shaft 3 is combined with Cr by the heat treatment to become chrome carbide.
  • chrome carbide is excellent in structure stability even under high temperature conditions, chrome carbide is not decomposed even under high temperature conditions during turbocharger operation, and C does not enter a solid solution state in the shaft 3. Therefore, the movement of C contained as chrome carbide in the shaft 3 is limited, and C can be prevented from diffusing from the shaft 3 to the turbine wheel 2 side.
  • the turbine body 1 is not damaged even when used for a long time under.

Abstract

鋼材部材内に含まれる炭素及び窒素がTiAl基合金部側に拡散することを抑制するとともに、鋼材部材内に含まれる炭素及び窒素の拡散に起因するボイド、チタンカーバイトおよび窒化物の発生を抑制し、ろう付け強度の低下を防止可能な接合部品を提供することを目的とし、CとCrを含む合金元素が含有されている鋼材部材と、TiAl基合金部材とが、Niろうを介して接合されてなる接合部品であって、前記鋼材部材は、少なくともNiろうの境界側に前記合金元素と結合した炭化物および窒化物が生成されてなり、該炭化物および窒化物により、TiAl基合金部材と隣接するNiろう側への、CとNの拡散が防止されることを特徴とし、前記接合部品は、タービンホイール2とシャフト3とから構成されているタービン本体1部品であって、シャフト3の構造用鋼材が、炭素が0.30~0.45重量%、Crが0.85~1.25重量%含まれる構造用鋼材か、若しくは炭素が0.15重量%以下、Crが11.5~13重量%含むマルテンサイト系ステンレス鋼材である。

Description

接合部品
 本発明は、CとCrを含む合金元素が含有されている鋼材部材と、TiAl基合金部材とが、Niろうを介して接合されてなる接合部品に係り。特には、本発明は乗用車、トラック用小型過給機のタービンホイールおよび船舶用大型過給機、ジェットエンジン、産業用ガスタービンブレード等のタービンの製造におけるTiAl基合金部材と鋼材部材とからなる接合部品に関するものである。
 近年の環境問題への関心の高まりから、乗用車、トラック等の輸送機械に用いられる過給機の性能向上が、またジェットエンジン、産業用ガスタービンなどの効率の向上が求められている。上記製品の性能、効率を支配する重要な構成要素の一つはタービンであり、近年このタービンに対し、温度の高温化が求められている。
 これらの性能向上に有望な材料として、金属間化合物TiAlを主相とする合金(本明細書中では、TiAl基合金部材という)がある。例えば、特許文献1には、図5に示すように、TiAl基合金部材をタービンホイールとし、粘り強さがあり、加工が容易な素材である鋼材部材をシャフトとして、これらをNiろうで、ろう付けした接合部品が使用されている。
特開2004-90130号公報
 しかしながら、特許文献1に記載の接合部品のシャフトに含まれている炭素は、図6に示すように、チタン、アルミニウム、Niと比べて原子の径が小さいため、長時間にわたって高温状態下でタービンを稼働させると、拡散現象によって、シャフトに存在する炭素および窒素がタービンホイール側に移動したり、タービンホイールに存在するチタンおよびNiろうに存在するホウ素がシャフト側に移動したりする場合があった。このため、シャフトとNiろうとの境界付近に、炭素の拡散により生じた空孔が集合したボイド、チタンと炭素とが結合した炭化物のチタンカーバイトおよびホウ素と窒素とが結合する窒化物が多く形成されて、ろう付け強度が著しく低下してしまうという課題があった。さらに、ボイド、チタンカーバイトおよび窒化物が形成された状態で、タービンが低温状態と高温状態とを繰り返し受ける、いわゆる熱サイクル条件下に晒されると、タービンホイールとシャフトの線膨張係数は異なるため、当該線膨張率の違いに起因した熱応力が、シャフトとNiろうとの境界に集中して作用する。すると、この熱応力によって、図7に示すように、亀裂が生じてタービンが破損してしまうおそれがあった。
 そこで、本発明は係る上記の従来技術の問題点に鑑み、鋼材部材内に含まれる炭素および窒素がTiAl基合金部側に拡散することを抑制するとともに、鋼材部材内に含まれる炭素および窒素の拡散に起因するボイド、チタンカーバイトおよび窒化物の発生を抑制し、ろう付け強度の低下を防止可能な接合部品を提供する。
 上述した問題を解決する本発明に係る接合部品は、CとCrを含む合金元素が含有されている鋼材部材と、TiAl基合金部材とが、Niろうを介して接合されてなる接合部品であって、
前記鋼材部材は、少なくともNiろうの境界側に前記合金元素と結合した炭化物および窒化物が生成されてなり、該炭化物および窒化物により、TiAl基合金部材と隣接するNiろう側への、CとNの拡散が防止されることを特徴とする。
尚前記合金元素にはCrの他に、Nb、V等が上げられ、これらはいずれもC及びNと結合して炭化物および窒化物を生成する合金元素であればよい。
 上記接合部品によれば、合金元素と結合した炭化物および窒化物により、TiAl基合金部材と隣接するNiろう側に、CとNの拡散が防止されているため、鋼材部材内の炭素および窒素が拡散して鋼材部材とNiろう付けの境界付近にボイドおよびチタンカーバイドおよび窒化物が発生することを抑制できる。従来の接合部品では、鋼材部材とNiろう付けの境界付近に多くのボイド、チタンカーバイトおよび窒化物が発生していた。そして、このボイド、チタンカーバイトおよび窒化物が存在している箇所に応力が作用すると、亀裂が生じて鋼材部材が破損するおそれがあったが、本発明に係る接合部品によれば、炭素及び窒素がNiろう側及びTiAl基合金部材側に拡散することを抑制できるため、鋼材部材とろう付けの境界付近には、ボイド、チタンカーバイト及び窒化物はほとんどが発生しない。したがって、接合部品の破損を防止することができる。
 また、前記鋼材部材は、炭素が0.30~0.45重量%、Crが0.85~1.25重量%含まれる構造用鋼材若しくは、炭素が0.15重量%以下、Crが11.5~13重量%含むマルテンサイト系ステンレス鋼材であり、例えば熱処理によって前記Crを含む合金元素と、炭素および窒素を夫々結合させて前記構造用鋼材内の少なくともNiろうとの境界側に、窒化物および炭化物を存在させてなる。
尚、前記窒素は、前記鋼材部材の製造(溶解)時に混入する窒素であるのが一般的であるが、その一部が前記鋼材中に含有する窒素であってもよい。
 このように、鋼材部材中の炭素および(例えば熱処理により大気中より取り込まれた)窒素の一部は、熱処理によって前記Cr等の合金元素と結合して炭化物および窒化物となる。炭素および窒素は鋼材部材中に固溶した状態で存在していない場合、拡散による移動が容易でない。つまり炭化物および窒化物の状態である限り、当該炭化物および当該窒化物に含まれている炭素および窒素は拡散による移動ができないこととなり、鋼材部材内から炭素および窒素がTiAl基合金部材側に拡散することを防止できる。
 また、鋼材部材に含まれる炭素の一部は炭化物となるため、炭素量が少なくなる。したがって、鋼材部材とろう付けの境界付近に形成されるボイド、チタンカーバイトおよび窒化物の発生を抑制することができる。なお、鋼材部材は炭化物を有するが、鋼材部材は熱処理によって鋼内組織の均質化および炭化物の球状化が施されているため、従来の鋼材部材に形成されたチタンカーバイトのように強度の弱部とならない。
 また、前記いずれの鋼材部材も、該鋼材部材に含まれる炭素量が少ないため、鋼材部材中から外部へ拡散する炭素の量も少なくなる。これにより、鋼材部材とろう付けの境界付近に形成されるボイドおよび(チタンを含む鋼材であっても)チタンカーバイトの発生を抑制することができる。
 さらに、前記構造用鋼材はCrが0.85~1.25重量%、又マルテンサイト系ステンレス鋼材はCrを重量%で11.5~13%含んでいるため、鋼材部材の強度を大幅に増加させることができる。
 また、前記TiAl基合金部材がタービンのタービンホイールであり、前記鋼材部材がタービンのシャフトであることとしてもよい。
 このように、TiAl基合金部材がタービンのタービンホイールであり、鋼材部材がタービンのシャフトなので、乗用車、トラック等の過給機に用いることができる。
 本発明によれば、鋼材部材内に含まれる炭素および窒素がTiAl基合金部側に拡散することを抑制するとともに、鋼材部材内に含まれる炭素の拡散に起因するボイド、チタンカーバイトおよび窒化物の発生を抑制し、ろう付け強度の低下を防止可能な接合部品を提供することができる。
本発明の第一実施形態に係る乗用車小型過給機用タービンを示す断面図である。 構造用鋼材のC量およびCr量とシャフトの機械的特性との関係を示す模式図である。 (A)は長時間にわたってタービンを高温状態下で稼働させた後のタービンのタービンホイールとシャフトとの接合部分を示す模式図である。(B)は正常なタービンのタービンホイールとシャフトとの接合部分を示す模式図である。 マルテンサイト系ステンレス鋼がCを0.1質量%含む場合の、Cr量と各温度域における組織の関係を示した図である。 正常なタービンのタービンホイールとシャフトとの接合部分を示す模式図である。 長時間にわたってタービンを高温状態下で稼働させた後のタービンのタービンホイールとシャフトとの接合部分の原子状態を示す模式図である。 タービンが破損した際のタービンホイールとシャフトとの接合部分を示す模式図である。
 以下、図面を参照して本発明の好適な実施形態を例示的に詳しく説明する。なお、以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
 図1は、本発明の第一実施形態に係る乗用車小型過給機用タービンを示す断面図である。
 図1に示すように、乗用車小型過給機用タービンに使用されるタービン部品(以下、タービン本体1という)は、タービンホイール2と、シャフト3とから構成されている。タービンホイール2には凸状接合部2aが、また、シャフト3には凹状接合部3aが形成され、この凸状接合部2aと凹状接合部3aとが嵌合状態となりタービンホイール2とシャフト3とがNiろう4で接合されている。タービンホイール2とシャフト3との接合は、真空雰囲気下でタービンホイール2とシャフト3との間にNiろう4を添加することにより行う。
 タービンホイール2はTiAl基合金から構成されている。TiAl基合金は、Tiを主な構成元素とし、Alを28~35重量%含み、その他にNb、Cr、Mn、Si、W、C、Bなどの添加元素を含んでもよい合金である。本実施形態では、TiAl基合金は、Tiを31.3重量%、Alを7.0重量%、Nbを1.3重量%、Cを0.03重量%含み、精密鋳造後、鋳造欠陥消滅のため1200℃以上の温度℃で一定時間HIP処理を行ったものを用いた。
 また、シャフト3は構造用鋼材から構成されている。構造用鋼材は、Feを主な構成元素とし、Cを0.30~0.45重量%、Crを0.85~1.25重量%、Mnを0.30~1.65重量%、Pを0.030重量%以下、Sを0.030重量%以下含んでいる。その他にNi、Moなどの添加元素および不可避的不純物レベルのNを含んでもよい。不可避不純物とは、構造用鋼材において、原料中に存在したり、製造工程において不可避的に混入したりするものであり、微量に含まれているものである。また、不可避不純物レベルとは、不可避不純物が構造用鋼材の特性に影響を及ぼさない程度の量である。
 構造用鋼材としては、マンガン鋼、マンガンクロム鋼、クロム鋼、クロムモリブデン鋼、ニッケルクロム鋼、ニッケルクロムモリブデン鋼等を用いることができる。
 本実施形態では、構造用鋼材として、Cを0.33重量%、Crを0.90重量%含むクロムモリブデン鋼のSCM435を用いた。
 構造用鋼材の成分を上記組成範囲とする理由を以下で述べる。
 図2は、構造用鋼材のC量およびCr量とシャフト3の機械的特性との関係を示す模式図である。
 図2中の凡例(0.8、1.0、1.05、1.1、1.15)は、熱処理後のシャフト3の機械的特性(0.2%耐力)をタービンホイール2の強度で除して算出されるスペック比(以下、スペック値という)を示している。
 図2より、シャフト3は、C量およびCr量が多いほど強度が高くなる。すなわち、スペック値が大きくなる。
 ところで、ターボチャージャ等のタービンホイール2は高速度で回転するため、遠心応力に耐えうるために必要な最低強度がスペック値として規定されている。本実施形態では、最低強度のスペック値を1.0とした。この最低強度のスペック値を満足するためには、図2中のスペック値1.0の直線より、少なくともC量を0.30wt%以上、Cr量を0.85wt%以上、添加する必要があることがわかる。
 一方、シャフト3の材料である構造用鋼材は、C量およびCr量が多くなると熱処理後に機械的特性が向上するが、高強度になればなるほど熱処理後の遅れ割れ感受性が高くなることが一般的に知られている。図2中のスペック値1.15の強度レベルまで高強度にすると遅れ割れが発生するリスクがあるため、シャフト3の強度はスペック値1.15以下が望ましい。したがって、図2中のスペック値1.15の直線より、シャフト3に含まれるC量の上限を0.45wt%、Cr量の上限を1.25wt%とした。
 上述した組成からなる構造用鋼材に焼き入れ、焼き戻しを行うことで、高強度のシャフト3を製造することができる。
 図3(A)は、長時間にわたってタービン本体1を高温状態下で稼働させた後のタービン本体1のタービンホイール2とシャフト3との接合部分を示す模式図であり、図3(B)は、正常なタービン本体1のタービンホイール2とシャフト3との接合部分を示す模式図である。
 図3(A)および図3(B)に示すように、タービンホイール2とシャフト3は、Niろう4で接合されている。図3(A)に示すように、長時間にわたってタービン本体1を高温状態下で稼働させた後のシャフト3およびNiろう4内に、ボイド、チタンカーバイト、窒化物はほとんど形成されておらず、図3(B)と同様に、正常な状態を維持していることが確認できた。
 上述した組成からなる接合部品によれば、シャフト3に含まれるCrが、Cの一部と結合してクロムカーバイトおよびクロム窒化物を形成するため、シャフト3とNiろう4の境界付近にボイド、チタンカーバイトおよびクロム窒化物が発生することを抑制できる。従来の接合部品では、シャフト3内のCおよびNが拡散現象によってタービンホイール2側へ拡散することにより、シャフト3とNiろう4の境界付近に、Cの拡散によって生じたボイドおよびTiとCとが結合した炭化物のチタンカーバイト、またNの拡散によって生じた窒化物が、多数形成されて、ろう付け強度が著しく低下していた。この状態で、タービンホイール2とシャフト3の境界付近に応力が作用すると、亀裂が生じてシャフト3が破損するおそれがあったが、本発明に係るシャフト3の炭素はタービンホイール2側へ拡散しないため、シャフト3とNiろう4の境界付近にほとんどボイド、チタンカーバイトおよびクロム窒化物が発生しない。さらに、シャフト3に含まれるC量は少ないため、Cがシャフト3から外部へ拡散する量も少なくなる。これにより、シャフト3に形成されるボイドを少なくすることができる。
 さらに、シャフト3はCrを含んでいるため、C量が少ないものの、シャフト3の強度を増加させることができる。
 そして、Cの拡散を抑制することができるため、900℃~1000℃程度の高温下で長時間使用してもタービン本体1は破損しない。
 なお、シャフト3は炭化物であるクロムカーバイトを有するが、シャフト3は熱処理によって鋼内組織の均質化および炭化物の球状化が施されているため、従来の鋼材部材に形成されたチタンカーバイトのように強度の弱部にならない。
 なお、本実施形態では、Crを添加してCと結合させる場合について説明したが、Cと結合させる元素はCrに限定されるものではなく、例えば、Nb、Vを用いてもよい。
 次に、本発明の第二実施形態について説明する。以下の説明において、上述した実施形態に対応する部分には同一の符号を付して説明を省略し、主に相違点について説明する。第二実施形態に係るタービン本体1のシャフト3は、マルテンサイト系ステンレス鋼から構成されたものである。
 上述したように、第一実施形態では、シャフト3として構造用鋼材を用いることでCの拡散を抑制し、ろう付け強度の低下を防止した。ところで、近年の乗用車エンジン等の燃費向上に伴い排気ガス温度が1000℃程度まで上昇している。排気ガス温度が上昇すると、タービン本体1のNiろう4も高温に晒されるようなる。すると、シャフト3に構造用鋼材を用いても長時間運転後にろう付け強度が低下する場合がある。そこで、タービン本体1が長時間、高温に晒される場合には、シャフト3としてマルテンサイト系ステンレス鋼を用いる。
 第二実施形態に係るタービン本体1は、タービンホイール2と、シャフト3とから構成されている。タービンホイール2は、第一実施形態と同様に、TiAl基合金から構成されている。
 シャフト3は、マルテンサイト系ステンレス鋼から構成されている。マルテンサイト系ステンレス鋼は、Feを主な構成元素とし、Cを0.15重量%以下、Crを11.5~13重量%、Siを1.00重量%以下、Mnを1.25重量%以下、Pを0.060重量%以下含んでいる。その他にS、Ni、Mo、Pbなどの添加元素および不可避的不純物レベルのNを含んでもよい。
 マルテンサイト系ステンレス鋼としては、クロム系のSUS403、SUS410、SUS410J1、SUS410F2、SUS416、SUS420J1、SUS420J2、SUS420F、SUS420F2、SUS431、SUS440A、SUS440B、SUS440C、SUS440F等を用いることができる。
 本実施形態では、マルテンサイト系ステンレス鋼として、Cを0.15重量%、Crを13重量%含み、高力鋼材であるSUS403を用いた。
 マルテンサイト系ステンレス鋼の成分を上記組成範囲とする理由を以下で述べる。
 Cについて:一般的に、鋼はCを多く含むことにより、強度を高めることができるが、Cを多く含むと、課題の欄に記載したように、大量のCが拡散してシャフト3およびNiろう4の境界付近に多くのボイドおよびチタンカーバイトが発生してしまう。さらに、第一実施形態で説明した構造用鋼材のようにCをクロムカーバイトの形にすることで拡散を抑制しようとしても、タービン本体1の使用温度が1000℃程度になると鋼材中にクロムカーバイトとして形成されず、固溶した状態のまま残存する少量のカーボンがタービンホイール2側に拡散してしまうため、ボイドおよびチタンカーバイドが発生する。したがって、排気ガス温度が1000℃程度となる場合には、C量を構造用鋼材よりも少なくする必要がある。本実施形態では、Crを多量に添加することによりシャフト3としての強度を確保することとして、Cを0.15重量%以下として、シャフト3およびNiろう4の境界付近にボイドおよびチタンカーバイトが発生することを防止する。
 Crについて:C量の減少によってシャフト3の強度が低下した分を補うべく、Crを11.5重量%以上添加する。図4は、マルテンサイト系ステンレス鋼がCを0.1質量%含む場合の、Cr量と各温度域における組織の関係を示した図である。図4中のハッチング領域はγ相である。図4に示すように、Crが13重量%以下の場合、1000℃程度の高温時にγ相の領域から冷却すると800~900℃の温度域でγ相からα相への変態が生じる。一方、Crが13重量%を超えている場合、γ相の領域を外れるため、熱処理時にγ相からα相への変態が生じず、δフェライト系ステンレス鋼となり、シャフト3の強度を高めることができない。したがって、Cr量を13重量%以下とする。上述したように、本発明では、Cr量を11.5~13重量%とする。
 上述した組成からなマルテンサイト系ステンレス鋼に800~1200℃程度の温度での焼き入れ、800℃以下での焼き戻しを行うことで、高強度のシャフト3を製造することができる。
 上述した組成からなる接合部品によれば、シャフト3に含まれるC量が少ないため、C添加量が多い一般的なステンレス鋼に比べてCの拡散を抑制することができる。したがって、シャフト3とNiろう4の境界付近には、ほとんどボイドおよびチタンカーバイトが発生しない。これにより、シャフト3とNiろう4の境界付近に亀裂が生じることを防止できる。
 また、シャフト3に含まれるC量は少ないものの、Crが多く含まれているため、シャフト3の強度を増加させることができる。
 さらに、シャフト3に含まれるCの一部は、前記熱処理によってCrと結合してクロムカーバイトとなる。クロムカーバイトは高温状態下でも組織安定性に優れるため、ターボチャージャ運転時の高温状態下でもクロムカーバイトが分解し、Cがシャフト3中に固溶する状態になることはない。そのためシャフト3中にクロムカーバイトとして含まれているCの移動が制限されることとなり、シャフト3中からCがタービンホイール2側に拡散することを防止できるため、900℃~1000℃程度の高温下で長時間使用してもタービン本体1は破損しない。

Claims (5)

  1.  CとCrを含む合金元素が含有されている鋼材部材と、TiAl基合金部材とが、Niろうを介して接合されてなる接合部品であって、
    前記鋼材部材は、少なくともNiろうの境界側に前記合金元素と結合した炭化物および窒化物が生成されてなり、該炭化物および窒化物により、TiAl基合金部材と隣接するNiろう側への、CとNの拡散が防止されることを特徴とする接合部品。
  2.  前記鋼材部材は、炭素が0.30~0.45重量%、Crが0.85~1.25重量%含まれる構造用鋼材であり、前記Crを含む合金元素と、炭素および窒素を夫々結合させて前記構造用鋼材内の少なくともNiろうとの境界側に、窒化物および炭化物を存在させてなることを特徴とする請求項1に記載の接合部品。
  3.  前記鋼材部材は、炭素が0.15重量%以下、Crが11.5~13重量%含むマルテンサイト系ステンレス鋼材であり、熱処理によって前記Crを含む合金元素と炭素および窒素を夫々結合させて前記構造用鋼材内の少なくともNiろうとの境界側に、窒化物および炭化物を存在させてなることを特徴とする請求項1に記載の接合部品。
  4. 前記請求項2若しくは3記載の窒素は、前記鋼材部材の製造(溶解)時に混入する窒素である特徴とする請求項2若しくは3記載の接合部品。
  5.  前記TiAl基合金部材がタービンのタービンホイールであり、前記鋼材部材がタービンのシャフトであることを特徴とする請求項1~4のうち何れか一項に記載の接合部品。
PCT/JP2012/079974 2011-12-01 2012-11-19 接合部品 WO2013080828A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12853153.0A EP2786827B1 (en) 2011-12-01 2012-11-19 Turbine body
US14/361,539 US10105778B2 (en) 2011-12-01 2012-11-19 Joint part
CN201280057615.7A CN103945972B (zh) 2011-12-01 2012-11-19 接合部件
JP2013547101A JP5894189B2 (ja) 2011-12-01 2012-11-19 接合部品及びその接合方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011264137 2011-12-01
JP2011-264137 2011-12-01

Publications (1)

Publication Number Publication Date
WO2013080828A1 true WO2013080828A1 (ja) 2013-06-06

Family

ID=48535290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079974 WO2013080828A1 (ja) 2011-12-01 2012-11-19 接合部品

Country Status (5)

Country Link
US (1) US10105778B2 (ja)
EP (1) EP2786827B1 (ja)
JP (1) JP5894189B2 (ja)
CN (1) CN103945972B (ja)
WO (1) WO2013080828A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104722916A (zh) * 2013-12-19 2015-06-24 罗伯特·博世有限公司 用于制造运行轮和运行装置的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017002024T5 (de) 2016-04-14 2019-01-24 Ihi Corporation Turbinenwelle und turbolader
US20190040762A1 (en) * 2017-08-02 2019-02-07 Cummins Inc. Method and system for nozzle ring repair
CN111360351A (zh) * 2020-03-05 2020-07-03 西安陕鼓动力股份有限公司 一种Au基钎料钎焊Cr13不锈钢叶轮工艺方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108924A (ja) * 1996-06-21 1998-01-13 Daido Steel Co Ltd 大型ディーゼルエンジン用バルブの製造方法
JP2004090130A (ja) 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd TiAl基合金と鋼材の接合方法
JP2010005643A (ja) * 2008-06-25 2010-01-14 Ihi Corp チタン部材と鋼部材の接合方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311143A (ja) 1995-05-16 1996-11-26 Nitto Denko Corp ポリカルボジイミド樹脂組成物およびそれを用いた熱収縮性成形体の製法ならびにそれにより得られた熱収縮性成形体
JPH10193087A (ja) 1996-12-27 1998-07-28 Daido Steel Co Ltd TiAl製タービンローターの製造方法
JPH10118764A (ja) 1996-10-18 1998-05-12 Daido Steel Co Ltd TiAl製タービン羽根車とローターシャフトとの接合 方法
EP0837221B1 (en) 1996-10-18 2003-09-10 Daido Steel Company Limited Ti-Al turbine rotor and method of manufacturing said rotor
JPH10124780A (ja) 1996-10-25 1998-05-15 Nitsuko Corp 非常通報装置
JP3395576B2 (ja) 1997-06-11 2003-04-14 大和市 硫化水素発生防止方法
CN1068269C (zh) 1997-12-26 2001-07-11 冶金工业部钢铁研究总院 一种钛铝合金涡轮转子与结构钢轴的连接方法
JP4596577B2 (ja) 1999-06-21 2010-12-08 本田技研工業株式会社 冷間鍛造用ビレットの製造方法
JP4538878B2 (ja) 2000-01-19 2010-09-08 大同特殊鋼株式会社 鋼材とチタン材との接合方法
JP2002252810A (ja) 2001-02-26 2002-09-06 Aruze Corp 信号切換装置
JP2005082844A (ja) 2003-09-08 2005-03-31 Chiyoda Daiichi Kogyo Kk 基材のコーティング方法およびコーティング構造
JP2006297474A (ja) 2005-04-25 2006-11-02 Daido Steel Co Ltd Ti−Al合金と鋼材との接合体および接合方法
CN1737525A (zh) 2005-09-07 2006-02-22 哈尔滨工业大学 TiAl合金/钢钎焊接头界面金相组织的显示方法
CN100413636C (zh) 2005-09-29 2008-08-27 哈尔滨工业大学 TiAl基合金增压涡轮与钢轴的高强度连接方法
US20070199977A1 (en) 2006-02-28 2007-08-30 Michael Pollard Turbocharger turbine and shaft assembly
JP4304190B2 (ja) * 2006-03-03 2009-07-29 精密工業株式会社 タービンホイールとロータシャフトの接合方法
JP4666388B2 (ja) 2006-10-30 2011-04-06 株式会社神戸製鋼所 耐熱耐摩耗性高Cr鋳鉄
JP2008202544A (ja) 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd ロータの製造方法及びこのロータをそなえた排気ターボ過給機
CN101972877B (zh) 2010-11-03 2012-07-25 哈尔滨工业大学 TiAl基合金与Ni基高温合金的接触反应钎焊连接方法
CN102259217A (zh) 2011-02-15 2011-11-30 洛阳双瑞精铸钛业有限公司 一种高铌钛铝涡轮增压器转子与钢轴的焊接方法
CN102120281A (zh) 2011-02-15 2011-07-13 洛阳双瑞精铸钛业有限公司 一种钛铝材质涡轮增压器转子与钢轴的钎焊方法
CN102211249A (zh) * 2011-05-26 2011-10-12 洛阳双瑞精铸钛业有限公司 一种钛铝合金涡轮与42CrMo钢轴的连接方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108924A (ja) * 1996-06-21 1998-01-13 Daido Steel Co Ltd 大型ディーゼルエンジン用バルブの製造方法
JP2004090130A (ja) 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd TiAl基合金と鋼材の接合方法
JP2010005643A (ja) * 2008-06-25 2010-01-14 Ihi Corp チタン部材と鋼部材の接合方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2786827A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104722916A (zh) * 2013-12-19 2015-06-24 罗伯特·博世有限公司 用于制造运行轮和运行装置的方法
US9995154B2 (en) 2013-12-19 2018-06-12 Robert Bosch Gmbh Method for producing a rotor wheel and a rotor

Also Published As

Publication number Publication date
CN103945972B (zh) 2016-08-17
EP2786827B1 (en) 2020-01-01
JP5894189B2 (ja) 2016-03-23
EP2786827A1 (en) 2014-10-08
EP2786827A4 (en) 2016-01-06
US10105778B2 (en) 2018-10-23
CN103945972A (zh) 2014-07-23
JPWO2013080828A1 (ja) 2015-04-27
US20140321905A1 (en) 2014-10-30

Similar Documents

Publication Publication Date Title
US7632066B2 (en) Pipe for steam turbine, manufacturing process of same, main stream pipe and reheat pipe for steam turbine, and steam turbine power plant using those pipes
JP5353716B2 (ja) オーステナイト系耐熱鋳鋼及びそれからなる排気系部品
EP2980254B1 (en) Stainless steel alloy, turbocharger turbine housing formed from the stainless steel alloy
EP2765214B1 (en) Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
JP5894189B2 (ja) 接合部品及びその接合方法
EP3168318B1 (en) Stainless steel alloys and turbocharger turbine housings formed from the stainless steel alloys
EP3196327B1 (en) Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
EP3575430B1 (en) Stainless steel alloys, turbocharger components formed from the stainless steel alloys, and methods for manufacturing the same
JP6098637B2 (ja) 被削性に優れたオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
US10316694B2 (en) Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
EP3885464A1 (en) Austenitic stainless steel alloys and turbocharger components formed from the stainless steel alloys
EP3816317A1 (en) Stainless steel alloys, turbocharger components formed from the stainless steel alloys, and methods for manufacturing the same
EP2910661B1 (en) Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
JP6289873B2 (ja) 析出強化型フェライト系耐熱鋼、該耐熱鋼を用いたタービン高温部材、および該タービン高温部材を用いたタービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853153

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14361539

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013547101

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012853153

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE