WO2013080650A1 - アルミニウム合金材、ならびに、アルミニウム合金構造体及びその製造方法 - Google Patents

アルミニウム合金材、ならびに、アルミニウム合金構造体及びその製造方法 Download PDF

Info

Publication number
WO2013080650A1
WO2013080650A1 PCT/JP2012/075404 JP2012075404W WO2013080650A1 WO 2013080650 A1 WO2013080650 A1 WO 2013080650A1 JP 2012075404 W JP2012075404 W JP 2012075404W WO 2013080650 A1 WO2013080650 A1 WO 2013080650A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
mass
less
alloy material
intermetallic compound
Prior art date
Application number
PCT/JP2012/075404
Other languages
English (en)
French (fr)
Inventor
新倉昭男
藤田和子
村瀬崇
大谷良行
黒崎友仁
Original Assignee
古河スカイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河スカイ株式会社 filed Critical 古河スカイ株式会社
Priority to CN201280045064.2A priority Critical patent/CN103930577B/zh
Priority to JP2013506400A priority patent/JP5337326B1/ja
Priority to US14/361,740 priority patent/US9574253B2/en
Priority to BR112014013132-5A priority patent/BR112014013132B1/pt
Priority to EP12853959.0A priority patent/EP2787094B1/en
Priority to IN1031MUN2014 priority patent/IN2014MN01031A/en
Priority to ES12853959.0T priority patent/ES2613590T3/es
Priority to KR1020147018291A priority patent/KR101581607B1/ko
Publication of WO2013080650A1 publication Critical patent/WO2013080650A1/ja
Priority to US15/411,739 priority patent/US9903008B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/14Preventing or minimising gas access, or using protective gases or vacuum during welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • B23K20/2333Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer one layer being aluminium, magnesium or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/017Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12764Next to Al-base component

Definitions

  • the present invention relates to an aluminum alloy material, and more particularly to an aluminum alloy material that can be joined to another member by its own action without using a joining member such as a brazing filler metal or a filler metal.
  • the present invention also relates to a structure using the aluminum alloy material that is efficiently bonded and has almost no dimensional change or shape change before and after bonding, and a method for manufacturing the structure.
  • brazing methods In manufacturing a structure such as a heat exchanger having an aluminum alloy material as a constituent member, it is necessary to join aluminum alloy materials together or an aluminum alloy material and a different material.
  • Various methods are known for joining aluminum alloy materials, and brazing methods (brazing methods) are often used among them.
  • the brazing method is often used because it takes into account advantages such as being able to obtain a strong bond in a short time without melting the base material.
  • Examples of a method for producing a heat exchanger using a joining method of an aluminum alloy material by a brazing method include a method using a brazing sheet clad with a brazing material made of an Al—Si alloy; an extruded material coated with a powder brazing material And a method in which a brazing material is separately applied to a portion that needs to be joined after assembling each material (Patent Documents 1 to 3). Furthermore, the section of “3.2 Brazing sheet” in Non-Patent Document 1 describes details of these clad brazing sheets and powder brazing materials.
  • brazing methods have been developed in the manufacture of aluminum alloy structural bodies.
  • a method of using a brazing sheet in which a tube material is clad with a brazing material, or a method of separately applying Si powder or Si-containing wax to the tube material was adopted.
  • the tube material is used as a single layer, a method of using a brazing sheet in which a fin material is clad with a brazing material has been adopted.
  • Patent Document 4 describes a method of using a single-layer brazing sheet instead of the clad brazing sheet described above. In this method, it has been proposed to use a single layer brazing sheet for a heat exchanger for the tube material and the tank material of the heat exchanger.
  • brazing sheet In order to produce a clad material such as a brazing sheet, it is necessary to produce each layer separately and further to laminate them.
  • the use of a brazing sheet is against the demand for cost reduction of heat exchangers and the like. Also, the application of the powder brazing material is reflected in the product cost by the amount of the brazing material cost.
  • an aluminum alloy structure such as a heat exchanger
  • it can be said that it is preferable to perform bonding with a single layer material without using a brazing material.
  • a single-layer brazing sheet is easily applied, it is difficult to avoid the problem of deformation of members.
  • the present invention has been made based on the background as described above, and in manufacturing various aluminum alloy structures, while eliminating the increase in cost due to the use of multiple-layer members, An object is to provide a technique that does not cause a problem of deformation.
  • This joining method uses the following aluminum alloy material to join and assemble under specific conditions, and can be joined without a joining member such as a brazing material, and further, deformation before and after joining is extremely small. Has characteristics.
  • the present invention is an aluminum alloy material containing Si: 1.0% by mass to 5.0% by mass, Fe: 0.01% by mass to 2.0% by mass, the balance being Al and inevitable impurities.
  • Si intermetallic compounds with a circle equivalent diameter of 0.5 ⁇ 5 [mu] m is present 250 / mm 2 or more 7 ⁇ 10 5 cells / mm 2 or less in the aluminum alloy material cross section,
  • the present invention is basically characterized in that a liquid phase generated when an aluminum alloy material having the above composition is heated is used for bonding. First, the liquid phase generation mechanism will be described.
  • FIG. 1 schematically shows a phase diagram of an Al—Si alloy which is a typical binary eutectic alloy.
  • an aluminum alloy material having a Si concentration of c1 is heated, generation of a liquid phase starts at a temperature T1 near the eutectic temperature (solidus temperature) Te.
  • T1 near the eutectic temperature (solidus temperature) Te.
  • Te eutectic temperature
  • FIG. 2A crystal precipitates are distributed in the matrix divided by the grain boundaries.
  • FIG. 2B shows the crystal grain boundary with a large segregation of the crystal precipitate distribution melts to become a liquid phase.
  • the periphery of the Si crystal precipitate particles and intermetallic compounds which are the main additive element components dispersed in the matrix of the aluminum alloy material, melts into a spherical shape to form a liquid phase.
  • this spherical liquid phase generated in the matrix is re-dissolved in the matrix with the passage of time and temperature due to the interfacial energy, and the grain boundary and the surface are diffused by the solid phase diffusion. Move to.
  • FIG. 1 when the temperature rises to T2, the liquid phase amount increases from the state diagram.
  • this spherical liquid phase generated in the matrix is re-dissolved in the matrix with the passage of time and temperature due to the interfacial energy, as in the case of c1, and diffused in the solid phase. To move to the grain boundary or surface. When the temperature rises to T3, the liquid phase amount increases from the state diagram.
  • the joining method using the aluminum alloy material according to the present invention utilizes a liquid phase generated by local melting inside the aluminum alloy material as described above. And it can implement
  • the aluminum alloy material of the present invention is molded to produce a structure such as a tube, fin, or plate, and heat treatment is performed at a temperature of about 600 ° C.
  • the liquid phase is generated from a part of the aluminum alloy material. It is generated and oozes out on the surface of the material and can be joined, and a heat exchanger can be manufactured without using a joining member such as a brazing material.
  • the material strength is mainly composed of an unmelted matrix (a portion of the aluminum material excluding the intermetallic compound) and an intermetallic compound that does not contribute to liquid phase generation. Therefore, although the aluminum alloy material according to the present invention is in a state where a part of the melt is generated during joining, the aluminum alloy material can have sufficient strength to maintain the shape. Therefore, the structure manufactured according to the present invention has a feature that there is almost no dimensional change or shape change due to strength reduction during bonding. Due to such characteristics, the aluminum alloy material of the present invention can be suitably used as a thin material such as a fin that is easily deformed during bonding.
  • the present invention utilizes the liquid phase of the aluminum alloy material, and the specific feature of the present invention is that, as the first aspect, the Si concentration as the aluminum alloy material is 1.0 mass% to 5 mass%. 0.0% by mass, Fe: 0.01% by mass to 2.0% by mass of Al—Si—Fe based alloy as a basic composition, and Si based intermetallic compound and Al based intermetallic compound in the metal structure Exists in a predetermined area density range in the cross section. Therefore, these features will be described below. In the following, “mass%” is simply referred to as “%”.
  • Si is an element that generates an Al-Si liquid phase and contributes to bonding.
  • Si concentration is defined as 1.0% to 5.0%.
  • the Si concentration is preferably 1.5% to 3.5%, more preferably 2.0% to 3.0%.
  • the amount of the liquid phase that oozes out increases as the plate thickness increases and the heating temperature increases, so the amount of liquid phase required during heating depends on the amount of Si and bonding required depending on the structure of the structure to be manufactured. It is desirable to adjust the heating temperature.
  • Fe in addition to the effect of improving the strength by slightly dissolving in the matrix, Fe has the effect of dispersing as a crystallized substance and preventing a decrease in strength particularly at high temperatures.
  • the addition amount of Fe is less than 0.01%, not only the above effect is small, but also high purity metal must be used and the cost increases.
  • it exceeds 2.0% a coarse intermetallic compound is produced at the time of casting, causing a problem in manufacturability.
  • the corrosion resistance decreases.
  • the addition amount of Fe is set to 0.01% to 2.0%.
  • a preferable addition amount of Fe is 0.2% to 1.0%.
  • the aluminum alloy material according to the present invention is characterized in that Si-based intermetallic compounds having a circle-equivalent diameter of 0.5 to 5 ⁇ m are present in a cross section of 250 pieces / mm 2 or more and 7 ⁇ 10 5 pieces / mm 2 or less.
  • the Si-based intermetallic compound includes (1) simple substance Si and (2) a part of the simple substance Si containing elements such as Ca and P, and the liquid described in the liquid phase generation process described above. It is an intermetallic compound that contributes to phase formation.
  • the cross section is an arbitrary cross section of the aluminum alloy material, for example, a cross section along the thickness direction or a cross section parallel to the plate material surface. From the viewpoint of simplicity of material evaluation, it is preferable to adopt a cross section along the thickness direction.
  • dispersed particles of an intermetallic compound such as Si particles dispersed in an aluminum alloy material react with the surrounding matrix at the time of bonding to generate a liquid phase. Therefore, the finer the dispersed particles of the intermetallic compound, the larger the area where the particles and the matrix are in contact. Therefore, the finer the dispersed particles of the intermetallic compound, the more easily the liquid phase is generated at the time of bonding heating, and good bonding properties are obtained. This effect is more remarkable when the bonding temperature is close to the solidus or when the heating rate is high.
  • the equivalent circle diameter is defined as 0.5 to 5 ⁇ m
  • the existence ratio is 250 / mm 2 or more and 7 ⁇ 10 5 / mm 2 in cross section.
  • the existence ratio of the Si-based intermetallic compound is 250 / mm 2 or more and 7 ⁇ 10 5 / mm 2 or less.
  • the existence ratio is preferably 1 ⁇ 10 3 pieces / mm 2 or more and 1 ⁇ 10 5 pieces / mm 2 or less.
  • an Al-based intermetallic compound exists as dispersed particles.
  • This Al-based intermetallic compound is composed of Al-Fe-based, Al-Fe-Si-based, Al-Mn-Si-based, Al-Fe-Mn-based, Al-Fe-Mn-Si-based compounds, etc. It is an intermetallic compound to be formed.
  • These Al-based intermetallic compounds unlike Si-based intermetallic compounds, do not contribute significantly to the liquid phase generation, but are dispersed particles that bear the material strength together with the matrix.
  • the Al-based intermetallic compound having an equivalent circle diameter of 0.5 to 5 ⁇ m needs to be present in the material cross section in a range of 100 / mm 2 to 7 ⁇ 10 5 / mm 2 . In the case of less than 100 pieces / mm 2 , deformation due to strength reduction occurs. On the other hand, when it exceeds 7 ⁇ 10 5 pieces / mm 2 , the recrystallization nuclei increase, the crystal grains become finer, and deformation occurs. As described above, the Al-based intermetallic compound is present at a rate of 100 / mm 2 or more and 7 ⁇ 10 5 / mm 2 or less.
  • the existence ratio is preferably 1 ⁇ 10 3 pieces / mm 2 or more and 1 ⁇ 10 5 pieces / mm 2 or less.
  • the equivalent circle diameter of the dispersed particles can be determined by performing SEM observation (reflection electron image observation) of the cross section.
  • the equivalent circle diameter means the equivalent circle diameter. It is preferable to obtain the equivalent circle diameter of the dispersed particles before joining by image analysis of the SEM photograph.
  • the Si-based intermetallic compound and the Al-based intermetallic compound can also be distinguished by contrast contrast by SEM-reflection electron image observation.
  • the metal species of the dispersed particles can be more accurately specified by EPMA (X-ray microanalyzer) or the like.
  • the aluminum alloy material according to the present invention having characteristics in the Si and Fe concentration ranges and the metal structure can be joined by its own joining property and can be used as a constituent member of various aluminum alloy structures.
  • the aluminum alloy material according to the present invention is defined by adding Si and Fe as essential elements in order to fulfill the basic function of bondability.
  • the aluminum alloy material according to the present invention has a predetermined amount of Mn in addition to the addition amounts of Si and Fe defined in the first embodiment in the second embodiment.
  • Mg and Cu are further added as essential elements.
  • the surface density in the cross section of the Si-based intermetallic compound and the Al-based intermetallic compound is defined in the same manner as in the first embodiment.
  • Mn is an important additive element that forms an Al—Mn—Si-based intermetallic compound with Si and acts as dispersion strengthening, or is a solid additive that improves the strength by solid solution strengthening by solid solution in the aluminum matrix. . If the amount of Mn added exceeds 2.0%, a coarse intermetallic compound is easily formed and the corrosion resistance is lowered. Therefore, the amount of Mn added is 2.0% or less. A preferable Mn addition amount is 0.05% to 2.0%. In the present invention, not only Mn but also other alloy components include 0% when the amount is less than a predetermined amount.
  • Mg undergoes age hardening by Mg 2 Si after bonding heating, and the strength is improved by this age hardening.
  • Mg is an additive element that exhibits the effect of improving the strength. If the amount of Mg added exceeds 2.0%, it reacts with the flux to form a high melting point compound, so that the bondability is significantly lowered. Therefore, the amount of Mg added is set to 2.0% or less. A preferable amount of Mg is 0.05% to 2.0%.
  • Cu is an additive element that improves the strength by solid solution in the matrix.
  • the amount of Cu added exceeds 1.5%, the corrosion resistance decreases. Therefore, the amount of Cu added is 1.5% or less.
  • a preferable addition amount of Cu is 0.05% to 1.5%.
  • Ti, V, Cr, Ni and Zr can be selectively added alone or in combination as elements other than the essential elements. Each selective additive element is described below.
  • Ti and V have the effect of preventing the progress of corrosion in the plate thickness direction by being dissolved in a layer, in addition to improving the strength by solid solution in the matrix. If it exceeds 0.3%, giant crystallized matter is generated, which impairs moldability and corrosion resistance. Therefore, the addition amount of Ti and V is preferably 0.3% or less, and more preferably 0.05% to 0.3%.
  • the amount of Cr added is preferably 0.3% or less, and more preferably 0.05% to 0.3%.
  • the amount of Ni added is preferably in the range of 2.0% or less, and more preferably in the range of 0.05% to 2.0%. When the Ni content exceeds 2.0%, it becomes easy to form a coarse intermetallic compound, and the workability is lowered and the self-corrosion resistance is also lowered.
  • the amount of Zr added is preferably 0.3% or less, and more preferably 0.05% to 0.3%.
  • selective additive elements for improving corrosion resistance may be added.
  • selective additive elements for improving corrosion resistance include Zn, In, and Sn.
  • Addition of Zn is effective in improving corrosion resistance due to sacrificial anticorrosive action.
  • Zn is dissolved almost uniformly in the matrix, but when a liquid phase is generated, it dissolves into the liquid phase and concentrates in the liquid phase. When the liquid phase oozes out to the surface, the Zn concentration in the oozed portion increases, so that the corrosion resistance is improved by the sacrificial anodic action.
  • the sacrificial anticorrosion action for preventing corrosion of tubes and the like can be exerted by using the aluminum alloy material of the present invention for fins. If the amount of Zn added exceeds 6.0%, the corrosion rate increases and the self-corrosion resistance decreases. Therefore, the amount of Zn added is preferably 6.0% or less, more preferably 0.05% to 6.0%.
  • the addition amount of Sn and In is preferably 0.3% or less, and more preferably 0.05% to 0.3%.
  • a selective element for further improving the bondability may be further added by improving the liquid phase characteristics.
  • these 1 type (s) or 2 or more types are added as needed. More preferable ranges of these elements are Be: 0.0001% to 0.1%, Sr: 0.0001% to 0.1%, Bi: 0.0001% to 0.1%, Na: 0 0.0001% to 0.1% or less, Ca: 0.0001% to 0.05% or less.
  • These trace elements can improve the bondability by fine dispersion of Si particles, improvement in fluidity of the liquid phase, and the like.
  • both Fe and Mn together with Si form an Al—Fe—Mn—Si based intermetallic compound. Since Si that forms an Al—Fe—Mn—Si-based intermetallic compound has a small contribution to the formation of the liquid phase, the bondability is lowered. Therefore, when adding Fe and Mn in the aluminum alloy material according to the present invention, it is preferable to pay attention to the amount of Si, Fe, and Mn added. Specifically, when the contents (mass%) of Si, Fe, and Mn are S, F, and M, respectively, the relational expression of 1.2 ⁇ S ⁇ 0.3 (F + M) ⁇ 3.5 is satisfied. Is preferred. When S-0.3 (F + M) is less than 1.2, bonding is insufficient. On the other hand, when S-0.3 (F + M) is larger than 3.5, the shape is likely to change before and after joining.
  • the aluminum alloy material that generates the liquid phase of the present invention preferably has a difference between the solidus temperature and the liquidus temperature of 10 ° C. or more.
  • this difference is preferably set to 10 ° C. or more.
  • binary alloys having a composition satisfying this condition include Al—Si alloys, Al—Si—Mg alloys, Al—Si—Cu alloys, Al—Si—Zn alloys, and Al—Si—Cu—. Mg type etc. are mentioned.
  • it becomes easy to control to an appropriate liquid phase amount so that the difference of solidus temperature and liquidus temperature becomes large. Therefore, the upper limit of the difference between the solidus temperature and the liquidus temperature is not particularly limited.
  • a layer mainly composed of Zn can be formed on the surface of the aluminum alloy material.
  • Zn present in the layer formed on the surface of the aluminum alloy material forms a concentration distribution in which the Zn concentration decreases from the surface toward the inside by solid solution and diffusion into the alloy during bonding heating.
  • Such a Zn concentration distribution corresponds to the pride of the pitting corrosion potential, and the progress of corrosion inside the aluminum alloy material can be significantly suppressed by the sacrificial anticorrosive action.
  • Examples of a method for providing a layer mainly composed of Zn on the surface of an aluminum alloy material include Zn spraying using pure Zn or an Al—Zn alloy; Zn substitution flux coating; Zn powder coating; Zn plating; In any of the methods, if the amount of Zn applied is too small, the sacrificial anticorrosive action becomes insufficient. If the amount of Zn applied is too large, the corrosion rate increases and the self-corrosion resistance decreases. Therefore, Zn amount applied is preferably 1 ⁇ 30g / m 2, more preferably 5 ⁇ 20g / m 2.
  • the aluminum alloy material of the present invention can be manufactured using a continuous casting method, a DC (Direct Hill) casting method, or an extrusion method.
  • the continuous casting method is not particularly limited as long as it is a continuous casting method such as a twin roll type continuous casting and rolling method or a twin belt type continuous casting method.
  • the twin-roll type continuous casting and rolling method is a method in which molten aluminum is supplied between a pair of water-cooled rolls from a refractory hot-water supply nozzle, and a thin plate is continuously cast and rolled.
  • the Hunter method, the 3C method, and the like are known. ing.
  • twin belt type continuous casting method is a method in which molten metal is poured between rotating belts facing each other up and down and solidified by cooling from the belt surface to form a slab.
  • This is a continuous casting method in which a slab is continuously drawn out and wound into a coil.
  • the cooling rate during casting is several to several hundred times faster than the DC casting method.
  • the cooling rate in the DC casting method is 0.5 to 20 ° C./sec
  • the cooling rate in the twin-roll continuous casting and rolling method is 100 to 1000 ° C./sec.
  • the dispersed particles generated during casting have a feature of being finely and densely distributed as compared with the DC casting method.
  • the dispersed particles distributed at a high density react with a matrix around the dispersed particles at the time of bonding, and can easily generate a large amount of liquid phase, thereby obtaining good bonding properties.
  • the speed of the rolled plate at the time of casting by the twin roll type continuous casting and rolling method is preferably 0.5 m / min or more and 3 m / min or less.
  • the casting speed affects the cooling rate. When the casting speed is less than 0.5 m / min, a sufficient cooling rate cannot be obtained and the compound becomes coarse. On the other hand, when it exceeds 3 m / min, the aluminum material is not sufficiently solidified between rolls during casting, and a normal plate-shaped ingot cannot be obtained.
  • the molten metal temperature when casting by the twin roll type continuous casting and rolling method is preferably in the range of 650 to 800 ° C.
  • the molten metal temperature is the temperature of the head box immediately before the hot water supply nozzle.
  • 650 ° C. huge intermetallic compound dispersed particles are generated in the hot water supply nozzle, and these are mixed into the ingot to cause a sheet break during cold rolling.
  • the molten metal temperature exceeds 800 ° C., the aluminum material is not sufficiently solidified between the rolls during casting, and a normal plate-shaped ingot cannot be obtained.
  • a more preferable molten metal temperature is 680 to 750 ° C.
  • the thickness of the cast plate is preferably 2 mm to 10 mm. In this thickness range, the solidification rate at the central portion of the plate thickness is fast, and a uniform structure can be easily obtained.
  • the cast plate thickness is less than 2 mm, the amount of aluminum passing through the casting machine per unit time is small, and it becomes difficult to stably supply the molten metal in the plate width direction.
  • the cast plate thickness exceeds 10 mm, winding with a roll becomes difficult.
  • a more preferable cast plate thickness is 4 mm to 8 mm.
  • annealing may be performed once or more.
  • Appropriate tempering is selected according to the application. Usually, it is H1n or H2n tempered to prevent erosion, but an annealed material may be used depending on the shape and usage.
  • the casting speed of the slab or billet during casting it is preferable to control the casting speed of the slab or billet during casting. Since the casting speed affects the cooling rate, it is preferably 20 mm / min or more and 100 m / min or less. When the casting speed is less than 20 mm / min, a sufficient cooling rate cannot be obtained and the compound becomes coarse. On the other hand, when it exceeds 100 m / min, the aluminum material is not sufficiently solidified during casting, and a normal ingot cannot be obtained. A more preferable casting speed is 30 mm / min or more and 80 mm / min or less.
  • the slab thickness during DC continuous casting is preferably 600 mm or less. When the slab thickness exceeds 600 mm, a sufficient cooling rate cannot be obtained and the intermetallic compound becomes coarse. A more preferable slab thickness is 500 mm or less.
  • tempering is performed according to the application. This tempering is usually H1n or H2n to prevent erosion, but a soft material may be used depending on the shape and usage.
  • the aluminum alloy material according to the present invention is manufactured by an extrusion method
  • a homogenization process and hot extrusion may be performed as necessary after manufacturing a billet by DC casting.
  • tempering is performed according to the application.
  • a hot top casting method or a GDC casting method is used for the billet casting.
  • the aluminum alloy material of the present invention is provided in the form of a wrought material, a forged material, a casting, etc., but the shape of the wrought material is optimal from the viewpoint of joining properties and shape maintenance. Since the wrought material has a higher processing rate before its manufacture than forgings and castings, a state in which the intermetallic compound is finely divided is likely to appear. Therefore, the density of the Si-based intermetallic compound and the Al-based intermetallic compound can be increased, and as described above, there is an advantage that it is easy to achieve good bondability and shape maintenance.
  • the aluminum alloy structure is a structure in which two or more members are joined, and at least one of the members constituting the structure is made of the aluminum alloy material according to the present invention.
  • the method for producing an aluminum alloy structure according to the present invention includes combining an aluminum alloy material having the above composition as at least one member to be joined with another member to be joined, followed by heat treatment. A member to be joined is joined. In this heat treatment, inside the at least one member to be joined of the two or more members, the temperature is not less than the solidus temperature at which the liquid phase is generated and not more than the liquidus temperature, and the shape can be maintained by reducing the strength. Heating is performed for a time required for joining at a temperature equal to or lower than the disappearance temperature.
  • the heating conditions are particularly important among the bonding conditions in the above bonding method.
  • the heating condition the ratio of the mass of the liquid phase generated in the aluminum alloy material to the total mass of the aluminum alloy material which is at least one of the two or more members (hereinafter referred to as “liquid phase ratio”). It is necessary to join at a temperature that exceeds 0% and not more than 35%. Since the bonding cannot be performed unless the liquid phase is generated, the liquid phase ratio needs to be more than 0%. However, since joining becomes difficult when the liquid phase is small, the liquid phase ratio is preferably 5% or more. When the liquid phase ratio exceeds 35%, the amount of the liquid phase to be generated is too large, and the aluminum alloy material is greatly deformed during the heating to join, so that the shape cannot be maintained. As described above, the preferred liquid phase ratio is 5 to 30%. A more preferable liquid phase ratio is 10 to 20%.
  • the filling time it is preferable to consider the filling time, and it is preferable to set the time during which the liquid phase ratio is 5% or more to 30 seconds or more and 3600 seconds or less. More preferably, the time during which the liquid phase ratio is 5% or more is 60 seconds or more and 1800 seconds or less, whereby sufficient filling is performed and reliable bonding is performed. If the time during which the liquid phase ratio is 5% or more is less than 30 seconds, the joint may not be sufficiently filled with the liquid phase. On the other hand, if it exceeds 3600 seconds, the deformation of the aluminum material may proceed. In the bonding method according to the present invention, the liquid phase moves only in the very vicinity of the bonded portion, so that the time required for filling does not depend on the size of the bonded portion.
  • the joining temperature may be 580 ° C. to 620 ° C.
  • the holding time at the joining temperature may be about 0 to 10 minutes.
  • 0 minutes means that the cooling is started as soon as the temperature of the member reaches a predetermined joining temperature.
  • you may adjust a heating condition according to a composition More preferably, it is 30 seconds to 5 minutes.
  • the liquid phase ratio defined in the present invention can be usually obtained by lever principle from the alloy composition and the maximum attainable temperature using an equilibrium diagram.
  • the phase diagram can be used to determine the liquid phase ratio using the principle of leverage.
  • the liquid phase ratio can be obtained using equilibrium calculation diagram software.
  • the equilibrium calculation phase diagram software incorporates a technique for determining the liquid phase ratio based on the lever principle using the alloy composition and temperature.
  • Equilibrium calculation state diagram software includes Thermo-Calc; Thermo-Calc Software AB, etc.
  • the heating atmosphere in the heat treatment is preferably a non-oxidizing atmosphere substituted with nitrogen, argon or the like.
  • better bondability can be obtained by using a non-corrosive flux.
  • non-corrosive flux coating method examples include a method of sprinkling the flux powder after assembling the members to be joined, a method of spraying the flux powder suspended in water, and the like.
  • the adhesion of the coating can be improved by mixing and applying a binder such as an acrylic resin to the flux powder.
  • non-corrosive flux used for obtaining the normal flux function examples include KAlF 4 , K 2 AlF 5 , K 2 AlF 5 .H 2 O, K 3 AlF 6 , AlF 3 , KZnF 3 , K 2 SiF 6 and the like.
  • Fluoride flux, cesium flux such as Cs 3 AlF 6 , CsAlF 4 .2H 2 O, Cs 2 AlF 5 .H 2 O, chloride flux, and the like.
  • Necessary bonding characteristics can be obtained by the heat treatment and the control of the heating atmosphere described above.
  • the shape of the structure may not be maintained if the stress generated in the structure is too high.
  • the liquid phase ratio at the time of joining increases, the shape can be maintained better when the stress generated in the structure is kept at a relatively small stress.
  • the maximum value of the stresses generated in the joined member generated by the liquid phase among two or more members is P (kPa), and the liquid phase When the rate is V (%), a very stable junction can be obtained if the condition of P ⁇ 460-12V is satisfied.
  • the value indicated by the right side (460-12V) of this equation is the critical stress, and if a stress exceeding this is applied to the aluminum alloy material that generates a liquid phase, there is a possibility that large deformation will occur.
  • P ⁇ 460 using each stress P and liquid phase ratio V for each of the plurality of members to be joined It is preferable to perform the bonding so that ⁇ 12V is calculated and all the plurality of members to be bonded satisfy the above formula simultaneously.
  • the stress generated at each part in each member to be joined is obtained from the shape and load. For example, it can be calculated using a structural calculation program or the like.
  • the surface form of the joint as well as the pressure of the joint may affect the bondability, and a smoother surface can be obtained when both surfaces are smooth.
  • the sum of the arithmetic average undulations Wa1 and Wa2 obtained from the unevenness of the surfaces of both of the joined members before joining is Wa1 + Wa2 ⁇ 10 ( ⁇ m).
  • the arithmetic mean waviness Wa1 and Wa2 are defined by JISB0633, and the cut-off value is set so that the wavelength becomes uneven between 25 and 2500 ⁇ m, and the waviness curve measured with a laser microscope or a confocal microscope. It is requested from.
  • the structure may be formed by spraying Zn or applying Zn-substituted flux on the surface of the aluminum alloy material according to the present invention. Further, the structure after the heat treatment may be subjected to surface treatment such as chromate treatment or non-chromate treatment to improve corrosion resistance.
  • the aluminum alloy structure manufactured by the method for manufacturing an aluminum alloy structure described above has an advantage that the size and shape of the structure hardly change before and after joining. This is because the liquid phase is generated from the inside of the aluminum alloy material, which is the member to be joined, according to the mechanism described above, but the amount of the liquid phase to be generated is controlled within an appropriate range, and slip deformation along the crystal grain boundary etc. during joining This is because it is difficult to occur.
  • the effect of maintaining the shape of the bonded member during heating by the matrix or the intermetallic compound that does not contribute to the generation of the liquid phase is also a factor of the above-described advantage.
  • the aluminum alloy structure according to the present invention has suitable metallographic characteristics in the vicinity of the joint portion of at least one member of the joined members. That is, the aluminum alloy material joined by the method according to the present invention has a structure in which many intermetallic compounds and the like exist in the crystal grain boundaries. As is clear from the liquid phase generation mechanism shown in FIG. 2, the crystal grain boundary becomes one of the liquid phase outflow paths in the process of generating the liquid phase and flowing out. There is a liquid phase. Accordingly, when cooled thereafter, the liquid phase is solidified, so that an Si-based intermetallic compound and an Al-based intermetallic compound are generated at the crystal grain boundaries.
  • the number of triple points at the grain boundaries in which is present is a ratio of 50% or more of the number of triple points at all grain boundaries.
  • the triple point of the crystal grain boundary means a point (triple point) where at least three crystal grain boundaries of the matrix intersect when the cross section of the material is observed.
  • intermetallic compound The Si-based intermetallic compound and the Al-based intermetallic compound existing in the triple point of the grain boundary (hereinafter, a combination of both is referred to as “intermetallic compound”) is a second phase dispersion having a dispersion strengthening action. It works as particles and exerts the function of strengthening the members constituting the structure. Further, this intermetallic compound has an effect of suppressing the growth of crystal grains during cooling after heating for joining members. Furthermore, when the joined structure is reheated, the effect of suppressing the coarsening of crystal grains of the members constituting the structure is exhibited. These effects are not sufficient when the above-mentioned ratio of the triple points of the crystal grain boundary where the intermetallic compound exists is less than 50%.
  • the number of triple points at the crystal grain boundary where an intermetallic compound having an equivalent circle diameter of 1 ⁇ m or more exists among the triple points at all crystal grain boundaries is 50% or more. Further, this ratio is preferably 80% or more. Note that the upper limit of this ratio is 100%.
  • the intermetallic compound present at the triple point of the crystal grain boundary includes an Al-based intermetallic compound and a Si-based intermetallic compound.
  • the Si-based intermetallic compound is an intermetallic compound in which Fe, Mn, or the like is dissolved in Si.
  • Al-based intermetallic compounds include Al-Fe-based, Al-Fe-Si-based, Al-Mn-Si-based, Al-Fe-Mn-based, Al-Fe-Mn-Si-based compounds, etc. It is the produced intermetallic compound.
  • the cross section of the member constituting the structure of the present invention is mechanically polished and etched with a Keller solution or the like to identify the position of the intermetallic compound.
  • the crystal grain boundary in the same cross section is clarified by an anodic oxidation method, and the position of the triple point of the crystal grain boundary is identified. By comparing the two, the ratio of the triple point of the crystal grain boundary where the intermetallic compound having an equivalent circle diameter of 1 ⁇ m or more exists among the triple points of all the crystal grain boundaries is determined.
  • intermetallic compounds are formed discontinuously at the grain boundaries, or Al phases and intermetallic compound phases are alternately arranged.
  • a eutectic structure may be formed.
  • the crystal grain boundary since the crystal grain boundary becomes unclear, the crystal grain boundary may be observed as an intermittent line, and the position of the triple point of the crystal grain boundary becomes unclear.
  • the intermetallic compound or the eutectic structure is regarded as a part of the crystal grain boundary, and a continuous virtual line is drawn so as to follow the crystal grain boundary to determine the triple point of the crystal grain boundary. As shown in FIG.
  • the entire area of the part is set as the crystal grain boundary as shown in FIG. .
  • a region where three crystal grain boundaries virtually intersect is regarded as a triple point of the crystal grain boundary.
  • the triple point in this case is an area portion obtained by combining the crystal grain boundary portions in the region where the crystal grain boundaries intersect.
  • the intermetallic compound should just be formed even in part in this area part.
  • EPMA X-ray microanalyzer
  • EPMA is used to perform surface components of elements such as Si and Fe in the cross section of the members constituting the structure. Since the Si concentration is low near the crystal grain boundary, the crystal grain boundary can be identified.
  • the intermetallic compound can be identified in a portion where the element concentration of Si, Fe or the like is high. The position of the crystal grain boundary and the intermetallic compound can also be identified using SEM observation (reflection electron image observation) of the cross section.
  • the aluminum alloy structure formed according to the present invention has suitable metallographic features in the vicinity of the joint of at least one member of the joined members. That is, in the joint portion of the aluminum alloy material according to the present invention, in the liquid phase generation mechanism described above, the periphery of the Si particles remains in the matrix to some extent while being spherically melted, and the eutectic structure as shown in FIG. A large number of structures are dispersed in the crystal grains of the matrix (hereinafter simply referred to as “intra-grain”). According to the present inventors, in the aluminum alloy structure according to the present invention, when there is a good balance between good bondability and material strength at the time of bonding, the major axis of 3 ⁇ m or more present in the grains after bonding is obtained.
  • the eutectic structure possessed is preferably 10 pieces / mm 2 to 3000 pieces / mm 2 in terms of cross-sectional area density.
  • the preferable condition on the metal structure when the surface density of the intragranular eutectic structure is less than 10 pieces / mm 2 , it is difficult to maintain the strength during bonding heating due to too much liquid phase contributing to bonding. There is a case.
  • the surface density of the intragranular eutectic structure exceeds 3000 / mm 2 , the liquid phase contributing to the bonding is small and the bonding property may be lowered.
  • Such an eutectic structure within the grain has a shape close to a sphere because the liquid phase formed by melting around the Si particles during heating solidifies into a eutectic structure by solidifying during cooling.
  • the liquid phase formed by melting around the Si particles during heating solidifies into a eutectic structure by solidifying during cooling.
  • FIG. 2 it is observed as a circular eutectic structure in cross-sectional observation.
  • a eutectic structure having a shape along the Al-based intermetallic compounds may be formed. is there.
  • the cross section of the member constituting the structure of the present invention is mechanically polished and etched with a Keller solution or the like to identify the position of the eutectic structure. Since the eutectic structure has a structure in which Si-based intermetallic compound phases and Al phases are arranged minutely and alternately, this can be distinguished. Further, the position of the crystal grain boundary in this cross section is identified by the anodic oxidation method. By comparing the two, the number of eutectic structures having a major axis of 3 ⁇ m or more present in the crystal grains is measured and converted to the surface density.
  • EPMA X-ray microanalyzer
  • surface components of elements such as Si and Fe in a cross section of a member constituting the structure are performed.
  • the eutectic structure can be identified because the portions where the Si concentration is high and the portions where the Si concentration is low are arranged alternately and finely. Further, since the Si concentration is low near the crystal grain boundary, the crystal grain boundary can be identified.
  • the eutectic structure can also be identified by SEM observation (reflection electron image observation) of the cross section. In that case, the grain boundary is identified using the SEM / EBSB method.
  • the aluminum alloy structure having the metal structure as described above is manufactured by adjusting the dimensions and composition of the aluminum alloy material according to the present invention and adjusting the heating conditions in consideration of the composition. For example, in the case where the thickness of the aluminum alloy material that is the member to be joined is thick, or in the aluminum alloy member that is disposed in a portion where the temperature during joining tends to be high, it is sufficient to use a material having a low Si addition amount. A liquid phase amount can be secured. Specifically, in the case of a fin material having a plate thickness of 30 ⁇ m to 100 ⁇ m, it is preferable that the Si addition amount is about 1.5% to 3.5% and the heating temperature is about 580 ° C. to 620 ° C.
  • the eutectic structure in the grains is 20 to 500 pieces / mm 2 .
  • the Si addition amount of the aluminum alloy material to be bonded is 1.5% so that the cross-sectional surface density of the eutectic structure in the grains is 10 to 3000 / mm 2.
  • a bonded body having good bonding properties can be obtained.
  • by adding 0.3% or more of Mn there is an effect of reducing the intragranular eutectic structure.
  • the aluminum alloy structure according to the present invention is a structure composed of two or more members, and at least one member is composed of the aluminum alloy material according to the present invention.
  • various heat exchangers can be mentioned.
  • the heat exchanger is configured by appropriately combining various members such as a fin material, a tube material, a plate material, and a tank material depending on the application and use conditions.
  • the aluminum alloy material which concerns on this invention can comprise the various members of these heat exchangers.
  • a tube material and a tank material are produced from the aluminum alloy material according to the present invention, and further combined with a single-layer fin material (bare fin material) and subjected to a predetermined heat treatment.
  • a fin material and a plate material are produced with the aluminum alloy material according to the present invention, combined with a tube material (an extruded material or an electro-sewn bare tube material) in which a brazing material is not disposed, and a predetermined heat treatment is performed. It is possible to manufacture a heat exchanger.
  • a laminate-type heat exchanger can be manufactured by press-molding and laminating plate materials.
  • the aluminum alloy material according to the present invention can also be used for applications such as a heat sink and a laminated structure oil cooler.
  • a structure using a single layer material in which such a brazing material is not disposed may be less rigid at high temperatures than a structure using a conventional material. Therefore, when heat treatment is performed, a structure with higher dimensional accuracy can be obtained by setting the structure using a jig made of a material such as iron that can withstand high temperatures.
  • a heat exchanger can be easily manufactured by separately manufacturing a comb-blade shaped extruded material and an extruded material having a hollow portion and joining these two extruded materials. Moreover, it can also be set as products, such as an oil cooler and a heat sink corresponding to required size, by making two extrusion materials into a laminated structure.
  • the aluminum alloy material according to the present invention is joined by a joining method different from a conventional joining method such as a brazing method, and can be joined to various members to be joined in a single layer state. And there is almost no change in dimension or shape before and after joining.
  • the joining method using the aluminum alloy material according to the present invention can join the members to be joined without using a joining member such as a brazing material.
  • the aluminum alloy structure which concerns on this invention can respond to the request
  • FIG. 3 is a schematic diagram showing a phase diagram of an Al—Si alloy as a binary eutectic alloy. It is explanatory drawing which shows the production
  • FIG. 5 is a perspective view of a three-stage test piece (mini-core) used in the first to third embodiments. It is a perspective view which shows a part of shape of the extrusion tube used for the test piece of 3rd Embodiment. It is a schematic diagram which shows a crystal grain boundary and its triple point. It is explanatory drawing which shows the method of discriminating the triple point of a crystal grain boundary.
  • First Embodiment First, test materials for aluminum alloys B1 to B59 and B77 to B98 in Tables 3 to 5 were manufactured using aluminum alloys having the compositions shown in Tables 1 and 2. In the alloy composition shown in Table 1, “ ⁇ ” indicates that it is below the detection limit, and “remainder” includes inevitable impurities.
  • the test materials B1 to B48, B52 to B57, and B84 were cast by a twin roll type continuous casting and rolling method.
  • the melt temperature at the time of casting by the twin roll type continuous casting and rolling method was 650 to 800 ° C., and the thickness of the cast plate was 7 mm.
  • the casting speed was variously changed as shown in Tables 3-5.
  • the obtained plate-shaped ingot was cold-rolled to 0.70 mm, and after intermediate annealing at 420 ° C. ⁇ 2 Hr, further cold-rolled to 0.050 mm to obtain a test material.
  • the arithmetic average waviness Wa of the test material was about 0.5 ⁇ m.
  • B49 to B51, B58 to B59, B77 to B83, B85 to B98 test materials were cast in a size of 100 mm ⁇ 300 mm by the DC casting method.
  • the casting speed was variously changed as shown in Tables 4 and 5.
  • the obtained slab was heated after chamfering and hot-rolled to a thickness of 3 mm. Thereafter, the rolled plate was cold-rolled to 0.070 mm, and after intermediate annealing at 380 ° C. ⁇ 2 Hr, further cold-rolled to 0.050 mm to obtain a test material.
  • the arithmetic average waviness Wa of the test material was about 0.5 ⁇ m.
  • test materials were evaluated for manufacturability in the production process.
  • the evaluation method for manufacturability is as follows: when a plate or slab is manufactured, no problem occurs in the manufacturing process and a sound plate or slab is obtained. A case where a problem occurred in the manufacturing process, such as a case where rolling became difficult due to the generation of a huge intermetallic compound, was evaluated as x.
  • the surface density of the intermetallic compound in the produced plate material was measured by SEM observation (reflection electron image observation) of the cross section along the plate thickness direction.
  • Si-based intermetallic compounds and Al-based intermetallic compounds were distinguished by contrast density in SEM observation.
  • SEM observation was performed on each sample for five fields, and the density of dispersed particles having a circle-equivalent diameter of 0.5 ⁇ m to 5 ⁇ m in the sample was measured by image analysis of SEM photographs of each field.
  • each test material was formed into a fin material having a width of 16 mm, a peak height of 7 mm, and a pitch of 2.5 mm. Further, the material having the composition b1 (Table 2) was molded into an electro-sewn tube material having an arithmetic average waviness Wa of 0.3 ⁇ m and a plate thickness of 0.4 mm. Then, the fin material and the tube material were combined and incorporated into a stainless steel jig, and a three-stage test piece (minicore) shown in FIG. 4 was produced. Test pieces (minicores) made from the fin material and tube material of each test material (B1 to B59, B77 to B98) are shown in Tables 3 to 5 as C1 to C59 and C77 to C98.
  • the mini-core was immersed in a 10% suspension of non-corrosive fluoride flux and dried, and then heated at 580 to 600 ° C. for 3 minutes in a nitrogen atmosphere to join the fin material and the tube material.
  • a compressive load of about 4 N was generated between the stainless steel jig and the mini-core due to the difference in thermal expansion coefficient between the stainless steel jig and the aluminum material.
  • a stress of about 10 kPa is generated on the joint surface between the fin and the tube.
  • the ratio of the fin height change before and after joining to the fin height before joining is 5% or less, ⁇ 5% to 10% or less, ⁇ 10% to 15% or less, ⁇ , 15% or more It was determined.
  • the bonded mini-core was filled with resin and polished, the cross-sectional structure of the member was observed with an optical microscope, and the surface density of the intragranular eutectic structure having a major axis of 3 ⁇ m or more was measured.
  • the cross-section of the mini-core after bonding is polished and etched with a Keller solution to identify the position of the intermetallic compound, and further, the crystal grain boundary in this cross-section is clarified by an anodic oxidation method. The position of was identified. The position of these intermetallic compounds and the position of the triple point of the crystal grain boundary were compared, and the ratio of the triple point of the crystal grain boundary where the intermetallic compound exists was determined.
  • Tables 3 to 5 show the evaluation results of the above mini-core joining test. Tables 3 to 5 also show the equilibrium liquid phase ratio at the heating temperature in each sample. The equilibrium liquid phase ratio is a value calculated by equilibrium state diagram calculation software.
  • Comparative Example C54 (alloy composition A68) since the Fe component exceeded the specified amount, a coarse intermetallic compound was generated, and rolling to the final plate pressure was impossible, resulting in a problem in manufacturability.
  • Comparative Example C55 (alloy composition A69) since the Mg content exceeded the specified amount, the joining rate was as low as 30%, and the joining was incomplete.
  • Comparative Example C56 (alloy composition A70) had a problem in manufacturability.
  • Comparative Example C57 (Alloy Composition A71) produced a huge intermetallic compound during casting, and could not be rolled to the final plate pressure, resulting in a problem in manufacturability.
  • Comparative Example C58 alloy A72
  • Be, Sr, and Bi exceeded the specified amounts, so the surface oxide film became thicker and the bonding rate decreased.
  • Comparative Example C59 alloy A73
  • Na and Ca exceeded the specified amounts
  • the oxide film on the surface became thick and the bonding rate decreased.
  • Comparative Example C93 alloy A88
  • Comparative Example C94 alloy composition A80
  • the alloy composition was within the specified range, but the surface density of the Si-based intermetallic compound was reduced, and the ratio of triple points at the grain boundaries where the intermetallic compound was present was also low. As a result, the joining rate decreased.
  • Comparative Examples C95 to 98 alloy compositions A89 to 92
  • a huge intermetallic compound was produced during casting as described above, and rolling to the final plate pressure was impossible, resulting in a problem in manufacturability.
  • Second Embodiment In this embodiment, the influence of the heating temperature, which is a bonding condition, was examined. As shown in Table 6, the material manufactured in the first embodiment was extracted and formed into the same fin material as in the first embodiment. And the test piece (mini-core) of 3 steps
  • the mini-core joined as described above was measured and evaluated in the same manner as in the first embodiment. Moreover, the fin height of the mini-core after joining was measured, and the dimensional change rate after joining with respect to before joining was calculated
  • the structure of the cross section of the member is observed, and the surface density of the intermetallic compound, the surface density of the intragranular eutectic structure having a major axis of 3 ⁇ m or more, and the triple points of all crystal grain boundaries
  • the ratio of the triple point of the crystal grain boundary where an intermetallic compound having an equivalent circle diameter of 1 ⁇ m or more exists was determined.
  • the evaluation results are shown in Table 6.
  • Comparative Examples C74 and C76 since the liquid phase ratio was too high, the shape could not be maintained and the deformation rate increased. In Comparative Example C75, the liquid phase rate was too low. Moreover, the ratio of the triple point of the crystal grain boundary where an intermetallic compound exists was also low. As a result, the joining rate decreased.
  • Third Embodiment In this embodiment, the effect of a layer containing Zn as a main component for improving extrusion moldability and corrosion resistance was examined.
  • a material having the composition shown in Table 7 (No. E1 to E24, E25, and E26) was DC cast to obtain a billet having a diameter of 150 mm.
  • “ ⁇ ” indicates that it is below the detection limit, and “remainder” includes inevitable impurities.
  • FIG. 5 is a perspective view showing a part of the flat extruded tube.
  • the arithmetic average waviness Wa of the test material was about 1 ⁇ m.
  • the extrudability of each specimen in hot extrusion was evaluated.
  • extrudability when hot extrusion is performed, a case where a sound extrudate is obtained by 10 m or more is marked as ⁇ , a case where the obtained sound extrudate is more than 0 m and less than 10 m is marked as ⁇ , and at the time of casting A case where a sound extrudate was not obtained due to generation of a coarse intermetallic compound (including a case where the obtained sound extrudate was 0 m) was evaluated as x.
  • Sample Nos. D25 to D39 shown in Table 9 a layer mainly composed of Zn was formed on the surface of the extruded tube.
  • Sample Nos. D40 to D42 shown in Table 9 are reference examples in which a layer containing Zn as a main component is not formed.
  • any one of Zn spraying, Zn substitution flux coating Zn powder coating and Zn plating was adopted.
  • the material of F1 composition (JISA3003 + 1.5Zn) in Table 7 (arithmetic mean waviness Wa is 0.3 ⁇ m, plate thickness 0.07 mm) was processed into a fin material.
  • the fin material was corrugated to a height of 7 mm.
  • Sample No. A flat extruded tube of D1 to D42, D43, and D44 and the fin material were combined and incorporated into a stainless steel jig, and a three-stage test piece (minicore) shown in FIG. 4 was produced.
  • mini-core a compressive load of about 4 N was generated between the stainless steel jig and the mini-core due to the difference in thermal expansion coefficient between the stainless steel jig and the aluminum material.
  • a stress of about 10 kPa is generated on the joint surface between the fin and the tube.
  • the mini-core thus produced is dipped in a 10% suspension of non-corrosive fluoride-based flux, dried, and then heated in a nitrogen atmosphere at 580 to 600 ° C. for 3 minutes to form a fin material and a tube material. Joined.
  • Sample No. In D13, D14, and D22 bonding was performed in a vacuum without applying a flux.
  • Sample No. In D12 a fluoride-based flux containing cesium was used.
  • Sample No. In D26 Zn substitution flux was applied and heated.
  • Sample No. D1 to D24, D43, and D44 were evaluated by obtaining the joining ratio of the tube and the fin as in the first embodiment. The presence or absence of tube collapse was also confirmed. Further, a CASS test was performed for 1000 h for corrosion resistance evaluation, and the presence or absence of corrosion penetrating the tube was confirmed. The case where there was no corrosion was marked with ⁇ , and the case where corrosion occurred was marked with ⁇ .
  • the structure of the cross section of the member is observed, and the surface density of the intragranular eutectic structure having a major axis of 3 ⁇ m or more, and the equivalent circle diameter of 1 ⁇ m or more among the triple points of all grain boundaries.
  • the ratio of the triple point of the crystal grain boundary where the intermetallic compound having s was present.
  • the surface density of dispersed particles of Si-based intermetallic compound and Al-based intermetallic compound having an equivalent circle diameter of 0.5 ⁇ m to 5 ⁇ m in the sample was measured. The evaluation results are shown in Table 8.
  • Comparative Example D16 (alloy composition E16), since the Si component is less than the specified value, a crystal in which an intermetallic compound having a circle-equivalent diameter of 1 ⁇ m or more exists among triple points of all grain boundaries. The ratio of triple points at grain boundaries was low. Moreover, the joining rate also decreased.
  • Comparative Example D17 (alloy composition E17)
  • the Si component exceeded the specified value, and the liquid phase ratio was too high.
  • Comparative Example D18 (alloy composition E18) since the Si component was less than the specified value, the ratio of the triple point of the crystal grain boundary where the intermetallic compound having an equivalent circle diameter of 1 ⁇ m or more was low was low. Moreover, the joining rate also decreased.
  • Comparative Example D19 (alloy composition E19), since the Si component exceeded the specified value, the extruded tube was crushed during bonding.
  • Comparative Example D20 to Comparative Example D24 were inferior in terms of corrosion resistance due to the occurrence of through holes in the CASS test results. These are attributed to the alloy composition, and Fe and Cu components (alloy composition E20), Mn component (alloy composition E21), Zn component (alloy composition E22), Mg component (alloy composition E23), Cr, This is because the Ti and V components (alloy composition E24) exceed specified values.
  • the sacrificial anticorrosive action works because the Zn layer is formed on the surface, and the corrosion depth is 0. .It was shallow with less than 60 mm.
  • the structure can be efficiently manufactured. Moreover, in this invention, the change of the dimension or shape before and behind joining of a joining member hardly arises. As described above, the aluminum alloy material according to the present invention, the structure using the aluminum alloy material, and the method for producing the same have significant industrial effects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Powder Metallurgy (AREA)

Abstract

各種アルミニウム合金構造体に用いられ、単層の状態で接合可能であり、かつ、接合前後の変形のないアルミニウム合金材を提供することを課題とする。上記課題は、Si:1質量%~5質量%、Fe:0.01質量%~2.0質量%を含有し、残部Alと不可避不純物からなるアルミニウム合金材であって、0.5~5μmの円相当径を有するSi系金属間化合物が、前記アルミニウム合金材断面において250個/mm以上7×10個/mm以下存在し、0.5~5μmの円相当径を有するAl系金属間化合物が、100個/mm以上7×10個/mm以下存在するアルミニウム合金材によって解決される。また、本発明のアルミニウム合金構造体は、真空中又は非酸化性雰囲気中において、アルミニウム合金材の全質量に対する当該アルミニウム合金材内に生成する液相の質量の比が5%以上35%以下となる温度で接合することによって製造される。

Description

アルミニウム合金材、ならびに、アルミニウム合金構造体及びその製造方法
 本発明は、アルミニウム合金材に関し、詳しくは、ろう材又は溶加材のような接合部材を使用することなくそれ自体の作用により、他の部材に接合可能なアルミニウム合金材に関する。また、このアルミニウム合金材を用いた、効率的に接合され、かつ接合前後の寸法変化又は形状変化が殆ど無い構造体とその製造方法に関する。
 アルミニウム合金材を構成部材とする熱交換器等の構造体の製造に際しては、アルミニウム合金材同士又はアルミニウム合金材と異種材料とを接合する必要がある。アルミニウム合金材の接合方法としては、様々な方法が知られているが、それらの中でブレージング法(ろう付け法)が多く用いられている。ブレージング法が多く用いられるのは、母材を溶融させることなく短時間で強固な接合を得ることができる等の利点が考慮されるためである。ブレージング法によるアルミニウム合金材の接合方法を用いて熱交換器等を製造する方法としては、例えば、Al-Si合金からなるろう材をクラッドしたブレージングシートを用いる方法;粉末ろう材を塗布した押出材を用いる方法;各材料を組付け後に接合が必要な部分に別途ろう材を塗布する方法;などが知られている(特許文献1~3)。更に、非特許文献1の「3.2 ろうとブレージングシート」の章には、これらのクラッドブレージングシートや粉末ろう材の詳細が説明されている。
 これまで、アルミニウム合金材の構造体の製造においては、様々なブレージング法が開発されてきた。例えば自動車用熱交換器においては、フィン材を単層で用いる場合には、チューブ材にろう材をクラッドしたブレージングシートを使用する方法や、チューブ材にSi粉末やSi含有ろうを別途塗布する方法が採用されていた。一方、チューブ材を単層で用いる場合には、フィン材にろう材をクラッドしたブレージングシートを使用する方法が採用されていた。
 特許文献4には、上述したクラッド材のブレージングシートに替えて、単層のブレージングシートを用いる方法が記載されている。この方法においては、熱交換器のチューブ材とタンク材に熱交換器用単層ブレージングシートを用いることが提案されている。
特開2008-303405公報 特開2009-161835号公報 特開2008-308760号公報 特開2010-168613号公報
「アルミニウムブレージングハンドブック(改訂版)」社団法人軽金属溶接構造協会 2003年
 ブレージングシートのようなクラッド材を製造するには、各層を別々に製造し、更にそれらを重ね接合する工程が必要である。ブレージングシートの使用は熱交換器等のコストダウンの要求に反することとなる。また、粉末ろう材の塗布もろう材コストの分だけ製品コストに反映されることとなる。
 これに対して、上述のように、クラッド材とされたブレージングシートに替えて単層ブレージングシートを適用するという提案もある。しかしながら、例えば、熱交換器製造において、単層のブレージングシートをチューブ材としてそのまま用いると、熱交換器の製造時の加熱によって、チューブ材が大きく変形してしまう問題点がある。また、単層のブレージングシートを板厚の薄いフィン材として用いると、フィンが容易に座屈変形してしまう問題点もある。
 以上のように、熱交換器等のアルミニウム合金構造体のコストダウンのためには、ろう材を使わずに単層同士の材料で接合を行うことが好ましいといえる。しかしながら、単層のブレージングシートを安易に適用すれば、部材の変形の問題を回避することは困難である。本発明は、上記のような背景のもとになされたものであり、各種のアルミニウム合金構造体を製造するに際して、複層の部材を使用することによるコストアップを解消しつつも、接合時の変形の問題も生じさせない手法を提供することを目的とする。
 本発明者らは、鋭意検討の結果、これまでのブレージング法によるアルミニウム合金材の接合方法を改良するものであり、ろう材を使用することなく被接合材が発揮する接合能力を利用する新規な接合方法を見出した。この接合方法は、以下のアルミニウム合金材を用いて、特定の条件で接合し組み立てるものであり、ろう材のような接合部材がなくとも接合可能であり、更に、接合前後の変形も極めて少ないという特徴を有する。
 即ち、本発明は、Si:1.0質量%~5.0質量%、Fe:0.01質量%~2.0質量%を含有し、残部Alと不可避的不純物からなるアルミニウム合金材であって、
 0.5~5μmの円相当径を有するSi系金属間化合物が、前記アルミニウム合金材断面において250個/mm以上7×10個/mm以下存在し、
 0.5~5μmの円相当径を有するAl系金属間化合物の分散粒子が、前記アルミニウム合金材断面において100個/mm以上7×10個/mm以下存在することを特徴とするアルミニウム合金材である。
 以下、本発明についてより詳細に説明する。本発明は、上記組成のアルミニウム合金材を加熱する際に生成する液相を接合に利用する点を基本的な特徴とする。そこで、まずこの液相の生成メカニズムについて説明する。
 図1に代表的な2元系共晶合金であるAl-Si系合金の状態図を模式的に示す。Si濃度がc1であるアルミニウム合金材を加熱すると、共晶温度(固相線温度)Teを超えた付近の温度T1で液相の生成が始まる。共晶温度Te以下では、図2(a)に示すように、結晶粒界で区分されるマトリクス中に晶析出物が分布している。ここで液相の生成が始まると、図2(b)に示すように、晶析出物分布の偏析の多い結晶粒界が溶融して液相となる。次いで、図2(c)に示すように、アルミニウム合金材のマトリクス中に分散する主添加元素成分であるSiの晶析出物粒子や金属間化合物の周辺が球状に溶融して液相となる。更に図2(d)に示すように、マトリクス中に生成したこの球状の液相は、界面エネルギーにより時間の経過や温度上昇と共にマトリクスに再固溶し、固相内拡散によって結晶粒界や表面に移動する。次いで、図1に示すように温度がT2に上昇すると、状態図より液相量は増加する。
 また、図1において、アルミニウム合金材のSi濃度が最大固溶限濃度より小さいc2の場合には、固相線温度Ts2を超えた付近で液相の生成が始まる。但し、c1の場合と異なり、溶融直前の組織は図3(a)に示すように、マトリクス中に晶析出物が存在しない場合がある。この場合、図3(b)に示すように粒界でまず溶融して液相となった後、図3(c)に示すようにマトリクス中において局所的に溶質元素濃度が高い場所から液相が発生する。図3(d)に示すように、マトリクス中に生成したこの球状の液相は、c1の場合と同様に、界面エネルギーにより時間の経過や温度上昇と共にマトリクスに再固溶し、固相内拡散によって結晶粒界や表面に移動する。温度がT3に上昇すると、状態図より液相量は増加する。
 本発明に係るアルミニウム合金材を用いた接合方法は、上記のようなアルミニウム合金材内部の局所的な溶融により生成される液相を利用するものである。そして、加熱温度の調整により液相の質量を好適な範囲にすることにより、接合と形状維持の両立を実現できるものである。例えば、本発明のアルミニウム合金材を成形して、チューブ、フィン、プレート等の構造体を作製し、600℃程度の温度で熱処理を行うと、該アルミニウム合金材の内部の一部から液相が生成し、それが材料表面に染み出してきて接合が可能となり、ろう材等の接合部材を用いることなく熱交換器を製造することができる。
 また、本発明に係るアルミニウム合金材においては、主に未溶融のマトリクス(アルミニウム材料中において金属間化合物を除いた部分)と液相生成に寄与しない金属間化合物がその材料強度を担っている。そのため、本発明に係るアルミニウム合金材は、接合中に一部溶融部分が生じている状態になっているが、形状を維持するのに十分な強度を有することができる。従って、本発明により製造される構造体は、接合中の強度低下による寸法変化や形状変化が殆どないという特徴を有する。このような特徴により、本発明のアルミニウム合金材は、接合時に変形し易いフィン等の薄肉の材料として好適に使用することができる。
 このように、本発明は、アルミニウム合金材の液相を利用するものであるが、本発明の具体的特徴は、第1の態様として、アルミニウム合金材としてSi濃度:1.0質量%~5.0質量%、Fe:0.01質量%~2.0質量%のAl-Si―Fe系合金を基本組成とすること、及び、その金属組織においてSi系金属間化合物及びAl系金属間化合物が、断面において所定の面密度範囲で存在することにある。そこで、以下にこれらの特徴について説明する。尚、以下においては、「質量%」を単に「%」と記載する。
 Si濃度について、SiはAl-Si系の液相を生成し、接合に寄与する元素である。但し、Si濃度が1.0%未満の場合は充分な量の液相を生成することができず、液相の染み出しが少なくなり、接合が不完全となる。一方、5.0%を超えるとアルミニウム合金材中の液相の生成量が多くなるため、加熱中の材料強度が極端に低下し、構造体の形状維持が困難となる。従って、Si濃度を1.0%~5.0%と規定する。このSi濃度は、好ましくは1.5%~3.5%であり、より好ましくは2.0%~3.0%である。尚、染み出す液相の量は板厚が厚く、加熱温度が高いほど多くなるので、加熱時に必要とする液相の量は、製造する構造体の構造に応じて必要となるSi量や接合加熱温度を調整することが望ましい。
 Fe濃度について、Feはマトリクスに若干固溶して強度を向上させる効果を有するのに加えて、晶出物として分散して特に高温での強度低下を防ぐ効果を有する。Feは、その添加量が0.01%未満の場合、上記の効果が小さいだけでなく、高純度の地金を使用する必要がありコストが増加する。また、2.0%を超えると、鋳造時に粗大な金属間化合物が生成し、製造性に問題が生じる。また、本接合体が腐食環境(特に液体が流動するような腐食環境)に曝された場合には耐食性が低下する。更に、接合時の加熱によって再結晶した結晶粒が微細化して粒界密度が増加するため、接合前後で寸法変化が大きくなる。従って、Feの添加量は0.01%~2.0%とする。好ましいFeの添加量は、0.2%~1.0%である。
 次に、本発明に係るアルミニウム合金材の金属組織における特徴について説明する。本発明に係るアルミニウム合金材は、0.5~5μmの円相当径を有するSi系金属間化合物が、その断面において250個/mm以上7×10個/mm以下存在することを特徴とする。ここで、Si系金属間化合物とは、(1)単体Si、及び(2)単体Siの一部にCaやPなどの元素を含むものであり、上述の液相発生のプロセスで説明した液相生成に寄与する金属間化合物である。尚、断面とは、アルミニウム合金材の任意の断面であり、例えば厚さ方向に沿った断面でもよく、板材表面と平行な断面でもよい。材料評価の簡便性の観点から、厚さ方向に沿った断面を採用するのが好ましい。
 上記の通り、アルミニウム合金材中に分散したSi粒子等の金属間化合物の分散粒子は、接合時においてその周囲のマトリクスと反応して液相を生成する。そのため、前記金属間化合物の分散粒子が微細なほど粒子とマトリクスの接する面積が増加する。従って、前記金属間化合物の分散粒子が微細なほど、接合加熱時において、より速やかに液相が生成し易くなり、良好な接合性が得られる。この効果は、接合温度が固相線に近い場合や昇温速度が速い場合により顕著である。そのため、本発明では、好適なSi系金属間化合物として、その円相当径を0.5~5μmと規定すると共に、その存在割合として断面で250個/mm以上7×10個/mm以下であることを必要とする。250個/mm未満であると、生成する液相に偏りが生じ良好な接合が得られなくなる。7×10個/mmを超えると、粒子とマトリクスの反応面積が大きすぎるために、液相量の増加が急激に起こり変形が生じ易くなる。このように、このSi系金属間化合物の存在割合は、250個/mm以上7×10個/mm以下とする。なお、この存在割合は、好ましくは1×10個/mm以上1×10個/mm以下である。
 また、本発明に係るアルミニウム合金材では、基本組成(Al-Si系合金)で生じるSi系金属間化合物に加えて、Al系の金属間化合物が分散粒子として存在する。このAl系金属間化合物は、Al-Fe系、Al-Fe-Si系、Al-Mn―Si系、Al-Fe-Mn系、Al-Fe-Mn-Si系化合物等、Alと添加元素によって生成する金属間化合物である。これらのAl系金属間化合物は、Si系金属間化合物とは異なり液相生成に大きく寄与するものではないが、マトリクスと共に材料強度を担う分散粒子である。そして、このAl系金属間化合物については、0.5~5μmの円相当径を有するものが、材料断面において100個/mm以上7×10個/mm以下存在する必要がある。100個/mm未満の場合には、強度低下による変形が生じる。一方、7×10個/mm超える場合には、再結晶の核が増加して結晶粒が微細になり変形が生じる。このように、このAl系金属間化合物の存在割合は、100個/mm以上7×10個/mm以下とする。なお、この存在割合は、好ましくは1×10個/mm以上1×10個/mm以下である。
 尚、分散粒子の円相当径は、断面のSEM観察(反射電子像観察)を行うことで決定することができる。ここで、円相当径とは円相当直径をいう。SEM写真を画像解析することで、接合前の分散粒子の円相当径及を求めることが好ましい。また、Si系金属間化合物とAl系金属間化合物は、SEM-反射電子像観察で、コントラストの濃淡で区別することもできる。また、分散粒子の金属種は、EPMA(X線マイクロアナライザー)等でより正確に特定することができる。
 以上説明した、Si、Fe濃度範囲及び金属組織に特徴を有する本発明に係るアルミニウム合金材は、それ自体の接合性により接合を可能とし各種のアルミニウム合金構造物の構成部材として用いることができる。
 以上のように、本発明に係るアルミニウム合金材は第1態様において、接合性という基本的機能を果たすためには、Si及びFeを必須元素としてその添加量が規定される。接合性という基本的機能に加えて強度を更に向上させるために、本発明に係るアルミニウム合金材は第2態様において、第1態様で規定した添加量のSi及びFeに加えて、所定量のMn、Mg及びCuが必須元素として更に添加される。なお、第2実施態様では、Si系金属間化合物及びAl系金属間化合物の断面における面密度については、第1実施態様と同様に規定される。
 Mnは、SiとともにAl-Mn-Si系の金属間化合物を形成し、分散強化として作用し、或いは、アルミニウム母相中に固溶して固溶強化により強度を向上させる重要な添加元素である。Mn添加量が2.0%を超えると、粗大金属間化合物が形成され易くなり耐食性を低下させる。従って、Mn添加量は2.0%以下とする。好ましいMn添加量は、0.05%~2.0%である。なお、本発明においては、Mnのみならず他の合金成分においても、所定添加量以下という場合は0%も含むものとする。
 Mgは、接合加熱後においてMgSiによる時効硬化が生じ、この時効硬化によって強度向上が図られる。このように、Mgは強度向上の効果を発揮する添加元素である。Mg添加量が、2.0%を超えるとフラックスと反応して、高融点の化合物を形成するため著しく接合性が低下する。従って、Mgの添加量は2.0%以下とする。好ましいMgの添加量は、0.05%~2.0%である。
 Cuは、マトリクス中に固溶して強度向上させる添加元素である。Cu添加量が、1.5%を超えると耐食性が低下する。従って、Cuの添加量は1.5%以下とする。好ましいCuの添加量は、0.05%~1.5%である。
 本発明においては、強度や耐食性を更に向上させるために、上記必須元素以外の元素として、Ti、V、Cr、Ni及びZrを単独又は複数で選択的に添加することができる。以下に各選択的添加元素について述べる。
 Ti及びVは、マトリクス中に固溶して強度向上させる他に、層状に分布して板厚方向の腐食の進展を防ぐ効果がある。0.3%を超えると巨大晶出物が発生し、成形性、耐食性を阻害する。従って、Ti及びVの添加量は0.3%以下とするのが好ましく、0.05%~0.3%とするのがより好ましい。
 Crは、固溶強化により強度を向上させ、またAl-Cr系の金属間化合物の析出により、加熱後の結晶粒粗大化に作用する。0.3%を超えると粗大な金属間化合物を形成し易くなり、塑性加工性を低下させる。よって、Crの添加量は0.3%以下とするのが好ましく、0.05%~0.3%とするのがより好ましい。
 Niは、金属間化合物として晶出又は析出し、分散強化によって接合後の強度を向上させる効果を発揮する。Niの添加量は、2.0%以下の範囲とするのが好ましく、0.05%~2.0%の範囲とするのがより好ましい。Niの含有量が2.0%を超えると、粗大な金属間化合物を形成し易くなり、加工性を低下させ自己耐食性も低下する。
 ZrはAl-Zr系の金属間化合物として析出し、分散強化によって接合後の強度を向上させる効果を発揮する。また、Al-Zr系の金属間化合物は加熱中の結晶粒粗大化に作用する。0.3%を超えると粗大な金属間化合物を形成し易くなり、塑性加工性を低下させる。よって、Zrの添加量は0.3%以下とするのが好ましく、0.05%~0.3%とするのがより好ましい。
 以上の主に強度向上のための選択的添加元素の他に、耐食性向上のための選択的添加元素を加えても良い。耐食性向上のための選択的添加元素としては、Zn、In、Snが挙げられる。
 Znの添加は、犠牲防食作用による耐食性向上に有効である。Znはマトリクス中にほぼ均一に固溶しているが、液相が生じると液相中に溶け出して液相のZnが濃化する。液相が表面に染み出すと、染み出した部分におけるZn濃度が上昇するため、犠牲陽極作用によって耐食性が向上する。また、本発明のアルミニウム合金材を熱交換器に応用する場合、本発明のアルミニウム合金材をフィンに用いることで、チューブ等を防食する犠牲防食作用を働かせることもできる。Zn添加量が6.0%を超えると腐食速度が速くなって自己耐食性が低下する。従って、Zn添加量は、6.0%以下が好ましく、0.05%~6.0%がより好ましい。
 SnとInは、犠牲陽極作用を発揮する効果を奏する。それぞれの添加量が0.3%を超えると腐食速度が速くなり自己耐食性が低下する。従って、SnとInの添加量は、0.3%以下が好ましく、0.05%~0.3%がより好ましい。
 本発明に係るアルミニウム合金材では、液相の特性改善を図ることにより接合性を更に良好にするための選択的元素を更に添加してもよい。このような元素としては、Be:0.1%以下、Sr:0.1%以下、Bi:0.1%以下、Na:0.1%以下、Ca:0.05%以下とするのが好ましく、これらの1種又は2種以上が必要に応じて添加される。なお、これら各元素のより好ましい範囲は、Be:0.0001%~0.1%、Sr:0.0001%~0.1%、Bi:0.0001%~0.1%、Na:0.0001%~0.1%以下、Ca:0.0001%~0.05%以下である。これらの微量元素はSi粒子の微細分散、液相の流動性向上等によって接合性を改善することができる。これらの微量元素は、上記のより好ましい規定範囲未満では、Si粒子の微細分散や液相の流動性向上等の効果が不十分となる場合がある。また、上記のより好ましい規定範囲を超えると耐食性低下等の弊害を生じる場合がある。尚、Be、Sr、Bi、Na、Caの1種又が添加される場合においても、任意の2種以上が添加される場合においても、上記いずれの元素は上記好ましい又はより好ましい成分範囲内で添加される。
 ところで、Fe及びMnは、いずれもSiと共にAl-Fe-Mn-Si系の金属間化合物を形成する。Al-Fe-Mn-Si系金属間化合物を生成するSiは液相の生成への寄与が小さいため、接合性が低下することになる。そのため、本発明に係るアルミニウム合金材でFe及びMnを添加する場合には、Si、Fe、Mnの添加量について留意することが好ましい。具体的には、Si、Fe、Mnの含有量(質量%)をそれぞれS、F、Mとしたとき、1.2≦S-0.3(F+M)≦3.5の関係式を満たすことが好ましい。S-0.3(F+M)が1.2未満の場合は、接合が不十分となる。一方、S-0.3(F+M)が3.5より大きい場合は、接合前後で形状が変化し易くなる。
 尚、本発明の液相を生成するアルミニウム合金材は、固相線温度と液相線温度の差が10℃以上であるものが好ましい。固相線温度を超えると液相の生成が始まるが、固相線温度と液相線温度の差が小さいと、固体と液体が共存する温度範囲が狭くなり、発生する液相の量を制御することが困難となる。従って、この差を10℃以上とするのが好ましい。例えば、この条件を満たす組成を有する2元系の合金としては、Al-Si系合金、Al-Si-Mg系、Al-Si-Cu系、Al-Si-Zn系及びAl-Si-Cu-Mg系等が挙げられる。尚、固相線温度と液相線温度の差が大きくなるほど、適切な液相量に制御するのが容易になる。従って、固相線温度と液相線温度の差の上限は、特に限定されるものではない。
 更に、本発明に係るアルミニウム合金材の耐食性を更に向上させるために、このアルミニウム合金材の表面にZnを主成分とする層を形成することができる。アルミニウム合金材表面に形成される層に存在するZnは、接合加熱時に合金内部へと固溶・拡散し、表面から内部に向かってZn濃度が減少する濃度分布を形成する。このようなZn濃度分布は孔食電位の卑貴に対応し、犠牲防食作用によってアルミニウム合金材内部への腐食進行を大幅に抑制できる。
 アルミニウム合金材の表面にZnを主成分とする層を付与する方法としては、純ZnもしくはAl-Zn合金を用いたZn溶射;Zn置換フラックス塗布;Zn粉末被覆;Znめっき;等が挙げられる。いずれの方法でも、付与されるZnが少なすぎると犠牲防食作用が不十分となり、付与されるZnが多すぎると腐食速度が速くなって自己耐食性が低下する。そのため、付与されるZn量は1~30g/mが好ましく、5~20g/mがより好ましい。
 次に、本発明のアルミニウム合金材の製造方法について説明する。本発明のアルミニウム合金材は、連続鋳造法、DC(Direct Chill)鋳造法又は押出法を用いて製造することができる。連続鋳造法としては、双ロール式連続鋳造圧延法や双ベルト式連続鋳造法等の連続的に板材を鋳造する方法であれば特に限定されるものではない。双ロール式連続鋳造圧延法とは、耐火物製の給湯ノズルから一対の水冷ロール間にアルミニウム溶湯を供給し、薄板を連続的に鋳造圧延する方法であり、ハンター法や3C法等が知られている。また、双ベルト式連続鋳造法は、上下に対峙し水冷されている回転ベルト間に溶湯を注湯してベルト面からの冷却で溶湯を凝固させてスラブとし、ベルトの反注湯側より該スラブを連続して引き出してコイル状に巻き取る連続鋳造方法である。
 双ロール式連続鋳造圧延法では、鋳造時の冷却速度がDC鋳造法に比べて数倍~数百倍速い。例えば、DC鋳造法の場合の冷却速度が0.5~20℃/secであるのに対し、双ロール式連続鋳造圧延法の場合の冷却速度は100~1000℃/secである。そのため、鋳造時に生成する分散粒子が、DC鋳造法に比べて微細かつ高密度に分布する特徴を有する。この高密度に分布した分散粒子は、接合時においてこれら分散粒子の周囲のマトリクスと反応し、多量の液相を生成し易くすることができ、それによって良好な接合性が得られる。
 双ロール式連続鋳造圧延法で鋳造する際の圧延板の速度は0.5m/分以上、3m/分以下が好ましい。鋳造速度は、冷却速度に影響を及ぼす。鋳造速度が0.5m/分未満の場合は、十分な冷却速度が得られず化合物が粗大になる。また、3m/分を超える場合は、鋳造時にロール間でアルミニウム材が十分に凝固せず、正常な板状鋳塊が得られない。
 双ロール式連続鋳造圧延法で鋳造する際の溶湯温度は、650~800℃の範囲が好ましい。溶湯温度は、給湯ノズル直前にあるヘッドボックスの温度である。溶湯温度が650℃未満の温度では、給湯ノズル内に巨大な金属間化合物の分散粒子が生成し、それらが鋳塊に混入することで冷間圧延時の板切れの原因となる。溶湯温度が800℃を超えると、鋳造時にロール間でアルミニウム材が十分に凝固せず、正常な板状鋳塊が得られない。より好ましい溶湯温度は680~750℃である。
 また、鋳造する板厚は2mm~10mmが好ましい。この厚さ範囲においては、板厚中央部の凝固速度も速く、均一組織な組織が得られ易い。鋳造板厚が2mm未満であると、単位時間当たりに鋳造機を通過するアルミニウム量が少なく、安定して溶湯を板幅方向に供給することが困難になる。一方、鋳造板厚が10mmを超えると、ロールによる巻取りが困難になる。より好ましい鋳造板厚は、4mm~8mmである。
 得られた鋳造板材を最終板厚に圧延加工する工程中では、焼鈍を1回以上行っても良い。調質は用途に応じて適切な調質を選定する。通常はエロージョン防止のためにH1n又はH2n調質とするが、形状や使用方法によっては焼鈍材を使用しても良い。
 本発明に係るアルミニウム合金材をDC連続鋳造法で製造するに場合は、鋳造時のスラブやビレットの鋳造速度を制御するのが好ましい。鋳造速度は、冷却速度に影響を及ぼすので、20mm/分以上、100m/分以下が好ましい。鋳造速度が20mm/分未満の場合は、十分な冷却速度が得られず化合物が粗大化する。一方、100m/分を超える場合は、鋳造時にアルミニウム材が十分に凝固せず、正常な鋳塊が得られない。より好ましい鋳造速度は、30mm/分以上、80mm/分以下である。
 DC連続鋳造時のスラブ厚さは、600mm以下が好ましい。スラブ厚さが600mmを超える場合は、十分な冷却速度が得られず金属間化合物が粗大になる。より好ましいスラブ厚さは、500mm以下である。
 DC鋳造法でスラブを製造した後は、均質化処理、熱間圧延、冷間圧延、焼鈍を必要に応じて行えばよい。また、用途に応じて調質が行われる。この調質は、通常はエロージョン防止のためにH1n又はH2nとするが、形状や使用方法によっては軟質材を使用しても良い。
 本発明に係るアルミニウム合金材を押出法で製造する場合は、DC鋳造でビレットを製造した後に、均質化処理と熱間押出を必要に応じて行えばよい。また、用途に応じて調質が行われる。ビレット鋳造には、ホットトップ鋳造法又はGDC鋳造法が用いられる。
 本発明のアルミニウム合金材は、展伸材、鍛造材、鋳物等の形態で提供されるが、接合性と形状維持の点から展伸材の形態が最適である。展伸材は、その製造までに受ける加工率が鍛造材や鋳物等より大きいため、金属間化合物が微細に分断された状態が発現し易い。従って、Si系金属間化合物とAl系金属間化合物の密度を増加させることができ、これまで述べてきたように、良好な接合性と形状維持を達成し易い利点を有する。
 次に、本発明に係るアルミニウム合金材の接合方法、すなわち、アルミニウム合金構造体の製造方法について説明する。本願においてアルミニウム合金構造体とは、二つ以上の部材が接合されてなる構造体であって、これを構成する部材の少なくとも一つの部材が本発明に係るアルミニウム合金材からなるものである。本発明に係るアルミニウム合金構造体の製造方法は、上記組成を有するアルミニウム合金材を二つ以上の部材の少なくとも一つの被接合部材として他の被接合部材と組み合わせた後、加熱処理を行ってこれら被接合部材を接合するものである。この加熱処理では、上記二つ以上の部材の少なくとも一つの被接合部材の内部において、液相が生成する固相線温度以上液相線温度以下であって、強度が低下して形状を維持できなくなる温度以下において、接合に必要な時間加熱するものである。
 上記の接合方法における接合条件の中で加熱条件は特に重要である。この加熱条件としては、上記二つ以上の部材の少なくとも一つの被接合部材であるアルミニウム合金材の全質量に対する当該アルミニウム合金材内に生成する液相の質量の比(以下、「液相率」と記す。)が0%を超え35%以下となる温度で接合する必要がある。液相が生成しなければ接合ができないので液相率は0%より多いことが必要である。しかしながら、液相が少ないと接合が困難となるため、液相率は5%以上とするのが好ましい。液相率が35%を超えると、生成する液相の量が多過ぎて、接合加熱時にアルミニウム合金材が大きく変形してしまい形状を保持できなくなる。以上のように、好ましい液相率は5~30%である。なお、より好ましい液相率は10~20%である。
 また、液相が接合部に十分に充填される為にはその充填時間も考慮することが好ましく、液相率が5%以上である時間を30秒以上3600秒以内とするのが好ましい。より好ましくは、液相率が5%以上の時間が60秒以上、1800秒以内であり、これにより更に十分な充填が行われ確実な接合がなされる。液相率が5%以上である時間が30秒未満では、接合部に液相が十分に充填されない場合がある。一方、3600秒を超えると、アルミニウム材の変形が進行する場合がある。尚、本発明における接合方法では、液相は接合部の極近傍においてしか移動しないので、この充填に必要な時間は接合部の大きさには依存しない。
 望ましい接合条件の具体例としては、580℃~620℃を接合温度とし、接合温度での保持時間を0分~10分程度とすればよい。ここで、0分とは、部材の温度が所定の接合温度に到達したら直ちに冷却を開始することを意味する。また、接合部の金属組織を後述する好適な状態にするために、組成に応じて加熱条件を調整しても良い。さらに好ましくは30秒から5分である。
 尚、加熱中における実際の液相率を測定することは極めて困難である。そこで、本発明で規定する液相率は、通常、平衡状態図を利用して、合金組成と最高到達温度から、てこの原理(lever rule)によって求めることができる。すでに状態図が明らかになっている合金系においては、その状態図を使用し、てこの原理を用いて液相率を求めることができる。一方、平衡状態図が公表されていない合金系に関しては、平衡計算状態図ソフトを利用して液相率を求めることができる。平衡計算状態図ソフトには、合金組成と温度を用いて、てこの原理で液相率を求める手法が組み込まれている。平衡計算状態図ソフトには、Thermo-Calc;Thermo-Calc Software AB社製などがある。平衡状態図が明らかになっている合金系においても、平衡計算状態図ソフトを用いて液相率を計算しても、平衡状態図からてこの原理を用いて液相率を求めた結果と同じ結果となるので、簡便化のために、平衡計算状態図ソフトを利用しても良い。
 また、加熱処理における加熱雰囲気は窒素やアルゴン等で置換した非酸化性雰囲気等が好ましい。また、非腐食性フラックスを使用することで更に良好な接合性を得ることができる。更に、真空中や減圧中で加熱して接合することも可能である。
 上記非腐食性フラックス塗布する方法には、被接合部材を組み付けた後、フラックス粉末を振りかける方法や、フラックス粉末を水に懸濁してスプレー塗布する方法等が挙げられる。あらかじめ素材に塗装する場合には、フラックス粉末にアクリル樹脂等のバインダーを混合して塗布すれば、塗装の密着性を高めることができる。通常のフラックスの機能を得るために用いる非腐食性フラックスとしては、KAlF、KAlF、KAlF・HO、KAlF、AlF、KZnF、KSiF等のフッ化物系フラックスや、CsAlF、CsAlF・2HO、CsAlF・HO等のセシウム系フラックスや、塩化物系フラックス等が挙げられる。
 以上説明した加熱処理及び加熱雰囲気の制御により、必要な接合特性を得ることできる。但し、例えば、中空部を備える等の比較的脆弱な構造体を形成する場合においては、構造体内に発生する応力が高すぎると構造体の形状を維持できない場合がある。特に接合時の液相率が大きくなる場合、構造体内に発生する応力は比較的小さな応力に留めたほうが形状を良好に維持できる。このように構造体内の応力を考慮することが好ましい場合は、二つ以上の部材のうち、液相が生成する被接合部材内に発生する応力のうちの最大値をP(kPa)、液相率をV(%)とした場合、P≦460-12Vの条件を満たせば、非常に安定した接合が得られる。この式の右辺(460-12V)で示される値は限界応力であり、これを超える応力が、液相を生じるアルミニウム合金材に加わると大きな変形が発生するおそれがある。尚、この液相が生成する被接合部材が二つ以上の部材において複数ある場合には、これら複数の被接合部材各々に対して、各々の応力P、液相率Vを用いてP≦460-12Vを算出し、全ての複数の被接合部材が上記式を同時に満たすように接合を行うのが好ましい。各被接合部材内の各部位に発生する応力は、形状と荷重から求められる。例えば、構造計算プログラム等を用いて計算することができる。
 更に、接合部の圧力と同様に接合部の表面形態も接合性に影響を与えることがあり、両面が平滑な方がより安定した接合が得られる。本発明においては、二つの被接合部材を接合する場合に、接合前の被接合部材の双方の接合面の表面の凹凸から求められる算術平均うねりWa1とWa2の和が、Wa1+Wa2≦10(μm)を満たす場合に、更に十分な接合が得られる。尚、算術平均うねりWa1、Wa2は、JISB0633で規定されるものであり、波長が25~2500μmの間で凹凸となるようカットオフ値を設定し、レーザー顕微鏡やコンフォーカル顕微鏡で測定されたうねり曲線から求められる。
 また、本発明に係る構造体の耐食性を更に向上させるために、本発明に係るアルミニウム合金材の表面にZn溶射やZn置換フラックス塗布を行って構造体を形成しても良い。更に、加熱処理後の構造体にクロメート処理やノンクロメート処理等の表面処理を実施して耐食性向上を図っても良い。
 以上説明したアルミニウム合金構造体の製造方法により製造されるアルミニウム合金構造体は、接合前後において構造体の寸法や形状が殆ど変化しない利点を有する。これは、上述のメカニズムに従って液相が被接合部材であるアルミニウム合金材内部から生成するが、生成する液相量は適切な範囲に制御されており、接合時に結晶粒界等に沿ったすべり変形が発生し難いためである。また、マトリクスや、液相の生成に寄与しない金属間化合物により、加熱中に被接合部材の形状が維持される効果も、上記利点の要因である。
 そして、本発明に係るアルミニウム合金構造体は、接合された部材の少なくとも一つの部材の接合部付近において好適な金属組織的特徴を有する。すなわち、本発明に係る方法により接合されたアルミニウム合金材は、結晶粒界に金属間化合物等が多く存在した組織になる。図2に示す液相生成メカニズムからも明確なように、液相が生成して外部に流出する過程において、結晶粒界が液相の流出経路の一つとなるため、接合の加熱時には結晶粒界に液相が存在する。したがって、その後に冷却すると、その液相が凝固するため、結晶粒界にSi系金属間化合物及びAl系金属間化合物が生成する。本発明者等の検討によれば、良好な接合性と接合時の材料強度の良好なバランスが取れた接合体では、1μm以上の円相当径を有するSi系金属間化合物及びAl系金属間化合物が存在する結晶粒界の三重点の個数が、全結晶粒界の三重点の個数の50%以上の割合であることが判明した。ここで、結晶粒界の三重点とは、材料の断面を観察した際に、マトリクスの結晶粒界が少なくとも3本以上交わっている点(三重点)をいう。
 この結晶粒界の三重点に存在するSi系金属間化合物及びAl系金属間化合物(以下において、両者を合わせたものを「金属間化合物」と記す)は、分散強化作用を有する第2相分散粒子として働き、構造体を構成する部材を強化する働きを発揮する。また、この金属間化合物は、部材を接合するための加熱後における冷却時において、結晶粒の成長を抑制する効果を有する。更に、接合された構造体を再加熱する場合には、構造体を構成する部材の結晶粒の粗大化を抑制する効果を発揮する。これらの効果は、金属間化合物が存在する結晶粒界の三重点の上記割合が50%未満では十分ではない。従って、全ての結晶粒界の三重点のうち、円相当径1μm以上の金属間化合物が存在する結晶粒界の三重点の個数が50%以上の割合とする。また、この割合は、好ましくは80%以上である。なお、この割合の上限値は100%である。
 結晶粒界の三重点に存在する金属間化合物は、Al系金属間化合物とSi系金属間化合物を含む。Si系金属間化合物は、SiにFe、Mn等が固溶した金属間化合物である。Al系金属間化合物は、Al-Fe系、Al-Fe-Si系、Al-Mn―Si系、Al-Fe-Mn系、Al-Fe-Mn-Si系化合物等、Alと添加元素とから生成された金属間化合物である。
 結晶粒界の三重点に存在する金属間化合物の存在を同定するには、幾つかの方法が挙げられる。光学顕微鏡を用いる方法では、まず、本発明の構造体を構成する部材の断面を機械的に研磨し、ケラー液などでエッチングして金属間化合物の位置を同定する。更に、この同じ断面における結晶粒界を陽極酸化法によって明らかにし、結晶粒界の三重点の位置を同定する。両者を比較して、全結晶粒界の三重点のうち、1μm以上の円相当径を有する金属間化合物が存在する結晶粒界の三重点の割合を決定する。
 なお、結晶粒界に存在した液相が、凝固して共晶組織に変態する際において、粒界に金属間化合物が不連続に形成されたり、Al相と金属間化合物相が交互に並んだ共晶組織が形成される場合がある。このような場合には、結晶粒界が不明瞭になるため、結晶粒界が断続的な線として観察されることもあり、結晶粒界の三重点の位置が不明瞭となる。この場合は、金属間化合物や共晶組織を結晶粒界の一部と見なし、結晶粒界に添うように連続的な仮想線を引き結晶粒界の三重点を判別する。図6に示すように、Si相(不図示)や共晶組織が大きく、結晶粒界の三重点が不明瞭な場合は、図7に示すようにその部分の全面積を結晶粒界とする。図7の点線で示すように、仮想的に三本の結晶粒界が交わる領域を結晶粒界の三重点と見なす。この場合の三重点とは、結晶粒界が交わる領域における各結晶粒界部分を合わせた面積部分となる。この面積部分中に一部でも金属間化合物が形成されていればよい。
 また、EPMA(X線マイクロアナライザー)を使用する方法も挙げられる。EPMAを用いて、構造体を構成する部材の断面におけるSi、Feなどの元素の面成分を行うものである。結晶粒界近傍は、Si濃度が低くなっているので、結晶粒界を同定することができる。金属間化合物は、Si、Feなどの元素濃度が高い部分で同定することができる。断面のSEM観察(反射電子像観察)を用いて、結晶粒界と金属間化合物の位置を同定することもできる。
 本発明により形成されるアルミニウム合金構造体は、その接合された部材の少なくとも一つの部材の接合部付近において、好適な金属組織的特徴を有する。すなわち、本発明に係るアルミニウム合金材の接合部においては、上述した液相生成メカニズムにおいて、Si粒子周辺が球状に溶融しつつもマトリクス内にある程度残存し、図2に示すような共晶組織がマトリクスの結晶粒内(以下、単に「粒内」と記す)に多数分散した組織となる。本発明者等によれば、本発明に係るアルミニウム合金構造体では、良好な接合性と接合時の材料強度の良好なバランスが取れた場合、接合後において粒内に存在する3μm以上の長径を有する共晶組織が断面の面密度で10個/mm~3000個/mmであるのが好ましいことが判明した。この金属組織上の好適条件について、上記の粒内共晶組織の面密度が10個/mm未満の場合には、接合に寄与した液相が多すぎて接合加熱中の強度維持が困難となる場合がある。一方、上記の粒内共晶組織の面密度が3000個/mmを超える場合には、接合に寄与した液相が少なく接合性が低下する場合がある。
 このような粒内の共晶組織は、加熱時にSi粒子周辺が球状に溶融して生成した液相が、冷却時に凝固して共晶組織となったものであるため、球状に近い形状になる場合が多い。この場合は、図2のように、断面観察において円状の共晶組織として観察される。また、液相が粒内のAl系金属間化合物を核生成サイトとして生成し、粒内に残存している場合は、Al系金属間化合物に沿った形状の共晶組織が形成されることがある。
 粒内の共晶組織の断面における面密度を測定するには、幾つかの方法が挙げられる。光学顕微鏡を使用する方法では、本発明の構造体を構成する部材の断面を機械的に研磨し、ケラー液などでエッチングして共晶組織の位置を同定する。共晶組織はSi系金属間化合物相とAl相が微細に交互に並んだ構造をなすことから、これを判別することができる。更に、この断面における結晶粒界の位置を陽極酸化法によって同定する。両者を比較して、結晶粒内に存在する3μm以上の長径を有する共晶組織の個数を測定して面密度に換算する。
 EPMA(X線マイクロアナライザー)を使用する方法も挙げられる。EPMAを用いて、構造体を構成する部材断面におけるSi、Feなどの元素の面成分を行う。共晶組織は、Si濃度が高い部分と低い部分が微細に交互に並んでいることから、これを同定することができる。また、結晶粒界近傍はSi濃度が低くなっているので、結晶粒界を同定することができる。断面のSEM観察(反射電子像観察)によって、共晶組織を同定することもできる。その場合は、SEM/EBSB法を用いて結晶粒界を同定する。
 上記のような金属組織を有するアルミニウム合金構造体は、本発明に係るアルミニウム合金材の寸法や組成の調整、ならびに、組成を考慮した加熱条件の調整により製造される。例えば、被接合部材であるアルミニウム合金材の板厚が厚い場合や、接合時の温度が高温になり易い部分に配置されたアルミニウム合金部材においては、Si添加量が低いものを用いても充分な液相量が確保できる。具体的には、30μm~100μmの板厚のフィン材の場合、Si添加量を1.5%~3.5%程度として、加熱温度を580℃~620℃程度とすることが好ましい。この場合、粒内の共晶組織は20~500個/mmとなる。このような接合後の組織観察により、粒内の共晶組織の断面面密度が10~3000個/mmとなるように、被接合部材であるアルミニウム合金材のSi添加量が1.5%~5.0%の範囲で予め調整される。これによって、良好な接合性を有する接合体を得ることができる。また、Mnを0.3%以上添加することにより、粒内共晶組織を減少させる効果がある。
 上記の通り、本発明に係るアルミニウム合金構造体は、二つ以上の部材から構成される構造体であり、少なくとも一つの部材が本発明に係るアルミニウム合金材からなる。このアルミニウム合金構造体の好適な例としては、各種の熱交換器が挙げられる。熱交換器は、その用途や使用条件によりフィン材、チューブ材、プレート材、タンク材等の各種の部材を適宜に組み合わせて構成される。そして、本発明に係るアルミニウム合金材は、これら熱交換器の各種の部材を構成することができる。
 例えば、本発明に係るアルミニウム合金材でチューブ材とタンク材を作製し、更に単層のフィン材(ベアフィン材)と組み合わせ、所定の加熱処理を施す。これにより、全ての部材が単層材で構成される熱交換器を製造することができる。また、本発明に係るアルミニウム合金材でフィン材とプレート材を作製し、ろう材を配置していないチューブ材(押出材や電縫加工したベアチューブ材)と組み合わせ、所定の加熱処理を施すことで熱交換器を製造するとすることができる。更に、板材をプレス成形して積層することで、ラミネートタイプの熱交換器を製造することができる。
 上記の他に、本発明に係るアルミニウム合金材は、ヒートシンク、積層構造のオイルクーラー等の用途にも用いることができる。このようなろう材を配置していない単層材を用いた構造体は、従来材を用いた構造体に比べて高温における剛性が低下する場合がある。そこで、加熱処理する際に、高温に耐える鉄等の材質のジグを用いて構造体をセットすることにより、寸法精度のより高い構造体を得ることができる。
 また、櫛刃形状の押出材と中空部を有する押出材とを別個に製造して、これら二つの押出材を接合することによって熱交換器を簡便に製造することができる。また、二つの押出材を積層構造として、必要サイズに見合ったオイルクーラーやヒートシンク等の製品とすることもできる。
 本発明に係るアルミニウム合金材は、ブレージング法等の従来の接合方法とは異なる接合方法で接合されるものであり、単層の状態で各種の被接合部材と接合できる。そして、接合前後の寸法又は形状の変化が殆ど無い。本発明に係るアルミニウム合金材を用いる接合方法は、ろう材等の接合部材を使用することなく被接合部材同士を接合することができる。そして、本発明に係るアルミニウム合金構造体は、上記利点によりコストダウンの要求に応えることができる。
2元系共晶合金としてAl-Si合金の状態図を示す模式図である。 本発明に係るアルミニウム合金材を用いた接合方法における、アルミニウム合金材での液相の生成メカニズムを示す説明図である。 本発明に係るアルミニウム合金材を用いた接合方法における、アルミニウム合金材の液相の生成メカニズムを示す説明図である。 第1~第3実施形態で用いた3段積みのテストピース(ミニコア)の斜視図である。 第3実施形態のテストピースに用いた押出チューブの形状の一部を示す斜視図である。 結晶粒界及びその三重点を示す模式図である。 結晶粒界の三重点を判別する方法を示す説明図である。
 以下に、本発明を実施例と比較例に基づいて詳細に説明する。
第1実施形態:まず、表1、2に示す組成を有するアルミニウム合金を用いて、表3~5のB1~B59、及びB77~B98のアルミニウム合金材の試験材を製造した。尚、表1の合金組成において、「-」は検出限界以下であることを示すものであり、「残部」は不可避的不純物を含む。
 B1~B48、B52~B57、B84の試験材については、双ロール式連続鋳造圧延法により鋳造した。双ロール式連続鋳造圧延法で鋳造する際の溶湯温度は650~800℃であり、鋳造板の厚さは7mmであった。鋳造速度は、表3~5に示すように種々変更した。次に、得られた板状鋳塊を0.70mmまで冷間圧延し、420℃×2Hrの中間焼鈍後に、0.050mmまで更に冷間圧延して供試材とした。供試材の算術平均うねりWaは約0.5μmであった。
 B49~B51、B58~B59、B77~B83,B85~B98の試験材をDC鋳造法で100mm×300mmのサイズで鋳造した。鋳造速度は、表4、5に示すように種々変更した。得られたスラブを面削後に加熱して3mm厚さまで熱間圧延した。その後、圧延板を0.070mmまで冷間圧延し、380℃×2Hrの中間焼鈍後に、0.050mmまで更に冷間圧延して供試材とした。供試材の算術平均うねりWaは約0.5μmであった。
 これらの試験材については、製造過程における製造性の評価を行った。製造性の評価方法は、板材又はスラブを製造した際に、製造過程において問題が発生せず健全な板材やスラブが得られた場合を○とし、鋳造時に割れが発生した場合や、鋳造時の巨大金属間化合物発生が原因で圧延が困難となった場合など、製造過程において問題が発生した場合を×とした。
 また、製造した板材(素板)中の金属間化合物の面密度は、板厚方向に沿った断面のSEM観察(反射電子像観察)により測定した。Si系金属間化合物とAl系金属間化合物(Al-Fe系金属間化合物等)は、SEM観察においてコントラストの濃淡によって区別した。SEM観察は各サンプルについて5視野ずつ行い、それぞれの視野のSEM写真を画像解析することによって、サンプル中の円相当径0.5μm~5μmの分散粒子の密度を測定した。
 これらの製造性評価及び分散粒子の測定結果を、表3~5に示す。表3~5に示すように、アルミニウム合金材の組成が本発明で規定する範囲のものは製造性が良好であった。合金組成A68では、Feが規定量を超えているため、鋳造時に巨大な金属間化合物が生成し、最終板厚まで圧延できず製造性に問題が発生した。合金組成A70の加工では、Niが規定量を超えているため、鋳造時に巨大な金属間化合物が生成し、製造性に問題が発生した。合金組成A71では、Tiが規定量を超えているため、鋳造時に巨大な金属間化合物が生成し、最終板厚まで圧延できず製造性に問題が発生した。合金組成A89~92では、それぞれMn、V、Cr、Zrが規定量を超えているため、鋳造時に巨大な金属間化合物が生成し、最終板厚まで圧延できず製造性に問題が発生した。
 次に、図4に示すように、各試験材を幅16mm、山高さ7mm、ピッチ2.5mmのフィン材に成形した。また、b1の組成(表2)の素材を、算術平均うねりWaが0.3μmで板厚0.4mmの電縫加工したチューブ材に成形した。そして、これらフィン材とチューブ材とを組み合わせてステンレス製のジグに組み込み、図4に示す3段積みのテストピース(ミニコア)を作製した。各試験材(B1~B59、B77~B98)のフィン材とチューブ材によって作製したテストピース(ミニコア)は、C1~C59、C77~C98として表3~5に記載した。
 次いで、上記ミニコアを非腐食性の弗化物系フラックスの10%懸濁液に浸漬して乾燥後に、窒素雰囲気中において580~600℃で3分間加熱してフィン材とチューブ材とを接合した。尚、このミニコアの場合、ステンレスジグとアルミニウム材の熱膨張率の差によって、接合加熱時において、ステンレスジグとミニコアとの間に約4Nの圧縮荷重が生じた。接合面積から計算すると、フィンとチューブとの接合面には約10kPaの応力が生じていることになる。
 フィン材とチューブ材とを接合した後に、フィンをチューブから剥してチューブとフィンの接合部40箇所の接合状態を調べ、完全に接合していた箇所の比率(接合率)を求めた。また、フィン座屈の状態を調べた。接合前のフィン高さに対する接合前後のフィン高さ変化の割合が5%以下を◎、5%を超え10%以下を○、10%を超え15%以下を△、15%を超えるものを×と判定した。
 更に、接合後のミニコアを樹脂埋めして研磨し、部材の断面組織を光学顕微鏡で観察し、長径3μm以上の粒内共晶組織の面密度を測定した。また、接合後のミニコアの断面を研磨し、ケラー液等でエッチングして金属間化合物の位置を同定し、更に、陽極酸化法によってこの断面における結晶粒界を明らかにして結晶粒界の三重点の位置を同定した。これら金属間化合物の位置と結晶粒界の三重点の位置を比較して、金属間化合物が存在する結晶粒界の三重点の割合を求めた。
 以上のミニコア接合試験における各評価結果を、表3~5に示す。表3~5には、各サンプルにおける加熱温度での平衡液相率も示した。尚、平衡液相率は、平衡状態図計算ソフトによる計算値である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表3~5におけるミニコアの各サンプルについての評価結果と、フィン材のアルミニウム合金材の組成(表1、2)とを対比すると、アルミニウム合金材の組成及び加熱条件に関して本発明が規定する条件を具備するサンプル(C1~C51、C77~C98)では、接合率及びフィン座屈のいずれも合格であった。
 一方、比較例C52(合金組成A66)では、Si成分が規定量に満たないため、液相率(平衡液相率)が5%未満で低く、金属間化合物が存在する結晶粒界の三重点の割合も低かった。その結果、接合率が低下し、フィン座屈が測定できなかった。
 比較例C53(合金組成A67)では、Si成分が規定量を超えているため、接合時に液相率が高くなり、フィンが潰れて座屈した。
 上述の通り比較例C54(合金組成A68)では、Feの成分が規定量を超えているため、粗大な金属間化合物が生成し、最終板圧まで圧延できず製造性に問題が発生した。
 比較例C55(合金組成A69)では、Mgが規定量を超えているため、接合率が30%と低く接合が不完全であった。
 また、上述の通り、比較例C56(合金組成A70)は製造性に問題が発生した。比較例C57(合金組成A71)も上述の通り、鋳造時に巨大な金属間化合物が生成し、最終板圧まで圧延できず製造性に問題が発生した。
 比較例C58(合金組成A72)では、Be、Sr、Biが規定量を超えているため、表面の酸化皮膜が厚くなり接合率が低下した。
 比較例C59(合金組成A73)では、Na、Caが規定量を超えているため、表面の酸化皮膜が厚くなり接合率が低下した。
 
 比較例C93(合金組成A88)では、Fe組成が規定量未満であったため、合金中のAl系金属間化合物の面密度が小さくなり、金属間化合物が存在する結晶粒界の三重点の割合も低かった。その結果、接合率が低下し、フィン座屈も生じた。
 比較例C94(合金組成A80)では、合金組成は規定範囲であるが、Si系金属間化合物の面密度が小さくなり、金属間化合物が存在する結晶粒界の三重点の割合も低かった。その結果、接合率が低下した。
 比較例C95~98(合金組成A89~92)では、上述の通り鋳造時に巨大な金属間化合物が生成し、最終板圧まで圧延できず製造性に問題が発生した。
第2実施形態:この実施形態では、接合条件である加熱温度の影響について検討した。表6に示すように、第1実施形態にて製造した材料を抜粋して、第1実施形態と同様のフィン材に成形した。そして、第1実施形態と同様にして3段積みのテストピース(ミニコア)を作製した(図4)。このミニコアを非腐食性の弗化物系フラックスの10%懸濁液に浸漬して乾燥後に、窒素雰囲気中において表6に示す種々の加熱温度で所定時間加熱保持してフィン材とチューブ材とを接合した。
 上記のようにして接合したミニコアについて、第1実施形態と同様にして、接合率を測定して評価した。また、また、接合後のミニコアのフィン高さを測定し、接合前に対する接合後の寸法変化率を変形率として求めた。この変形率が3%以下を◎、3%を超え5%以下を○、5%を超え8%以下を△、8%を超えるものを×と判定した。更に、第1実施形態と同様にして、部材断面の組織観察を行い、金属間化合物の面密度、3μm以上の長径を有する粒内共晶組織の面密度、全結晶粒界の三重点のうち、1μm以上の円相当径を有する金属間化合物が存在する結晶粒界の三重点の割合を求めた。評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6から、本発明例C61~73では、いずれも本発明で規定する条件を全て満たしており、接合率と変形率のいずれも合格であった。
 一方、比較例C74とC76では液相率が高過ぎたために、形状を維持できず変形率が高くなった。また、比較例C75では、液相率が低過ぎた。また、金属間化合物が存在する結晶粒界の三重点の割合も低かった。その結果、接合率が低下した。
第3実施形態:この実施形態では、押出成形性、ならびに、耐食性改善のためのZnを主成分とする層の効果について検討した。まず、表7に示す組成(No.E1~E24及びE25、E26)の材料をDC鋳造して、φ150mmのビレットを得た。尚、表7の合金組成において、「-」は検出限界以下であることを示すものであり、「残部」は不可避的不純物を含む。
 上記各ビレットの供試材を直接押出による熱間押出にかけ、表8に示すサンプルNo:D1~D24及びD43、D44の扁平形状の押出チューブを作製した。図5は、この扁平形状の押出チューブ一部を示す斜視図である。上記供試材の算術平均うねりWaは約1μmであった。熱間押出における各供試材の押出性を評価した。押出性については、熱間押出した際に、健全な押出材が10m以上得られた場合を○とし、得られた健全な押出材が0mを超え10m未満であった場合を△とし、鋳造時に粗大金属間化合物が発生するなどして健全な押出材が得られなかった場合(得られた健全な押出材が0mの場合を含む)を×とした。
 表9に示すサンプルNo:D25~D39では、押出チューブの表面にZnを主成分とする層を形成した。表9に示すサンプルNo:D40~D42は、Znを主成分とする層を形成しない参考例である。Zn層形成には、Zn溶射、Zn置換フラックス塗布Zn粉末被覆及びZnめっきのいずれかの方法を採用した。
 次に、表7のF1の組成(JISA3003+1.5Zn)の材料(算術平均うねりWaが0.3μm、板厚0.07mm)をフィン材に加工した。フィン材は、高さ7mmにコルゲート成形したものとした。
 サンプルNo.D1~D42及びD43、D44の扁平形状の押出チューブと上記フィン材を組み合わせてステンレス製のジグに組み込み、図4に示す3段積みのテストピース(ミニコア)を作製した。このミニコアの場合、ステンレスジグとアルミニウム材の熱膨張率の差によって、接合加熱時において、ステンレスジグとミニコアとの間に約4Nの圧縮荷重が生じた。接合面積から計算すると、フィンとチューブとの接合面には約10kPaの応力が生じていることになる。
 このようにして作製したミニコアを非腐食性の弗化物系フラックスの10%懸濁液に浸漬して乾燥後に、窒素雰囲気中において580~600℃で3分間加熱してフィン材とチューブ材とを接合した。なお、サンプルNo.D13、D14及びD22では、フラックスを塗布せず真空中で接合した。また、サンプルNo.D12では、セシウム入りの弗化物系フラックスを用いた。サンプルNo.D26では、Zn置換フラックスを塗布して加熱を行った。
 サンプルNo.D1~D24及びD43、D44については、第1実施形態と同様にしてチューブとフィンの接合率を求めて評価した。また、チューブの潰れの有無についても確認した。更に、耐食性評価のためにCASS試験を1000h行い、チューブを貫通する腐食の有無を確認した。腐食がなかったものを○、腐食が発生したものを×とした。
 また、第1実施形態と同様にして、部材断面の組織観察を行い、3μm以上の長径を有する粒内共晶組織の面密度、全結晶粒界の三重点のうち、1μm以上の円相当径を有する金属間化合物が存在する結晶粒界の三重点の割合を求めた。更に、第1実施形態と同様にして、サンプル中の円相当径0.5μm~5μmのSi系金属間化合物とAl系金属間化合物の分散粒子の面密度を測定した。評価結果を表8に示す。
 サンプルNo.D25~D42については、押出チューブをフィンから剥し、表面にZnを主成分とする層を付加した押出チューブに発生した腐食の深さを焦点深度法により測定した。評価結果を、表9に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表8に示すように、実施例のD1~D15及びD43、D44は、いずれも押出性、接合率、チューブ潰れ性、耐食性ともに合格であった。
 これに対して、比較例D16(合金組成E16)では、Si成分が規定値に満たないため、全結晶粒界の三重点のうち、1μm以上の円相当径を有する金属間化合物が存在する結晶粒界の三重点の割合が低かった。また、接合率も低下した。
 比較例D17(合金組成E17)では、Si成分が規定値を超え液相率が高くなり過ぎたために、接合時に押出管の潰れが発生した。
 比較例D18(合金組成E18)では、Si成分が規定値に満たないため、1μm以上の円相当径を有する金属間化合物が存在する結晶粒界の三重点の割合が低かった。また、接合率も低下した。
 比較例D19(合金組成E19)では、Si成分が規定値を超えているため、接合時に押出管の潰れが発生した。
 また、比較例D20~比較例D24については、CASS試験の結果において貫通孔が発生し耐食性の点で劣っていた。これらは、合金組成に起因するものであり、それぞれ、FeとCu成分(合金組成E20)、Mn成分(合金組成E21)、Zn成分(合金組成E22)、Mg成分(合金組成E23)、Cr、Ti、V成分(合金組成E24)が規定値を超えているためである。
 また、Znを主成分とする層の効果ついては、表9に示すように、実施例のD25~D39では、表面にZn層が形成されていることにより犠牲防食作用が働き、腐食深さが0.60mm未満と浅かった。
 これに対し、参考例のD40~D42では、表面にZnが付与されていないため、貫通には至っていないが0.90mmを超える深い腐食深さとなった。このように、耐食性改善のためのZnを主成分とする層形成の有効性が確認できた。
 本発明により、ろう材又は溶加材のような接合部材を使用することなくアルミニウム合金材を接合することができるので、その構造体を効率的に製造可能となる。また、本発明では、接合部材の接合前後における寸法又は形状の変化が殆ど生じない。このように、本発明に係るアルミニウム合金材、ならびに、これを用いた構造体及びその製造方法は、工業上顕著な効果を奏するものである。
 c・・・Si濃度
 c1・・・Si濃度
 c2・・・Si濃度
 T・・・温度
 T1・・・Teを超えた温度
 T2・・・Ts2を超えた温度
 Te・・・固相線温度
 Ts2・・・固相線温度

Claims (12)

  1.  Si:1.0質量%~5.0質量%、Fe:0.01質量%~2.0質量%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金材であって、
     0.5~5μmの円相当径を有するSi系金属間化合物が、前記アルミニウム合金材断面において250個/mm以上7×10個/mm以下存在し、
     0.5~5μmの円相当径を有するAl系金属間化合物の分散粒子が、前記アルミニウム合金材断面において100個/mm以上7×10個/mm以下存在することを特徴とするアルミニウム合金材。
  2.  Si:1.0質量%~5.0質量%、Fe:0.01質量%~2.0質量%を含有し、Mg:2.0質量%以下、Cu:1.5質量%以下及びMn:2.0質量%以下から選択される1種または2種以上を更に含有し、残部Al及び不可避的不純物からなるアルミニウム合金材であって、
     0.5~5μmの円相当径を有するSi系金属間化合物が、前記アルミニウム合金材断面において250個/mm以上7×10個/mm以下存在し、
     0.5~5μmの円相当径を有するAl系金属間化合物の分散粒子が、前記アルミニウム合金材断面において100個/mm以上7×10個/mm以下存在することを特徴とするアルミニウム合金材。
  3.  Zn:6.0質量%以下、In:0.3質量%以下及びSn:0.3質量%以下から選択される1種または2種以上を更に含有する、請求項1又は請求項2記載のアルミニウム合金材。
  4.  Ti:0.3質量%以下、V:0.3質量%以下、Cr:0.3質量%以下、Ni:2.0質量%以下及びZr:0.3質量%以下から選択される1種または2種以上を更に含有する、請求項1~請求項3のいずれか一項に記載のアルミニウム合金材。
  5.  Be:0.1質量%以下、Sr:0.1質量%以下、Bi:0.1質量%以下、Na:0.1質量%以下及びCa:0.05質量%以下から選択される1種または2種以上を更に含有する、請求項1~請求項4のいずれか一項に記載のアルミニウム合金材。
  6.  前記アルミニウム合金材の表面にZnを含有する層が形成されている、請求項1~請求項5のいずれか一項に記載のアルミニウム合金材。
  7.  二つ以上の部材を接合したアルミニウム合金構造体の製造方法において、
     前記二つ以上の部材の少なくとも一つに請求項1~請求項6のいずれか一項に記載のアルミニウム合金材を用い、
     真空中又は非酸化性雰囲気中において、前記二つ以上の部材の少なくとも一つに用いた前記アルミニウム合金材の全質量に対する当該アルミニウム合金材内に生成する液相の質量の比が5%以上35%以下となる温度において接合を行うアルミニウム合金構造体の製造方法。
  8.  前記二つ以上の部材の少なくとも一つに用いた前記アルミニウム合金材の全質量に対する当該アルミニウム合金材内に生成する液相の質量の比が5%以上である時間が30秒以上3600秒以内の間に、前記二つ以上の部材を接合する、請求項7に記載のアルミニウム合金材構造体の製造方法。
  9.  二つ以上の部材を接合したアルミニウム合金構造体において、
     少なくとも一つの接合箇所で、接合された前記二つ以上の部材の少なくとも一方の断面の金属組織において、1μm以上の円相当径を有するSi系金属間化合物及びAl系金属間化合物が存在する結晶粒界の三重点の個数が、全結晶粒界の三重点の個数の50%以上の割合であるアルミニウム合金構造体。
  10.  接合された前記二つ以上の部材の少なくとも一つの断面において、3μm以上の長径を有する共晶組織がマトリクスの結晶粒内に10個/mm~3000個/mm存在する、請求項9に記載のアルミニウム合金構造体。
  11.  接合された前記二つ以上の部材の少なくとも一つが、その表面にZnを含有する層を有する、請求項9または請求項10に記載のアルミニウム合金製構造体。
  12.  前記アルミニウム合金構造体が、フィン材、チューブ材、プレート材及びタンク材から選択される二つ以上の部材が接合された熱交換器を構成する、請求項9~請求項11のいずれか一項に記載のアルミニウム合金構造体。
PCT/JP2012/075404 2011-12-02 2012-10-01 アルミニウム合金材、ならびに、アルミニウム合金構造体及びその製造方法 WO2013080650A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201280045064.2A CN103930577B (zh) 2011-12-02 2012-10-01 铝合金材料和铝合金结构体及其制造方法
JP2013506400A JP5337326B1 (ja) 2011-12-02 2012-10-01 アルミニウム合金材、ならびに、アルミニウム合金構造体及びその製造方法
US14/361,740 US9574253B2 (en) 2011-12-02 2012-10-01 Aluminum alloy material, aluminum alloy structure, and manufacturing method for same
BR112014013132-5A BR112014013132B1 (pt) 2011-12-02 2012-10-01 Membro de barbatana em uma única camada para um trocador de calor, método de fabricação para uma estrutura de liga de alumínio e estrutura de liga de alumínio
EP12853959.0A EP2787094B1 (en) 2011-12-02 2012-10-01 Aluminum alloy material and aluminum alloy structure and production process therefor
IN1031MUN2014 IN2014MN01031A (ja) 2011-12-02 2012-10-01
ES12853959.0T ES2613590T3 (es) 2011-12-02 2012-10-01 Material de aleación de aluminio y estructura de aleación de aluminio y proceso de producción de los mismos
KR1020147018291A KR101581607B1 (ko) 2011-12-02 2012-10-01 알루미늄 합금재를 이용한 열교환기용 핀재와 이를 포함하는 알루미늄 합금 구조체
US15/411,739 US9903008B2 (en) 2011-12-02 2017-01-20 Aluminum alloy material, aluminum alloy structure, and manufacturing method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011264845 2011-12-02
JP2011-264845 2011-12-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/361,740 A-371-Of-International US9574253B2 (en) 2011-12-02 2012-10-01 Aluminum alloy material, aluminum alloy structure, and manufacturing method for same
US15/411,739 Continuation US9903008B2 (en) 2011-12-02 2017-01-20 Aluminum alloy material, aluminum alloy structure, and manufacturing method for same

Publications (1)

Publication Number Publication Date
WO2013080650A1 true WO2013080650A1 (ja) 2013-06-06

Family

ID=48535125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075404 WO2013080650A1 (ja) 2011-12-02 2012-10-01 アルミニウム合金材、ならびに、アルミニウム合金構造体及びその製造方法

Country Status (11)

Country Link
US (2) US9574253B2 (ja)
EP (1) EP2787094B1 (ja)
JP (2) JP5337326B1 (ja)
KR (1) KR101581607B1 (ja)
CN (1) CN103930577B (ja)
BR (1) BR112014013132B1 (ja)
ES (1) ES2613590T3 (ja)
IN (1) IN2014MN01031A (ja)
MY (1) MY163231A (ja)
PL (1) PL2787094T3 (ja)
WO (1) WO2013080650A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103796347A (zh) * 2014-03-03 2014-05-14 南通华特铝热传输材料有限公司 用于家用空调ptc发热器的复合铝条
WO2014184880A1 (ja) * 2013-05-14 2014-11-20 株式会社Uacj 単層で加熱接合機能を有するアルミニウム合金材及びその製造方法、ならびに、当該アルミニウム合金材を用いたアルミニウム接合体
WO2014196183A1 (ja) * 2013-06-02 2014-12-11 株式会社Uacj 熱交換器及び当該熱交換器用フィン材
CN104697383A (zh) * 2015-03-31 2015-06-10 东莞市闻誉实业有限公司 散热板
CN112743304A (zh) * 2020-12-30 2021-05-04 深圳市恩利来科技有限公司 一种环保合金材料精深加工方法
CN114423563A (zh) * 2019-10-04 2022-04-29 三菱铝株式会社 铝钎焊片材和铝部件的无助焊剂钎焊方法
WO2022138171A1 (ja) * 2020-12-23 2022-06-30 株式会社Uacj 熱交換器、熱交換器用チューブ材及び熱交換器用フィン材
WO2022176420A1 (ja) * 2021-02-16 2022-08-25 株式会社Uacj アルミニウム合金板、その製造方法及び熱交換器

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938042A (zh) * 2014-03-03 2014-07-23 虞海香 一种具有良好切削性能的铝合金材料
US20170113305A1 (en) * 2014-03-19 2017-04-27 Uacj Corporation Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor
WO2015141192A1 (ja) * 2014-03-19 2015-09-24 株式会社Uacj 耐食性及びろう付性に優れたアルミニウム合金クラッド材及びその製造方法
KR101603424B1 (ko) * 2014-07-14 2016-03-15 명화공업주식회사 주단조용 알루미늄 합금 및 이를 이용한 자동차 샤시구조 부품의 제조방법
JP2016035368A (ja) * 2014-08-04 2016-03-17 株式会社Uacj アルミニウム合金熱交換器およびその製造方法
CN104233007A (zh) * 2014-08-27 2014-12-24 邹平齐星工业铝材有限公司 高导热率热传输翅片及其制造方法
CN104313404A (zh) * 2014-09-30 2015-01-28 无锡康柏斯机械科技有限公司 一种轴流压缩机定叶片合金材料及其制备方法
JP6557476B2 (ja) * 2015-02-10 2019-08-07 三菱アルミニウム株式会社 アルミニウム合金フィン材
US10786051B2 (en) * 2015-03-27 2020-09-29 Ykk Corporation Element for slide fastener
CN104775059B (zh) * 2015-04-21 2017-03-22 宝山钢铁股份有限公司 具有长时间自然时效稳定性的Al‑Mg‑Si系铝合金材料、铝合金板及其制造方法
EP3289111B1 (en) 2015-04-28 2021-06-02 Consolidated Engineering Company, Inc. System and method for heat treating aluminum alloy castings
RU2610578C1 (ru) * 2015-09-29 2017-02-13 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Высокопрочный сплав на основе алюминия
US11085277B2 (en) 2015-10-07 2021-08-10 Benteler Steel/Tube Gmbh Seamless steel pipe, method of producing a high strength seamless steel pipe, usage of a seamless steel pipe and perforation gun
CN106566959B (zh) * 2015-10-10 2020-06-09 中兴通讯股份有限公司 一种铝合金材料及其制备方法
CN105624479B (zh) * 2015-11-26 2017-10-03 新疆众和股份有限公司 一种焊接用铝硅系合金杆及其生产方法
WO2017106665A1 (en) 2015-12-18 2017-06-22 Novelis Inc. High strength 6xxx aluminum alloys and methods of making the same
CN108138269A (zh) 2015-12-18 2018-06-08 诺维尔里斯公司 高强度6xxx铝合金和其制备方法
CN105568075A (zh) * 2015-12-19 2016-05-11 丹阳市宸兴环保设备有限公司 一种油罐用铝合金化工材料
CN105627806A (zh) * 2015-12-21 2016-06-01 江苏格林威尔金属材料科技有限公司 一种耐腐蚀性内槽圆管
KR101795260B1 (ko) * 2016-05-24 2017-11-07 현대자동차주식회사 열전도도 및 주조성이 향상된 다이캐스팅용 알루미늄 합금을 이용한 배터리용 히트싱크 및 이의 제조방법
CN105838934B (zh) * 2016-05-30 2018-01-12 广州晶品智能压塑科技股份有限公司 制盖机用高耐磨性高硬度合金材料
CN106011557B (zh) * 2016-06-23 2018-03-20 南京龙超金属制造科技有限公司 一种高性能铝合金壳体及其制备方法
JP2018090840A (ja) * 2016-11-30 2018-06-14 株式会社Uacj 熱交換器用アルミニウム合金フィン材、当該熱交換器用アルミニウム合金フィン材を用いた熱交換器用アルミニウム合金フィン材コイル、当該熱交換器用アルミニウム合金フィン材又は熱交換器用アルミニウム合金フィン材コイルを用いて製造されるコルゲートフィン材、ならびに、これらコルゲートフィン材を用いて製造される熱交換器
CN107699749B (zh) * 2017-05-08 2019-07-05 江苏涞森环保设备有限公司 三元流叶轮及其制备方法
RU2683399C1 (ru) * 2017-06-21 2019-03-28 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Сплав на основе алюминия
CN107604185A (zh) * 2017-09-22 2018-01-19 安徽霍山龙鑫金属科技有限公司 一种铝合金的制备工艺
US11391523B2 (en) * 2018-03-23 2022-07-19 Raytheon Technologies Corporation Asymmetric application of cooling features for a cast plate heat exchanger
CN108624787A (zh) * 2018-04-28 2018-10-09 东莞市润华铝业有限公司 一种散热器用铝合金及其制备方法
MX2020011510A (es) 2018-05-15 2020-12-07 Novelis Inc Aleaciones de aluminio 6xxx y 7xxx de alta resistencia y metodos para llevarlos a cabo.
KR101923218B1 (ko) 2018-10-18 2018-11-28 박태수 직화 구이판 및 그 제조 방법
WO2020106764A1 (en) * 2018-11-20 2020-05-28 Arconic Inc. Aluminum alloy products and methods for making the same
CN109207811B (zh) * 2018-11-21 2020-12-22 重庆铝王铝业有限公司 一种铝合金型材的制备方法及其应用
CN111218592A (zh) * 2020-02-28 2020-06-02 同曦集团有限公司 一种易切削铝合金及其制备方法
CN112195375B (zh) * 2020-10-16 2022-04-12 江苏常铝铝业集团股份有限公司 一种自钎焊铝合金箔材及其制造方法
CN113201672B (zh) * 2021-04-20 2022-06-14 北京科技大学 一种高烤漆硬化增量的Al-Mg-Si-Cu-Zn合金及制备方法
CN115354178A (zh) * 2022-10-19 2022-11-18 山东裕航特种合金装备有限公司 石油钻探用铝合金管体及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036355A (ja) * 1989-05-31 1991-01-11 Showa Alum Corp 無電解Znメッキ用アルミニウム材の製造方法
JP2001262264A (ja) * 2000-03-21 2001-09-26 Kobe Steel Ltd 靱性および曲げ性に優れたAl−Mg−Si系Al合金板
JP2004332106A (ja) * 2003-04-15 2004-11-25 Nippon Light Metal Co Ltd プレス成形性および連続抵抗スポット溶接性に優れたアルミニウム合金板およびその製造方法
JP2008303405A (ja) 2007-06-05 2008-12-18 Mitsubishi Alum Co Ltd 熱交換器ヘッダプレート用アルミニウム合金材料および熱交換器用ろう付け体
JP2008308760A (ja) 2006-12-21 2008-12-25 Mitsubishi Alum Co Ltd ろう付によって製造される高強度自動車熱交換器用部材に用いられる、成形性と耐エロージョン性に優れた自動車熱交換器用高強度アルミニウム合金材、及びその製造方法
JP2009068056A (ja) * 2007-09-12 2009-04-02 Sumitomo Light Metal Ind Ltd レーザ溶接性に優れたアルミニウム合金板材
JP2009161835A (ja) 2008-01-09 2009-07-23 Sumitomo Light Metal Ind Ltd アルミニウム製熱交換器及びその製造方法
JP2010168613A (ja) 2009-01-21 2010-08-05 Furukawa-Sky Aluminum Corp 熱交換器用単層ブレージングシートおよびそれを使用した熱交換器
JP2012040611A (ja) * 2010-07-20 2012-03-01 Furukawa-Sky Aluminum Corp アルミニウム合金材を用い、耐食性に優れた構造体とその接合方法
JP2012051028A (ja) * 2010-08-06 2012-03-15 Furukawa-Sky Aluminum Corp アルミニウム合金材を用いた構造体とその接合方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4473110A (en) * 1981-12-31 1984-09-25 Union Carbide Corporation Corrosion protected reversing heat exchanger
JP3403333B2 (ja) * 1998-05-15 2003-05-06 古河電気工業株式会社 自動車用アルミニウム板材とその製造方法
DE10163039C1 (de) * 2001-12-21 2003-07-24 Daimler Chrysler Ag Warm- und kaltumformbares Bauteil aus einer Aluminiumlegierung und Verfahren zu seiner Herstellung
EP1443122B1 (de) * 2003-01-23 2009-07-29 ALUMINIUM RHEINFELDEN GmbH Druckgusslegierung aus Aluminiumlegierung
CN100413986C (zh) * 2003-04-15 2008-08-27 日本轻金属株式会社 具有优异模压成型性及连续电阻点焊性的铝合金板及其生产方法
JP4669711B2 (ja) * 2005-02-17 2011-04-13 株式会社デンソー ブレージング用アルミニウム合金フィン材
JP3869846B2 (ja) * 2005-03-25 2007-01-17 神鋼アルコア輸送機材株式会社 アルミニウム合金板および熱交換器
US8247084B2 (en) * 2010-05-18 2012-08-21 Kobe Steel, Ltd. Aluminum alloy brazing sheet
JP5532520B2 (ja) * 2010-09-29 2014-06-25 日本軽金属株式会社 アルミニウム合金部材の面ろう付け方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036355A (ja) * 1989-05-31 1991-01-11 Showa Alum Corp 無電解Znメッキ用アルミニウム材の製造方法
JP2001262264A (ja) * 2000-03-21 2001-09-26 Kobe Steel Ltd 靱性および曲げ性に優れたAl−Mg−Si系Al合金板
JP2004332106A (ja) * 2003-04-15 2004-11-25 Nippon Light Metal Co Ltd プレス成形性および連続抵抗スポット溶接性に優れたアルミニウム合金板およびその製造方法
JP2008308760A (ja) 2006-12-21 2008-12-25 Mitsubishi Alum Co Ltd ろう付によって製造される高強度自動車熱交換器用部材に用いられる、成形性と耐エロージョン性に優れた自動車熱交換器用高強度アルミニウム合金材、及びその製造方法
JP2008303405A (ja) 2007-06-05 2008-12-18 Mitsubishi Alum Co Ltd 熱交換器ヘッダプレート用アルミニウム合金材料および熱交換器用ろう付け体
JP2009068056A (ja) * 2007-09-12 2009-04-02 Sumitomo Light Metal Ind Ltd レーザ溶接性に優れたアルミニウム合金板材
JP2009161835A (ja) 2008-01-09 2009-07-23 Sumitomo Light Metal Ind Ltd アルミニウム製熱交換器及びその製造方法
JP2010168613A (ja) 2009-01-21 2010-08-05 Furukawa-Sky Aluminum Corp 熱交換器用単層ブレージングシートおよびそれを使用した熱交換器
JP2012040611A (ja) * 2010-07-20 2012-03-01 Furukawa-Sky Aluminum Corp アルミニウム合金材を用い、耐食性に優れた構造体とその接合方法
JP2012051028A (ja) * 2010-08-06 2012-03-15 Furukawa-Sky Aluminum Corp アルミニウム合金材を用いた構造体とその接合方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Aluminum Brazing Handbook (revised edition", 2003, JAPAN LIGHT METAL WELDING & CONSTRUCTION ASSOCIATION
See also references of EP2787094A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014184880A1 (ja) * 2013-05-14 2014-11-20 株式会社Uacj 単層で加熱接合機能を有するアルミニウム合金材及びその製造方法、ならびに、当該アルミニウム合金材を用いたアルミニウム接合体
WO2014196183A1 (ja) * 2013-06-02 2014-12-11 株式会社Uacj 熱交換器及び当該熱交換器用フィン材
US10408550B2 (en) 2013-06-02 2019-09-10 Uacj Corporation Heat exchanger, and fin material for said heat exchanger
CN103796347A (zh) * 2014-03-03 2014-05-14 南通华特铝热传输材料有限公司 用于家用空调ptc发热器的复合铝条
CN104697383A (zh) * 2015-03-31 2015-06-10 东莞市闻誉实业有限公司 散热板
CN104697383B (zh) * 2015-03-31 2016-10-05 东莞市闻誉实业有限公司 散热板
CN114423563A (zh) * 2019-10-04 2022-04-29 三菱铝株式会社 铝钎焊片材和铝部件的无助焊剂钎焊方法
CN114423563B (zh) * 2019-10-04 2022-12-06 Ma铝株式会社 铝钎焊片材和铝部件的无助焊剂钎焊方法
WO2022138171A1 (ja) * 2020-12-23 2022-06-30 株式会社Uacj 熱交換器、熱交換器用チューブ材及び熱交換器用フィン材
CN112743304A (zh) * 2020-12-30 2021-05-04 深圳市恩利来科技有限公司 一种环保合金材料精深加工方法
WO2022176420A1 (ja) * 2021-02-16 2022-08-25 株式会社Uacj アルミニウム合金板、その製造方法及び熱交換器

Also Published As

Publication number Publication date
CN103930577B (zh) 2015-05-20
IN2014MN01031A (ja) 2015-05-01
BR112014013132A2 (ja) 2018-08-21
US20150050520A1 (en) 2015-02-19
KR20140099312A (ko) 2014-08-11
EP2787094A1 (en) 2014-10-08
ES2613590T3 (es) 2017-05-24
MY163231A (en) 2017-08-30
PL2787094T3 (pl) 2017-06-30
JP2013249540A (ja) 2013-12-12
KR101581607B1 (ko) 2015-12-30
CN103930577A (zh) 2014-07-16
EP2787094B1 (en) 2016-12-07
BR112014013132B1 (pt) 2022-05-31
US9903008B2 (en) 2018-02-27
US20170137919A1 (en) 2017-05-18
US9574253B2 (en) 2017-02-21
JPWO2013080650A1 (ja) 2015-04-27
JP5436714B2 (ja) 2014-03-05
EP2787094A4 (en) 2015-12-09
JP5337326B1 (ja) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5436714B2 (ja) アルミニウム合金材、ならびに、アルミニウム合金構造体及びその製造方法
JP5345264B1 (ja) 熱交換器フィン用のアルミニウム合金材及びその製造方法、ならびに、当該アルミニウム合金材を用いた熱交換器
JP5732594B2 (ja) 単層で加熱接合機能を有するアルミニウム合金材及びその製造方法、ならびに、当該アルミニウム合金材を用いたアルミニウム接合体
JP5698416B1 (ja) 熱交換器及び当該熱交換器用フィン材
WO2010137649A1 (ja) 熱交換器用アルミニウム合金製ブレージングシートおよび熱交換器用アルミニウム合金製ろう付け体
JP2012051028A (ja) アルミニウム合金材を用いた構造体とその接合方法
WO2017141921A1 (ja) アルミニウム合金ブレージングシート及びその製造方法、ならびに、当該ブレージングシートを用いた自動車用熱交換器の製造方法
JP6909028B2 (ja) アルミニウム合金製フィン材及びこれを用いたアルミニウム合金製ブレージングシート、ならびに、当該フィン材又はブレージングシートをフィンに用いた熱交換器
JP6154645B2 (ja) ろう付け接合構造体
JP2012040611A (ja) アルミニウム合金材を用い、耐食性に優れた構造体とその接合方法
JP2009046705A (ja) 耐食性に優れた熱交換器用押出扁平多穴管及び熱交換器
WO2022176420A1 (ja) アルミニウム合金板、その製造方法及び熱交換器
WO2022138171A1 (ja) 熱交換器、熱交換器用チューブ材及び熱交換器用フィン材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013506400

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853959

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14361740

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147018291

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012853959

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012853959

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201404033

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014013132

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112014013132

Country of ref document: BR

Free format text: APRESENTE O COMPLEMENTO DO TEXTO EM PORTUGUES, ADAPTADO A NORMA VIGENTE, DOS DESENHOS DO PEDIDO DE ACORDO COM O DEPOSITO INTERNACIONAL INICIAL, CONFORME DETERMINA A RESOLUCAO INPI PR NO 77/2013 DE 18/03/2013, ART. 5O E 7O.

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112014013132

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014013132

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140530