WO2013080617A1 - タングステン細粉の製造方法 - Google Patents
タングステン細粉の製造方法 Download PDFInfo
- Publication number
- WO2013080617A1 WO2013080617A1 PCT/JP2012/071761 JP2012071761W WO2013080617A1 WO 2013080617 A1 WO2013080617 A1 WO 2013080617A1 JP 2012071761 W JP2012071761 W JP 2012071761W WO 2013080617 A1 WO2013080617 A1 WO 2013080617A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tungsten powder
- tungsten
- powder
- acid
- aqueous solution
- Prior art date
Links
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 title claims abstract description 126
- 238000000034 method Methods 0.000 title claims abstract description 58
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000002245 particle Substances 0.000 claims abstract description 64
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 35
- 230000003647 oxidation Effects 0.000 claims abstract description 33
- 239000007864 aqueous solution Substances 0.000 claims abstract description 26
- 239000002253 acid Substances 0.000 claims abstract description 14
- 238000010298 pulverizing process Methods 0.000 claims abstract description 11
- 239000000843 powder Substances 0.000 claims description 27
- 229910052721 tungsten Inorganic materials 0.000 claims description 23
- 239000010937 tungsten Substances 0.000 claims description 23
- 238000003756 stirring Methods 0.000 claims description 18
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 16
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 11
- 239000011707 mineral Substances 0.000 claims description 11
- 239000008151 electrolyte solution Substances 0.000 claims description 9
- 239000000047 product Substances 0.000 claims description 9
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 8
- 239000007800 oxidant agent Substances 0.000 claims description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 6
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 6
- 239000004327 boric acid Substances 0.000 claims description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- 239000007795 chemical reaction product Substances 0.000 claims description 2
- 239000000243 solution Substances 0.000 abstract description 6
- 239000003990 capacitor Substances 0.000 description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 239000002994 raw material Substances 0.000 description 16
- 238000010908 decantation Methods 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000007788 liquid Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000012153 distilled water Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000009835 boiling Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium peroxydisulfate Substances [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- VAZSKTXWXKYQJF-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)OOS([O-])=O VAZSKTXWXKYQJF-UHFFFAOYSA-N 0.000 description 2
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 2
- 238000002048 anodisation reaction Methods 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- -1 tungsten halide Chemical class 0.000 description 2
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 2
- OFEAOSSMQHGXMM-UHFFFAOYSA-N 12007-10-2 Chemical compound [W].[W]=[B] OFEAOSSMQHGXMM-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- POPCQNRKDVTFGA-UHFFFAOYSA-N boric acid methanol Chemical compound OC.OB(O)O POPCQNRKDVTFGA-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 229940077239 chlorous acid Drugs 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 229940117975 chromium trioxide Drugs 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N chromium trioxide Inorganic materials O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical class [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- GAMDZJFZMJECOS-UHFFFAOYSA-N chromium(6+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Cr+6] GAMDZJFZMJECOS-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 description 1
- RHMZKSWPMYAOAZ-UHFFFAOYSA-N diethyl peroxide Chemical compound CCOOCC RHMZKSWPMYAOAZ-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- HPGPEWYJWRWDTP-UHFFFAOYSA-N lithium peroxide Chemical compound [Li+].[Li+].[O-][O-] HPGPEWYJWRWDTP-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000009700 powder processing Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- PFUVRDFDKPNGAV-UHFFFAOYSA-N sodium peroxide Chemical compound [Na+].[Na+].[O-][O-] PFUVRDFDKPNGAV-UHFFFAOYSA-N 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical group [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/04—Alloys based on tungsten or molybdenum
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/048—Electrodes or formation of dielectric layers thereon characterised by their structure
- H01G9/052—Sintered electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/048—Electrodes or formation of dielectric layers thereon characterised by their structure
- H01G9/052—Sintered electrodes
- H01G9/0525—Powder therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Definitions
- the present invention relates to a method for producing tungsten fine powder. More specifically, the present invention relates to a method for processing tungsten powder into a tungsten powder having a finer particle diameter that is useful for an electrolytic capacitor, and a method for producing tungsten fine powder using the method.
- capacitors used in these electronic devices are smaller and lighter, with larger capacitance and lower ESR (equivalent series resistance). ) Is required.
- an anode body of a capacitor made of a sintered body of valve action metal powder such as tantalum capable of anodization is anodized, and a dielectric layer made of these metal oxides is formed on the surface.
- An electrolytic capacitor has been proposed.
- Electrolytic capacitors that use tungsten as the valve metal and have a sintered body of tungsten powder as the anode body have the same volume of anode body using tantalum powder of the same particle size, compared to electrolytic capacitors that can be obtained with the same conversion voltage. Although a large capacity can be obtained, the leakage current (LC) is large and it has not been put to practical use as an electrolytic capacitor. In order to improve this, a capacitor using an alloy of tungsten and another metal has been studied. However, although the leakage current is somewhat improved, it has not been sufficient (Japanese Patent Laid-Open No. 2004-349658 (US6876083)). : Patent Document 1).
- Patent Document 2 Japanese Patent Laid-Open No. 2003-272959 discloses a capacitor using a tungsten foil electrode on which a dielectric layer selected from WO 3 , W 2 N, and WN 2 is formed. This is not a solution for the leakage current.
- Patent Document 3 International Publication No. 2004/055843 (US7154743) discloses an electrolytic capacitor using an anode selected from tantalum, niobium, titanium, and tungsten. There is no description of the specific examples used.
- the anode body for an electrolytic capacitor sintered after forming the tungsten powder has the same volume, the smaller the particle diameter of the tungsten powder, the larger the capacity of the anode body can be made. The smaller the particle size, the better, but the average particle size of commercially available tungsten powder is 0.5 to 20 ⁇ m.
- Tungsten powder can be produced by treating tungsten oxide, halide, ammonium salt or the like with a reducing agent such as hydrogen.
- a reducing agent such as hydrogen.
- the reduction rate is increased, there is a problem that a composite oxide is generated. Therefore, in order to produce a finer powder, the reduction rate must be slowed, resulting in a reduction in production efficiency and an increase in cost.
- a material having a wide explosion range, such as hydrogen gas must be handled by a complicated process having an expensive control device.
- An object of the present invention is to provide a tungsten powder processing method for obtaining a tungsten powder having a smaller particle size as a raw material for a capacitor having tungsten as an anode (hereinafter referred to as a tungsten capacitor), and a method for producing a tungsten fine powder using the method. It is to provide.
- the present inventors have found that a tungsten fine powder suitable for a tungsten capacitor can be obtained by electrolytic oxidation of the surface of currently available tungsten powder, and the present invention has been completed. did. That is, the present invention relates to the following tungsten powder refinement method and tungsten powder production method.
- Fine powder of tungsten powder characterized in that an oxide film is formed on the surface of tungsten powder particles by electrolytic oxidation while stirring the tungsten powder in an electrolytic solution, and the oxide film is removed with an alkaline aqueous solution.
- Method. [2] The method for finely pulverizing tungsten powder according to [1], wherein the removal of the oxide film with an alkaline aqueous solution includes mechanically removing a reaction product on the particle surface of the tungsten powder. [3] The tungsten powder thinning method according to item 1 or 2, wherein the electrolytic solution is an aqueous solution of a mineral acid.
- a method for producing a tungsten fine powder characterized in that a tungsten powder having an average particle size of 0.04 to 0.4 ⁇ m is obtained by a process including the method according to 1 to 6 above.
- the range of the average particle size ( ⁇ m), the true density (g / cm 3 ), and the BET specific surface area (m 2 / g) is in the range of 6 ⁇ 0.4 by the steps including the methods 1 to 6 above.
- a method for producing tungsten fine powder, characterized in that tungsten powder is obtained.
- the average particle diameter is 0.04 to 0.4 ⁇ m, and the product of the average particle diameter d ( ⁇ m), the true density M (g / cm 3 ), and the BET specific surface area S (m 2 / g) ( A tungsten powder having a dMS) value in the range of 6 ⁇ 0.4.
- a tungsten powder having a fine particle size and a substantially spherical particle shape suitable for an electrolytic capacitor is produced from tungsten powder that is currently commercially available or tungsten powder that can be produced by a known method. can do. Since the tungsten powder obtained by the present invention has a fine particle size, the capacity of the obtained capacitor is increased. Moreover, since the particle shape becomes closer to a sphere, the fluidity of the tungsten powder is improved. Therefore, it becomes easy to handle the powder in the granulated powder production process.
- the raw material tungsten powder to be finely divided is preferably one having an average particle diameter in the range of 0.1 to 10 ⁇ m.
- a method for obtaining the raw material tungsten powder in addition to commercially available products, those produced by known methods, for example, a method of pulverizing tungsten trioxide powder in a hydrogen atmosphere, or tungstic acid or tungsten halide with hydrogen, sodium, etc. It can obtain by selecting suitably the method etc. which reduce by. Moreover, what was obtained by selecting reduction conditions directly or through several processes from a tungsten containing mineral may be used.
- tungsten powder that has been pretreated by a chemical oxidation method is used as the raw material tungsten powder as described later, or the method of the present invention is applied. You may use the tungsten powder obtained by doing as raw material tungsten powder. By using the tungsten powder that has been subjected to the fine powdering process as the raw material tungsten powder, a tungsten powder having a smaller particle diameter can be obtained. For example, when application of the method of the present invention is repeated, tungsten powder having an average particle size of 0.04 ⁇ m or less can be obtained.
- the dielectric layer is formed by anodic oxidation
- the lower limit value of the particle size of tungsten powder used for the capacitor is at least twice the thickness of the dielectric layer to be formed. For example, when the rated voltage is 1.6 V, it is 0.04 ⁇ m or more. When the particle size is less than this, when anodization is performed, a sufficient conductive tungsten portion does not remain, making it difficult to form an anode of the electrolytic capacitor.
- the particle size of the tungsten powder is preferably 0.04 to 0.4 ⁇ m, more preferably 0.08 to 0.2 ⁇ m.
- the raw material tungsten powder used in the method of the present invention may contain impurities as long as the capacitor characteristics do not deteriorate, or elements such as silicon, nitrogen, carbon, boron, phosphorus, oxygen, etc. for improving the capacitor characteristics. It may be processed to include. However, the processing of the particle surface such as silicidation, nitridation, carbonization, or boride treatment, which will be described later, is preferably performed in a step after applying the present invention.
- the oxide film on the surface is removed and the tungsten powder refined
- Oxidation of the tungsten powder particle surface can be carried out by chemical oxidation or electrolytic oxidation, but the method of finely pulverizing using electrolytic oxidation (hereinafter referred to as electrolytic oxidation method) determines the amount of oxide film generated by the applied voltage during electrolytic oxidation. Therefore, it can be easily operated as compared with a method of finely pulverizing using chemical oxidation (hereinafter referred to as chemical oxidation method).
- the electrolytic oxidation method can be preferably applied to the production of finer tungsten powder that requires more accurate control of the amount of oxide film produced.
- Tungsten powder may be thinned only by electrolytic oxidation, but when relatively large particles (for example, average particle diameter of 1 ⁇ m or more) are finely divided, pretreatment by chemical oxidation is performed to some extent.
- the electrolytic oxidation method is applied after pulverization (for example, an average particle size of 0.5 ⁇ m or less), the applied voltage at the time of electrolytic oxidation can be kept low, so that the operation becomes easy.
- an electrolytic solution such as an aqueous solution of a mineral acid or a salt thereof can be used, but an aqueous mineral acid solution is preferable because washing after oxidation is easy.
- the mineral acid include phosphoric acid, nitric acid, hydrochloric acid, sulfuric acid, boric acid and the like, but phosphoric acid or boric acid aqueous solution is preferable in that a relatively defective oxide film is easily obtained and easily removed with an aqueous alkaline solution later.
- the concentration of the mineral acid aqueous solution is preferably 0.1 to 5% by mass. When the concentration becomes high, cleaning of tungsten powder, which is a subsequent process, becomes troublesome.
- the raw material tungsten powder is put into a metal container containing an electrolytic solution, and a predetermined voltage is applied under stirring with the metal stirring rod as the anode and the container as the cathode, preferably at room temperature.
- the boiling point of the aqueous solution more preferably 30 to 80 ° C., is preferably applied for 10 minutes to 100 hours, more preferably 1 to 10 hours for oxidation. At this time, it is carried out while replenishing the solvent component disappearing by evaporation if necessary.
- what is necessary is just to set the voltage to apply according to the grade of desired fine powdering. When the applied voltage is further increased, the amount of oxide film is increased and the particle diameter can be further reduced. The specific voltage is obtained by a preliminary experiment.
- the applied voltage is preferably 100 V or less, more preferably 50 V or less, and if necessary, the pulverization operation may be repeated.
- the operation of removing the liquid by decantation or the like is repeated, and the tungsten powder is washed with a solvent such as water. The tungsten powder in this state changes from black to yellowish blue.
- the oxide film of tungsten powder with the oxidized surface obtained above is treated with an alkaline aqueous solution and at least chemically removed.
- the stirring is performed while mechanically removing the product generated on the surface of the tungsten particles by a device capable of strong stirring such as a homogenizer.
- a device capable of strong stirring such as a homogenizer.
- the alkaline solution for example, a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, an aqueous ammonia or the like is used, and a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution is preferable.
- an alkaline aqueous solution is added to the tungsten powder whose surface is oxidized, and the mixture is stirred and allowed to stand. After removing the liquid by decantation, a solvent such as water is added, and the mixture is stirred and left to stand. Repeat a series of operations to be performed several times. By these operations, the tungsten powder becomes black, and the oxide formed on the surface is removed. Thereafter, it is dried by a vacuum dryer (for example, a temperature of 50 to 180 ° C. under reduced pressure at 104 to 102 Pa) and cooled to room temperature. Next, by gradually putting air so as not to ignite and taking it out into the air, a finely divided tungsten powder having a smaller particle size than that of the raw material tungsten powder can be obtained.
- a vacuum dryer for example, a temperature of 50 to 180 ° C. under reduced pressure at 104 to 102 Pa
- the raw material tungsten powder is dispersed by stirring or the like in an aqueous oxidizing agent solution, and the surface is oxidized by holding for a predetermined time.
- an apparatus capable of strong stirring such as a homogenizer.
- oxidation proceeds faster when oxidized at a high temperature.
- the oxidizing agent include manganese (VII) compounds such as permanganate; chromium (VI) compounds such as chromium trioxide, chromate and dichromate; perchloric acid, chlorous acid and hypochlorous acid.
- Halic acid compounds such as acids and their salts; peroxides such as hydrogen peroxide, diethyl peroxide, sodium peroxide, and lithium peroxide; peroxo acids such as peracetic acid and persulfate and their salts .
- peroxides such as hydrogen peroxide, diethyl peroxide, sodium peroxide, and lithium peroxide
- peroxo acids such as peracetic acid and persulfate and their salts .
- hydrogen peroxide and ammonium persulfate are preferable because they are easy to handle, stable as an oxidizing agent, and easily soluble in water.
- the concentration of the oxidizing agent in the aqueous solution is in a range from about 1% to the saturation solubility of the oxidizing agent. The oxidant concentration is appropriately determined by preliminary experiments.
- the oxidation time is from 1 hour to 1000 hours, preferably from 1 hour to 100 hours, and the oxidation temperature is from room temperature to the boiling point of the solvent, preferably from 50 ° C. to the boiling point of the solution.
- the tungsten powder is separated from the oxidation reaction solution by an operation such as decantation, and then washed by repeating a series of operations of adding to a solvent, stirring, standing, and decantation. In the tungsten powder in this state, the black color of the raw material is changed to yellowish blue, and it can be visually confirmed that the surface is oxidized.
- the solvent used in each step of the present invention is not limited to water and is selected from a mixed aqueous solution with a water-soluble organic solvent (for example, ethanol, methanol, etc.) from the viewpoint of powder dispersibility and decantation time. May be.
- a water-soluble organic solvent for example, ethanol, methanol, etc.
- the removal of the oxide film of the tungsten powder having the oxidized surface obtained as described above is performed in the same manner as the removal of the oxide film by the electrolytic oxidation method described above.
- a substantially spherical tungsten particle powder can be obtained unless the particle shape of the raw material tungsten powder is particularly high in anisotropy.
- the particles are spherical because the average particle diameter (d) ( ⁇ m), true density (M) (g / cm 3 ), and BET specific surface area (S) (m 2 / g) of the obtained tungsten powder are It can be confirmed by satisfying the following formula. That is, the product (d ⁇ S ⁇ M) (abbreviated as dSM) of the average particle diameter d ( ⁇ m), true density M (g / cm 3 ), and BET specific surface area S (m 2 / g) of the obtained tungsten powder.
- the obtained tungsten powder particles are substantially spherical.
- the value of dMS of the tungsten powder obtained by the present invention is usually in the range of 6 ⁇ 0.4.
- the tungsten powder obtained by applying the method of the present invention can be used as a raw material tungsten powder to obtain a tungsten powder composed of particles close to a true sphere.
- the dielectric layer formed on the surface of particles close to a spherical shape has a substantially uniform curvature, and there is no deterioration because there is no portion that bends with a small curvature that tends to concentrate stress. As a result, a capacitor with better LC characteristics can be obtained.
- the tungsten powder produced by the method of the present invention may be directly sintered to form a sintered body, or alternatively, the powder granulated into granules of about 10 to 300 ⁇ m may be sintered to form a sintered body. . Granulated ones are easier to handle and easier to keep ESR low. Further, the tungsten powder produced by the method of the present invention is subjected to silicidation, nitridation, carbonization, or boride treatment, and a part of the tungsten particle surface is tungsten silicide, tungsten nitride, tungsten carbide, and boride. A tungsten powder containing at least one selected from tungsten may be used.
- these processes can also be applied at the stage when the granulated powder or sintered body is obtained.
- This sintered body is used as one electrode (anode), and an electrolytic capacitor is produced with a dielectric interposed between the counter electrode (cathode).
- the particle diameter, specific surface area, and true density were measured by the following methods.
- the particle size was measured by laser diffraction scattering method using HRA9320-X100 manufactured by Microtrack, and the particle size value (D 50 ; ⁇ m) corresponding to 50% by volume was calculated as the average particle size. (D).
- this measurement method is a measurement method of the secondary particle size, the dispersibility of the tungsten powder is good to some extent, and therefore the measurement result can be a value close to the primary particle size. Therefore, the measurement result may be substantially regarded as the primary particle diameter, and applied to the above-described equation (1) to determine the particle shape.
- the specific surface area (S; m 2 / g) was measured by BET method using NOVA2000E (SYSMEX).
- the true density (M; g / cm 3 ) was measured by a pycnometer method (20 ° C.).
- Example 1 200 g of tungsten powder having an average particle diameter of 1 ⁇ m obtained by hydrogen reduction of ammonium tungstate was put into 500 mL of distilled water in which 5% by mass of ammonium persulfate was dissolved, and a homogenizer NS-51 manufactured by Microtech Nichion Co., Ltd. was used. And stirred at 50 ° C. for 24 hours. Meanwhile, continued to replenish the evaporating water. After allowing the powder to settle for 17 hours at room temperature, the liquid was removed by decantation. Further, 200 mL of distilled water was added, and the mixture was stirred for 5 minutes with the same homogenizer. After standing for several hours, the liquid was removed by decantation.
- tungsten powder containing water after decantation 100 g of powder alone was transferred to a separately prepared stainless steel container, and 300 mL of 1% by mass phosphoric acid aqueous solution was added as an electrolytic solution.
- a stainless steel stirring bar (4 cm long stainless steel wings are installed at the bottom of the bar, 90 degrees apart from each other) is placed in the electrolyte, and the stirring bar is used as the anode.
- 20 V was applied using the container as a cathode, and electrolytic oxidation was performed while stirring at 50 ° C. for 5 hours at a rotation speed of 100 rpm. Meanwhile, continued to replenish the evaporating water.
- the tungsten powder in this state was black and the oxide formed on the surface was removed. Thereafter, a part of the powder was transferred to a vacuum dryer, dried at 50 ° C. under reduced pressure, and then returned to room temperature. Next, air was gradually introduced so as not to ignite, and was taken out into the air.
- the produced powder had an average particle size (d) of 0.2 ⁇ m, a specific surface area (S) of 1.5 m 2 / g, and a true density (M) of 19.3.
- the resulting powder had an average particle size, specific surface area, and true density product (dMS) of 5.8.
- Example 2 The electrolyte solution of Example 1 was used as a mixed solution of 100 mL of 1.5 mass% boric acid methanol and 350 mL of water instead of 300 mL of 1 mass% phosphoric acid water.
- the decantation liquid was a mixed liquid of methanol and water at the same ratio.
- methanol continued to be replenished during electrolytic oxidation.
- tungsten powder was obtained in the same manner as in Example 1.
- the produced powder had an average particle size (d) of 0.16 ⁇ m, a specific surface area (S) of 2.0 m 2 / g, and a true density (M) of 19.3.
- the average particle size, specific surface area, and true density product (dMS) of the obtained powder was 6.2.
- the product of average particle diameter, specific surface area, and true density (dMS) was in the range of approximately 6 ⁇ 0.2, and it was confirmed that the particle shape was approximately spherical. .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
本発明は、タングステン粉を鉱酸水溶液中で撹拌しながら電解酸化し、タングステン粉の表面に生じた酸化膜をアルカリ水溶液で除去するタングステン粉の細粉化方法、前記細粉化方法を含む工程によりタングステン細粉を得るタングステン粉の製造方法、及び平均粒子径が0.04~0.4μmであり、かつ平均粒子径d(μm)と真密度M(g/cm3)とBET比表面積S(m2/g)との積(dMS)が6±0.4の範囲内であるタングステン粉に関する。
Description
本発明は、タングステン細粉の製造方法に関する。さらに詳しく言えば、タングステン粉を電解コンデンサ用として有用な、より細かな粒径を有するタングステン粉に加工する方法、及びその方法を用いたタングステン細粉の製造方法に関する。
携帯電話やパーソナルコンピュータ等の電子機器の形状の小型化、高速化、軽量化に伴い、これらの電子機器に使用されるコンデンサは、より小型で軽く、より大きな容量、より低いESR(等価直列抵抗)が求められている。
このようなコンデンサとしては、陽極酸化が可能なタンタルなどの弁作用金属粉末の焼結体からなるコンデンサの陽極体を陽極酸化して、その表面にこれらの金属酸化物からなる誘電体層を形成した電解コンデンサが提案されている。
このようなコンデンサとしては、陽極酸化が可能なタンタルなどの弁作用金属粉末の焼結体からなるコンデンサの陽極体を陽極酸化して、その表面にこれらの金属酸化物からなる誘電体層を形成した電解コンデンサが提案されている。
弁作用金属としてタングステンを用い、タングステン粉の焼結体を陽極体とする電解コンデンサは、同一粒径のタンタル粉を用いた同体積の陽極体、同化成電圧で得られる電解コンデンサに比較して、大きな容量を得ることができるが、漏れ電流(LC)が大きく電解コンデンサとして実用に供されなかった。このことを改良するために、タングステンと他の金属との合金を用いたコンデンサが検討されているが漏れ電流は幾分改良されるものの十分ではなかった(特開2004-349658号公報(US6876083):特許文献1)。
特許文献2(特開2003-272959号公報)には、WO3、W2N、WN2から選択される誘電体層が形成されたタングステン箔の電極を用いたコンデンサが開示されているが、前記漏れ電流について解決したものではない。
また、特許文献3(国際公開第2004/055843号(US7154743))には、タンタル、ニオブ、チタン、タングステンから選択される陽極を用いた電解コンデンサを開示しているが、明細書中にタングステンを用いた具体例の記載はない。
また、特許文献3(国際公開第2004/055843号(US7154743))には、タンタル、ニオブ、チタン、タングステンから選択される陽極を用いた電解コンデンサを開示しているが、明細書中にタングステンを用いた具体例の記載はない。
タングステン粉を成形後、焼結した電解コンデンサ用陽極体では、同一体積であれば、タングステン粉の粒径が小さなほど容量の大きな陽極体を作製することができるので、原料タングステン粉の粒径は小さいほど好ましいが、市販のタングステン粉の平均粒径は0.5~20μmである。
タングステン粉は、タングステンの酸化物、ハロゲン化物、アンモニウム塩等を原料として水素のような還元剤で処理して作製できる。ただし、還元速度を速くすると複合酸化物が生成する等の問題がある。そのため、より細かい粉体を作製するためには還元速度を遅くしなければならず、生産効率が低下しコスト高となる。また、高価な制御装置を有する煩雑な工程によって作製する必要があり、さらに水素ガスのような爆発範囲が広い材料を扱わねばならないという問題もあった。
本発明の課題は、タングステンを陽極とするコンデンサ(以下、タングステンコンデンサ)の原料となる粒径のより小さいタングステン粉末を得るタングステン粉の加工方法、及びその方法を用いたタングステン細粉の製造方法を提供することにある。
本発明者は、前記課題を達成するために鋭意検討した結果、現在入手できるタングステン粉の表面を電解酸化することにより、タングステンコンデンサにより好適なタングステン細粉が得られることを見出し、本発明を完成した。
すなわち、本発明は下記のタングステン粉の細粉化方法、及びタングステン粉の製造方法に関する。
すなわち、本発明は下記のタングステン粉の細粉化方法、及びタングステン粉の製造方法に関する。
[1]電解液中でタングステン粉を撹拌しながら電解酸化することにより、タングステン粉の粒子表面に酸化膜を形成させ、前記酸化膜をアルカリ水溶液で除去することを特徴とするタングステン粉の細粉化方法。
[2]前記酸化膜のアルカリ水溶液での除去が、タングステン粉の粒子表面の反応生成物を機械的に除去することを含む前項1に記載のタングステン粉の細粉化方法。
[3]電解液が鉱酸の水溶液である前項1または2に記載のタングステン粉の細粉化方法。
[4]鉱酸が、燐酸、硝酸、塩酸、ホウ酸及び硫酸から選択される前項3に記載のタングステン粉の細粉化方法。
[5]鉱酸が、燐酸またはホウ酸である前項4に記載のタングステン粉の細粉化方法。
[6]酸化剤を含有する水溶液中にタングステン粉を分散することにより、タングステン粉の粒子表面に酸化膜を形成させ、前記酸化膜をアルカリ水溶液で除去した後に、前項1~5の方法を適用するタングステン粉の細粉化方法。
[7]前項1~6の方法を含む工程により平均粒子径0.04~0.4μmのタングステン粉を得ることを特徴とするタングステン細粉の製造方法。
[8]前項1~6の方法を含む工程により、平均粒子径(μm)と真密度(g/cm3)とBET比表面積(m2/g)との積が6±0.4の範囲内であるタングステン粉を得ることを特徴とするタングステン細粉の製造方法。
[9]平均粒子径が0.04~0.4μmであり、かつ平均粒子径d(μm)と真密度M(g/cm3)とBET比表面積S(m2/g)との積(dMS)の値が6±0.4の範囲内であるタングステン粉。
[2]前記酸化膜のアルカリ水溶液での除去が、タングステン粉の粒子表面の反応生成物を機械的に除去することを含む前項1に記載のタングステン粉の細粉化方法。
[3]電解液が鉱酸の水溶液である前項1または2に記載のタングステン粉の細粉化方法。
[4]鉱酸が、燐酸、硝酸、塩酸、ホウ酸及び硫酸から選択される前項3に記載のタングステン粉の細粉化方法。
[5]鉱酸が、燐酸またはホウ酸である前項4に記載のタングステン粉の細粉化方法。
[6]酸化剤を含有する水溶液中にタングステン粉を分散することにより、タングステン粉の粒子表面に酸化膜を形成させ、前記酸化膜をアルカリ水溶液で除去した後に、前項1~5の方法を適用するタングステン粉の細粉化方法。
[7]前項1~6の方法を含む工程により平均粒子径0.04~0.4μmのタングステン粉を得ることを特徴とするタングステン細粉の製造方法。
[8]前項1~6の方法を含む工程により、平均粒子径(μm)と真密度(g/cm3)とBET比表面積(m2/g)との積が6±0.4の範囲内であるタングステン粉を得ることを特徴とするタングステン細粉の製造方法。
[9]平均粒子径が0.04~0.4μmであり、かつ平均粒子径d(μm)と真密度M(g/cm3)とBET比表面積S(m2/g)との積(dMS)の値が6±0.4の範囲内であるタングステン粉。
本発明によれば、現在市販されているタングステン粉、あるいは公知の方法で製造できるタングステン粉から、電解コンデンサ用として好適な、細かな粒径を有し、粒子形状がほぼ球形のタングステン粉を製造することができる。
本発明により得られるタングステン粉は、細かな粒径を有するので得られるコンデンサの容量が大きくなる。また、粒子形状がより球形に近くなるので、タングステン粉の流動性が良好となる。そのため、造粒粉作製工程等での粉体の取扱いが容易になる。
本発明により得られるタングステン粉は、細かな粒径を有するので得られるコンデンサの容量が大きくなる。また、粒子形状がより球形に近くなるので、タングステン粉の流動性が良好となる。そのため、造粒粉作製工程等での粉体の取扱いが容易になる。
[原料タングステン粉]
本発明で細粉化の対象となる原料タングステン粉は、平均粒径が0.1~10μmの範囲のものが好ましい。
原料タングステン粉を得る方法としては、市販品の他、公知の方法により製造されるもの、例えば、三酸化タングステン粉を水素雰囲気下で粉砕する方法、あるいはタングステン酸やハロゲン化タングステンを水素やナトリウム等で還元する方法等を適宜選択することによって得ることができる。また、タングステン含有鉱物から直接または複数の工程を経て、還元条件を選択することによって得たものでもよい。
ただし、これらの方法では粒子径の小さい原料タングステン粉を得ることが難しいので、後述するように化学酸化法による前処理を行ったタングステン粉を原料タングステン粉として用いるか、あるいは本発明の方法を適用して得たタングステン粉を原料タングステン粉として用いてもよい。これら細粉化処理を行ったタングステン粉を原料タングステン粉として用いることにより、さらに粒子径の小さいタングステン粉が得られる。例えば、本発明の方法の適用を繰り返すと、平均粒径0.04μm以下のタングステン粉を得ることもできる。
本発明で細粉化の対象となる原料タングステン粉は、平均粒径が0.1~10μmの範囲のものが好ましい。
原料タングステン粉を得る方法としては、市販品の他、公知の方法により製造されるもの、例えば、三酸化タングステン粉を水素雰囲気下で粉砕する方法、あるいはタングステン酸やハロゲン化タングステンを水素やナトリウム等で還元する方法等を適宜選択することによって得ることができる。また、タングステン含有鉱物から直接または複数の工程を経て、還元条件を選択することによって得たものでもよい。
ただし、これらの方法では粒子径の小さい原料タングステン粉を得ることが難しいので、後述するように化学酸化法による前処理を行ったタングステン粉を原料タングステン粉として用いるか、あるいは本発明の方法を適用して得たタングステン粉を原料タングステン粉として用いてもよい。これら細粉化処理を行ったタングステン粉を原料タングステン粉として用いることにより、さらに粒子径の小さいタングステン粉が得られる。例えば、本発明の方法の適用を繰り返すと、平均粒径0.04μm以下のタングステン粉を得ることもできる。
ただし、陽極酸化により誘電体層を形成する場合、コンデンサに好ましく利用できる粉体の粒径には下限がある。コンデンサに用いるタングステン粉の粒径の下限値は、形成しようとする誘電体層の厚みの2倍以上である。例えば、定格電圧が1.6Vの場合、0.04μm以上である。このような粒径未満であると、陽極酸化をしたときに、導電性のタングステン部分が十分残らず、電解コンデンサの陽極を構成することが困難となる。
特に、定格電圧が低い高容量のコンデンサに用いる場合、タングステン粉の粒子径を0.04~0.4μmとすることが好ましく、0.08~0.2μmとすることがさらに好ましい。
なお、本発明の方法で使用される原料タングステン粉は、コンデンサ特性が劣化しない範囲で不純物を含んでも良く、あるいはコンデンサ特性の改良のためにケイ素、窒素、炭素、ホウ素、リン、酸素などの元素を含むように加工したものでもよい。ただし、後述するケイ化、窒化、炭化、あるいはホウ化処理等の粒子表面の加工は、本発明を適用した後の工程で行うことが好ましい。
特に、定格電圧が低い高容量のコンデンサに用いる場合、タングステン粉の粒子径を0.04~0.4μmとすることが好ましく、0.08~0.2μmとすることがさらに好ましい。
なお、本発明の方法で使用される原料タングステン粉は、コンデンサ特性が劣化しない範囲で不純物を含んでも良く、あるいはコンデンサ特性の改良のためにケイ素、窒素、炭素、ホウ素、リン、酸素などの元素を含むように加工したものでもよい。ただし、後述するケイ化、窒化、炭化、あるいはホウ化処理等の粒子表面の加工は、本発明を適用した後の工程で行うことが好ましい。
本発明では、原料タングステン粉の粒子表面を酸化した後、表面の酸化膜を除去して細粉化したタングステン粉を得る。タングステン粉の粒子表面の酸化は、化学的酸化または電解酸化により行えるが、電解酸化を用いて細粉化する方法(以下、電解酸化法)は、酸化膜の生成量を電解酸化時の印加電圧を調整するだけで制御できるので、化学酸化を用いて細粉化する方法(以下、化学的酸化法)に比べて容易に操作できる。そのため、電解酸化法は、酸化膜の生成量をより正確に制御することが必要な、より細かいタングステン粉の製造に好ましく適用できる。
タングステン粉の細粉化は電解酸化法のみで行ってもよいが、比較的大きい粒子(例えば、平均粒子径1μm以上)を細粉化する場合は、化学的酸化による前処理を行ってある程度細粉化(例えば、平均粒子径0.5μm以下)してから電解酸化法を適用した方が、電解酸化時の印加電圧を低く抑えられるので、操作がし易くなる。
タングステン粉の細粉化は電解酸化法のみで行ってもよいが、比較的大きい粒子(例えば、平均粒子径1μm以上)を細粉化する場合は、化学的酸化による前処理を行ってある程度細粉化(例えば、平均粒子径0.5μm以下)してから電解酸化法を適用した方が、電解酸化時の印加電圧を低く抑えられるので、操作がし易くなる。
(1)電解酸化法
タングステン粉の粒子表面の酸化:
電解液としては、鉱酸やその塩の水溶液など、電解質溶液を使用できるが、酸化後の洗浄が容易であることから鉱酸水溶液が好ましい。鉱酸としては、燐酸、硝酸、塩酸、硫酸、ホウ酸等が挙げられるが、比較的欠陥のある酸化皮膜が得られやすく後のアルカリ水溶液で除去されやすい点で燐酸またはホウ酸水溶液が好ましい。鉱酸水溶液の濃度としては0.1~5質量%が好ましい。濃度が濃くなると、後工程であるタングステン粉の洗浄が面倒になる。
タングステン粉の粒子表面の酸化:
電解液としては、鉱酸やその塩の水溶液など、電解質溶液を使用できるが、酸化後の洗浄が容易であることから鉱酸水溶液が好ましい。鉱酸としては、燐酸、硝酸、塩酸、硫酸、ホウ酸等が挙げられるが、比較的欠陥のある酸化皮膜が得られやすく後のアルカリ水溶液で除去されやすい点で燐酸またはホウ酸水溶液が好ましい。鉱酸水溶液の濃度としては0.1~5質量%が好ましい。濃度が濃くなると、後工程であるタングステン粉の洗浄が面倒になる。
電解酸化は、例えば原料タングステン粉を、電解液を収容した金属製の容器に投入し、金属製の撹拌棒を陽極とし、容器を陰極として、撹拌下に所定の電圧を印加し、好ましくは室温~水溶液の沸点温度、さらに好ましくは30~80℃の温度にて、好ましくは10分~100時間、さらに好ましくは1~10時間通電し酸化する。この時必要により蒸発で消失する溶媒成分を補給しながら行う。
なお、印加する電圧は、所望する細粉化の程度に応じて設定すればよい。印加電圧をより高くすると、酸化膜量が増加し、粒子径をより小さくすることができる。具体的電圧は予備実験で求められる。ただし、高電圧での電解酸化には時間がかかるので、印加電圧を好ましくは100V以下、より好ましくは50V以下とし、必要であれば細粉化の操作を繰り返してもよい。
電解酸化終了後は、液をデカンテーション等で除去する操作を繰り返し、タングステン粉を水等の溶媒で洗浄する。この状態のタングステン粉は黒色から黄色がかった青色に変色する。
なお、印加する電圧は、所望する細粉化の程度に応じて設定すればよい。印加電圧をより高くすると、酸化膜量が増加し、粒子径をより小さくすることができる。具体的電圧は予備実験で求められる。ただし、高電圧での電解酸化には時間がかかるので、印加電圧を好ましくは100V以下、より好ましくは50V以下とし、必要であれば細粉化の操作を繰り返してもよい。
電解酸化終了後は、液をデカンテーション等で除去する操作を繰り返し、タングステン粉を水等の溶媒で洗浄する。この状態のタングステン粉は黒色から黄色がかった青色に変色する。
酸化膜の除去:
上記で得られた表面が酸化されたタングステン粉の酸化膜を、アルカリ水溶液で処理し、少なくとも化学的に除去する。好ましくは、ホモジナイザーなどの強い撹拌ができる装置により、タングステン粒子表面に生成した生成物を機械的にも除去しながら前記撹拌を行う。
アルカリ溶液としては、例えば水酸化ナトリウム水溶液、水酸化カリウム水溶液、アンモニア水等が用いられ、水酸化ナトリウム水溶液、水酸化カリウム水溶液が好ましい。
具体的には、表面が酸化されたタングステン粉にアルカリ水溶液を加え、撹拌した後に静置し、デカンテーションで液を除去した後に、水等の溶媒を投入し、撹拌した後に静置し、デカンテーションする一連の操作を数回繰り返す。これらの操作によりタングステン粉は黒色となり、表面に形成された酸化物は除去される。その後、真空乾燥機(例えば、104~102Paに減圧下、50~180℃の温度)で乾燥し、室温まで冷却する。次に、発火しないように徐々に空気を入れ、空気中に取り出すことにより、原料タングステン粉に比べて粒径が小さい細粉化されたタングステン粉を得ることができる。
上記で得られた表面が酸化されたタングステン粉の酸化膜を、アルカリ水溶液で処理し、少なくとも化学的に除去する。好ましくは、ホモジナイザーなどの強い撹拌ができる装置により、タングステン粒子表面に生成した生成物を機械的にも除去しながら前記撹拌を行う。
アルカリ溶液としては、例えば水酸化ナトリウム水溶液、水酸化カリウム水溶液、アンモニア水等が用いられ、水酸化ナトリウム水溶液、水酸化カリウム水溶液が好ましい。
具体的には、表面が酸化されたタングステン粉にアルカリ水溶液を加え、撹拌した後に静置し、デカンテーションで液を除去した後に、水等の溶媒を投入し、撹拌した後に静置し、デカンテーションする一連の操作を数回繰り返す。これらの操作によりタングステン粉は黒色となり、表面に形成された酸化物は除去される。その後、真空乾燥機(例えば、104~102Paに減圧下、50~180℃の温度)で乾燥し、室温まで冷却する。次に、発火しないように徐々に空気を入れ、空気中に取り出すことにより、原料タングステン粉に比べて粒径が小さい細粉化されたタングステン粉を得ることができる。
(2)化学酸化法
所望により前処理として実施される化学酸化では、原料のタングステン粉を、酸化剤水溶液中で撹拌等をすることにより分散させ、所定時間保持することにより表面を酸化する。良好な分散状態を保ち、表面を早く酸化させるために、ホモジナイザー等の強い撹拌のできる装置を使用することが好ましい。また、高温で酸化させると早く酸化が進む。
酸化剤としては、例えば、過マンガン酸塩などのマンガン(VII)化合物;三酸化クロム、クロム酸塩、二クロム酸塩などのクロム(VI)化合物;過塩素酸、亜塩素酸、次亜塩素酸及びそれらの塩などのハロゲン酸化合物;過酸化水素、過酸化ジエチル、過酸化ナトリウム、過酸化リチウム等の過酸化物;過酢酸、過硫酸塩等のペルオキソ酸及びそれらの塩などが挙げられる。特に、扱い易さと酸化剤としての安定性、水に易溶性であることから、過酸化水素及び過硫酸アンモニウムが好ましい。
水溶液中の酸化剤濃度は、1%程度から酸化剤の飽和溶解度となる範囲である。酸化剤濃度は予備的な実験により適宜決められる。
酸化時間は1時間~1000時間、好ましくは1時間~100時間であり、酸化温度は室温から溶媒の沸点温度、好ましくは50℃~溶液の沸点温度である。
酸化反応後、タングステン粉末を酸化反応溶液からデカンテーションなどの操作で分取し、溶媒に投入、撹拌、静置、デカンテーションの一連の操作を繰り返して洗浄する。この状態のタングステン粉は原料の黒色が黄色がかった青色に変色しており、表面が酸化されたことを目視でも確認できる。
なお、本発明の各工程で用いる溶媒は、粉体の分散性やデカンテーションにかかる時間などから、水だけでなく、水溶性有機溶媒(例えば、エタノール、メタノール等)との混合水溶液を選択してもよい。
上記で得られた表面が酸化されたタングステン粉の酸化膜の除去は、前述の電解酸化法での酸化膜の除去と同様に行う。
所望により前処理として実施される化学酸化では、原料のタングステン粉を、酸化剤水溶液中で撹拌等をすることにより分散させ、所定時間保持することにより表面を酸化する。良好な分散状態を保ち、表面を早く酸化させるために、ホモジナイザー等の強い撹拌のできる装置を使用することが好ましい。また、高温で酸化させると早く酸化が進む。
酸化剤としては、例えば、過マンガン酸塩などのマンガン(VII)化合物;三酸化クロム、クロム酸塩、二クロム酸塩などのクロム(VI)化合物;過塩素酸、亜塩素酸、次亜塩素酸及びそれらの塩などのハロゲン酸化合物;過酸化水素、過酸化ジエチル、過酸化ナトリウム、過酸化リチウム等の過酸化物;過酢酸、過硫酸塩等のペルオキソ酸及びそれらの塩などが挙げられる。特に、扱い易さと酸化剤としての安定性、水に易溶性であることから、過酸化水素及び過硫酸アンモニウムが好ましい。
水溶液中の酸化剤濃度は、1%程度から酸化剤の飽和溶解度となる範囲である。酸化剤濃度は予備的な実験により適宜決められる。
酸化時間は1時間~1000時間、好ましくは1時間~100時間であり、酸化温度は室温から溶媒の沸点温度、好ましくは50℃~溶液の沸点温度である。
酸化反応後、タングステン粉末を酸化反応溶液からデカンテーションなどの操作で分取し、溶媒に投入、撹拌、静置、デカンテーションの一連の操作を繰り返して洗浄する。この状態のタングステン粉は原料の黒色が黄色がかった青色に変色しており、表面が酸化されたことを目視でも確認できる。
なお、本発明の各工程で用いる溶媒は、粉体の分散性やデカンテーションにかかる時間などから、水だけでなく、水溶性有機溶媒(例えば、エタノール、メタノール等)との混合水溶液を選択してもよい。
上記で得られた表面が酸化されたタングステン粉の酸化膜の除去は、前述の電解酸化法での酸化膜の除去と同様に行う。
本発明の方法によれば、原料タングステン粉の粒子形状が特に異方性の高いものでない限り、ほぼ球状のタングステン粒子粉が得られる。粒子が球形であることは得られたタングステン粉の平均粒子径(d)(μm)と真密度(M)(g/cm3)とBET比表面積(S)(m2/g)の値が下記の式を満たすことで確認できる。
すなわち、得られたタングステン粉の平均粒子径d(μm)と真密度M(g/cm3)とBET比表面積S(m2/g)の積(d×S×M)(dSMと略記)の値が6の値に近ければ得られたタングステン粉の粒子はほぼ球形であると言える。本発明により得られるタングステン粉のdMSの値は、通常6±0.4の範囲内となる。さらに、本発明の方法を適用して得たタングステン粉を原料タングステン粉として用い、さらに真球に近い粒子からなるタングステン粉を得ることもできる。
球形に近い粒子の表面に形成される誘電体層は、ほぼ一様な曲率を有し、応力が集中しやすい小さな曲率で屈曲する部分がないので劣化が少ない。その結果、LC特性がより良好なコンデンサが得られる。
本発明の方法で製造されたタングステン粉は、これを直接焼結して焼結体としてもよいが、あるいは10~300μm程度の顆粒に造粒した粉を焼結して焼結体としてもよい。造粒した方が取扱いがしやすく、ESRを低く抑えやすい。
さらに、本発明の方法で製造されたタングステン粉に、ケイ化、窒化、炭化、あるいはホウ化処理をして、タングステン粒子表面の一部を、ケイ化タングステン、窒化タングステン、炭化タングステン、及びホウ化タングステンから選択される少なくとも1つを含有するタングステン粉としてもよい。また、これら処理を造粒粉あるいは焼結体となった段階で適用することもできる。この焼結体を一方の電極(陽極)とし、対電極(陰極)との間に介在する誘電体とにより電解コンデンサが作製される。
さらに、本発明の方法で製造されたタングステン粉に、ケイ化、窒化、炭化、あるいはホウ化処理をして、タングステン粒子表面の一部を、ケイ化タングステン、窒化タングステン、炭化タングステン、及びホウ化タングステンから選択される少なくとも1つを含有するタングステン粉としてもよい。また、これら処理を造粒粉あるいは焼結体となった段階で適用することもできる。この焼結体を一方の電極(陽極)とし、対電極(陰極)との間に介在する誘電体とにより電解コンデンサが作製される。
以下に実施例及び比較例を挙げて本発明を説明するが、下記の記載により本発明は何ら限定されるものではない。
本発明において、粒子径と比表面積と真密度は以下の方法で測定した。
粒子径は、マイクロトラック社製HRA9320-X100を用い、粒度分布をレーザー回折散乱法で測定し、その累積体積%が、50体積%に相当する粒径値(D50;μm)を平均粒子径(d)とした。なお、この測定法は2次粒子径の測定法ではあるが、タングステン粉の分散性はある程度良好なので、測定結果は1次粒子径に近い値が得られる。そのため、測定結果を実質的に1次粒子径とみなして、前述の式(1)に適用し、粒子形状を判断してもよい。
比表面積(S;m2/g)は、NOVA2000E(SYSMEX社)を用いBET法で測定した。
真密度(M;g/cm3)は、ピクノメーター法(20℃)で測定した。
本発明において、粒子径と比表面積と真密度は以下の方法で測定した。
粒子径は、マイクロトラック社製HRA9320-X100を用い、粒度分布をレーザー回折散乱法で測定し、その累積体積%が、50体積%に相当する粒径値(D50;μm)を平均粒子径(d)とした。なお、この測定法は2次粒子径の測定法ではあるが、タングステン粉の分散性はある程度良好なので、測定結果は1次粒子径に近い値が得られる。そのため、測定結果を実質的に1次粒子径とみなして、前述の式(1)に適用し、粒子形状を判断してもよい。
比表面積(S;m2/g)は、NOVA2000E(SYSMEX社)を用いBET法で測定した。
真密度(M;g/cm3)は、ピクノメーター法(20℃)で測定した。
実施例1:
タングステン酸アンモニウムを水素還元して得た平均粒径1μmのタングステン粉200gを5質量%の過硫酸アンモニウムが溶解した蒸留水500mLに投入し、(株)マイクロテック・ニチオン社製のホモジナイザーNS-51を用いて50℃で24時間撹拌した。その間、蒸発する水を補給し続けた。室温で17時間放置して粉を沈降させた後に液をデカンテーションで除去し、さらに200mLの蒸留水を加えて同ホモジナイザーで5分撹拌し数時間放置後液をデカンテーションで除去した。この蒸留水投入、撹拌、静置、デカンテーションの一連の操作を4回繰り返した。この状態のタングステン粉は黄色がかった青色に変色し、表面が酸化されたことが分かった。次に5質量%の水酸化ナトリウム水溶液を100mL加え、同上ホモジナイザーで1時間撹拌した。前記したように、静置、デカンテーションで液を除去した後に、蒸留水投入、撹拌、静置、デカンテーションの一連の操作を4回繰り返した。この状態のタングステン粉は黒色で表面に形成された酸化物は除去されていた。また、このタングステン粉の平均粒径は0.5μmであった。
タングステン酸アンモニウムを水素還元して得た平均粒径1μmのタングステン粉200gを5質量%の過硫酸アンモニウムが溶解した蒸留水500mLに投入し、(株)マイクロテック・ニチオン社製のホモジナイザーNS-51を用いて50℃で24時間撹拌した。その間、蒸発する水を補給し続けた。室温で17時間放置して粉を沈降させた後に液をデカンテーションで除去し、さらに200mLの蒸留水を加えて同ホモジナイザーで5分撹拌し数時間放置後液をデカンテーションで除去した。この蒸留水投入、撹拌、静置、デカンテーションの一連の操作を4回繰り返した。この状態のタングステン粉は黄色がかった青色に変色し、表面が酸化されたことが分かった。次に5質量%の水酸化ナトリウム水溶液を100mL加え、同上ホモジナイザーで1時間撹拌した。前記したように、静置、デカンテーションで液を除去した後に、蒸留水投入、撹拌、静置、デカンテーションの一連の操作を4回繰り返した。この状態のタングステン粉は黒色で表面に形成された酸化物は除去されていた。また、このタングステン粉の平均粒径は0.5μmであった。
次に、別途用意したステンレス製の容器に、デカンテーション後の水を含んだタングステン粉(粉単独で100g)を移し、さらに電解液として1質量%燐酸水溶液を300mL投入した。容器の上にステンレス製の撹拌棒(長さ4cmのステンレス製の羽が棒の下部に4枚、各90度離れて設置されている。)を電解液中に入れ、さらに撹拌棒を陽極とし、容器を陰極として20V印加して、50℃で5時間、回転速度100rpmで撹拌しながら電解酸化を行った。その間、蒸発する水を補給し続けた。室温で40時間放置して粉を沈降させた後に液をデカンテーションで除去し、さらに200mLの蒸留水を加えて同撹拌棒で20分撹拌し20時間放置後液をデカンテーションで除去した。この蒸留水投入、撹拌、静置、デカンテーションの一連の操作を4回繰り返した。この状態のタングステン粉は黄色がかった青色に変色し表面が酸化されていることが分かった。
次に5質量%の水酸化ナトリウム水溶液を100mL加え、同上撹拌棒で1時間撹拌した。前記したように、静置、デカンテーションで液除去した後に、蒸留水投入、撹拌、静置、デカンテーションの一連の操作を4回繰り返した。この状態のタングステン粉は黒色で表面に形成された酸化物は除去されていた。その後粉の一部を真空乾燥機に移し、減圧下50℃で乾燥後室温に戻した。次に、発火しないように徐々に空気を入れ、空気中に取り出した。作製した粉は、平均粒径(d)0.2μm、比表面積(S)1.5m2/g、真密度(M)19.3であった。得られた粉の平均粒径、比表面積、及び真密度の積(dMS)は5.8であった。
次に5質量%の水酸化ナトリウム水溶液を100mL加え、同上撹拌棒で1時間撹拌した。前記したように、静置、デカンテーションで液除去した後に、蒸留水投入、撹拌、静置、デカンテーションの一連の操作を4回繰り返した。この状態のタングステン粉は黒色で表面に形成された酸化物は除去されていた。その後粉の一部を真空乾燥機に移し、減圧下50℃で乾燥後室温に戻した。次に、発火しないように徐々に空気を入れ、空気中に取り出した。作製した粉は、平均粒径(d)0.2μm、比表面積(S)1.5m2/g、真密度(M)19.3であった。得られた粉の平均粒径、比表面積、及び真密度の積(dMS)は5.8であった。
実施例2:
実施例1の電解液を、1質量%燐酸水300mLの代わりに、1.5質量%ホウ酸のメタノール100mLと水350mLの混合溶液とした。デカンテーション液を前記同量比のメタノールと水の混合液とした。また、電解酸化中に蒸発するメタノールを補給し続けた。これら以外は実施例1と同様にしてタングステン粉を得た。作製した粉は、平均粒径(d)0.16μm、比表面積(S)2.0m2/g、真密度(M)19.3であった。得られた粉の平均粒径、比表面積、及び真密度の積(dMS)は6.2であった。
実施例1及び2共に、平均粒径、比表面積、及び真密度の積(dMS)は、ほぼ6±0.2の範囲内となっており、粒子形状がほぼ球形であることが確認された。
実施例1の電解液を、1質量%燐酸水300mLの代わりに、1.5質量%ホウ酸のメタノール100mLと水350mLの混合溶液とした。デカンテーション液を前記同量比のメタノールと水の混合液とした。また、電解酸化中に蒸発するメタノールを補給し続けた。これら以外は実施例1と同様にしてタングステン粉を得た。作製した粉は、平均粒径(d)0.16μm、比表面積(S)2.0m2/g、真密度(M)19.3であった。得られた粉の平均粒径、比表面積、及び真密度の積(dMS)は6.2であった。
実施例1及び2共に、平均粒径、比表面積、及び真密度の積(dMS)は、ほぼ6±0.2の範囲内となっており、粒子形状がほぼ球形であることが確認された。
Claims (9)
- 電解液中でタングステン粉を撹拌しながら電解酸化することにより、タングステン粉の粒子表面に酸化膜を形成させ、前記酸化膜をアルカリ水溶液で除去することを特徴とするタングステン粉の細粉化方法。
- 前記酸化膜のアルカリ水溶液での除去が、タングステン粉の粒子表面の反応生成物を機械的に除去することを含む請求項1に記載のタングステン粉の細粉化方法。
- 電解液が鉱酸の水溶液である請求項1または2に記載のタングステン粉の細粉化方法。
- 鉱酸が、燐酸、硝酸、塩酸、ホウ酸及び硫酸から選択される請求項3に記載のタングステン粉の細粉化方法。
- 鉱酸が、燐酸またはホウ酸である請求項4に記載のタングステン粉の細粉化方法。
- 酸化剤を含有する水溶液中にタングステン粉を分散することにより、タングステン粉の粒子表面に酸化膜を形成させ、前記酸化膜をアルカリ水溶液で除去した後に、請求項1~5の方法を適用するタングステン粉の細粉化方法。
- 請求項1~6の方法を含む工程により平均粒子径0.04~0.4μmのタングステン粉を得ることを特徴とするタングステン細粉の製造方法。
- 請求項1~6の方法を含む工程により、平均粒子径(μm)と真密度(g/cm3)とBET比表面積(m2/g)との積が6±0.4の範囲内であるタングステン粉を得ることを特徴とするタングステン細粉の製造方法。
- 平均粒子径が0.04~0.4μmであり、かつ平均粒子径d(μm)と真密度M(g/cm3)とBET比表面積S(m2/g)との積(dMS)の値が6±0.4の範囲内であるタングステン粉。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280057134.6A CN103945965B (zh) | 2011-11-29 | 2012-08-29 | 钨细粉的制造方法 |
EP12852802.3A EP2786819A4 (en) | 2011-11-29 | 2012-08-29 | PROCESS FOR PRODUCING A FINE TUNGSTEN POWDER |
JP2012548167A JP5222438B1 (ja) | 2011-11-29 | 2012-08-29 | タングステン細粉の製造方法 |
US14/361,041 US20140294663A1 (en) | 2011-11-29 | 2012-08-29 | Method for manufacturing fine tungsten powder |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-259926 | 2011-11-29 | ||
JP2011259926 | 2011-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013080617A1 true WO2013080617A1 (ja) | 2013-06-06 |
Family
ID=48535094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/071761 WO2013080617A1 (ja) | 2011-11-29 | 2012-08-29 | タングステン細粉の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140294663A1 (ja) |
EP (1) | EP2786819A4 (ja) |
JP (2) | JP5222438B1 (ja) |
CN (1) | CN103945965B (ja) |
WO (1) | WO2013080617A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014097698A1 (ja) * | 2012-12-17 | 2014-06-26 | 昭和電工株式会社 | タングステン微粉の製造方法 |
US20160163466A1 (en) * | 2014-12-09 | 2016-06-09 | Showa Denko K.K. | Solid electrolytic capacitor element, and method for manufacturing solid electrolytic capacitor and solid electrolytic capacitor element |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013080617A1 (ja) * | 2011-11-29 | 2013-06-06 | 昭和電工株式会社 | タングステン細粉の製造方法 |
US9601277B2 (en) | 2012-05-18 | 2017-03-21 | Showa Denko K.K. | Method for manufacturing capacitor element |
RU2759551C1 (ru) * | 2021-04-05 | 2021-11-15 | Общество с ограниченной ответственностью "Вириал" (ООО "Вириал") | Способ получения гидрированного порошка пластичного металла или сплава |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5211752A (en) * | 1975-07-17 | 1977-01-28 | Toshiba Corp | Method of manufacturing cathodes for electron tubes |
JP2003272959A (ja) | 2002-03-15 | 2003-09-26 | Sanyo Electric Co Ltd | コンデンサ |
WO2004055843A1 (ja) | 2002-12-13 | 2004-07-01 | Sanyo Electric Co.,Ltd. | 固体電解コンデンサ及びその製造方法 |
JP2004349658A (ja) | 2002-07-26 | 2004-12-09 | Sanyo Electric Co Ltd | 電解コンデンサ |
US6876083B2 (en) | 2002-07-26 | 2005-04-05 | Sanyo Electric Co., Ltd. | Electrolytic capacitor and a fabrication method therefor |
JP2005325448A (ja) * | 2004-04-15 | 2005-11-24 | Jfe Mineral Co Ltd | タンタル粉末およびこれを用いた固体電解コンデンサ |
JP2006299385A (ja) * | 2005-04-25 | 2006-11-02 | Noritake Co Ltd | 白金粉末、その製造方法、および圧電セラミック材用白金ペースト |
WO2012086272A1 (ja) * | 2010-12-24 | 2012-06-28 | 昭和電工株式会社 | タングステン粉、コンデンサの陽極体及び電解コンデンサ |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63293104A (ja) * | 1987-05-25 | 1988-11-30 | Nippon Steel Corp | 銅微粉末の製造方法 |
US5993513A (en) * | 1996-04-05 | 1999-11-30 | Cabot Corporation | Method for controlling the oxygen content in valve metal materials |
US5954856A (en) * | 1996-04-25 | 1999-09-21 | Cabot Corporation | Method of making tantalum metal powder with controlled size distribution and products made therefrom |
JP2004091852A (ja) * | 2002-08-30 | 2004-03-25 | Fujitsu Ltd | マグネシウム材に対する高耐食性陽極酸化膜の形成方法およびこれにより形成されたマグネシウム材製筐体 |
US7875347B2 (en) * | 2003-12-29 | 2011-01-25 | General Electric Company | Composite coatings for groundwall insulation, method of manufacture thereof and articles derived therefrom |
WO2005099936A1 (ja) * | 2004-04-15 | 2005-10-27 | Jfe Mineral Company, Ltd. | タンタル粉末およびこれを用いた固体電解コンデンサ |
JP4921806B2 (ja) * | 2006-02-13 | 2012-04-25 | 住友金属鉱山株式会社 | タングステン超微粉及びその製造方法 |
CN101983804B (zh) * | 2010-12-03 | 2012-07-04 | 中南大学 | 近球形钨粉的制备方法 |
JP5222437B1 (ja) * | 2011-11-15 | 2013-06-26 | 昭和電工株式会社 | タングステン細粉の製造方法 |
WO2013080617A1 (ja) * | 2011-11-29 | 2013-06-06 | 昭和電工株式会社 | タングステン細粉の製造方法 |
-
2012
- 2012-08-29 WO PCT/JP2012/071761 patent/WO2013080617A1/ja active Application Filing
- 2012-08-29 US US14/361,041 patent/US20140294663A1/en not_active Abandoned
- 2012-08-29 EP EP12852802.3A patent/EP2786819A4/en not_active Withdrawn
- 2012-08-29 JP JP2012548167A patent/JP5222438B1/ja not_active Expired - Fee Related
- 2012-08-29 CN CN201280057134.6A patent/CN103945965B/zh not_active Expired - Fee Related
-
2013
- 2013-03-08 JP JP2013046892A patent/JP5731559B2/ja not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5211752A (en) * | 1975-07-17 | 1977-01-28 | Toshiba Corp | Method of manufacturing cathodes for electron tubes |
JP2003272959A (ja) | 2002-03-15 | 2003-09-26 | Sanyo Electric Co Ltd | コンデンサ |
JP2004349658A (ja) | 2002-07-26 | 2004-12-09 | Sanyo Electric Co Ltd | 電解コンデンサ |
US6876083B2 (en) | 2002-07-26 | 2005-04-05 | Sanyo Electric Co., Ltd. | Electrolytic capacitor and a fabrication method therefor |
WO2004055843A1 (ja) | 2002-12-13 | 2004-07-01 | Sanyo Electric Co.,Ltd. | 固体電解コンデンサ及びその製造方法 |
US7154743B2 (en) | 2002-12-13 | 2006-12-26 | Sanyo Electric Co., Ltd. | Solid electrolytic capacitor and method for manufacturing same |
JP2005325448A (ja) * | 2004-04-15 | 2005-11-24 | Jfe Mineral Co Ltd | タンタル粉末およびこれを用いた固体電解コンデンサ |
JP2006299385A (ja) * | 2005-04-25 | 2006-11-02 | Noritake Co Ltd | 白金粉末、その製造方法、および圧電セラミック材用白金ペースト |
WO2012086272A1 (ja) * | 2010-12-24 | 2012-06-28 | 昭和電工株式会社 | タングステン粉、コンデンサの陽極体及び電解コンデンサ |
Non-Patent Citations (1)
Title |
---|
See also references of EP2786819A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014097698A1 (ja) * | 2012-12-17 | 2014-06-26 | 昭和電工株式会社 | タングステン微粉の製造方法 |
US9789538B2 (en) | 2012-12-17 | 2017-10-17 | Show A Denko K.K. | Method for producing ultrafine tungsten powder |
US20160163466A1 (en) * | 2014-12-09 | 2016-06-09 | Showa Denko K.K. | Solid electrolytic capacitor element, and method for manufacturing solid electrolytic capacitor and solid electrolytic capacitor element |
US9959980B2 (en) * | 2014-12-09 | 2018-05-01 | Showa Denko K.K. | Solid electrolytic capacitor element and method for manufacturing solid electrolytic capacitor element |
Also Published As
Publication number | Publication date |
---|---|
JP2013136844A (ja) | 2013-07-11 |
EP2786819A1 (en) | 2014-10-08 |
JP5222438B1 (ja) | 2013-06-26 |
CN103945965B (zh) | 2016-05-18 |
CN103945965A (zh) | 2014-07-23 |
JP5731559B2 (ja) | 2015-06-10 |
EP2786819A4 (en) | 2015-09-16 |
US20140294663A1 (en) | 2014-10-02 |
JPWO2013080617A1 (ja) | 2015-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5731559B2 (ja) | 電解コンデンサ用タングステン細粉 | |
US20170232508A1 (en) | Method for producing fine tungsten powder | |
US9789538B2 (en) | Method for producing ultrafine tungsten powder | |
US20170209925A1 (en) | A Method Of Making A Capacitor Grade Powder And Capacitor Grade Powder From Said Process | |
WO2006062234A1 (ja) | 金属粉末および多孔質焼結体の製造方法、金属粉末、およびコンデンサ | |
JP5851667B1 (ja) | コンデンサ陽極体、固体電解コンデンサ素子、固体電解コンデンサおよびコンデンサ陽極体の製造方法 | |
EP3056299A1 (en) | Niobium granulated powder production method | |
JP6077274B2 (ja) | 窒素含有タンタル粉末およびその製造方法 | |
JP2005325448A (ja) | タンタル粉末およびこれを用いた固体電解コンデンサ | |
WO2015098230A1 (ja) | タングステンコンデンサ用陽極体 | |
WO2013190757A1 (ja) | コンデンサ素子 | |
JP5779741B1 (ja) | タングステンコンデンサ用陽極体の製造方法 | |
WO2014104177A1 (ja) | ニオブコンデンサ陽極用化成体及びその製造方法 | |
Mohamed et al. | Room-temperature, one-step synthesis of Mn3O4 nanoparticles using morpholine as complexing and precipitating agent: toward cathode material for Zn ion battery | |
WO2015093155A1 (ja) | タングステン粉、コンデンサの陽極体、及び電解コンデンサ | |
WO2013190886A1 (ja) | コンデンサの陽極体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012548167 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12852802 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14361041 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |