WO2013077424A1 - 多能性幹細胞由来の組織の凍結保存方法 - Google Patents

多能性幹細胞由来の組織の凍結保存方法 Download PDF

Info

Publication number
WO2013077424A1
WO2013077424A1 PCT/JP2012/080365 JP2012080365W WO2013077424A1 WO 2013077424 A1 WO2013077424 A1 WO 2013077424A1 JP 2012080365 W JP2012080365 W JP 2012080365W WO 2013077424 A1 WO2013077424 A1 WO 2013077424A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cryopreservation
tissue
pluripotent stem
cell
Prior art date
Application number
PCT/JP2012/080365
Other languages
English (en)
French (fr)
Inventor
覚 安藤
徳重 中野
芳樹 笹井
元次 永樂
Original Assignee
住友化学株式会社
独立行政法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 独立行政法人理化学研究所 filed Critical 住友化学株式会社
Priority to EP12851379.3A priority Critical patent/EP2784154B1/en
Priority to ES12851379T priority patent/ES2743553T3/es
Priority to CN201280058085.8A priority patent/CN103958669A/zh
Priority to CA2856850A priority patent/CA2856850C/en
Priority to IN4598CHN2014 priority patent/IN2014CN04598A/en
Priority to AU2012341416A priority patent/AU2012341416B2/en
Priority to KR1020147017031A priority patent/KR102135486B1/ko
Priority to US14/360,488 priority patent/US11234434B2/en
Publication of WO2013077424A1 publication Critical patent/WO2013077424A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • A01N1/0221Freeze-process protecting agents, i.e. substances protecting cells from effects of the physical process, e.g. cryoprotectants, osmolarity regulators like oncotic agents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/04Preserving or maintaining viable microorganisms

Definitions

  • the present invention relates to a method for cryopreserving tissue derived from pluripotent stem cells.
  • a tissue is a structure of a cell population having a structure in which a plurality of types of cells having different forms and properties are three-dimensionally arranged in a certain pattern.
  • the retinal tissue that is one of the components of the eyeball is a membrane-like tissue that covers the inner wall on the back side of the eyeball, and the retinal tissue has a layer structure in which nerve cells are regularly arranged.
  • nerve cells There are roughly five types of nerve cells in the retina: photoreceptor cells, bipolar cells, horizontal cells, amacrine cells, and ganglion cells. Light is converted into electrical signals in the photoreceptor cells, and the information is transmitted to bipolar cells and horizontal cells via chemical synapses.
  • Bipolar cells synapse with amacrine cells and ganglion cells, and the ganglion cell axons connect to the visual center of the brain as the optic nerve.
  • etiology research drug efficacy and safety research in drug discovery, cell transplantation treatment, etc. have been conducted so far, but the layer structure that reflects the human biological tissue that is the material of such research It was difficult to obtain retinal tissue with In recent years, the production of retinal tissues comparable to in vivo retinal tissues has been reported by inducing differentiation of pluripotent stem cells such as ES cells (Non-patent Document 1).
  • the present invention includes [1] a method for cryopreserving tissue derived from pluripotent stem cells, comprising the following (1) to (3): (1) A first step in which a cell protection solution containing a sulfoxide and a chain polyol is brought into contact with a tissue derived from pluripotent stem cells. (2) A tissue derived from a pluripotent stem cell brought into contact with a cell protection solution in the first step.
  • Second step of holding in cryopreservation solution (3) Third step of cryopreserving the tissue derived from pluripotent stem cells held in the cryopreservation solution in the second step in the presence of a cooling agent
  • a cooling agent [2] Sulfoxide and chain The cryopreservation method according to the above [1], wherein the cytoprotective solution containing a polyol is a cytoprotective solution containing a sulfoxide, a chain polyol and an oligosaccharide.
  • the cryopreservation method according to the above [2] wherein the sulfoxide concentration in the cell protection solution is 5 to 15%, the chain polyol concentration is 4 to 15%, and the oligosaccharide concentration is 5 to 20%.
  • the present invention enables stable preservation of pluripotent stem cell-derived tissues.
  • FIG. 1 is a diagram showing a bright-field image of retinal tissue produced in an aggregate induced to differentiate from RAX :: green fluorescent protein (hereinafter sometimes referred to as “GFP”) knock-in human ES cells.
  • FIG. 2 is a diagram showing a fluorescent image of an aggregate having the retinal tissue shown in FIG.
  • FIG. 3 is a diagram showing a bright-field image of retinal tissue cultured after being separated from an aggregate.
  • FIG. 4 is a diagram showing a fluorescence image of the retinal tissue shown in FIG. FIG.
  • FIG. 5 is a diagram showing the results of immunostaining a frozen section of retinal tissue cultured after being separated from an aggregate using anti-GFP antibody, anti-Chx10 antibody, anti-Pax6 antibody, and anti-Brn3 antibody.
  • FIG. 6 shows retinal tissue cultured after being separated from aggregates.
  • retinal tissue (A, B) which was not frozen, frozen without contact with cytoprotective solution (C, D), 11.0% ( w / v) Infiltrated with a solution containing dimethyl sulfoxide (DMSO) and then frozen (E, F), with a solution containing 11.0% (w / v) dimethyl sulfoxide (DMSO) and 5.55% (w / v) ethylene glycol
  • DMSO dimethyl sulfoxide
  • E, F frozen
  • G, H After osmosis treatment and freezing (G, H), after osmosis treatment with a solution containing 11.0% (w / v) dimethyl sulfoxide (DMSO), 5.55% (w / v) ethylene glycol and 10% (w / v) sucrose
  • FIG. 7 shows retinal tissues cultured after being separated from the aggregates, and after freezing after osmotic treatment with a solution containing retinal tissues (A, B) that were not frozen and 5% w / v sucrose as a control for the experiment ( C, D), Freeze (E, F) after osmosis treatment with a solution containing 10% (w / v) sucrose, Freeze (G, H) after osmosis treatment with a solution containing 20% (w / v) sucrose , 11.0% w (w / v) dimethyl sulfoxide (DMSO) and 10% (w / v) after osmosis treatment with a solution containing sucrose, frozen (I, J), 5.55% (w / v) ethylene glycol and 10% ( FIG.
  • E, F Freeze
  • G, H Freeze
  • DMSO dimethyl sulfoxide
  • FIG. 4 is a diagram showing the state of retinal tissue after freezing (K, L) after osmosis treatment with a solution containing w / v) sucrose.
  • FIG. 8 shows retinal tissue cultured after being separated from the aggregate, and frozen after osmotic treatment with a solution containing 11.0% (w / v) dimethyl sulfoxide (DMSO) and 5.55% (w / v) ethylene glycol. And then frozen after being permeabilized with a solution containing 11.0% (w / v) dimethyl sulfoxide (DMSO), 5.55% (w / v) ethylene glycol, and 10% (w / v) sucrose.
  • DMSO dimethyl sulfoxide
  • Cryosections (C, D, E, F) of retinal tissue were obtained from anti-GFP antibody (A, C, E), anti-Chx10 antibody (B), anti-Chx10 and anti-Pax6 antibody (D), anti-Chx10 and anti-TuJ1 antibody ( It is a figure which shows the result of immunostaining using F).
  • the “transformant” in the present invention means all or part of a living organism such as a cell produced by transformation.
  • the transformant include prokaryotic cells, yeast, animal cells, plant cells, insect cells and the like.
  • a transformant may be referred to as a transformed cell, a transformed tissue, a transformed host, or the like depending on the subject.
  • the cell used in the present invention may be a transformant.
  • prokaryotic cells used in the genetic manipulation technique related to the present invention include, for example, prokaryotic cells belonging to the genus Eschericia, Serratia, Bacillus, Brevibacterium, Corynebacterium, Microbacterium, Pseudomonas, and the like.
  • Examples include Eschericia XL1-Blue, Eschericia XL2-Blue, Eschericia DH1, and the like.
  • Such cells are specifically described in ⁇ MolecularMCloning (3rd edition) '' by Sambrook, J and Russell, DW, Appendix 3 (Volume 3), Vectors and Bacterial strains. A3.2 (Cold Spring Harbor USA 2001) It is described in.
  • a “vector” in connection with the present invention means a vector capable of transferring a target polynucleotide sequence to a target cell.
  • vectors include autonomous replication in host cells such as prokaryotic cells, yeast, animal cells, plant cells, insect cells, individual animals and individual plants, or integration into chromosomes. Examples thereof include those containing a promoter at a position suitable for polynucleotide transcription.
  • a vector suitable for cloning may be referred to as a “cloning vector”.
  • Such cloning vectors usually contain multiple cloning sites containing multiple restriction enzyme sites.
  • the “vector” related to the present invention includes “expression vector”, “reporter vector”, and “recombinant vector”.
  • the “expression vector” means a nucleic acid sequence in which various regulatory elements are operably linked in a host cell in addition to a structural gene and a promoter that regulates its expression. Examples of the “regulatory element” include those containing a terminator, a selection marker such as a drug resistance gene, and an enhancer. It is well known to those skilled in the art that the type of expression vector of an organism (eg, animal) and the type of regulatory element used can vary depending on the host cell.
  • “recombinant vectors” include, for example, (a) a lambda FIX vector (phage vector) for screening genomic libraries, and (b) a lambda ZAP for screening cDNA.
  • a lambda FIX vector phage vector
  • a lambda ZAP for screening cDNA.
  • genomic DNA for example, pBluescript II II SK +/ ⁇ vector, pGEM vector, pCR2.1 vector (plasmid vector) and the like can be mentioned.
  • Examples of the “expression vector” include pSV2 / neo vector, pcDNA vector, pUC18 vector, pUC19 vector, pRc / RSV vector, pLenti6 / V5-Dest vector, pAd / CMV / V5-DEST vector, pDON-AI-2 / neo vector, pMEI-5 / neo vector, etc. (plasmid vector).
  • Examples of the “reporter vector” include pGL2 vector, pGL3 vector, pGL4.10 vector, pGL4.11 vector, pGL4.12 vector, pGL4.70 vector, pGL4.71 vector, pGL4.72 vector, pSLG vector, pSLO. Examples include vectors, pSLR vectors, pEGFP vectors, pAcGFP vectors, pDsRed vectors, and the like. Such vectors may be appropriately used with reference to the aforementioned Molecular Cloning magazine
  • examples of techniques for introducing nucleic acid molecules into cells include transformation, transduction, transfection, and the like. Specific examples of such introduction techniques include Ausubel F. A. et al. (1988), Current Protocols in Molecular Biology, Wiley, New York, NY; Sambrook J. et al. (1987), Molecular Cloning: A. Laboratory Manual, 2nd Ed. And its third edition; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; Listed in the separate experimental medicine "Gene transfer & expression analysis experiment method", Yodosha, 1997 etc. be able to. Examples of the technique for confirming that the gene has been introduced into the cell include Northern blot analysis, Western blot analysis, and other well-known conventional techniques.
  • vector introduction methods include, for example, transfection, transduction, transformation and the like (for example, calcium phosphate method, liposome method, DEAE dextran method, electroporation method, particle gun (gene gun ) And the like.
  • the cryopreservation method of the present invention is a cryopreservation method comprising the following (1) to (3).
  • (1) A first step in which a tissue derived from a pluripotent stem cell is contacted with a cytoprotective solution containing a sulfoxide and a chain polyol.
  • (2) A tissue derived from a pluripotent stem cell brought into contact with a cytoprotective solution in the first step.
  • stem cells are cells that maintain the same differentiation ability even after cell division, and can be regenerated when the tissue is damaged.
  • the stem cells can be embryonic stem cells (ES cells) or tissue stem cells (also referred to as tissue stem cells, tissue-specific stem cells or somatic stem cells), or induced pluripotent stem cells (iPS cells: induced pluripotent stem cell). Is not limited to them. It is known that the above stem cell-derived tissue cells can differentiate normal cells close to a living body, as can be seen from the fact that tissue regeneration is possible.
  • Stem cells can be obtained from a predetermined institution or commercially available products can be purchased.
  • human embryonic stem cells KhES-1, KhES-2, and KhES-3 are available from the Institute of Regenerative Medicine, Kyoto University.
  • mouse embryonic stem cells include EB5 cells.
  • Stem cells can be maintained and cultured by a method known per se.
  • stem cells can be maintained by culture with feeder-free cells supplemented with fetal calf serum (FCS), KnockoutockSerum Replacement (KSR), and LIF.
  • FCS fetal calf serum
  • KSR KnockoutockSerum Replacement
  • pluripotent stem cell refers to all cells that can be cultured in vitro and constitute a living body excluding the placenta (tissues derived from the three germ layers (ectoderm, mesoderm, endoderm)). Stem cells having the ability to differentiate into (pluripotency), including embryonic stem cells (ES cells).
  • ES cells embryonic stem cells
  • a “pluripotent stem cell” is obtained from a fertilized egg, a cloned embryo, a germ stem cell, or a stem cell in tissue.
  • Pluripotent stem cells can be prepared by a method known per se. Examples of the production method include the methods described in Cell 131 (5) pp. 861-872 (2007) and Cell 126 (4) pp. 663-676 (2006).
  • an “embryonic stem cell (ES cell)” is a stem cell having self-renewal ability and pluripotency (that is, pluripotency “pluripotency”), and a pluripotent stem cell derived from an early embryo is Say. Embryonic stem cells were first established in 1981, and have been applied since 1989 to the production of knockout mice. In 1998, human embryonic stem cells were established and are being used in regenerative medicine.
  • “artificial pluripotent stem cells” are cells in which differentiated cells such as fibroblasts are directly initialized by expression of several types of genes such as Oct3 / 4, Sox2, Klf4, Myc, etc. to induce pluripotency.
  • fibroblasts are directly initialized by expression of several types of genes such as Oct3 / 4, Sox2, Klf4, Myc, etc. to induce pluripotency.
  • Yamanaka et al. Yamanaka K, Yamanaka S.Cell. 2006, 126 (4), p663-676.
  • differentiation refers to the generation of two or more types of cells having morphological and / or functional qualitative differences in a daughter cell population derived from the division of one cell.
  • cell differentiation it is common to consider cell differentiation as a state in which a specific gene group in the genome is expressed, and cell differentiation by searching for intracellular or extracellular factors or conditions that bring about such gene expression state. Can be identified.
  • the result of cell differentiation is in principle stable, especially in animal cells, which differentiates into other types of cells only in exceptional cases.
  • tissue refers to a structure of a cell population having a structure in which a plurality of types of cells having different shapes and properties are three-dimensionally arranged in a fixed pattern.
  • tissue is derived from “pluripotent stem cells”.
  • a ⁇ tissue '' is an aggregate of cells that are induced to differentiate from pluripotent stem cells, and is a structure of a cell population having a structure in which a plurality of types of cells having different forms and properties are arranged in a three-dimensional pattern.
  • Cells that are induced to differentiate from pluripotent stem cells include cerebral neurons, diencephalic neurons, hypothalamic neurons, basal ganglia neurons, cerebellar neurons, intestinal tissue cells, cardiomyocytes, pancreatic cells, liver cells, or These precursor cells are mentioned.
  • WO 2009/148170 J Neurosci. 2011 Feb 2; 31 (5): 1919-33, Nat Neurosci. 2010 Oct; 13 (10): 1171-80, Cell Stem Cell. 2008 Nov 6; 3 (5): 519-32, Proc Natl Acad Sci U S A. 2008 Aug 19; 105 (33): 11796-801, Nature. 2011 Feb 3; 470 (7332): 105-9, Nat Biotechnol. 2011 Mar; 29 (3): 267-72, Cell Stem Cell. 2011 Feb 4; 8 (2): 228-40, Development. 2011 Mar; 138 (5): 861-71, Nat Biotechnol. 2006 Nov; 24 (11) : 1402-11.
  • Cerebral nerve tissue means a cell constituting each nerve layer and its precursor cell in the cerebrum, diencephalon, midbrain, cerebellum, and hindbrain of the living body (for example, in the case of the cerebrum, the sixth layer-specific Tbr1 positive Cell, 5th layer specific Crip2 positive cell, 2nd to 3rd layer specific Brn2 positive cell, etc.) means a structure in which at least a plurality of types are layered and arranged in a three-dimensional manner.
  • a retinal tissue can be mentioned as a part of the cranial nerve tissue.
  • Retinal tissue is a three-dimensional layered structure of at least multiple types of cells such as photoreceptor cells, horizontal cells, bipolar cells, amacrine cells, retinal node cells, or progenitor cells that constitute each retinal layer in the living retina. Means retinal tissue arranged.
  • retinal tissue can be prepared by differentiating human ES cells. Specifically, it can be prepared by the method described in Nature 472, p51-56 (2011), WO2011 / 055855.
  • cryoprotective solution refers to a mixture of a cryoprotectant and a solvent.
  • the “cryoprotective substance” refers to a substance added for the purpose of preventing various damages caused by freezing in order to maintain the function and survival rate of the cell as much as possible when cryopreserving the cell.
  • the cryoprotective solution is also synonymous with a cytoprotective solution from the viewpoint of protecting cells during freezing.
  • the cytoprotective solution contains a sulfoxide and a chain polyol as a cryoprotectant, and preferably contains a sulfoxide, a chain polyol and an oligosaccharide.
  • a sulfoxide such as dimethyl sulfoxide (DMSO);
  • a chain polyol such as ethylene glycol, glycerol, propanediol, propylene glycol, butanediol, and polyethylene glycol, preferably sucrose, trehalose, lactose
  • a amide compound such as acetamide, Percoll, Ficoll 70, Ficoll 70000, polyvinylpyrrolidone and the like may be included.
  • the solvent examples include a buffer solution such as physiological saline, PBS, EBSS, and HBSS, a culture solution for culturing cells and tissues such as DMEM, GMEM, and RPMI, serum, and serum substitute (KnocknOut Serum Replacement: Invitrogen) ) Or a mixture thereof.
  • the final concentration of sulfoxide in the cytoprotective solution is 5 to 15% (w / v), preferably 9 to 13% (w / v), more preferably 11% (w / v). v) Listed before and after.
  • the final concentration of the chain polyol in the cytoprotective solution is 4 to 15% (w / v), preferably 4.5% to 8% (v / v), more preferably About 5.5% (v / v).
  • the final concentration of oligosaccharide in the cytoprotective solution is 5 to 20% (w / v), preferably 8 to 12% (w / v), more preferably 10% (w / V) before and after.
  • cryopreservation solution refers to a medium for cryopreserving tissue derived from pluripotent stem cells.
  • cryopreservation solutions Cell Banker 1, 1 Plus, 2, 3 (Juji Field Co., Ltd.), TC Protector (DS Pharma Biomedical Co., Ltd.), Freezing Medium for human ES / iPS Cells (Repro Cell Co., Ltd.), Cry Commercially available products such as Oscarless DMSO-free (Bioverde), Stem Cell Keep (Bioverde), and EFS solution (NK system) can also be used.
  • the cryopreservation solution may include a mixed solution of a cryoprotectant and a solvent. Examples of the cryoprotectant and the solvent include those described above.
  • the cryopreservation solution in the present invention preferably contains dimethyl sulfoxide, acetamide and propylene glycol.
  • the concentration of dimethyl sulfoxide in the cryopreservation solution is 1 to 4M
  • the concentration of acetamide is 0.5 to 2M
  • the concentration of propylene glycol is 1.5 to 6M.
  • the first step in the cryopreservation method of the present invention is a step of contacting a tissue derived from pluripotent stem cells with a cytoprotective solution containing a sulfoxide and a chain polyol before freezing.
  • a cytoprotective solution containing sulfoxide and a chain polyol is brought into contact with the tissue derived from pluripotent stem cells.
  • a cell protection solution containing sulfoxide and a chain polyol with a tissue derived from pluripotent stem cells transfer the tissue derived from a pluripotent stem cell into a cell protection solution containing a sulfoxide and a chain polyol.
  • a cytoprotective solution containing sulfoxide and a chain polyol may be added to the tissue derived from pluripotent stem cells.
  • the time for contacting the cytoprotective solution containing sulfoxide and the chain polyol with the tissue derived from pluripotent stem cells is 1 minute to 180 minutes, preferably 5 minutes to 60 minutes, more preferably 15 minutes to 30 minutes. it can.
  • the temperature at which the cell protection solution containing sulfoxide and chain polyol is brought into contact with the tissue derived from pluripotent stem cells is ⁇ 10 ° C. to 40 ° C., preferably 0 ° C. to 25 ° C., more preferably 0 ° C. to 8 ° C. °C can be mentioned.
  • the density of tissue derived from pluripotent stem cells in the contact system in the first step for example, in terms of the number of aggregates, examples thereof include about 1 to 1000 / mL, preferably 1 to 100 aggregates / mL.
  • the number of cells per aggregate is about 10 3 to 10 6 .
  • the incubator used when contacting the cell protection solution is not particularly limited and can be appropriately determined by those skilled in the art.
  • Examples of such incubators include flasks, tissue culture flasks, dishes, petri dishes, tissue culture dishes, multi dishes, micro plates, micro well plates, micro pores, multi plates, multi well plates, chamber slides, Petri dishes, tubes, trays, culture bags, and roller bottles.
  • the second step in the cryopreservation method of the present invention is a step of holding the tissue derived from pluripotent stem cells brought into contact with the cell protection solution in a cryopreservation solution.
  • the tissue derived from the pluripotent stem cells brought into contact with the cytoprotective solution in the first step is held in a cryopreservation solution.
  • the density of the tissue derived from pluripotent stem cells in the cell preservation solution in the second step is, for example, about 1 to 1000 / mL, preferably 1 to 100 / aggregate in terms of the number of aggregates. mL.
  • the number of cells per aggregate is about 10 3 to 10 6 .
  • the third step in the cryopreservation method of the present invention is a step of cryopreserving tissue derived from pluripotent stem cells held in a cryopreservation solution in the presence of a cooling agent.
  • cryopreservation method there is a method of freezing over a long time at a slow rate of 0.1 to 10 ° C./min. This method can be carried out by using an apparatus or an instrument such as a program freezer or a bicell (Nippon Freezer Co., Ltd.).
  • a rapid freezing storage method there is a method that applies a phenomenon of vitrification that occurs when a crystalline liquid or gas is rapidly crystallized to a solid below the glass transition temperature without being crystallized.
  • This method is excellent in that it can be frozen and stored stably and in a short time with a simple operation by vitrifying a tissue, embryo, or egg previously immersed in a high-concentration preservation solution.
  • the quick cryopreservation method is a freezing method for a biological sample, which is a method of putting the sample into a coolant such as liquid nitrogen.
  • a tissue derived from pluripotent stem cells and a cryopreservation solution are placed in a freezing tube on ice, and the freezing tube is submerged in a coolant using tweezers.
  • the time from holding the pluripotent stem cell-derived tissue in the cryopreservation solution to putting it into the coolant is preferably as short as possible, and can be within 30 seconds, preferably within 10 seconds.
  • the “cooling agent” used in the present invention is preferably one that can cause vitrification of cells, and usually a cooling agent of ⁇ 20 ° C. or lower, preferably ⁇ 80 ° C. or lower, more preferably ⁇ 150 ° C. or lower is used. be able to.
  • the coolant examples include liquid nitrogen, slush nitrogen (Slush Nitrogen), liquid helium, liquid propane, and ethane slush, preferably liquid nitrogen or slush nitrogen.
  • Slush nitrogen is nitrogen in which the liquid nitrogen temperature is reduced to -205 to -210 ° C., which is lower than the normal pressure of ⁇ 196 ° C. by holding the liquid nitrogen under reduced pressure (Huang et al., Human Reproduction, Vol. 20). , No.1, pp.122-128 (2005)).
  • vitrification storage can be performed by an apparatus such as Vit-Master TM (IMT, Nes Ziona, Israel).
  • the temperature decrease rate when cryopreserving in the presence of a coolant is 10 ° C./min or more, preferably 30 ° C./min or more, more preferably 50 ° C./min or more, particularly preferably 100 ° C./min or more.
  • the rate of decrease can be mentioned.
  • the time required from the normal temperature to the intended cryopreservation temperature (for example, -196 ° C for liquid nitrogen) when performing cryopreservation in the presence of a coolant is, for example, within 5 minutes, more preferably within 3 minutes. More preferably, it can be mentioned within 1 minute.
  • RAX knock-in human ES cells A human ES cell line in which GFP was knocked in at the RAX locus, which is one of the marker genes of retinal progenitor cells, was prepared.
  • Zinc Finger Nuclease (ZFN) that specifically cleaves the RAX gene on the genomic DNA of a human ES cell line (KhES-1: human ES cell line established by Kyoto University) was purchased from Sigma Aldrich.
  • RAX knock-in human ES cells Retinal tissue differentiation was induced using established RAX :: GFP knock-in human ES cells.
  • RAX :: GFP knock-in human ES cells (derived from KhES-1) were obtained from “Ueno, M. et al. PNAS 2006, 103 (25), 9554-9559” “Watanabe, K. et al. Nat Biotech 2007, 25, 681 -686 "was cultured according to the method described in the above and used for the experiment.
  • the medium used was a DMEM / F12 medium (Invitrogen) supplemented with 20% KSR (Knockout Serum Replacement; Invitrogen), 0.1 mM 2-mercaptoethanol, 5-10 ng / ml bFGF, and the like.
  • ES cells are monodispersed using 0.25% trypsin-EDTA (Invitrogen), and a non-cell-adhesive 96-well culture plate (Sumilon Spheroid Plate, Sumitomo Bakelite) The cells were suspended in 150 ⁇ l of differentiation medium so that 9 ⁇ 10 3 cells per well were formed, and aggregates were rapidly formed, followed by culturing at 37 ° C.
  • a differentiation medium at that time a serum-free medium obtained by adding 20% KSR, Y27632, or the like to a G-MEM medium was used. Further, from the second day of culture, matrigel was added and cultured. After the initiation of differentiation, the expression of GFP was confirmed in the aggregate from about the 12th day by observation with a fluorescence microscope, and a neuroepithelium-like structure expressing GFP was formed around the aggregate in about the 14th day (FIG. 1). , FIG. 2).
  • this neuroepithelial-like structure was separated from the aggregate using tweezers, and after continuation of culture by adding fetal bovine serum or retinoic acid in a non-adhesive plastic petri dish (FIGS. 3 and 4), sections were prepared, and the differentiation state was analyzed by fluorescent immunostaining (FIG. 5).
  • a neuroepithelium-like structure 40 days after the start of differentiation induction is composed of GFP positive cells in which the RAX gene is expressed, and Pax6, which is one of the retinal progenitor cell marker genes, in the GFP positive cells. It was revealed that retinal tissue was formed in which positive cells, Chx10 positive cells, which are one of the bipolar cell marker genes, and Brn3 positive cells, which are one of the ganglion cell marker genes, were arranged in layers (FIG. 5). ).
  • Comparative Example 1 (Cryopreservation by freezing of retinal tissue induced to differentiate from human ES cells) The differentiation-induced retinal tissue was cryopreserved at a temperature decrease rate of 100 ° C./min or more.
  • DMSO dimethyl sulfoxide
  • DAP213 3M propylene glycol
  • the freezing tube was immersed in liquid nitrogen and cryopreserved at a temperature decrease rate of 100 ° C./min or more.
  • the frozen tubes were stored in a ⁇ 150 ° C. freezer until thawing was performed.
  • the freezing tube was taken out from the ⁇ 150 ° C. freezer, and the medium previously warmed to 37 ° C. using a 37 ° C. water bath was placed in the freezing tube and thawed. After dispensing into a 15 ml tube and transferring the retinal tissue into 10 ml of the medium heated to 37 ° C., the supernatant was removed.
  • Comparative Example 2 (Cryopreservation by freezing after permeabilization of cryoprotectant (11.0% (w / v) dimethyl sulfoxide (DMSO)) of retinal tissue induced to differentiate from human ES cells)
  • cryoprotectant 11.0% (w / v) dimethyl sulfoxide (DMSO)
  • the retinal tissue induced to differentiate was subjected to osmotic treatment using a solution containing dimethyl sulfoxide (DMSO) as a cryoprotectant before freezing, and then cryopreserved at a temperature decrease rate of 100 ° C./min or more.
  • About 10 to 20 retinal tissues are transferred from the culture dish to a 15 ml polypropylene tube, and the supernatant is removed.
  • a solution containing a cryoprotectant a solution obtained by adding 11.0% (w / v) dimethyl sulfoxide (DMSO) to the above-mentioned medium for retinal tissue culture was used.
  • DMSO dimethyl sulfoxide
  • 200 ⁇ l of DAP213 is added as a cryopreservation solution, the retinal tissue is transferred to the cryotube together with the cryopreservation solution, and the cryotube is immediately immersed in liquid nitrogen using tweezers.
  • Cryopreservation was performed at a temperature decrease rate of at least ° C / min.
  • the frozen tubes were stored in a ⁇ 150 ° C. freezer until thawing was performed.
  • cryopreservation was performed at a temperature decrease rate of 100 ° C./min or higher after osmosis treatment using a medium for retinal tissue culture containing 11.0% (w / v) dimethyl sulfoxide (DMSO) as a cryoprotectant.
  • DMSO dimethyl sulfoxide
  • Example 1 Freezing by freezing after osmotic treatment of retinal tissue cryo-protective substances (11.0% (w / v) dimethyl sulfoxide (DMSO) and 5.55% (w / v) ethylene glycol) induced to differentiate from human ES cells) Save) Osmotic treatment was performed using a solution containing 11.0% (w / v) dimethyl sulfoxide (DMSO) and 5.55% (w / v) ethylene glycol (EG) as cryoprotectants using retinal tissue induced to differentiate before freezing. The procedure was the same as in Comparative Example 2 except that.
  • RAX is expressed more than when the cryoprotectant infiltration treatment using the above-mentioned culture medium for retinal tissue culture containing 11.0% (w / v) dimethyl sulfoxide (DMSO) is performed. It was found that the preservation of the retinal tissue was improved (FIGS. 6G and H), and the layer structure was retained (FIGS. 8A and B).
  • Example 2 (Cryoprotectant of retinal tissue differentiated from human ES cells (11.0% (w / v) dimethyl sulfoxide (DMSO), 5.55% (w / v) ethylene glycol (EG) and 10% (w / v) v) Sucrose) Cryopreservation by freezing after osmosis treatment)
  • DMSO dimethyl sulfoxide
  • EG ethylene glycol
  • cryopreservation was performed at a temperature decrease rate of 100 ° C./min or more, and the retina not cryopreserved although the expression intensity of GFP was slightly weaker than that of the retina tissue not cryopreserved.
  • the state comparable to that of the tissue was maintained, the storage stability was very good (FIGS. 6I and J), and the layer structure was also maintained (FIGS. 8C, D and E).
  • Comparative Example 3 (Cryopreservation by freezing after cryoprotectant (sucrose) permeation treatment of retinal tissue induced to differentiate from human ES cells)
  • a cryoprotectant penetration solution retinal tissue culture medium with 5% sucrose, 10% sucrose, 20% sucrose, 5.55% EG and 10% sucrose , 11% (w / v) dimethyl sulfoxide (DMSO) and 10% (w / v) sucrose were added and frozen and thawed in the same manner as described above.
  • DMSO dimethyl sulfoxide

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明は、下記(1)~(3)を含むことを特徴とする多能性幹細胞由来の組織の凍結保存方法を提供する。 (1)多能性幹細胞由来の組織にスルホキシドと鎖状ポリオールとを含む細胞保護溶液を接触させる第一工程 (2)第一工程で細胞保護溶液と接触させた多能性幹細胞由来の組織を凍結保存液に保持する第二工程 (3)第二工程で凍結保存液に保持された多能性幹細胞由来の組織を、冷却剤存在下にて凍結保存する第三工程 本発明の方法により、多能性幹細胞由来の組織を安定に保存する方法を提供することが可能となる。

Description

多能性幹細胞由来の組織の凍結保存方法
 本発明は、多能性幹細胞由来の組織の凍結保存方法に関するものである。
 組織とは、形態や性質が異なる複数種類の細胞が一定のパターンで立体的に配置した構造を有する細胞集団の構造体である。
 例えば、眼球の構成要素の一つである網膜組織は、眼球の後ろ側の内壁を覆う膜状の組織であり、網膜組織は神経細胞が規則的に並ぶ層構造を有している。網膜には大別すると視細胞、双極細胞、水平細胞、アマクリン細胞、神経節細胞の5種類の神経細胞が存在する。光は視細胞で電気信号に変換され、その情報は化学シナプスを介して双極細胞と水平細胞に伝達される。双極細胞はアマクリン細胞や神経節細胞とシナプス結合しており、神経節細胞の軸索が視神経として大脳の視覚中枢に連絡している。網膜障害の治療には、これまでも病因研究、創薬における薬効・安全性研究、細胞移植治療などが実施されているが、このような研究の材料となるヒトの生体組織を反映した層構造を持つ網膜組織を入手することは困難であった。
 近年、ES細胞等の多能性幹細胞を分化誘導することにより、生体内網膜組織に匹敵する網膜組織の作製が報告された(非特許文献1)。多能性幹細胞を分化させて得られる組織を再生医療や安全性試験等に活用するには、品質のそろった組織を安定的に大量に供給することが必須である。一方、多能性幹細胞を分化させて様々な組織を作製するには、例えばヒトES細胞から網膜組織を作製するためには3週間以上の期間を要するように、一定以上の分化誘導期間が必要となる。また、分化誘導の効率も分化誘導処理ごとに変わることが多い。よって、当該組織を逐次、用時調製していては現実的な実用化は困難であり、当該組織を分化誘導の途中段階で保存する技術が切望されていた。
M. Eiraku et al., Nature 472, p51-56 (2011): Self-organizing optic-cup morphogenesis in three-dimensional culture
 多能性幹細胞由来の組織を再生医療や安全性薬効評価等に使用する際に、多量の組織を安定的に供給するには、当該組織の保存方法の開発が急務である。
 本発明者らは、このような状況を鑑み鋭意検討した結果、多能性幹細胞由来の組織を安定的に保存する方法を見出し、本発明に至った。
 即ち、本発明は
[1]下記(1)~(3)を含むことを特徴とする多能性幹細胞由来の組織の凍結保存方法。
(1)多能性幹細胞由来の組織にスルホキシドと鎖状ポリオールとを含む細胞保護溶液を接触させる第一工程
(2)第一工程で細胞保護溶液と接触させた多能性幹細胞由来の組織を凍結保存液に保持する第二工程
(3)第二工程で凍結保存液に保持された多能性幹細胞由来の組織を、冷却剤存在下にて凍結保存する第三工程
[2]スルホキシドと鎖状ポリオールとを含む細胞保護溶液が、スルホキシド、鎖状ポリオール及びオリゴ糖を含む細胞保護溶液である前記[1]記載の凍結保存方法。
[3]細胞保護溶液中の、スルホキシドの濃度が5~15%、鎖状ポリオールの濃度が4~15%、オリゴ糖の濃度が5~20%である前記[2]記載の凍結保存方法。
[4]スルホキシドがジメチルスルホキシドであり、鎖状ポリオールがエチレングリコールであり、オリゴ糖がスクロースである前記[2]または[3]記載の凍結保存方法。
[5]前記多能性幹細胞が、ヒト多能性幹細胞である前記[1]~[4]のいずれか記載の凍結保存方法。
[6]組織が、脳神経組織である前記[1]~[5]のいずれか記載の凍結保存方法。
[7]組織が、網膜組織である前記[1]~[5]のいずれか記載の凍結保存方法。
[8]第三工程が、10℃/分以上の温度低下速度で行なわれることを特徴とする前記[1]~[7]のいずれか記載の凍結保存方法。
[9]冷却剤が、液体窒素である前記[1]~[8]のいずれか記載の凍結保存方法。
[10]凍結保存液が、ジメチルスルホキシド、アセトアミド及びプロピレングリコールを含む凍結保存液である前記[1]~[9]のいずれか記載の凍結保存方法。
[11]ジメチルスルホキシドの濃度が1~4M、アセトアミドの濃度が0.5~2M、プロピレングリコールの濃度が1.5~6Mである前記[10]記載の凍結保存方法。
[12]スルホキシドと鎖状ポリオールとを含む、多能性幹細胞由来の組織の凍結保存用の細胞保護溶液。
[13]さらにオリゴ糖を含む、前記[12]記載の細胞保護溶液。
 本発明により、多能性幹細胞由来の組織の安定な保存が可能となる。
図1は、RAX::緑色蛍光タンパク質(以下、「GFP」という場合がある)ノックインヒトES細胞から分化誘導した凝集体に生じた網膜組織の明視野像を示す図である。 図2は、図1に示す網膜組織を有する凝集体の蛍光像を示す図である。 図3は、凝集体から切り離して培養した網膜組織の明視野像を示す図である。 図4は、図3に示す網膜組織の蛍光像を示す図である。 図5は、凝集体から切り離して培養した網膜組織の凍結切片を抗GFP抗体、抗Chx10抗体、抗Pax6抗体、抗Brn3抗体を用いて免疫染色した結果を示す図である。 図6は凝集体から切り離して培養した網膜組織であって、実験の対照として凍結していない網膜組織(A,B)、細胞保護溶液と接触させること無く凍結(C,D)、11.0% (w/v)ジメチルスルホキシド(DMSO)を含む溶液で浸透処理した後に凍結(E,F)、11.0% (w/v)ジメチルスルホキシド(DMSO)及び5.55% (w/v)エチレングリコールを含む溶液で浸透処理した後に凍結(G,H)、11.0% (w/v)ジメチルスルホキシド(DMSO)、5.55% (w/v)エチレングリコール及び10% (w/v)スクロースを含む溶液で浸透処理した後に凍結(I,J)した後の網膜組織の状態を示す図である。 図7は凝集体から切り離して培養した網膜組織であって、実験の対照として凍結していない網膜組織(A,B)及び5% (w/v)スクロースを含む溶液で浸透処理した後に凍結(C,D)、10% (w/v)スクロースを含む溶液で浸透処理した後に凍結(E,F)、20% (w/v)スクロースを含む溶液で浸透処理した後に凍結(G,H)、11.0% (w/v)ジメチルスルホキシド(DMSO)及び10% (w/v)スクロースを含む溶液で浸透処理した後に凍結(I,J)、5.55% (w/v)エチレングリコール及び10% (w/v)スクロースを含む溶液で浸透処理した後に凍結(K,L)した後の網膜組織の状態を示す図である。 図8は凝集体から切り離して培養した網膜組織であって、11.0% (w/v)ジメチルスルホキシド(DMSO)及び5.55% (w/v)エチレングリコールを含む溶液で浸透処理した後に凍結した網膜組織の凍結切片(A,B)及び11.0% (w/v)ジメチルスルホキシド(DMSO)、5.55% (w/v)エチレングリコール、10% (w/v)スクロースを含む溶液で浸透処理した後に凍結した網膜組織の凍結切片(C,D,E,F)を抗GFP抗体(A,C,E)、抗Chx10抗体(B)、抗Chx10及び抗Pax6抗体(D)、抗Chx10及び抗TuJ1抗体(F)を用いて免疫染色した結果を示す図である。
 以下、本発明を実施するための形態について詳細に説明する。
 本発明における「形質転換体」とは、形質転換により作製された細胞等の生命体の全部又は一部を意味する。形質転換体としては、例えば、原核細胞、酵母、動物細胞、植物細胞、昆虫細胞等を挙げることができる。形質転換体は、その対象に依存して、形質転換細胞、形質転換組織、形質転換宿主等とも呼ばれることがある。本発明において用いられる細胞は、形質転換体であってもよい。
 本発明に関連した、遺伝子操作技術で使用される原核生物細胞としては、例えば、Eschericia属、Serratia属、Bacillus属、Brevibacterium属、Corynebacterium属、Microbacterium属、Pseudomonas属等に属する原核生物細胞、具体的には、Eschericia XL1-Blue、Eschericia XL2-Blue、Eschericia DH1等を挙げることができる。このような細胞は、例えば、「Molecular Cloning(3rd edition)」 by Sambrook,J and Russell, D.W., Appendix 3(Volume 3),Vectors and Bacterial strains. A3.2(Cold Spring Harbor USA 2001)に具体的に記載されている。
 本発明に関連した「ベクター」とは、目的のポリヌクレオチド配列を目的の細胞へと移入させることができるベクターを意味する。このようなベクターとしては、例えば、原核細胞、酵母、動物細胞、植物細胞、昆虫細胞、動物個体及び植物個体等の宿主細胞において自律複製が可能であり、又は、染色体中への組込みが可能である、ポリヌクレオチドの転写に適した位置にプロモーターを含有しているもの等を挙げることができる。
 このようなベクターのうち、クローニングに適したベクターを「クローニングベクター」と記すこともある。このようなクローニングベクターは、通常、制限酵素部位を複数含むマルチプルクローニング部位を含む。現在、遺伝子のクローニングに使用可能なベクターは、当該技術分野において多数存在しており、販売元により、微妙な違い(例えば、マルチクローニングサイトの制限酵素の種類や配列)から名前を代えて販売されている。例えば、「Molecular Cloning(3rd edition)」 by Sambrook, J and Russell, D.W., Appendix 3 (Volume 3), Vectors and Bacterial strains. A3.2 (Cold Spring Harbor USA, 2001)に代表的なものが記載(発売元も記載)されており、このようなものを当業者は適宜目的に応じて使用することができる。
 本発明に関連した「ベクター」は、「発現ベクター」、「レポーターベクター」、「組換えベクター」も含む。尚、「発現ベクター」とは、構造遺伝子及びその発現を調節するプロモーターに加えて種々の調節エレメントが宿主細胞の中で作動し得る状態で連結されている核酸配列を意味する。「調節エレメント」としては、例えば、ターミネーター、薬剤耐性遺伝子のような選択マーカー、及び、エンハンサーを含むもの等を挙げることができる。生物(例えば、動物)の発現ベクターのタイプ及び使用される調節エレメントの種類が宿主細胞に応じて変わり得ることは、当業者に周知の事項である。
 本発明に関連して「組換えベクター」としては、例えば、(a)ゲノムライブラリーのスクリーニングのためには、ラムダFIXベクター(ファージベクター)、(b)cDNAのスクリーニングのためには、ラムダZAPベクター(ファージベクター)、(c)ゲノムDNAのクローニングのためには、例えば、pBluescript II SK+/-ベクター、pGEMベクター、pCR2.1ベクター(プラスミドベクター)等を挙げることができる。また「発現ベクター」としては、例えば、pSV2/neoベクター、pcDNAベクター、pUC18ベクター、pUC19ベクター、pRc/RSVベクター、pLenti6/V5-Destベクター、pAd/CMV/V5-DESTベクター、pDON-AI-2/neoベクター、pMEI-5/neoベクター等(プラスミドベクター)等を挙げることができる。また「レポーターベクター」としては、例えば、pGL2ベクター、pGL3ベクター、pGL4.10ベクター、pGL4.11ベクター、pGL4.12ベクター、pGL4.70ベクター、pGL4.71ベクター、pGL4.72ベクター、pSLGベクター、pSLOベクター、pSLRベクター、pEGFPベクター、pAcGFPベクター、pDsRedベクター等を挙げることができる。このようなベクターは、前述のMolecular Cloning誌を参考にして適宜利用すればよい。
 本発明に関連して、核酸分子を細胞内に導入する技術としては、例えば、形質転換、形質導入、トランスフェクション等を挙げることができる。このような導入技術としては、具体的には例えば、Ausubel F. A.ら編(1988), Current Protocols in Molecular Biology, Wiley, New York, NY;Sambrook J.ら(1987), Molecular Cloning: A Laboratory Manual, 2nd Ed.及びその第三版;Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY;別冊実験医学「遺伝子導入&発現解析実験法」羊土社、1997等に記載される方法等を挙げることができる。遺伝子が細胞内に導入されたことを確認する技術としては、例えば、ノーザンブロット分析、ウェスタンブロット分析又は他の周知慣用技術等を挙げることができる。
 また、本発明に関連して、ベクターの導入方法としては、例えば、トランスフェクション、形質導入、形質転換等(例えば、リン酸カルシウム法、リポソーム法、DEAEデキストラン法、エレクトロポレーション法、パーティクルガン(遺伝子銃)を用いる方法等)を挙げることができる。
 本発明凍結保存方法は、下記(1)~(3)を含むことを特徴とする凍結保存方法である。
(1)多能性幹細胞由来の組織とスルホキシド及び鎖状ポリオールを含む細胞保護溶液とを接触させる第一工程
(2)第一工程で細胞保護溶液と接触させた多能性幹細胞由来の組織を凍結保存液に保持する第二工程
(3)第二工程で凍結保存液に保持された多能性幹細胞由来の組織を冷却剤存在下にて凍結保存する第三工程
 本発明において「幹細胞」とは、細胞分裂を経ても同じ分化能を維持する細胞のことであり、組織が傷害を受けたときにその組織を再生することができる。ここで幹細胞は、胚性幹細胞(ES細胞)又は組織幹細胞(組織性幹細胞、組織特異的幹細胞又は体性幹細胞ともいう)、又は人工多能性幹細胞(iPS細胞:induced pluripotent stem cell)であり得るがそれらに限定されない。上記の幹細胞由来の組織細胞は組織再生が可能なことから分かるように生体に近い正常な細胞を分化できることが知られている。
 幹細胞は、所定の機関より入手でき、また、市販品を購入することもできる。例えば、ヒト胚性幹細胞であるKhES-1、KhES-2及びKhES-3は、京都大学再生医科学研究所より入手可能である。マウス胚性幹細胞の例としては、EB5細胞などが挙げられる。
 幹細胞は、自体公知の方法により維持培養できる。例えば、幹細胞は、ウシ胎児血清(FCS)、Knockout Serum Replacement(KSR)、LIFを添加した無フィーダー細胞による培養により維持できる。
 本発明において「多能性幹細胞」とは、インビトロにおいて培養することが可能で、かつ、胎盤を除く生体を構成するすべての細胞(三胚葉(外胚葉、中胚葉、内胚葉)由来の組織)に分化しうる能力(多能性(pluripotency))を有する幹細胞をいい、胚性幹細胞(ES細胞)もこれに含まれる。「多能性幹細胞」は、受精卵、クローン胚、生殖幹細胞、組織内幹細胞から得られる。また、体細胞に数種類の遺伝子を導入することにより、胚性幹細胞に似た多能性を人工的に持たせた細胞(人工多能性幹細胞ともいう)も含む。多能性幹細胞は、自体公知の方法で作製することが可能である。作製方法としては、例えばCell 131(5)pp.861-872 (2007)や、Cell 126(4)pp.663-676 (2006)に記載の方法などが挙げられる。
 本発明において「胚性幹細胞(ES細胞)」とは、自己複製能を有し、多分化能(すなわち多能性「pluripotency」)を有する幹細胞であり、初期胚に由来する多能性幹細胞をいう。胚性幹細胞は、1981年に初めて樹立され、1989年以降ノックアウトマウス作製にも応用されている。1998年にはヒト胚性幹細胞が樹立されており、再生医学にも利用されつつある。
 本発明において「人工多能性幹細胞」とは、線維芽細胞等分化した細胞をOct3/4、Sox2、Klf4、Myc等数種類の遺伝子の発現により直接初期化して多分化能を誘導した細胞であり、2006年、山中らによりマウス細胞で樹立された(Takahashi K, Yamanaka S.Cell. 2006, 126(4), p663-676)。2007年、ヒト線維芽細胞でも樹立され、胚性幹細胞と同様に多分化能を有する(Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Cell.2007, 131(5), p861-872.; Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA.,Science. 2007, 318(5858), p1917-1920.; Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S. Nat Biotechnol., 2008, 26(1), p101-106)。
 本発明において、「分化」とは、1個の細胞の分裂によって由来した娘細胞集団の中で形態的及び/又は機能的に質的な差をもった二つ以上のタイプの細胞が生じてくる現象をいう。従って、元来特別な特徴を検出できない細胞に由来する細胞集団(細胞系譜)が、特定のタンパク質の産生等はっきりした特徴を示すに至る過程も分化に包含される。現在では細胞分化を、ゲノム中の特定の遺伝子群が発現した状態と考えることが一般的であり、このような遺伝子発現状態をもたらす細胞内或いは細胞外の因子又は条件を探索することにより細胞分化を同定することができる。細胞分化の結果は原則として安定であって、特に動物細胞では,別のタイプの細胞に分化することは例外的にしか起こらない。
 本発明において「組織」とは、形態や性質が異なる複数種類の細胞が一定のパターンで立体的に配置した構造を有する細胞集団の構造体をさし、本発明において「多能性幹細胞に由来する組織」とは、多能性幹細胞から分化誘導される細胞の凝集体であり、形態や性質が異なる複数種類の細胞が一定のパターンで立体的に配置した構造を有する細胞集団の構造体をさす。
 多能性幹細胞から分化誘導される細胞としては、大脳神経細胞、間脳神経細胞、視床下部神経細胞、大脳基底核神経細胞、小脳神経細胞、腸組織細胞、心筋細胞、すい臓細胞、肝臓細胞、またはこれらの前駆細胞が挙げられる。具体的には、WO 2009/148170、J Neurosci. 2011 Feb 2;31(5):1919-33、Nat Neurosci. 2010 Oct;13(10):1171-80、Cell Stem Cell. 2008 Nov 6;3(5):519-32、Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11796-801、Nature. 2011 Feb 3;470(7332):105-9、Nat Biotechnol. 2011 Mar;29(3):267-72、Cell Stem Cell. 2011 Feb 4;8(2):228-40、Development. 2011 Mar;138(5):861-71、Nat Biotechnol. 2006 Nov;24(11):1402-11に基づいて作製することができる。
 本発明において、「脳神経組織」とは生体の大脳、間脳、中脳、小脳、後脳において各神経層を構成する細胞やその前駆細胞(例えば大脳の場合、第6層特異的なTbr1陽性細胞、第5層特異的なCrip2陽性細胞、第2-3層特異的なBrn2陽性細胞など)が少なくとも複数種類、層状で立体的に配列した構造体を意味する。脳神経組織の一部として、網膜組織を挙げることが出来る。「網膜組織」とは生体網膜において各網膜層を構成する視細胞、水平細胞、双極細胞、アマクリン細胞、網膜節細胞、またはこれらの前駆細胞などの細胞が、少なくとも複数種類、層状で立体的に配列した網膜組織を意味する。それぞれの細胞がいずれの網膜層を構成する細胞であるかは、公知の方法、例えば細胞マーカー(Chx10(双極細胞)、L7(双極細胞)、Tuj1(節細胞)、Brn3(節細胞)、Calretinin(アマクリン細胞)、Calbindin(水平細胞)、Recoverin(視細胞)、Rhodopsin(視細胞)、RPE65(色素上皮細胞)、Mitf(色素上皮細胞)など)の発現により確認できる。
 例えば網膜組織はヒトES細胞を分化させることにより作製可能であり、具体的には、Nature 472, p51-56 (2011)、WO2011/055855記載の方法により作製することができる。
 本発明において、「凍結保護溶液」とは、凍結保護物質と溶媒との混合液をいう。「凍結保護物質」とは、細胞の凍結保存を行う際、細胞の機能や生存率をできるだけ維持するため、凍結に由来する様々な障害を防止する目的で添加される物質をいう。凍結保護溶液は、凍結時に細胞を保護する観点から、細胞保護溶液とも言え、同義である。
 本発明において、細胞保護溶液(凍結保護溶液)は、凍結保護物質として、スルホキシドおよび鎖状ポリオールを含み、好ましくはスルホキシド、鎖状ポリオールおよびオリゴ糖を含む。具体的に言えば、例えば、ジメチルスルホキシド(DMSO)等のスルホキシド;エチレングリコール、グリセロール、プロパンジオール、プロピレングリコール、ブタンジオール、ポリエチレングリコール等の鎖状ポリオールを含み、好ましくはさらにスクロース、トレハロース、ラクトース、ラフィノース等のオリゴ糖を含む。所望によりアセトアミド等のアミド化合物、パーコール、フィコール70、フィコール70000、ポリビニルピロリドン等を含めてもよい。
 溶媒としては、例えば、生理食塩水、PBS、EBSS、HBSSなどの緩衝液やDMEM、GMEM、RPMIなどの細胞や組織などを培養する培養液、血清、血清代替物(Knock Out Serum Replacement:Invitrogen社)または、これらの混合物などを用いることができる。
 本発明において、細胞保護溶液(凍結保護溶液)中のスルホキシドの終濃度は、5~15%(w/v)、好ましくは9~13%(w/v)、より好ましくは11%(w/v)前後を挙げることができる。
 本発明において、細胞保護溶液(凍結保護溶液)中の鎖状ポリオールの終濃度は、4~15%(w/v)、好ましくは4.5%~8%(v/v)、より好ましくは5.5%(v/v)前後を挙げることができる。
 本発明において、細胞保護溶液(凍結保護溶液)中のオリゴ糖の終濃度は、5~20%(w/v)、好ましくは8~12%(w/v)、より好ましくは10%(w/v)前後を挙げることができる。
 本発明において、「凍結保存液」とは、多能性幹細胞由来の組織を凍結保存するための媒体をいう。凍結保存液としては、セルバンカー1、1プラス、2、3(十慈フィールド株式会社)、TCプロテクター(DSファーマバイオメディカル株式会社)、Freezing Medium for human ES/iPS Cells(株式会社リプロセル)、クライオスカーレスDMSOフリー(株式会社バイオベルデ)、ステムセルキープ(株式会社バイオベルデ)、EFS溶液(NK system)等の市販のものを用いることもできる。
 また、凍結保存液としては、凍結保護物質と溶媒との混合液を含んでもよい。凍結保護物質および溶媒としては、上記記載のものを挙げることができる。
 本発明における凍結保存液は、ジメチルスルホキシド、アセトアミド及びプロピレングリコールを含有することが好ましい。
 本発明において、凍結保存液中のジメチルスルホキシドの濃度は、1~4M、アセトアミドの濃度は、0.5~2M、プロピレングリコールの濃度は1.5~6Mであることが好ましい。
 本発明の凍結保存方法における第一工程は、凍結前に多能性幹細胞由来の組織にスルホキシドと鎖状ポリオールとを含む細胞保護溶液を接触させる工程である。
 上記第一工程では、多能性幹細胞由来の組織にスルホキシドと鎖状ポリオールとを含む細胞保護溶液を接触させる。
 「多能性幹細胞由来の組織にスルホキシドと鎖状ポリオールとを含む細胞保護溶液を接触させる」には、スルホキシドと鎖状ポリオールとを含む細胞保護溶液中に、多能性幹細胞由来の組織を移してもよいし、多能性幹細胞由来の組織にスルホキシドと鎖状ポリオールとを含む細胞保護溶液を加えてもよい。
 多能性幹細胞由来の組織にスルホキシドと鎖状ポリオールとを含む細胞保護溶液を接触させる時間としては、1分~180分、好ましくは5分から60分、より好ましくは15分から30分を挙げることができる。また、多能性幹細胞由来の組織にスルホキシドと鎖状ポリオールとを含む細胞保護溶液を接触させる温度としては、-10℃~40℃、好ましくは0℃から25℃、より好ましくは0℃~8℃を挙げることができる。
 上記第一工程における接触系内での多能性幹細胞由来の組織の密度(例えば細胞保護溶液中での多能性幹細胞由来の組織の密度)としては、例えば、凝集体数に換算して、1~1000個/mL程度、好ましくは凝集体1~100個/mLを挙げることができる。なお、1凝集体あたりの細胞数は、10~10個程度である。
 細胞保護溶液を接触させる時に用いられる培養器は、特に限定されず、当業者であれば適宜決定することが可能である。このような培養器としては、例えば、フラスコ、組織培養用フラスコ、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウェルプレート、マイクロポア、マルチプレート、マルチウェルプレート、チャンバースライド、シャーレ、チューブ、トレイ、培養バック、ローラーボトルが挙げられる。
 本発明の凍結保存方法における第二工程は、細胞保護溶液と接触させた多能性幹細胞由来の組織を凍結保存液に保持する工程である。
 上記第二工程では、第一工程で細胞保護溶液と接触させた多能性幹細胞由来の組織を、凍結保存液に保持する。
 上記第二工程における細胞保存液中での多能性幹細胞由来の組織の密度としては、例えば、凝集体数に換算して、1~1000個/mL程度、好ましくは凝集体1~100個/mLを挙げることができる。1凝集体あたりの細胞数は10~10個程度である。
 本発明の凍結保存方法における第三工程は、凍結保存液に保持された多能性幹細胞由来の組織を冷却剤存在下にて凍結保存する工程である。
 組織等を「凍結保存」する方法にはいくつかの方法が知られている。代表的な凍結保存法としては、0.1~10℃/分という緩慢な速度で長時間かけて凍結させる方法が挙げられる。この方法は、プログラムフリーザーやバイセル(日本フリーザー株式会社)などの装置や器具等を用いて実施することが出来る。
 急速凍結保存方法としては、結晶質の液体または気体を結晶化させずに急激にガラス転移温度以下の固体にしたときに生じるガラス化という現象を応用した方法が挙げられる。本方法は、あらかじめ高濃度の保存液に浸漬した組織や胚、卵子をガラス化させることにより安定的に短時間かつ簡単な操作で凍結保存することができる点で優れている。
 ここで、急速凍結保存方法とは、生物試料に対する凍結法であり、液体窒素などの冷却剤に試料を投入する方法をいう。例えば、氷上で多能性幹細胞由来の組織と凍結保存液とを凍結チューブに入れ、ピンセットを用いて、前記凍結チューブを冷却剤へ沈める方法が挙げられる。多能性幹細胞由来の組織を凍結保存液に保持してから冷却剤に投入するまでの時間は、可能な限り短い方が好ましく、30秒以内、好ましくは10秒以内を挙げることができる。
 本発明において使用する「冷却剤」は、細胞のガラス化を起こすことができるものが好ましく、通常-20℃以下、好ましくは-80℃以下、より好ましくは、-150℃以下の冷却剤を用いることができる。
 冷却剤として、具体的に言えば、例えば、液体窒素、スラッシュ窒素(Slush Nitrogen)、液体ヘリウム、液体プロパン、エタンスラッシュを挙げることができ、好ましくは、液体窒素又はスラッシュ窒素である。スラッシュ窒素は、液体窒素を減圧下で保持することにより液体窒素温度を常圧の-196℃より低い-205~-210℃に下げた窒素のことである(Huangら、Human Reproduction, Vol.20, No.1, pp.122-128 (2005))。冷却剤としてスラッシュ窒素を用いる場合には、例えば、Vit-MasterTM(IMT、Nes Ziona、イスラエル)等の装置により、ガラス化保存を行うことができる。
 冷却剤存在下にて凍結保存を行う際の温度低下速度は、10℃/分以上、好ましくは30℃/分以上、より好ましくは50℃/分以上、特に好ましくは100℃/分以上の温度低下速度を挙げることができる。
 冷却剤存在下にて凍結保存を行う際の常温から目的とする凍結保存温度(例えば、液体窒素の場合は-196℃)までに要する時間は、例えば、5分以内、より好ましくは3分以内、さらに好ましくは1分以内を挙げることができる。
 以下、本発明の実施例をさらに詳しく説明する。
(RAXノックインヒトES細胞の樹立)
 網膜前駆細胞のマーカー遺伝子の1つであるRAX遺伝子座にGFPをノックインしたヒトES細胞株の作製を実施した。
 ヒトES細胞株(KhES-1:京都大学が樹立したヒトES細胞株)のゲノムDNA上RAX遺伝子を特異的に切断するZinc Finger Nuclease (ZFN)をSigma Aldrich社から購入した。単一細胞化したヒトES細胞を用いて、エレクトロポレーション法により、ZFNをコードするmRNAとGFP及び薬剤選択遺伝子であるネオマイシン耐性遺伝子が搭載されたノックインベクターを共導入し、マイトマイシンC処理したネオマイシン耐性マウス線維芽細胞上へ播種した。播種翌日から培地中にG418を添加し、薬剤選択を行った。得られた耐性クローンのコロニーをピックアップして培養を続け、PCR法やサザンブロット法により、ノックイン細胞を選別し、RAX::GFPノックインヒトES細胞株を樹立した。
(RAXノックインヒトES細胞を用いた網膜組織の分化誘導)
 樹立したRAX::GFPノックインヒトES細胞を用いて、網膜組織の分化誘導を実施した。
 RAX::GFPノックインヒトES細胞(KhES-1由来)を「Ueno, M. et al. PNAS 2006, 103(25), 9554-9559」 「Watanabe, K. et al. Nat Biotech 2007, 25, 681-686」に記載の方法に倣って培養し、実験に用いた。
 培地にはDMEM/F12培地(Invitrogen)に20%KSR(Knockout Serum Replacement;Invitrogen)、0.1mM 2-メルカプトエタノール、5~10ng/ml bFGFなどを添加したものを用いた。浮遊培養による網膜組織分化誘導には、0.25% trypsin-EDTA (Invitrogen)を用いてES細胞を単一分散し、非細胞接着性の96穴培養プレート(スミロン スフェロイド プレート,住友ベークライト社)の1ウェルあたり9×10細胞になるように150μlの分化培地に浮遊させ、凝集塊を速やかに形成させた後、37℃、5%COで培養した。
 その際の分化培地には、G-MEM培地に20%KSR、Y27632などを添加した無血清培地を用いた。また、培養2日目からマトリゲルを添加して培養した。分化誘導開始後、12日目くらいから凝集塊内にGFPの発現が蛍光顕微鏡観察で確認され、14日目くらいで凝集塊周囲にGFPを発現する神経上皮様構造体が形成された(図1,図2)。18日目から30日目の間に、この神経上皮様構造体をピンセットを用いて凝集塊から分離し、非接着性プラスチックシャーレ内でウシ胎児血清やレチノイン酸を添加して培養を継続した後(図3,図4)、切片を作製し、蛍光免疫染色法で分化状態を解析した(図5)。例えば、分化誘導開始から40日を経過した神経上皮様構造物はRAX遺伝子が発現しているGFP陽性細胞で構成されており、GFP陽性細胞においては、網膜前駆細胞マーカー遺伝子の一つであるPax6陽性細胞、双極細胞マーカー遺伝子の1つであるChx10陽性細胞、神経節細胞マーカー遺伝子の1つであるBrn3陽性細胞が層状に配列した網膜組織が形成されていることが明らかとなった(図5)。
比較例1 (ヒトES細胞から分化誘導された網膜組織の凍結による凍結保存)
 分化誘導した網膜組織を用いて100℃/分以上の温度低下速度で凍結保存を行った。
 DMEM/F12培地に2Mジメチルスルホキシド(DMSO)、1Mアセトアミドおよび3Mプロピレングリコールを添加したもの(DAP213)を凍結保存液として用いた。10個程度の網膜組織を培養皿から15mlポリプロピレンチューブへ回収し、上清を除去した後、200μlの凍結保存液を加え、網膜組織を凍結保存液と一緒に凍結チューブへ移し、即座にピンセットを用いて凍結チューブを液体窒素中に浸し、100℃/分以上の温度低下速度で凍結保存を実施した。凍結したチューブは解凍を実施するまで-150℃フリーザーで保存した。
 -150℃フリーザーから凍結チューブを取り出し、37℃ウォーターバスを用いて事前に37℃に温めておいた培地を凍結チューブに入れ、解凍を行った。15mlチューブに分注し、37℃に加温しておいた培地10ml中へ網膜組織を移した後、上清を除去した。PBS 10mlを用いて洗浄後、DMEM/F12培地にN2、10%FBS、レチノイン酸などを添加した培地(網膜組織培養用培地)を入れた浮遊培養皿へ移し、37℃で培養した。解凍の翌日以降に顕微鏡観察および蛍光顕微鏡観察により、細胞の生存状態、上皮構造の外見について凍結保存を実施していない網膜組織(図6 A,B)と比較し、凍結保存の成否判定を実施した。
 その結果、殆どの細胞が死んでしまっており、死細胞の破片が多く観察された。また、GFPの発現も殆ど観察されなかった。よって、単なる100℃/分以上の温度低下速度で凍結保存を実施しただけでは網膜組織は全く凍結保存できないことが示された。(図6 C,D)
比較例2 (ヒトES細胞から分化誘導された網膜組織の凍結保護物質(11.0% (w/v)ジメチルスルホキシド(DMSO))浸透処理後に凍結することによる凍結保存)
 分化誘導した網膜組織を用いて凍結前に凍結保護物質としてジメチルスルホキシド(DMSO)を含む溶液を用いて浸透処理を行った後、100℃/分以上の温度低下速度で凍結保存を行った。
 10~20個程度の網膜組織を培養皿から15mlポリプロピレンチューブへ移し、上清を除去した後、あらかじめ氷上で冷却しておいた凍結保護物質を含む溶液1mlを添加し、氷上で15分~30分間静置した。凍結保護物質を含む溶液として、前述の網膜組織培養用培地に11.0% (w/v)ジメチルスルホキシド(DMSO)を加えたものを用いた。凍結保護物質を含む溶液を除去した後、凍結保存液としてDAP213 200μlを加え、網膜組織を凍結保存液と一緒に凍結チューブへ移し、即座にピンセットを用いて凍結チューブを液体窒素中に浸し、100℃/分以上の温度低下速度で凍結保存を行った。凍結したチューブは解凍を実施するまで-150℃フリーザーで保存した。
 11.0% (w/v)ジメチルスルホキシド(DMSO)を凍結保護物質として含む網膜組織培養用培地を用いて浸透処理を実施した後に100℃/分以上の温度低下速度で凍結保存を行った場合は、凍結を実施していない対照と比較するとRAXを発現する網膜組織が大幅に縮小していた(図6 E,F)。
実施例1 (ヒトES細胞から分化誘導された網膜組織の凍結保護物質(11.0% (w/v)ジメチルスルホキシド(DMSO)及び5.55% (w/v)エチレングリコール)浸透処理後に凍結することによる凍結保存)
 分化誘導した網膜組織を用いて凍結前に凍結保護物質として11.0% (w/v)ジメチルスルホキシド(DMSO)及び5.55% (w/v)エチレングリコール(EG)を含む溶液を用いて浸透処理を行った以外は、比較例2と同様に行った。
 11.0% (w/v)ジメチルスルホキシド(DMSO)及び5.55% (w/v)エチレングリコール(EG)を含む網膜組織培養用培地を用いて凍結保護物質浸透処理を実施した後に100℃/分以上の温度低下速度で凍結保存を行った場合、前述の11.0% (w/v)ジメチルスルホキシド(DMSO)を含む網膜組織培養用培地を用いた凍結保護物質浸透処理を実施した場合より、RAXを発現する網膜組織の保存性が改善され(図6 G,H)、層構造を保持していることが分かった(図8 A,B)。
実施例2 (ヒトES細胞から分化誘導された網膜組織の凍結保護物質(11.0% (w/v)ジメチルスルホキシド(DMSO)、5.55% (w/v)エチレングリコール(EG)及び10% (w/v)スクロース)浸透処理後に凍結することによる凍結保存)
 分化誘導した網膜組織を用いて凍結前に凍結保護物質として11.0% (w/v)ジメチルスルホキシド(DMSO)、5.55% (w/v)エチレングリコール(EG)及び10% (w/v)スクロースを含む溶液を用いて浸透処理を行った以外は、比較例2と同様に行った。
 11.0% (w/v)ジメチルスルホキシド(DMSO)、5.55% (w/v)エチレングリコール(EG)に加え10% (w/v)スクロースを添加した網膜組織培養用培地を用いて凍結保護物質浸透処理を実施後、100℃/分以上の温度低下速度で凍結保存を行ったところ、凍結保存を行っていない網膜組織と比較して、ややGFPの発現強度が弱いものの凍結保存を行っていない網膜組織に匹敵するほどの状態が保たれており保存性は非常に良好であり(図6 I,J)、層構造も維持されていた(図8 C,D,E)。
比較例3(ヒトES細胞から分化誘導された網膜組織の凍結保護物質(スクロース)浸透処理後に凍結することによる凍結保存)
 凍結保護物質浸透溶液として、前述の網膜組織培養用培地に5% スクロースを加えたもの、10% スクロースを加えたもの、20% スクロースを加えたもの、5.55%EG及び10%スクロースを加えたもの、11% (w/v)ジメチルスルホキシド(DMSO)及び10% (w/v)スクロースを加えたものをそれぞれ用いて上述と同様の手順で凍結及び解凍を実施した。
 網膜組織培養用培地にスクロースのみを加えた凍結保護物質浸透溶液を用いて浸透処理を行った後に100℃/分以上の温度低下速度で凍結保存した場合、凍結していない対照(図7 A,B)と比較すると、5% (w/v)、10% (w/v)、20% (w/v)のいずれの濃度においても、解凍後の細胞生存性が非常に悪く、GFPの発現も殆ど観察されなかった(図7 C,D,E,F,G,H)。5.55% (w/v)EG及び10% (w/v)スクロースを含む網膜組織培養用培地を用いて浸透処理を行った後に100℃/分以上の温度低下速度で凍結保存した場合においても、凍結保存していない対照と比較すると、解凍後の細胞生存性が非常に悪く、GFPの発現も殆ど観察されなかった(図7 K,L)。11.0% (w/v)ジメチルスルホキシド(DMSO)及び10% (w/v)スクロースを含む網膜組織培養用培地を用いて浸透処理を行った後に100℃/分以上の温度低下速度で凍結保存した場合、凍結していない対照と比較すると、細胞生存性が悪く、GFPの発現も弱く、凍結していない対照に匹敵する程度の状態で保存することはできなかった(図7 I,J)。
 本発明により、多能性幹細胞由来の組織の保存方法を提供することが可能となる。
 本出願は、日本で出願された特願2011-258208(出願日2011年11月25日)を基礎としておりそれらの内容は本明細書に全て包含されるものである。

Claims (13)

  1.  下記(1)~(3)を含むことを特徴とする多能性幹細胞由来の組織の凍結保存方法。
    (1)多能性幹細胞由来の組織にスルホキシドと鎖状ポリオールとを含む細胞保護溶液を接触させる第一工程
    (2)第一工程で細胞保護溶液と接触させた多能性幹細胞由来の組織を凍結保存液に保持する第二工程
    (3)第二工程で凍結保存液に保持された多能性幹細胞由来の組織を、冷却剤存在下にて凍結保存する第三工程
  2.  スルホキシドと鎖状ポリオールとを含む細胞保護溶液が、スルホキシド、鎖状ポリオール及びオリゴ糖を含む細胞保護溶液である請求項1記載の凍結保存方法。
  3.  細胞保護溶液中の、スルホキシドの濃度が5~15%、鎖状ポリオールの濃度が4~15%、オリゴ糖の濃度が5~20%である請求項2記載の凍結保存方法。
  4.  スルホキシドがジメチルスルホキシドであり、鎖状ポリオールがエチレングリコールであり、オリゴ糖がスクロースである請求項2または3記載の凍結保存方法。
  5.  前記多能性幹細胞が、ヒト多能性幹細胞である請求項1~4のいずれか1項記載の凍結保存方法。
  6.  組織が、脳神経組織である請求項1~5のいずれか1項記載の凍結保存方法。
  7.  組織が、網膜組織である請求項1~5のいずれか1項記載の凍結保存方法。
  8.  第三工程が、10℃/分以上の温度低下速度で行なわれることを特徴とする請求項1~7のいずれか1項記載の凍結保存方法。
  9.  冷却剤が、液体窒素である請求項1~8のいずれか1項記載の凍結保存方法。
  10.  凍結保存液が、ジメチルスルホキシド、アセトアミド及びプロピレングリコールを含む凍結保存液である請求項1~9のいずれか1項記載の凍結保存方法。
  11.  ジメチルスルホキシドの濃度が1~4M、アセトアミドの濃度が0.5~2M、プロピレングリコールの濃度が1.5~6Mである請求項10記載の凍結保存方法。
  12.  スルホキシドと鎖状ポリオールとを含む、多能性幹細胞由来の組織の凍結保存用の細胞保護溶液。
  13.  さらにオリゴ糖を含む、請求項12記載の細胞保護溶液。
PCT/JP2012/080365 2011-11-25 2012-11-22 多能性幹細胞由来の組織の凍結保存方法 WO2013077424A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP12851379.3A EP2784154B1 (en) 2011-11-25 2012-11-22 Method of cryopreservation of cranial nerve tissue derived from pluripotent stem cells
ES12851379T ES2743553T3 (es) 2011-11-25 2012-11-22 Método de crioconservación de tejido nervioso craneal originado a partir de células madre pluripotenciales
CN201280058085.8A CN103958669A (zh) 2011-11-25 2012-11-22 冷冻保存来源于多能干细胞的组织的方法
CA2856850A CA2856850C (en) 2011-11-25 2012-11-22 Method of cryopreservation of tissue derived from pluripotent stem cell
IN4598CHN2014 IN2014CN04598A (ja) 2011-11-25 2012-11-22
AU2012341416A AU2012341416B2 (en) 2011-11-25 2012-11-22 Method of cryopreservation of tissue derived from pluripotent stem cells
KR1020147017031A KR102135486B1 (ko) 2011-11-25 2012-11-22 다능성 간세포 유래 조직의 동결 보존 방법
US14/360,488 US11234434B2 (en) 2011-11-25 2012-11-22 Method of cryopreservation of tissue derived from pluripotent stem cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-258208 2011-11-25
JP2011258208A JP6012164B2 (ja) 2011-11-25 2011-11-25 多能性幹細胞由来の組織の凍結保存方法

Publications (1)

Publication Number Publication Date
WO2013077424A1 true WO2013077424A1 (ja) 2013-05-30

Family

ID=48469865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080365 WO2013077424A1 (ja) 2011-11-25 2012-11-22 多能性幹細胞由来の組織の凍結保存方法

Country Status (11)

Country Link
US (1) US11234434B2 (ja)
EP (1) EP2784154B1 (ja)
JP (1) JP6012164B2 (ja)
KR (1) KR102135486B1 (ja)
CN (2) CN103958669A (ja)
AU (1) AU2012341416B2 (ja)
CA (1) CA2856850C (ja)
ES (1) ES2743553T3 (ja)
HK (1) HK1250885A1 (ja)
IN (1) IN2014CN04598A (ja)
WO (1) WO2013077424A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105432597A (zh) * 2014-08-29 2016-03-30 马燕琳 冷冻保存诱导多能干细胞的试剂盒及方法
CN106659148A (zh) * 2014-05-12 2017-05-10 鲁斯特生物股份有限公司 即用打印细胞和集成装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6948261B2 (ja) * 2015-07-15 2021-10-13 国立大学法人大阪大学 多能性幹細胞または脂肪組織もしくは骨髄由来の間葉系幹細胞由来の心筋細胞の凍結保存方法
JP2017046649A (ja) * 2015-09-02 2017-03-09 大日本印刷株式会社 細胞凍結保存容器
JP6860878B2 (ja) * 2016-11-09 2021-04-21 国立大学法人 筑波大学 昆虫系統の凍結保存方法
EP3354737B1 (en) * 2017-01-25 2020-08-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Cell-free protein synthesis system
CN107173382B (zh) * 2017-07-14 2020-12-01 重庆市畜牧科学院 猪胎儿成纤维细胞冻存液
CN108552156A (zh) * 2017-11-13 2018-09-21 广东艾时代生物科技有限责任公司 一种无血清的诱导多功能干细胞冻存液及冻存方法
JP7000212B2 (ja) * 2018-03-14 2022-01-19 旭化成株式会社 幹細胞の凍結保存液
CN110352951A (zh) * 2018-11-15 2019-10-22 崔磊 一种无血清无dmso组织工程骨冻存液及其制备和冻存方法
CN109666623B (zh) * 2018-11-30 2022-07-26 中山大学中山眼科中心 一种三维视网膜组织的冷冻保存及复苏方法
JPWO2021045122A1 (ja) * 2019-09-02 2021-03-11
AU2020387259A1 (en) 2019-11-20 2022-06-09 Kyoto University Method for freezing neural cells
US20220408717A1 (en) * 2019-11-20 2022-12-29 Sumitomo Pharma Co., Ltd. Method for freezing cell aggregates

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995007611A1 (en) * 1993-09-15 1995-03-23 Organogenesis, Inc. Cryopreservation of cultured tissue equivalents
JP2001247401A (ja) * 2000-03-02 2001-09-11 Univ Kyoto 組織の冷却保存液
JP2002325571A (ja) * 2001-04-27 2002-11-12 Purotekku:Kk 網膜の分化誘導方法
WO2005045007A1 (ja) * 2003-11-06 2005-05-19 Kyoto University 幹細胞の凍結保存法およびシステム
JP2007105013A (ja) * 2005-10-17 2007-04-26 Jitsuken Doubutsu Chuo Kenkyusho 実験動物初期胚のガラス化保存方法
WO2009051671A1 (en) * 2007-10-12 2009-04-23 Advanced Cell Technology, Inc. Improved methods of producing rpe cells and compositions of rpe cells
WO2009148170A1 (ja) 2008-06-06 2009-12-10 独立行政法人理化学研究所 幹細胞の培養方法
JP2011036196A (ja) * 2009-08-12 2011-02-24 Institute Of Physical & Chemical Research 生物材料用ガラス化液、ガラス化キット、及びその利用
WO2011028524A1 (en) * 2009-08-24 2011-03-10 Wisconsin Alumni Research Foundation Substantially pure human retinal progenitor, forebrain progenitor, and retinal pigment epithelium cell cultures and methods of making the same
WO2011055855A1 (en) 2009-11-05 2011-05-12 Riken A method for differentiation induction in cultured stem cells

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4559298A (en) * 1982-11-23 1985-12-17 American National Red Cross Cryopreservation of biological materials in a non-frozen or vitreous state
US5336616A (en) 1990-09-12 1994-08-09 Lifecell Corporation Method for processing and preserving collagen-based tissues for transplantation
US6713245B2 (en) * 1998-07-06 2004-03-30 Diacrin, Inc. Methods for storing neural cells such that they are suitable for transplantation
US6519954B1 (en) * 2000-06-12 2003-02-18 Supachill International Pty. Ltd. Cryogenic preservation of biologically active material using high temperature freezing
US6921633B2 (en) * 2002-11-18 2005-07-26 Biolife Solutions Incorporated Methods and compositions for the preservation of cells, tissues or organs in the vitreous state
US7278278B2 (en) * 2003-06-12 2007-10-09 21St Century Medicine, Inc. Cryogenic storage system
WO2008011070A2 (en) 2006-07-19 2008-01-24 Reprocure, Llc A method of oocyte cryopreservation including piercing the zona pellucida prior to vitrification
WO2009155430A2 (en) 2008-06-18 2009-12-23 The Cleveland Clinic Foundation Systems and methods for vitrifying tissue
US20110004304A1 (en) * 2009-03-20 2011-01-06 Tao Sarah L Culturing retinal cells and tissues
US8758988B2 (en) 2009-10-19 2014-06-24 The Governors Of The University Of Alberta Cryopreservation of articular cartilage
KR20120126634A (ko) * 2011-05-12 2012-11-21 김수신 조직 보관 방법
KR101473315B1 (ko) * 2013-09-09 2014-12-16 경북대학교병원 양수 줄기세포의 냉동보존을 위한 동결배지 조성물 및 양수 줄기세포의 냉동보존 방법
WO2017043605A1 (ja) * 2015-09-08 2017-03-16 大日本住友製薬株式会社 網膜色素上皮細胞の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995007611A1 (en) * 1993-09-15 1995-03-23 Organogenesis, Inc. Cryopreservation of cultured tissue equivalents
JP2001247401A (ja) * 2000-03-02 2001-09-11 Univ Kyoto 組織の冷却保存液
JP2002325571A (ja) * 2001-04-27 2002-11-12 Purotekku:Kk 網膜の分化誘導方法
WO2005045007A1 (ja) * 2003-11-06 2005-05-19 Kyoto University 幹細胞の凍結保存法およびシステム
JP2007105013A (ja) * 2005-10-17 2007-04-26 Jitsuken Doubutsu Chuo Kenkyusho 実験動物初期胚のガラス化保存方法
WO2009051671A1 (en) * 2007-10-12 2009-04-23 Advanced Cell Technology, Inc. Improved methods of producing rpe cells and compositions of rpe cells
WO2009148170A1 (ja) 2008-06-06 2009-12-10 独立行政法人理化学研究所 幹細胞の培養方法
JP2011036196A (ja) * 2009-08-12 2011-02-24 Institute Of Physical & Chemical Research 生物材料用ガラス化液、ガラス化キット、及びその利用
WO2011028524A1 (en) * 2009-08-24 2011-03-10 Wisconsin Alumni Research Foundation Substantially pure human retinal progenitor, forebrain progenitor, and retinal pigment epithelium cell cultures and methods of making the same
WO2011055855A1 (en) 2009-11-05 2011-05-12 Riken A method for differentiation induction in cultured stem cells

Non-Patent Citations (27)

* Cited by examiner, † Cited by third party
Title
"Experimental Medicine", 1997, YODOSHA CO., LTD., article ""transgene & expression analysis experiment method""
AUSUBEL F. A. ET AL.: "Current Protocols in Molecular Biology", 1988, WILEY
CELL STEM CELL, vol. 8, no. 2, 4 February 2011 (2011-02-04), pages 228 - 40
CELL STEM CELL., vol. 3, no. 5, 6 November 2008 (2008-11-06), pages 519 - 32
CELL, vol. 126, no. 4, 2006, pages 663 - 676
CELL, vol. 131, no. 5, 2007, pages 861 - 872
DEVELOPMENT, vol. 138, no. 5, March 2011 (2011-03-01), pages 861 - 71
HUANG ET AL., HUMAN REPRODUCTION, vol. 20, no. 1, 2005, pages 122 - 128
J NEUROSCI., vol. 31, no. 5, 2 February 2011 (2011-02-02), pages 1919 - 33
KASAI M ET AL.: "Cryopreservation of animal and human embryos by vitrification", REPROD BIOMED, vol. 9, no. 2, August 2004 (2004-08-01), pages 164 - 70, XP027053187 *
M. EIRAKU ET AL., NATURE, vol. 472, 2011, pages 51 - 56
MIYAMOTO,H. ET AL.: "The effects of time of equilibration with cryoprotectants at 0°C prior to freezing on the survival of mouse embryos frozen by the two-step method.", EXPERIENTIA, vol. 42, no. 7, 1986, pages 815 - 816, XP001466384 *
NAKAGAWA M; KOYANAGI M; TANABE K; TAKAHASHI K; ICHISAKA T; AOI T; OKITA K; MOCHIDUKI Y; TAKIZAWA N; YAMANAKA S, NAT BIOTECHNOL., vol. 26, no. 1, 2008, pages 101 - 106
NAT BIOTECHNOL., vol. 24, no. 11, November 2006 (2006-11-01), pages 1402 - 11
NAT BIOTECHNOL., vol. 29, no. 3, March 2011 (2011-03-01), pages 267 - 72
NAT NEUROSCI., vol. 13, no. 10, October 2010 (2010-10-01), pages 1171 - 80
NATURE, vol. 470, no. 7332, 3 February 2011 (2011-02-03), pages 105 - 9
NATURE, vol. 472, 2011, pages 51 - 56
PROC NATL ACAD SCI USA., vol. 105, no. 33, 19 August 2008 (2008-08-19), pages 11796 - 801
SAMBROOK J ET AL.: "Molecular Cloning: A Laboratory Manual, 2nd Ed.", 1987, COLD SPRING HARBOR LABORATORY PRESS
SAMBROOK, J; RUSSELL, D.W.: "Molecular Cloning (3rd edition", vol. 3, 2001, COLD SPRING HARBOR, article "Vectors and Bacterial strains."
SAMBROOK, J; RUSSELL, D.W.: "Molecular Cloning", vol. 3, 2001, COLD SPRING HARBOR, article "Vectors and Bacterial strains. A3.2"
TAKAHASHI K; TANABE K; OHNUKI M; NARITA M; ICHISAKA T; TOMODA K; YAMANAKA S, CELL, vol. 131, no. 5, 2007, pages 861 - 872
TAKAHASHI K; YAMANAKA S., CELL, vol. 126, no. 4, 2006, pages 663 - 676
UENO, M. ET AL., PNAS, vol. 103, no. 25, 2006, pages 9554 - 9559
WATANABE, K. ET AL., NAT BIOTECH, vol. 25, 2007, pages 681 - 686
YU J; VODYANIK MA; SMUGA-OTTO K; ANTOSIEWICZ-BOURGET J; FRANE JL; TIAN S; NIE J; JONSDOTTIR GA; RUOTTI V; STEWART R, SCIENCE, vol. 318, no. 5858, 2007, pages 1917 - 1920

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106659148A (zh) * 2014-05-12 2017-05-10 鲁斯特生物股份有限公司 即用打印细胞和集成装置
JP2017515510A (ja) * 2014-05-12 2017-06-15 ルースタービオ インコーポレイテッド 即時プリント可能な細胞及び一体化されたデバイス
EP3142485B1 (en) * 2014-05-12 2021-04-28 Roosterbio, Inc. Ready-to-print cells and integrated devices
US11058106B2 (en) 2014-05-12 2021-07-13 Roosterbio, Inc. Ready-to-print cells and integrated devices
CN105432597A (zh) * 2014-08-29 2016-03-30 马燕琳 冷冻保存诱导多能干细胞的试剂盒及方法
CN105432597B (zh) * 2014-08-29 2018-08-03 马燕琳 冷冻保存诱导多能干细胞的试剂盒及方法

Also Published As

Publication number Publication date
ES2743553T3 (es) 2020-02-19
AU2012341416B2 (en) 2018-07-05
EP2784154A1 (en) 2014-10-01
JP6012164B2 (ja) 2016-10-25
KR20140103979A (ko) 2014-08-27
AU2012341416A1 (en) 2014-06-26
CA2856850A1 (en) 2013-05-30
CN103958669A (zh) 2014-07-30
CN107736337A (zh) 2018-02-27
EP2784154B1 (en) 2019-06-05
US11234434B2 (en) 2022-02-01
CA2856850C (en) 2020-06-30
IN2014CN04598A (ja) 2015-09-18
HK1250885A1 (zh) 2019-01-18
KR102135486B1 (ko) 2020-07-17
JP2013110988A (ja) 2013-06-10
US20140342346A1 (en) 2014-11-20
EP2784154A4 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
JP6012164B2 (ja) 多能性幹細胞由来の組織の凍結保存方法
US20210228645A1 (en) Methods for producing retinal tissue and retina-related cell
JP6885550B2 (ja) 網膜組織及び網膜関連細胞の製造方法
EP2885969B1 (en) Cryopreservation tools and methods
Yong et al. Biobanking of human mesenchymal stem cells: future strategy to facilitate clinical applications
WO2003064634A1 (fr) Liquide permettant le stockage a l'etat congele de cellules souches embryonnaires de primates et procede de stockage par congelation
JP7448166B2 (ja) 移植用細胞集団及びその製造方法
JP6067232B2 (ja) 網膜層特異的神経細胞を製造する方法
JP2013128476A (ja) 眼杯様構造体の製造方法
JP5985208B2 (ja) 網膜組織の製造方法
JP2024009142A (ja) 多能性幹細胞の分散体、多能性幹細胞製品及びその製造方法
Sharma et al. Cryobanking of embryoid bodies to facilitate basic research and cell-based therapies
Mutsenko Cryopreservation of mesenchymal stromal cells within tissue engineering approaches
CA3162268A1 (en) Method for freezing neural cells
JP2022008269A (ja) 培養細胞の凍結保存方法及び細胞移植療法に用いるための細胞含有組成物
Xi et al. Green fluorescent protein gene‐transfected peafowl somatic cells participate in the development of chicken embryos
Talwar et al. 28 Human Embryonic Stem Cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851379

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2856850

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14360488

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012851379

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147017031

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012341416

Country of ref document: AU

Date of ref document: 20121122

Kind code of ref document: A