WO2013077303A1 - 空気清浄装置 - Google Patents

空気清浄装置 Download PDF

Info

Publication number
WO2013077303A1
WO2013077303A1 PCT/JP2012/080008 JP2012080008W WO2013077303A1 WO 2013077303 A1 WO2013077303 A1 WO 2013077303A1 JP 2012080008 W JP2012080008 W JP 2012080008W WO 2013077303 A1 WO2013077303 A1 WO 2013077303A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
bactericide
air
storage tank
sterilization
Prior art date
Application number
PCT/JP2012/080008
Other languages
English (en)
French (fr)
Inventor
拓 相澤
未来 高口
耕平 佐々木
正明 篠原
Original Assignee
株式会社クボタ
クボタ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011253384A external-priority patent/JP5933231B2/ja
Priority claimed from JP2011253385A external-priority patent/JP5850716B2/ja
Priority claimed from JP2012248893A external-priority patent/JP6202804B2/ja
Priority claimed from JP2012248892A external-priority patent/JP6091170B2/ja
Application filed by 株式会社クボタ, クボタ空調株式会社 filed Critical 株式会社クボタ
Priority to CN201280051499.8A priority Critical patent/CN103945874B/zh
Publication of WO2013077303A1 publication Critical patent/WO2013077303A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/24Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/16Connections to a HVAC unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2247/00Details relating to the separation of dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D2247/04Regenerating the washing fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an air cleaning device having functions of sterilization, deodorization, dust removal and gas removal.
  • This invention has one blower that circulates air, a cooling and heating coil that adjusts temperature and humidity, a spray nozzle that makes hypochlorous water, which is electrolytic neutral water, contact with air, and an eliminator that removes scattered water.
  • a blower that circulates air
  • a cooling and heating coil that adjusts temperature and humidity
  • a spray nozzle that makes hypochlorous water, which is electrolytic neutral water, contact with air
  • an eliminator that removes scattered water.
  • an air conditioner installed inside a plurality of cases, provided with an electrolysis neutral water generator as means for supplying electrolysis neutral water to the spray nozzle, and hypochlorous acid generated by the electrolysis neutral water generator Water is supplied to the spray nozzle through a pump and a flow control valve.
  • the present invention solves the above-described problems, and provides an air cleaning device that can reliably perform sterilization with a bactericide solution.
  • an air cleaning device of the present invention includes a housing having an air passage through which sterilization target air flows from an upstream side to a downstream side, a spraying device that sprays a sterilizing agent solution on the sterilization target air, A storage tank for receiving the bactericide solution descending from the air passage, a solution supply system for supplying the bactericide solution in the storage tank to the spraying device, a drug supply apparatus for supplying a stock solution of the bactericide solution, and diluting the bactericide solution It has a diluting water system for supplying diluting water, and a circulation system for the bactericide solution formed by the spray device, the housing air passage, the storage tank, and the solution supply system.
  • the disinfectant inflow site where the stock solution of the disinfectant solution flows in and the diluting water inflow region where the diluting water flows into the circulation system from the dilution water system are located at different positions.
  • High fungicide concentration compared to other fungicide solutions After having sterilized the unsterilized cells in the disinfectant solution that has a disinfectant unused liquid region formed by the disinfectant solution and that flows to the inflow site of the disinfectant in the disinfectant unused liquid region, It is characterized by spraying again on the air to be sterilized from the spray device through the solution supply system.
  • the circulation system has a dilution water inflow portion in the storage tank or the solution supply system, and is upstream of the dilution water inflow portion in the flow direction of the bactericide solution in the storage tank.
  • the spray device is characterized in that the spray device sprays the germicide solution that has been diluted with dilution water and has a low germicide concentration.
  • the housing is provided with a medium that is disposed across the air flow of the air to be sterilized in the air passage of the housing and captures the bactericide solution sprayed from the spray device, and the storage tank has the air passage. It is characterized by receiving a bactericide solution falling from the medium and a bactericide solution falling from the medium.
  • the amount of the bactericide solution sprayed from the spray device to the sterilization target air in the ventilation path is the sterilization solution for the weight G of the sterilization target air in the atmosphere in the ventilation path.
  • the ratio L / G of the weight L is a spray amount that is 0.3 or less.
  • the drug supply device is characterized in that slightly acidic electrolyzed water is supplied as a stock solution of the bactericide solution.
  • the bactericide solution has an effective chlorine concentration of 0.1-10 mg / L.
  • the circulation time until the germicide solution sprayed from the spray device returns to the spray device through the storage tank and the solution supply system in the circulation system is the same as the germicide solution. It is characterized by satisfying the necessary contact time required to sterilize the cells with the existing hypochlorous acid.
  • a disinfection element disposed across the air flow of the air to be sterilized is provided on the downstream side of the medium in the air passage of the housing. It has a dropping part for dropping the stock solution onto the sterilization element, and the circulation system is characterized in that the sterilization element has a bactericide inflow site.
  • a filter for filtering the sterilization target air flowing into the air passage is provided upstream of the spray device in the air passage of the housing, and the medicine supply device is located upstream of the spray device.
  • a generating device for generating a stock solution of the bactericide solution at a position downstream of the filter is provided upstream of the spray device in the air passage of the housing.
  • the air cleaning device of the present invention is characterized in that a common drain pan is provided below the storage tank and the generating device.
  • the sterilizing agent solution is sprayed on the air to be sterilized, and airborne bacteria in the air are sterilized by gas-liquid contact with the sprayed water, and the cells of the suspended bacteria are taken into the sprayed water.
  • the spray water is received in the storage tank and sprayed again by the spray device.
  • the circulation system includes a bactericide inflow site through which the stock solution of the bactericide solution flows from the drug supply device into the circulation system, and a dilution water inflow site through which dilution water flows from the dilution water system into the circulation system.
  • a bactericide inflow site through which the stock solution of the bactericide solution flows from the drug supply device into the circulation system
  • a dilution water inflow site through which dilution water flows from the dilution water system into the circulation system.
  • the stock solution of the bactericide solution and the dilution water flow into different positions in the circulation system.
  • a bactericide unused liquid region is formed at a bactericide inflow site with a bactericide solution having a high bactericide concentration.
  • the fungus body captured by the spray water is added to the disinfectant unused liquid region in addition to the bactericidal action of the fungicide solution. It can be sterilized more reliably with a high disinfectant solution. As a result, the captured cells are not sterilized again and are not scattered again in the air stream of the sterilization target air with the spraying of the sterilizing agent solution, so that safer air can be supplied.
  • the storage tank receives the bactericidal solution that descends from the air passage and the bactericidal solution that falls from the medium, thereby allowing more airborne bacteria in the air.
  • Body and dust can be taken into the circulation system with spray water. As a result, sterilization and sterilization effects can be further enhanced, and advanced air cleaning can be performed.
  • the bactericide solution by spraying the bactericide solution so that the ratio L / G of the weight L of the bactericide solution to the weight G of the sterilization target air satisfies 0.3 or less, sterilization and dust removal can be performed with a small spray amount.
  • the pump power of the spray device can be reduced, and the supply amount of the stock solution of the bactericide solution can also be reduced.
  • hypochlorous acid which is the main component of the slightly acidic electrolyzed water. It can be sterilized. Further, since the sterilizing power is recovered quickly, the sterilizing effect can be maintained high even if the sterilizing agent solution is recycled.
  • the schematic diagram which shows the air purifying apparatus in embodiment of this invention The schematic diagram which shows the principal part in other embodiment of this invention.
  • Graph showing the relationship between effective chlorine concentration and the time required to sterilize 99% of coliforms Graph showing the relationship between effective chlorine residual rate and pH
  • the housing 50 forms a ventilation path 52 through which the sterilization target air 51 flows from the upstream side to the downstream side, and the chemical solution preparation unit A and the sterilization unit are inside the housing 50. B and the ventilation part C are provided.
  • a pre-filter 501 is disposed on the inlet side of the ventilation path 52 of the housing 50, and a drug supply device 56 is provided in the chemical solution preparation unit A on the downstream side of the pre-filter 501.
  • the prefilter 501 is located upstream of the spraying device 53 described later, and filters the sterilization target air 51 flowing into the aeration path 52.
  • An eliminator 502, a spraying device 53, a medium 503, a mist separator 504, and a medium performance filter 505 are arranged in order from the upstream side to the downstream side in the flow direction of the sterilization target air 51 in the sterilization unit B following the chemical solution preparation unit A.
  • the fan device 600 is arranged in the air blowing part C following the sterilization part B.
  • the spray device 53 sprays the sterilizing agent solution on the sterilization target air flowing through the air passage 52, and includes a plurality of spray nozzles 531 directed downstream in the flow direction of the sterilization target air 51.
  • the medium 503 arranged on the downstream side of the spraying device 53 is better as the liquid holding amount is higher.
  • fibers made of a material such as polyvinyl chloride fiber or stainless wire are regularly knitted with a high porosity. It is made into a mat shape having a thickness of about 10 to 50 mm by indenting or densely gathering.
  • a storage tank 54 is provided below the spraying device 53 and the medium 503, and the storage tank 54 receives the bactericide solution descending from the air passage 52 and the bactericide solution falling from the medium 503.
  • a solution supply system 55 having a circulation pump 551 is disposed between the storage tank 54 and the spray device 53, and the solution supply system 55 supplies the disinfectant solution in the storage tank 54 to the spray device 53 by the circulation pump 551. To do.
  • the spraying device 53, the air passage 52 of the housing 50, the storage tank 54, and the solution supply system 55 form a circulating system of the bactericide solution.
  • the inside of the storage tank 54 is divided into a primary area 542 on the upstream side of the circulation system and a secondary area 543 on the downstream side by a strainer 541, and the secondary area 543 of the storage tank 54 includes a solution supply system 55 and a relay system. 570 and an initial medicine supply system 576 communicate with each other.
  • the primary region 542 is located below the spraying device 53 and the medium 503 and communicates with a dilution water system 571.
  • An overflow pipe 546 communicates with an upper portion on one side of the primary region 542, and a drain valve 544 communicates with a bottom portion.
  • the drainage system 545 communicates.
  • the chemical supply device 56 for supplying the slightly acidic electrolyzed water that becomes the stock solution of the bactericide solution to the circulation system is located upstream of the spray device 53 and downstream of the prefilter 501, and is a stock solution of the bactericide solution.
  • a generating device 561 that constitutes an electrolytic cell for generating slightly acidic electrolyzed water, and a raw material chemical solution of hydrochloric acid from a chemical carry-in container 562 outside the housing 50 to the generating device 561, with an open / close valve 563d interposed
  • a raw material supply system 563 a water supply system 565 for supplying dilution water to the generator 561, and a pressure reducing valve 564, a relay tank 566 disposed between the storage tank 54 and the generator 561,
  • the slightly acidic electrolyzed water is supplied from the generating device 561 to the relay tank 566 and the slightly acidic electrolyzed water is supplied from the relay tank 566 to the storage tank 54 with the supply pump 567 interposed therebetween.
  • a relay system 570 interposed relay pump 569 a shall.
  • the slightly acidic electrolyzed water is electrolyzed in hydrochloric acid or an aqueous solution adjusted to an appropriate concentration by adding a sodium chloride aqueous solution to hydrochloric acid in a non-diaphragm electrolysis cell (which consists of an anode and a cathode not separated by a diaphragm).
  • the main active ingredient is hypochlorous acid (HCLO), pH 5.0-6.5, and effective chlorine concentration 10-80 mg / kg.
  • hypochlorous acid is produced by the dissolution of chlorine gas in water. As shown in FIG. 8, the presence of hypochlorous acid (HCLO) and hypochlorite ion (CLO-) depending on the pH of the water. The ratio changes, and HCLO is overwhelmingly increased in the pH region of slightly acidic electrolyzed water. Both HCLO and CLO- have sterilizing power, but HCLO is overwhelmingly strong.
  • the dilution water system 571 branched from the water supply system 565 communicates with the storage tank 54, and the dilution water system 571 is sequentially provided with a dilution water control valve 572 and a flow rate adjustment valve 573 at a position downstream from the branch point. Further, a dilution water initial water supply system 574 branched from the water supply system 565 on the upstream side of the dilution water control valve 572 communicates with the dilution water system 571 on the downstream side of the flow rate adjustment valve 573, and the initial water supply to the dilution water initial water supply system 574 is performed. A control valve 575 is interposed.
  • a common drain pan 500 is provided below the storage tank 54 and the generation device 561. *
  • the chemical supply device 56 supplies the raw chemical solution hydrochloric acid from the chemical carry-in container 562 to the generation device 561 through the raw material supply system 563 with the open / close valve 563d opened, and a pressure reducing valve 564 from the water supply system 565 to the generation device 561. Then, water for dilution is supplied, and in the generating device 561, 2-21% hydrochloric acid is used as the electrolyte.
  • the generating device 561 electrolyzes the electrolytic solution to generate slightly acidic electrolyzed water.
  • the slightly acidic electrolyzed water is supplied to the relay tank 566 through the chemical supply system 568 by the supply pump 567 and further relayed by the relay pump 569.
  • the slightly acidic electrolyzed water is supplied from the relay tank 566 to the storage tank 54 via 570.
  • the chemical supply device 56 opens the initial water supply control valve 575 and supplies the diluted water to the storage tank 54 through the diluted water initial water supply system 574,
  • the chemical control valve 577 is opened, and slightly acidic electrolyzed water is supplied to the storage tank 54 through the drug initial supply system 576 by the supply pump 567, and the effective chlorine concentration of the bactericide solution in the storage tank 54 is set to 0.1-10 mg / L. adjust. For this reason, the time required for water filling of the bactericide solution can be shortened, and the effective chlorine concentration can be easily adjusted.
  • the medicine supply device 56 supplies the diluted water to the storage tank 54 through the flow rate adjustment valve 573 while opening the dilution water control valve 572 while supplying the slightly acidic electrolyzed water from the relay tank 566 to the storage tank 54.
  • the effective chlorine concentration of 54 fungicide solution is maintained at 0.1-10 mg / L.
  • an unused stock solution of the bactericide solution is supplied from the relay tank 566 to the circulation system bactericide inflow site, here, the secondary region 543 of the storage tank 54. Since the stock solution of this unused fungicide solution has a higher fungicide concentration than other fungicide solutions in the circulation system, the stock solution of the unused fungicide solution having a high fungicide concentration at the inflow site of the fungicide A disinfectant unused liquid region is formed. For this reason, even if the effectiveness of the bactericide solution as a bactericidal agent deteriorates by circulating the bactericidal solution in the circulation system, the fungus body solution is used by the bactericide solution when passing through the bactericide unused liquid region. In addition to the bactericidal action, the bactericide can be more surely sterilized by the bactericide solution having a higher bactericide concentration in the bactericide-free liquid region.
  • the stock solution of the unused sterilizer solution is supplied to the secondary region 543 on the downstream side of the primary region 542 to which the dilution water in the storage tank 54 is supplied.
  • the bactericide solution in the secondary region 543 has a short bactericidal agent concentration and a high bactericidal effect because it has a short contact time with bacteria and dust remaining in the storage tank 54 and is not easily diluted.
  • the maintained sterilizing agent solution is supplied to the spraying device 53.
  • the sterilizing agent solution is sprayed from the spray nozzle 541 of the spray device 53 to the sterilization target air 51 that flows from the upstream side to the downstream side through the air passage 52 of the housing 50.
  • the spraying device 53 sprays the sterilizing agent solution on the sterilization target air 51 of the air passage 52 so as to satisfy the saturation efficiency of 80% or more.
  • This saturation efficiency is obtained by using the difference between the relative humidity H1 of the sterilization target air 51 after spraying the bactericide solution and the relative humidity H0 when the sterilization target air 51 flows in as a numerator, and the saturation relative humidity (100%) H2.
  • the relative humidity H0 when the sterilization target air 51 flows in is defined as a denominator.
  • the spray device 53 disinfects the air passage 52 so that the ratio L / G of the weight L of the bactericide solution to the weight G of the air to be sterilized in the atmosphere of the air passage 52 satisfies 0.3 or less. It is preferable to spray the bactericide solution on the target air 51.
  • the ratio L / G of the weight L of the bactericide solution to the weight G of the sterilization target air 51 satisfies 0.3 or less, it is possible to save energy by suppressing the pump power low.
  • sterilization and dust removal can be performed with a small spray amount, the consumption of the bactericidal solution is reduced, and the supply amount of the stock solution of the bactericide solution can be reduced.
  • the strength of the sterilizing power of hypochlorous acid (HCLO), which is the main component of the slightly acidic electrolyzed water, is increased.
  • the airborne bacteria can be sterilized using the high reactivity. Further, since the bactericide solution is sprayed into the air with high saturation efficiency, airborne bacteria, dust, and harmful gases can be taken into the bactericide solution, and dust removal can be realized in addition to sterilization.
  • Part of the bactericide solution sprayed from the spraying device 53 descends from the air passage 52 to the storage tank 54, and the other part reaches the medium 503 and then flows to the storage tank 54 through the medium 503.
  • the storage tank 54 receives the sterilant solution descending from the air passage 52 and the sterilant solution flowing down from the medium 503.
  • the sterilized air that has passed through the medium 503 passes through the mist separator 504 and the medium performance filter 505 and is supplied to the room by the fan device 600.
  • the mist separator 504 captures fine mist that has passed through the medium 503 and prevents mist from adhering to the medium performance filter 505.
  • the disinfectant solution that has flowed into the primary region 542 of the storage tank 54 flows through the strainer 541 to the secondary region 543, and has a high disinfectant concentration formed by the stock solution of the unused disinfectant solution that flows into the secondary region 543. Passing through the sterilizer unused liquid region, at that time, sterilization is surely performed by a sterilizer solution having a high concentration of sterilizer.
  • the bactericidal solution circulating in the circulation system passes through the strainer 541 and flows into the secondary region 543, the activity as a bactericidal agent may be impaired by contact with the deposits of the strainer 541.
  • the stock solution of the unused bactericide solution supplied to the secondary region 543 comes into contact with the bacteria with sufficient bactericidal efficacy without coming into contact with the deposits of the strainer 541.
  • more reliable sterilization can be performed with a bactericide solution having a high bactericide concentration in the bactericide-free liquid region.
  • the bactericide solution in the secondary region 543 is supplied to the spraying device 53 through the solution supply system 55 by the circulation pump 551.
  • the relay tank 566 is provided between the generating device 561 and the storage tank 54, the slightly acidic electrolyzed water can be stored in the relay tank 566. For this reason, the generation device 561 can be intermittently operated, and the temperature rise of the generation device 561 can be suppressed by preventing overheating of the electrodes, so that no additional equipment such as a cooling device is required.
  • the relay tank 566 serves as a buffer, the difference between the supply capacity of the generation device 561 and the amount of spray water necessary for the implementation can be filled, and different generation amounts of spray water can be realized by one generation device 561. it can.
  • the ratio and amount of the slightly acidic electrolyzed water and tap water that are stock solutions of the bactericide solution supplied to the storage tank 54 Can be set arbitrarily. For this reason, operation conditions and processing performance can be arbitrarily set according to air conditions and a user's demand level. For example, since the residence time of the sterilizing agent solution in the storage tank 54 can be changed, the sterilizing ability and the gas removing ability can be arbitrarily set.
  • the relay tank 566 is provided with a deaeration line 566a communicating with the outside of the air cleaning device, so that the inside of the device can be prevented from becoming a chlorine atmosphere, and corrosion inside the device due to chlorine can be suppressed.
  • the circulation time h until the bactericidal solution sprayed from the spray nozzle 531 is sprayed again by the spraying device 53 through the storage tank 54 and the solution supply system 55 is as follows.
  • This circulation time h is defined by the following equation.
  • Capacity of the storage tank 54 / amount of circulating water (amount of sprayed water) circulation time h> required contact time
  • the slightly acidic electrolyzed water that is the stock solution of the bactericide solution has a fast reaction speed (bactericidal rate)
  • the capacity of the storage tank 54 can be reduced to save space.
  • the medium 503 is not essential, but by disposing the medium 503, the disinfectant solution sprayed by the medium 503 is captured, and the water film effect of the disinfectant solution flowing down the medium 503 causes water The contact efficiency between the air and the air can be further increased. For this reason, even if the ratio L / G of the weight L of the bactericide solution to the weight G of the sterilization target air 51 is 0.3 or less, the saturation efficiency can be 80% or more, and the removal efficiency of floating bacteria and dust can be improved. Can be increased.
  • the medium 503 may be any medium having a function of separating moisture contained in the air even if the amount of liquid retained is low.
  • the medium 503 may be a network having a low porosity or a plurality of plates juxtaposed. May be.
  • Dust accumulated in the storage tank 54 is discharged outside the apparatus by opening the drain valve 544 of the drain system 545 when the apparatus is stopped or at regular intervals.
  • medical agent supply apparatus 56 has arrange
  • an eliminator 502 is provided at the air inlet of the sterilization part B, and the generating device 561 is installed upstream of the eliminator 502.
  • the bactericide solution sprayed from the spraying device 53 in the sterilization part B rides on the turbulent air flow and also scatters to the upstream side, but the bactericide solution scattered to the upstream side is the air flow of the sterilization part B It is captured by an eliminator 502 provided at the entrance. For this reason, it can prevent that a disinfectant solution falls on the production
  • Embodiment 2 In Embodiment 1 described above, an example in which the slightly acidic electrolyzed water in the relay tank 566 is supplied to the storage tank 54 by the relay pump 569 has been described as the configuration of the medicine adjustment unit A. However, as illustrated in FIG. An appropriate amount of slightly acidic electrolyzed water can be dropped into the storage tank 54 by the dropping valve 578 using the water head 566. In this case, the power of the pump becomes unnecessary. (Embodiment 3) Further, as shown in FIG.
  • the chemical adjustment unit A is configured by injecting slightly acidic electrolyzed water with a relay pump 569 on the downstream side of the circulation pump 551 of the solution supply system 55 and supplying it to the storage tank 54. It is also possible. (Embodiment 4) Further, as shown in FIG. 3 (b), as the configuration of the medicine adjustment unit A, slightly acidic electrolyzed water is blown into the upstream side of the circulation pump 551 of the solution supply system 55 using an ejector and supplied to the storage tank 54. It is also possible. In this case, the medicine supply device 56 forms a bactericide unused liquid region in the solution supply system 55 with a bactericide solution having a high bactericide concentration.
  • the sterilization part B has a configuration in which a dilution water inflow region for supplying dilution water from the dilution water system 571 is arranged downstream (circulation) with respect to the flow direction of the bactericide solution in the storage tank 54.
  • the side where the pump 551 is connected) and the bactericide inflow site for supplying the stock solution of the bactericide solution from the drug supply device 56 may be upstream of the dilution water inflow site.
  • a sterilizer unused liquid region having a high concentration of sterilant is formed on the upstream side of the storage tank 54 into which the stock solution of the unused sterilizer solution flows, so that the sterilization effect in the storage tank 54 can be enhanced. it can.
  • the disinfectant solution flowing in the storage tank 54 is diluted on the downstream side, and the disinfectant solution having a low concentration is sprayed from the spray device 53.
  • the sprayed water sprayed from the spraying device 53 descends from the air passage 52 or flows through the medium 503 and flows into the storage tank 54 again.
  • Airborne bacteria and dust contained in the air are captured by sprayed water or a water film formed on the medium 503 and flow into the storage tank 54 together with the sprayed water. It passes through a region of a bactericide unused liquid region having a high bactericidal agent concentration formed at the supplied bactericide inflow site, or a region having a high bactericidal power through which the stock solution of the bactericide solution flows. Therefore, the microbial cells captured by gas-liquid contact with the spray water are surely sterilized before the spray device 53 sprays the bactericide solution again. As a result, the captured cells are not re-scattered in the air stream of the sterilization target air as the sterilizing agent solution is sprayed, and air with higher safety can be supplied.
  • the bactericide solution is sprayed in a state where the concentration of the bactericide is reduced, it is possible to suppress the dispersal of the bactericide component into the air and the generation of odor. Since the disinfectant concentration of the disinfectant solution sprayed with water is low, the disinfection effect in the air is lowered. However, the disinfectant solution is sprayed as spray water in an air stream, and the spray water is held by the medium 503, so that the disinfection target air is maintained in a state close to saturation. Since the cells and dust of suspended bacteria in the air can be captured by the saturated spray water and flowed into the storage tank 54 together with the spray water, in the storage tank 54 in addition to the bactericidal action by the bactericide solution. It is possible to sterilize more reliably with a bactericide solution having a high bactericide concentration in the bactericide unused liquid region.
  • the spray amount of the bactericide solution can be increased, the effect of sterilization and dust removal by spraying the bactericide solution can be enhanced.
  • the bactericide inflow part for supplying the stock solution of the bactericide solution to the circulation system is also used to increase the contact time by bringing the cells flowing into the storage tank 54 into contact with the unused bactericide solution as soon as possible. It is preferably provided near the lower side of the medium 503 or upstream thereof. Thereafter, since the sterilizing agent solution flows in the storage tank 54 over time, it can be sprayed after the sterilizing power is restored.
  • the dilution water system 571 is configured to supply the dilution water to the storage tank 54.
  • the dilution water is supplied to the solution supply system 55 that supplies the bactericide solution in the storage tank 54 to the spraying device 53. It may be configured to.
  • the sterilization section B is configured by disposing a sterilization element 506 across the air flow of the sterilization target air on the downstream side of the medium 503 in the ventilation path of the housing 50.
  • a dropping unit 573 for dropping the stock solution of the bactericide solution onto the sterilizing element 506 is disposed above the fungus element 506, and the relay system 570 of the drug supply device 56 is connected to the dropping unit 573.
  • the circulation system has a disinfectant inflow site in the sterilization element 506.
  • the sterilization target air 51 that has passed through the medium 503 passes through the sterilization element 506.
  • the bacterial cells in the sterilization target air 51 come into contact with the bactericide solution having a high bactericide concentration impregnated in the bactericidal element 506, More reliably removed.
  • the sterilization target air 51 is sterilized and sterilized by the sterilizing agent solution sprayed from the spraying device 53, passes through the medium 503, and then passes through the sterilization element 506 before being used. Since it is further sterilized in contact with the stock solution of the agent solution, the sterilization target air 51 can be sterilized in two stages to exhibit a more reliable sterilization effect.
  • slightly acidic electrolyzed water is used as an example of a stock solution for sterilization, but is not limited to slightly acidic electrolyzed water. Electrolyzed water or dilute sodium hypochlorite solution, ozone water, chlorine dioxide water or the like may be used.
  • the medium 503 is disposed on the downstream side of the spraying device 53
  • the medium 503 is disposed on the upstream side of the spraying device 53, and spray water is directed toward the upstream side so that the spraying device 53 reaches the medium 503.
  • the structure which sprays may be sufficient.
  • the air passage 52 may be formed along the vertical direction, and the spray device 53 and the medium 503 may be arranged in the vertical position in the air passage 52.
  • FIG. 7 shows the relationship between the effective chlorine concentration and the time required to sterilize 99% of coliforms.
  • slightly acidic electrolyzed water containing hypochlorous acid (HCLO) as a main component can achieve 99% sterilization in 1.5 minutes at an effective chlorine concentration of 0.1 mg / L.
  • electrolytic hypochlorous acid based on hypochlorite ions (CLO-) takes 120 minutes to achieve 99% sterilization at an effective chlorine concentration of 0.1 mg / L.
  • the air volume is 10,000 m3 / h
  • L / G is 0.15
  • the circulating water volume is 30 L / min
  • the effective chlorine concentration is 0.1 mg / L.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

 除菌対象空気51が上流側から下流側に流れる通気路52を有するハウジング50と、通気路52を流れる除菌対象空気51に殺菌剤溶液を噴霧する噴霧装置53と、通気路52から降下する殺菌剤溶液を受け止める貯留槽54と、貯留槽54の殺菌剤溶液を噴霧装置53に供給する溶液供給系55と、巡廻系に殺菌剤溶液を供給する薬剤供給装置56と、殺菌剤溶液を希釈する希釈水を供給する希釈水系571と、噴霧装置53とハウジング50の通気路52と貯留槽54と溶液供給系55により形成される殺菌剤溶液の巡廻系を備え、巡廻系は、薬剤供給装置56から巡廻系中に殺菌剤溶液の原液が流入する殺菌剤流入部位と、希釈水系571から巡廻系中に希釈水が流入する希釈水流入部位とを異なる位置に有し、殺菌剤流入部位に、巡廻系中の他の殺菌剤溶液と比べて殺菌剤濃度が高い殺菌剤溶液で形成される殺菌剤未使用液領域を有し、殺菌剤流入部位に流れ来る殺菌剤溶液中の未殺菌の菌体を殺菌剤未使用液領域において殺菌した後に、殺菌剤溶液を溶液供給系55を通して噴霧装置53から除菌対象空気に再び噴霧する。

Description

空気清浄装置
 本発明は、除菌、消臭、除塵、ガス除去の機能を備える空気清浄装置に関するものである。
 従来、例えば日本国 特許公開公報 特開2000-257913に示すような除菌装置が知られている。
 この発明は、空気を循環させる送風機、温湿度調整を行う冷却及び加熱コイル、電解中性水である次亜塩素水を空気と接触させるスプレーノズル、及び飛散した水を除去するエリミネータを、1つ又は複数のケース内部に設置した空調機であり、スプレーノズルに電解中性水を供給するための手段として電解中性水生成装置を設け、この電解中性水生成装置によって生成された次亜塩素水を、ポンプ及び流量調整弁を介して、スプレーノズルに供給するものである。
 上述した従来技術では、電解中性水生成装置を連続運転するので、電解中性水生成装置の電解槽を冷却する手段が必要である。また、電解中性水生成装置で生成した次亜塩素水を直接にスプレーノズルに供給するので、次亜塩素水を溜めることができず、噴霧量に応じた供給能力を持つ電解中性水生成装置を必要とする。また、除菌効果を高めるために噴霧量を多くしたり濃度を高くすると、塩素ガスによる臭気や安全性が問題となる。逆に、噴霧量を少なくすると、除菌効果が低くなる。
 本発明は上記した課題を解決するものであり、殺菌剤溶液による殺菌を確実に行うことができる空気清浄装置を提供するものである。
 上記課題を解決するために、本発明の空気清浄装置は、除菌対象空気が上流側から下流側に流れる通気路を有するハウジングと、除菌対象空気に殺菌剤溶液を噴霧する噴霧装置と、通気路から降下する殺菌剤溶液を受け止める貯留槽と、貯留槽の殺菌剤溶液を噴霧装置に供給する溶液供給系と、殺菌剤溶液の原液を供給する薬剤供給装置と、殺菌剤溶液を希釈する希釈水を供給する希釈水系と、噴霧装置とハウジングの通気路と貯留槽と溶液供給系により形成される殺菌剤溶液の巡廻系を備え、巡廻系は、薬剤供給装置から巡廻系中に殺菌剤溶液の原液が流入する殺菌剤流入部位と、希釈水系から巡廻系中に希釈水が流入する希釈水流入部位とを異なる位置に有し、殺菌剤流入部位に、巡廻系中の他の殺菌剤溶液と比べて殺菌剤濃度が高い殺菌剤溶液で形成される殺菌剤未使用液領域を有し、殺菌剤流入部位に流れ来る殺菌剤溶液中の未殺菌の菌体を殺菌剤未使用液領域において殺菌した後に、殺菌剤溶液を溶液供給系を通して噴霧装置から除菌対象空気に再び噴霧することを特徴とする。
 また、本発明の空気清浄装置において、巡廻系は、貯留槽または溶液供給系に希釈水流入部位を有し、かつ貯留槽内の殺菌剤溶液の流れ方向において希釈水流入部位よりも上流側の位置に殺菌剤流入部位を有し、噴霧装置は、希釈水で薄められて殺菌剤濃度の低くなった殺菌剤溶液を噴霧することを特徴とする。
 また、本発明の空気清浄装置において、ハウジングの通気路中に除菌対象空気の空気流を横切って配置され、噴霧装置から噴霧された殺菌剤溶液を捕捉するメディアを備え、貯留槽は通気路から降下する殺菌剤溶液およびメディアから落下する殺菌剤溶液を受け止めることを特徴とする。
 また、本発明の空気清浄装置において、噴霧装置から通気路中の除菌対象空気に対して噴霧する殺菌剤溶液の量は、通気路中の雰囲気において除菌対象空気の重量Gに対する殺菌剤溶液の重量Lの比L/Gが0.3以下となる噴霧量であることを特徴とする。
 また、本発明の空気清浄装置において、薬剤供給装置は、殺菌剤溶液の原液として微酸性電解水を供給することを特徴とする。
 また、本発明の空気清浄装置において、殺菌剤溶液は、有効塩素濃度が0.1-10mg/Lであることを特徴とする。
 また、本発明の空気清浄装置において、巡廻系内において、噴霧装置から噴霧された殺菌剤溶液が貯留槽および溶液供給系を通って噴霧装置に再帰するまでの循環時間は、殺菌剤溶液に存在する次亜塩素酸で菌体を殺菌するのに要する必要接触時間を満たすことを特徴とする。
 また、本発明の空気清浄装置において、ハウジングの通気路中のメディアの下流側に、除菌対象空気の空気流を横切って配置される除菌エレメントを備え、薬剤供給装置は、殺菌剤溶液の原液を除菌エレメントに滴下する滴下部を有し、巡廻系は、除菌エレメントに殺菌剤流入部位を有することを特徴とする。
 また、本発明の空気清浄装置において、ハウジングの通気路中の噴霧装置の上流側に、通気路に流入する除菌対象空気をろ過するフィルタを備え、薬剤供給装置は、噴霧装置より上流側で、かつフィルタよりも下流側の位置に、殺菌剤溶液の原液を生成する生成装置を有することを特徴とする。
 また、本発明の空気清浄装置において、貯留槽と生成装置の下方に共通のドレンパンを備えることを特徴とする。
 以上のように本発明によれば、殺菌剤溶液を除菌対象空気に噴霧し、噴霧水との気液接触で空気中の浮遊菌を殺菌するとともに、浮遊菌の菌体を噴霧水中に取り込み、噴霧水を貯留槽で受け止めて再び噴霧装置で噴霧する。
 この構成において、巡廻系は、薬剤供給装置から巡廻系中に殺菌剤溶液の原液が流入する殺菌剤流入部位と、希釈水系から巡廻系中に希釈水が流入する希釈水流入部位とを異なる位置に有し、殺菌剤溶液の原液と希釈水とが巡廻系内の異なる位置に流入する。
 このため、殺菌剤流入部位には、殺菌剤の濃度が高い殺菌剤溶液で殺菌剤未使用液領域が形成される。その結果、噴霧装置から噴霧された殺菌剤溶液が再び噴霧装置で噴霧されるまでの巡回系の経路中で、殺菌剤溶液の噴霧水に取り込まれて巡廻系に流入した菌体が殺菌剤未使用液領域を通過する。
 よって、噴霧水によって捕捉した菌体は、殺菌剤溶液が巡廻系を巡って再び噴霧装置から噴霧される前に、殺菌剤溶液による殺菌作用に加えて殺菌剤未使用液領域の殺菌剤濃度の高い殺菌剤溶液でより確実に殺菌される。その結果、捕捉した菌体が殺菌されることなく殺菌剤溶液の噴霧に伴って再び除菌対象空気の気流中に飛散することがなくなり、安全性のより高い空気を供給できる。
 さらに、通気路中に殺菌剤溶液を捕捉するメディアを備え、貯留槽が通気路から降下する殺菌剤溶液およびメディアから落下する殺菌剤溶液を受け止めることで、より多くの空気中の浮遊菌の菌体や塵埃を噴霧水とともに巡廻系中に取り込むことができる。その結果、除菌、殺菌効果をより高めることができ、高度な空気清浄が行える。
 また、除菌対象空気の重量Gに対する殺菌剤溶液の重量Lの比L/Gを0.3以下を満たすように殺菌剤溶液を噴霧することで、少ない噴霧量で除菌、除塵が行える。その結果、噴霧装置のポンプ動力を低減することができるとともに、殺菌剤溶液の原液の供給量も低減することができる。
 さらに、殺菌剤溶液の原液として微酸性電解水を使用することで、微酸性電解水の主成分である次亜塩素酸(HCLO)の殺菌力の強さ、反応性の高さを利用して除菌を行なうことができる。また、殺菌力の回復が早いため、殺菌剤溶液を循環利用しても、その殺菌効果を高く維持することができる。
本発明の実施の形態における空気清浄装置を示す模式図 本発明の他の実施の形態における要部を示す模式図 本発明の他の実施の形態における要部を示す模式図 本発明の他の実施の形態における除菌部Bを示す模式図 本発明の他の実施の形態における除菌部Bを示す模式図 本発明の他の実施の形態における除菌部Bを示す模式図 有効塩素濃度と大腸菌群を99%殺菌するのに要する時間との関係を示すグラフ 有効塩素残留率とpHの関係を示すグラフ図
(実施の形態1)
 以下、本発明の実施の形態を図面に基づいて説明する。図1に示すように、空気清浄装置は、ハウジング50が除菌対象空気51が上流側から下流側に流れる通気路52を形成しており、ハウジング50の内部に薬液調製部A、除菌部B、送風部Cを設けている。
 ハウジング50の通気路52の入口側にはプレフィルター501を配置しており、プレフィルター501の下流側の薬液調製部Aに薬剤供給装置56を設けている。プレフィルター501は後述する噴霧装置53の上流側に位置し、通気路52に流入する除菌対象空気51をろ過するものである。
 薬液調製部Aに続く除菌部Bには除菌対象空気51の流れ方向において上流側から下流側へ順次に、エリミネータ502、噴霧装置53、メディア503、ミストセパレータ504、中性能フィルタ505が配置してあり、除菌部Bに続く送風部Cにはファン装置600が配置してある。
(除菌部B)
 噴霧装置53は通気路52を流れる除菌対象空気に殺菌剤溶液を噴霧するもので、除菌対象空気51の流れ方向の下流側に向けた複数の噴霧ノズル531を備えている。
 噴霧装置53の下流側に配置したメディア503は、液体保持量が高いほど良く、例えば、ポリ塩化ビニルデン系繊維やステンレスの線材等の材料からなる繊維を、空隙率を高くして規則的に編みこんだり、不規則に密集させて、10~50mm程度の厚みを有するマット状にしたものである。
 噴霧装置53およびメディア503の下方には貯留槽54が設けてあり、貯留槽54は通気路52から降下する殺菌剤溶液およびメディア503から落下する殺菌剤溶液を受け止めるものである。貯留槽54と噴霧装置53の間には循環ポンプ551を有した溶液供給系55が配設してあり、溶液供給系55は循環ポンプ551によって貯留槽54の殺菌剤溶液を噴霧装置53に供給するものである。
 噴霧装置53とハウジング50の通気路52と貯留槽54と溶液供給系55とで殺菌剤溶液の巡廻系が形成されている。
 貯留槽54は内部がストレーナ541によって巡廻系の上流側の一次領域542と下流側の二次領域543に仕切られており、貯留槽54の二次領域543には溶液供給系55および中継系570と薬剤初期供給系576が連通している。一次領域542は噴霧装置53およびメディア503の下方に位置して希釈水系571が連通しており、一次領域542の一側の上部にはオーバーフロー管546が連通し、底部には排水バルブ544を介して排水系545が連通している。
(薬液調製部A)
 巡廻系に殺菌剤溶液の原液となる微酸性電解水を供給する薬剤供給装置56は、噴霧装置53より上流側で、かつプレフィルター501よりも下流側の位置にあり、殺菌剤溶液の原液である微酸性電解水を生成する電解槽をなす生成装置561と、生成装置561にハウジング50の外の薬品搬入容器562から原料薬液の塩酸水を供給するものであって開閉バルブ563dを介装した原料供給系563と、生成装置561に希釈用の水を供給するものであって減圧弁564を介装した給水系565と、貯留槽54と生成装置561の間に配置する中継槽566と、生成装置561から微酸性電解水を中継槽566に供給するものであって供給ポンプ567を介装した薬剤供給系568と、中継槽566から貯留槽54へ微酸性電解水を供給するものであって中継ポンプ569を介装した中継系570を備えている。
 微酸性電解水は、塩酸又は塩酸に塩化ナトリウム水溶液を加えて適切な濃度に調整した水溶液を無隔膜電解槽(隔膜で隔てられていない陽極及び陰極で構成されたものをいう。)内で電解して得られる水溶液であって、主な有効成分が次亜塩素酸(HCLO)であり、pH5.0-6.5、有効塩素濃度10-80mg/kgである。
 次亜塩素酸(HCLO)は塩素ガスが水に溶解することにより生成し、図8に示すように、水のpHにより次亜塩素酸(HCLO)と次亜塩素酸イオン(CLO-)の存在比が変化するものであり、微酸性電解水のpH領域ではHCLOが圧倒的に多くなる。HCLOとCLO-はどちらも殺菌力を有するが、HCLOが圧倒的に強い。
 給水系565から分岐した希釈水系571は貯留槽54に連通しており、希釈水系571は分岐点から下流側の位置に希釈水制御バルブ572および流量調整弁573を順次に介装している。さらに、希釈水制御バルブ572の上流側において給水系565から分岐した希釈水初期給水系574が流量調整弁573の下流側で希釈水系571に連通しており、希釈水初期給水系574に初期給水制御バルブ575を介装している。
 また、薬剤供給系568から供給ポンプ567の下流側で分岐した薬剤初期供給系576が貯留槽54に連通しており、薬剤初期供給系576に薬剤制御バルブ577を介装している。
 また、貯留槽54と生成装置561の下方には共通のドレンパン500を備えている。   
 以下、上記した構成の作用を説明する。
(薬剤生成)
 薬剤供給装置56は、開閉バルブ563dを開放した状態で原料供給系563を通して薬品搬入容器562から原料薬液の塩酸水を生成装置561に供給するとともに、給水系565から生成装置561に減圧弁564を介して希釈用の水を供給し、生成装置561において2-21%塩酸水を被電解液とする。
 そして、生成装置561において被電解液を電解して微酸性電解水を生成し、この微酸性電解水を供給ポンプ567により薬剤供給系568を通して中継槽566に供給し、さらに中継ポンプ569により中継系570を介して中継槽566から貯留槽54へ微酸性電解水を供給する。
(薬剤供給初期時)
 運転初期時等において貯留槽54に殺菌剤溶液を満たす場合に、薬剤供給装置56は、初期給水制御バルブ575を開放して希釈水初期給水系574を通して希釈水を貯留槽54に供給するとともに、薬剤制御バルブ577を開放して供給ポンプ567により薬剤初期供給系576を通して微酸性電解水を貯留槽54に供給し、貯留槽54の殺菌剤溶液の有効塩素濃度を0.1-10mg/Lに調整する。このため、殺菌剤溶液の水張りに要する時間を短縮できるとともに、有効塩素濃度の調整を容易に行なえる。
(運転時)
 薬剤供給装置56は、中継槽566から貯留槽54へ微酸性電解水を供給しつつ、希釈水制御バルブ572を開放する状態で流量調整弁573を通して希釈水を貯留槽54に供給し、貯留槽54の殺菌剤溶液の有効塩素濃度を0.1-10mg/Lに維持する。
 そして、中継槽566から未使用の殺菌剤溶液の原液を、巡廻系の殺菌剤流入部位、ここでは貯留槽54の二次領域543に供給する。この未使用の殺菌剤溶液の原液は、巡廻系中の他の殺菌剤溶液と比べて殺菌剤濃度が高いので、殺菌剤流入部位に殺菌剤濃度の高い未使用の殺菌剤溶液の原液によって殺菌剤未使用液領域が形成される。このため、殺菌剤溶液を巡廻系で循環使用することで殺菌剤溶液の殺菌剤としての薬効が劣化しても、菌体が殺菌剤未使用液領域を通過する際に、殺菌剤溶液による殺菌作用に加えて殺菌剤未使用液領域の殺菌剤濃度の高まった殺菌剤溶液によって菌体をより確実に殺菌することが可能となる。
 また、未使用の殺菌剤溶液の原液は、貯留槽54の希釈水が供給される一次領域542よりも下流側の二次領域543に供給される。このため、二次領域543の殺菌剤溶液は、貯留槽54の内部に残留する菌体や塵埃等との接触時間が短かくて希釈もされにくいので、殺菌剤濃度が高く、殺菌の効力を維持した状態の殺菌剤溶液が噴霧装置53に供給される。
 この状態で、ハウジング50の通気路52を上流側から下流側に流れる除菌対象空気51に、噴霧装置53の噴霧ノズル541から殺菌剤溶液を噴霧する。
 この噴霧において噴霧装置53は、飽和効率80%以上を満たすように、通気路52の除菌対象空気51に対して殺菌剤溶液を噴霧することが好ましい。この飽和効率は、殺菌剤溶液を噴霧した後の除菌対象空気51の相対湿度H1と除菌対象空気51の流入時の相対湿度H0との差を分子とし、飽和相対湿度(100%)H2と除菌対象空気51の流入時の相対湿度H0との差を分母として定義される。
 この飽和効率80%以上を満たすことで、通気路52を通過する除菌対象空気51と殺菌剤溶液との接触効率が高まり、除菌対象空気51に含まれている浮遊菌の菌体や塵埃の除去効率が高くなるので、除菌工程で空気中からより多くの浮遊菌を取り除くことを実現できる。
 また、噴霧装置53は、通気路52の雰囲気中において除菌対象空気51の重量Gに対する殺菌剤溶液の重量Lの比L/Gが0.3以下を満たすように、通気路52の除菌対象空気51に対して殺菌剤溶液を噴霧することが好ましい。除菌対象空気51の重量Gに対する殺菌剤溶液の重量Lの比L/Gが0.3以下を満たすことで、ポンプ動力を低く抑えて省エネルギー化を図れる。また、少ない噴霧量で除菌、除塵が行えるので、殺菌剤溶液の消費量も少なくなり、殺菌剤溶液の原液の供給量も低減することができる。
 このように、殺菌剤溶液の原液として微酸性電解水を除菌対象空気51に直接に噴霧することで、微酸性電解水の主成分である次亜塩素酸(HCLO)の殺菌力の強さ、反応性の高さを利用して空気中の浮遊菌を除菌することができる。また、空気中に高い飽和効率で殺菌剤溶液を噴霧するので、空気中の浮遊菌や塵埃、有害ガスを殺菌剤溶液に取り込むことができ、除菌に加えて除塵も実現できる。
 噴霧装置53から噴霧した殺菌剤溶液は、一部が通気路52から貯留槽54に降下し、他のものがメディア503に達した後にメディア503を伝って貯留槽54に流れる。貯留槽54は通気路52から降下する殺菌剤溶液およびメディア503から流れ落ちる殺菌剤溶液を受け止める。
 メディア503を通過した殺菌後の空気は、ミストセパレータ504および中性能フィルタ505を通過してファン装置600により室内へ供給される。ミストセパレータ504は、メディア503を通過してきた微細なミストを捕捉し、中性能フィルタ505へのミスト付着を防止するものである。
 貯留槽54の一次領域542に流入した殺菌剤溶液はストレーナ541を通過して二次領域543に流れ、二次領域543に流入する未使用の殺菌剤溶液の原液によって形成する殺菌剤濃度の高い殺菌剤未使用液領域を通過し、その際に、殺菌剤濃度の高い殺菌剤溶液によって確実な殺菌が行なわれる。また、巡廻系内で巡廻している殺菌剤溶液は、ストレーナ541を通過して二次領域543に流入するので、ストレーナ541の付着物との接触により殺菌剤としての活性が損なわれる場合があるが、二次領域543に供給した未使用の殺菌剤溶液の原液は、ストレーナ541の付着物と接触することなく十分な殺菌効力を備えた状態で菌に接触するので、殺菌剤溶液による殺菌作用に加えて殺菌剤未使用液領域の殺菌剤濃度の高い殺菌剤溶液でより確実な殺菌を行なえる。
 そして、二次領域543の殺菌剤溶液は循環ポンプ551により溶液供給系55を通して噴霧装置53に供給される。
 本実施の形態では、生成装置561と貯留槽54の間に中継槽566を設けているので、中継槽566に微酸性電解水を貯留できる。このため、生成装置561を断続運転することができ、電極の過熱を防止して生成装置561の温度上昇を抑えられるので、冷却装置などの付帯設備が不要となる。
 また、中継槽566がバッファーの役割を果たすことで生成装置561の供給能力と実施に必要な噴霧水量との差を埋めることができ、異なる噴霧水量を1台の生成装置561で実現することができる。
 さらに、中継槽566に加えて貯留槽54に水道水を供給可能な希釈水系571を有することで、貯留槽54に供給する殺菌剤溶液の原液である微酸性電解水と水道水の比率および量を任意に設定できる。このため、空気条件やユーザーの要求水準に応じて運転条件や処理性能を任意に設定することができる。例えば、貯留槽54における殺菌剤溶液の滞留時間を変えることができるため、殺菌能力やガス除去能力も任意に設定できる。
 中継槽566には空気清浄装置の外部に連通する脱気ライン566aを設けているので、装置内が塩素雰囲気になることを防止でき、塩素による装置内の腐食を抑えることができる。
 また、本実施の形態の空気清浄装置では、噴霧ノズル531から噴霧された殺菌剤溶液が貯留槽54および溶液供給系55を通して再び噴霧装置53で噴霧されるまでの循環時間hが、殺菌剤溶液に存在する次亜塩素酸(HCLO)で殺菌するのに要する必要接触時間、ここでは1.5分以上を満たしており、気液接触により捕捉した菌を確実に殺菌することが可能である。
 この循環時間hは次式で定義する。
 貯留槽54の容量/循環水量(噴霧水量)=循環時間h>必要接触時間
 このように捕捉した菌を確実に殺菌することで、殺菌剤溶液の噴霧に伴って菌が再飛散することがなくなり、安全性のより高い空気を供給できる。
 しかも、殺菌剤溶液の原液である微酸性電解水は反応速(殺菌速度)が速いので、殺菌剤溶液の巡廻系内に滞留させる時間を短くできる。この結果、貯留槽54の容量を小さくして省スペース化を図れる。
 また、本発明においてメディア503は必須のものではないが、メディア503を配置することで、メディア503が噴霧された殺菌剤溶液を捕捉し、メディア503を流下する殺菌剤溶液の水膜効果によって水と空気との接触効率をさらに高めることができる。このため、除菌対象空気51の重量Gに対する殺菌剤溶液の重量Lの比L/Gを0.3以下としても飽和効率を80%以上とすることができ、浮遊菌や塵埃の除去効率を高めることができる。
 また、メディア503は、液体保持量が低くても空気中に含まれる水分を分離する機能を有するものであればよく、例えば、空隙率の低い網体や、複数の板を並置したものであってもよい。
 貯留槽54に蓄積された塵埃等は、装置停止時あるいは一定の期間毎に排水系545の排水バルブ544を開放して、装置外に排出される。
 また、薬剤供給装置56は、噴霧装置53より上流側で、かつフィルタ501よりも下流側の位置に生成装置561を配置しているので、生成装置561が殺菌剤溶液に晒されて腐食することを防止できる。さらに、生成装置561をフィルタ501よりも下流側に配置することで流入空気に含まれる塵埃から生成装置561を保護することができる。
 また、 除菌部Bの空気流入口にエリミネータ502が設けられ、生成装置561はエリミネータ502よりも上流側に設置している。除菌部B内において噴霧装置53から噴霧された殺菌剤溶液は、空気の乱流に乗って上流側にも飛散するが、上流側に飛散した殺菌剤溶液は、除菌部Bの空気流入口に設けられたエリミネータ502によって捕捉される。このため、エリミネータ502よりも上流側に設置された生成装置561に殺菌剤溶液が降りかかることを防ぐことができ、これにより、生成装置561の腐食をより確実に防止することができる。
 また、貯留槽54と生成装置561の下方に共通のドレンパン500を備えているので、ドレンパン500の個数を減らすことができる。
(実施の形態2)
 上述した実施の形態1では、薬剤調整部Aの構成として、中継槽566の微酸性電解水を中継ポンプ569で貯留槽54に供給する例を説明したが、図2に示すように、中継槽566の水頭を利用して滴下用バルブ578で微酸性電解水の適量を貯留槽54に滴下することも可能である。この場合には、ポンプの動力が不要となる。
(実施の形態3)
 また、薬剤調整部Aの構成として、図3(a)に示すように、溶液供給系55の循環ポンプ551の下流側に中継ポンプ569で微酸性電解水を注入して貯留槽54に供給することも可能である。
(実施の形態4)
 さらに、薬剤調整部Aの構成として、図3(b)に示すように、溶液供給系55の循環ポンプ551の上流側にエゼクターを利用して微酸性電解水を吹き込んで貯留槽54に供給することも可能である。この場合に、薬剤供給装置56は溶液供給系55に殺菌剤濃度の高い殺菌剤溶液で殺菌剤未使用液領域を形成する。
(実施の形態5)
 上述した各実施の形態における除菌部Bの構成に代えて、図4に示すように、微酸性電解水を噴霧ノズル531の下流側に直接に吹き込んで貯留槽54に供給することも可能である。この場合に、薬剤供給装置56は噴霧装置53とは別途に通気路52に直接吹き込む未使用の殺菌剤溶液で、通気路52に殺菌剤未使用液領域を形成し、殺菌効力を十分に有する未使用の殺菌剤溶液が直接に空気およびメディア503に接触するので、確実な殺菌を行なえる。
(実施の形態6)
 また、除菌部Bの構成として、図5に示すように、希釈水系571から希釈水を供給する希釈水流入部位を、貯留槽54内の殺菌剤溶液の流れ方向に対して下流側(循環ポンプ551が接続する側)とし、薬剤供給装置56から殺菌剤溶液の原液を供給する殺菌剤流入部位を希釈水流入部位よりも上流側としてもよい。
 この場合、未使用の殺菌剤溶液の原液が流入する貯留槽54の上流側に殺菌剤濃度の高い殺菌剤未使用液領域が形成されるので、貯留槽54内での殺菌効果を高めることができる。貯留槽54内を流れる殺菌剤溶液は下流側で希釈され、濃度が低くなった殺菌剤溶液が噴霧装置53から噴霧される。噴霧装置53から噴霧した噴霧水は、通気路52から降下あるいはメディア503を伝って再び貯留槽54に流入する。
 空気中に含まれる浮遊菌や塵埃は、噴霧水あるいはメディア503に形成される水膜によって捕捉され、噴霧水とともに貯留槽54に流入し、貯留槽54内で未使用の殺菌剤溶液の原液が供給される殺菌剤流入部位に形成される殺菌剤濃度が高い殺菌剤未使用液領域、あるいはそこから殺菌剤溶液の原液が流れていく殺菌力の高い領域を通過する。よって、噴霧水との気液接触によって捕捉した菌体は、噴霧装置53で殺菌剤溶液を再び噴霧する前に確実に殺菌される。その結果、捕捉した菌体が殺菌剤溶液の噴霧に伴って除菌対象空気の気流中に再飛散することがなくなり、安全性のより高い空気を供給できる。
 また、殺菌剤溶液は殺菌剤の濃度が薄められた状態で噴霧されるので、空気中への殺菌剤成分の飛散や臭気の発生を抑制することができる。噴霧水する殺菌剤溶液の殺菌剤濃度は低いため、空気中での殺菌効果は低下する。しかしながら、殺菌剤溶液は、気流中に噴霧水として噴霧され、噴霧水がメディア503で保持されることによって、除菌対象空気中に飽和状態に近い状態に維持される。この飽和状態の噴霧水によって空気中の浮遊菌の菌体や塵埃を捕捉し、それらを噴霧水とともに貯留槽54へ流入させることができるので、殺菌剤溶液による殺菌作用に加えて貯留槽54内の殺菌剤未使用液領域の殺菌剤濃度の高い殺菌剤溶液によってより確実に殺菌することができる。
 さらに、殺菌剤溶液の噴霧量を大きくすることができるので、殺菌剤溶液の噴霧による除菌、除塵効果を高めることができる。
 巡廻系に殺菌剤溶液の原液を供給する殺菌剤流入部位は、貯留槽54に流入した菌体をできるだけ早くに未使用の殺菌剤溶液と接触させてその接触時間を長くするためにも、メディア503の下方近傍かその上流側に設けることが好ましい。その後、殺菌剤溶液は貯留槽54内を時間をかけて流れていくので、殺菌力を回復させた後に噴霧させることができる。
 なお、この実施の形態では、希釈水系571は貯留槽54に希釈水を供給する構成を示したが、貯留槽54の殺菌剤溶液を噴霧装置53に供給する溶液供給系55に希釈水を供給する構成であってもよい。
(実施の形態7)
 また、除菌部Bの構成として、図6に示すように、ハウジング50の通気路中のメディア503の下流側に、除菌対象空気の空気流を横切って除菌エレメント506を配置し、除菌エレメント506の上方位置に殺菌剤溶液の原液を除菌エレメント506に滴下する滴下部573を配置し、滴下部573に薬剤供給装置56の中継系570を接続する。この場合に、巡廻系は、除菌エレメント506に殺菌剤流入部位を有することになる。
 この構成により、メディア503を通過した除菌対象空気51は、除菌エレメント506を通過する。この際、除菌対象空気51中の菌体は、空気流中の殺菌剤溶液による殺菌作用に加えて、除菌エレメント506に含浸された殺菌剤濃度の高い殺菌剤溶液に接触することで、より確実に除去される。
 このように、除菌対象空気51は、噴霧装置53から噴霧される殺菌剤溶液により除塵されると共に除菌され、メディア503を通過した後に、除菌エレメント506を通過する際に未使用の殺菌剤溶液の原液に接触してさらに除菌されるので、除菌対象空気51を二段階で除菌してより確実な除菌効果を発揮できる。
(その他の実施の形態)
 上記各実施の形態では、殺菌用液の原液の一例として微酸性電解水を使用しているが、微酸性電解水に限定されるものではなく、例えば、電解次亜水や強酸性電解水等の電解水、又は、次亜塩素酸ソーダ希釈液、オゾン水、二酸化塩素水等、殺菌力のある水を使用してもよい。
 また、メディア503は噴霧装置53の下流側に配置した例を開示したが、メディア503を噴霧装置53の上流側に配置し、噴霧装置53がメディア503に達するように上流側に向けて噴霧水を噴霧する構成であってもよい。また、通気路52が上下方向に沿って形成され、通気路52内において噴霧装置53とメディア503を上下方向の関係位置に配置してもよい。
 また、貯留槽54内にストレーナ541を配置した例を開示したが、ストレーナ541を配置しない構成とすることも可能である。
(実施例)
 以下に、本発明の有効性を示す実施例を説明する。図7は、有効塩素濃度と大腸菌群を99%殺菌するのに要する時間との関係を示すものである。図7において、次亜塩素酸(HCLO)を主成分とする微酸性電解水は有効塩素濃度0.1mg/Lにおいて1.5分で99%の殺菌を達成できる。しかしながら、次亜塩素酸イオン(CLO-)を主成分とする電解次亜水は有効塩素濃度0.1mg/Lにおいて99%の殺菌を達成するのに120分を要する。
 以下に、空気清浄装置の設計例を説明する。
 設計条件として、風量:10,000m3/h、L/G:0.15、循環水量30L/分、有効塩素濃度0.1mg/Lとする。
 微酸性電解水(HCLOが主成分)の場合、必要滞留時間(循環時間):1.5分/1サイクル、貯留槽容量:51L、槽サイズ(有効)400W×850W×150Hmmとなる。
 電解次亜水(CLO-が主成分)の場合、必要滞留時間(循環時間):120分/1サイクル、貯留槽容量:3,120L、槽サイズ(有効)1200W×2600W×150Hmmとなる。
 よって、微酸性電解水の使用により、装置の大幅な小型化を実現できる。

Claims (10)

  1.  除菌対象空気が上流側から下流側に流れる通気路を有するハウジングと、除菌対象空気に殺菌剤溶液を噴霧する噴霧装置と、通気路から降下する殺菌剤溶液を受け止める貯留槽と、貯留槽の殺菌剤溶液を噴霧装置に供給する溶液供給系と、殺菌剤溶液の原液を供給する薬剤供給装置と、殺菌剤溶液を希釈する希釈水を供給する希釈水系と、噴霧装置とハウジングの通気路と貯留槽と溶液供給系により形成される殺菌剤溶液の巡廻系を備え、
     巡廻系は、薬剤供給装置から巡廻系中に殺菌剤溶液の原液が流入する殺菌剤流入部位と、希釈水系から巡廻系中に希釈水が流入する希釈水流入部位とを異なる位置に有し、殺菌剤流入部位に、巡廻系中の他の殺菌剤溶液と比べて殺菌剤濃度が高い殺菌剤溶液で形成される殺菌剤未使用液領域を有し、
     殺菌剤流入部位に流れ来る殺菌剤溶液中の未殺菌の菌体を殺菌剤未使用液領域において殺菌した後に、殺菌剤溶液を溶液供給系を通して噴霧装置から除菌対象空気に再び噴霧することを特徴とする空気清浄装置。
  2.  巡廻系は、貯留槽または溶液供給系に希釈水流入部位を有し、かつ貯留槽内の殺菌剤溶液の流れ方向において希釈水流入部位よりも上流側の位置に殺菌剤流入部位を有し、
     噴霧装置は、希釈水で薄められて殺菌剤濃度の低くなった殺菌剤溶液を噴霧することを特徴とする請求項1に記載の空気清浄装置。
  3.  ハウジングの通気路中に除菌対象空気の空気流を横切って配置され、噴霧装置から噴霧された殺菌剤溶液を捕捉するメディアを備え、
     貯留槽は通気路から降下する殺菌剤溶液およびメディアから落下する殺菌剤溶液を受け止めることを特徴とする請求項1または2に記載の空気清浄装置。
  4.  噴霧装置から通気路中の除菌対象空気に対して噴霧する殺菌剤溶液の量は、通気路中の雰囲気において除菌対象空気の重量Gに対する殺菌剤溶液の重量Lの比L/Gが0.3以下となる噴霧量であることを特徴とする請求項3に記載の空気清浄装置。
  5.  薬剤供給装置は、殺菌剤溶液の原液として微酸性電解水を供給することを特徴とする請求項1または2に記載の空気清浄装置。
  6.  殺菌剤溶液は、有効塩素濃度が0.1-10mg/Lであることを特徴とする請求項5に記載の空気清浄装置。
  7.  巡廻系内において、噴霧装置から噴霧された殺菌剤溶液が貯留槽および溶液供給系を通って噴霧装置に再帰するまでの循環時間は、殺菌剤溶液に存在する次亜塩素酸で菌体を殺菌するのに要する必要接触時間を満たすことを特徴とする請求項6に記載の空気清浄装置。
  8.  ハウジングの通気路中のメディアの下流側に、除菌対象空気の空気流を横切って配置される除菌エレメントを備え、
     薬剤供給装置は、殺菌剤溶液の原液を除菌エレメントに滴下する滴下部を有し、
     巡廻系は、除菌エレメントに殺菌剤流入部位を有することを特徴とする請求項3に記載の空気清浄装置。
  9.  ハウジングの通気路中の噴霧装置の上流側に、通気路に流入する除菌対象空気をろ過するフィルタを備え、
     薬剤供給装置は、噴霧装置より上流側で、かつフィルタよりも下流側の位置に、殺菌剤溶液の原液を生成する生成装置を有することを特徴とする請求項1または2に記載の空気清浄装置。
  10.  貯留槽と生成装置の下方に共通のドレンパンを備えることを特徴とする請求項9に記載の空気調和機。
PCT/JP2012/080008 2011-11-21 2012-11-20 空気清浄装置 WO2013077303A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280051499.8A CN103945874B (zh) 2011-11-21 2012-11-20 空气清洁装置

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2011-253384 2011-11-21
JP2011253384A JP5933231B2 (ja) 2011-11-21 2011-11-21 空気清浄装置および空気調和機および空気清浄方法
JP2011253385A JP5850716B2 (ja) 2011-11-21 2011-11-21 空気調和機
JP2011-253385 2011-11-21
JP2012-078480 2012-03-30
JP2012078480 2012-03-30
JP2012-078481 2012-03-30
JP2012078481 2012-03-30
JP2012248893A JP6202804B2 (ja) 2012-03-30 2012-11-13 空気清浄装置
JP2012-248892 2012-11-13
JP2012248892A JP6091170B2 (ja) 2012-03-30 2012-11-13 空気清浄装置
JP2012-248893 2012-11-13

Publications (1)

Publication Number Publication Date
WO2013077303A1 true WO2013077303A1 (ja) 2013-05-30

Family

ID=48469747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080008 WO2013077303A1 (ja) 2011-11-21 2012-11-20 空気清浄装置

Country Status (1)

Country Link
WO (1) WO2013077303A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078785A (ja) * 2013-10-16 2015-04-23 株式会社クボタ 空気清浄装置および空気調和機
WO2017012150A1 (zh) * 2015-07-20 2017-01-26 广东奥迪威传感科技股份有限公司 空气清新机
WO2017169897A1 (ja) * 2016-03-29 2017-10-05 オルガノ株式会社 空気浄化装置
WO2018157394A1 (zh) * 2017-03-03 2018-09-07 深圳招商房地产有限公司 去甲醛的室内防霾新风装置
CN113260444A (zh) * 2019-01-08 2021-08-13 松下知识产权经营株式会社 空气净化装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117536A (ja) * 1994-10-28 1996-05-14 Taikisha Ltd 空気洗浄装置
JP2000296173A (ja) * 1999-04-14 2000-10-24 Denkosha Keisoku Kk 空気浄化方法
JP2005110703A (ja) * 2003-10-02 2005-04-28 San Seal:Kk 空気清浄化装置
JP2006192097A (ja) * 2005-01-14 2006-07-27 Tohoku Univ 空気殺菌脱臭装置
WO2008053871A1 (fr) * 2006-11-01 2008-05-08 Misawa Homes Co., Ltd. Purificateur d'air
JP2010131337A (ja) * 2008-12-02 2010-06-17 Hokuetsu:Kk 微酸性電解水噴霧器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117536A (ja) * 1994-10-28 1996-05-14 Taikisha Ltd 空気洗浄装置
JP2000296173A (ja) * 1999-04-14 2000-10-24 Denkosha Keisoku Kk 空気浄化方法
JP2005110703A (ja) * 2003-10-02 2005-04-28 San Seal:Kk 空気清浄化装置
JP2006192097A (ja) * 2005-01-14 2006-07-27 Tohoku Univ 空気殺菌脱臭装置
WO2008053871A1 (fr) * 2006-11-01 2008-05-08 Misawa Homes Co., Ltd. Purificateur d'air
JP2010131337A (ja) * 2008-12-02 2010-06-17 Hokuetsu:Kk 微酸性電解水噴霧器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078785A (ja) * 2013-10-16 2015-04-23 株式会社クボタ 空気清浄装置および空気調和機
WO2017012150A1 (zh) * 2015-07-20 2017-01-26 广东奥迪威传感科技股份有限公司 空气清新机
WO2017169897A1 (ja) * 2016-03-29 2017-10-05 オルガノ株式会社 空気浄化装置
JP2017176334A (ja) * 2016-03-29 2017-10-05 オルガノ株式会社 空気浄化装置
WO2018157394A1 (zh) * 2017-03-03 2018-09-07 深圳招商房地产有限公司 去甲醛的室内防霾新风装置
CN113260444A (zh) * 2019-01-08 2021-08-13 松下知识产权经营株式会社 空气净化装置
CN113260444B (zh) * 2019-01-08 2023-06-06 松下知识产权经营株式会社 空气净化装置

Similar Documents

Publication Publication Date Title
JP4713625B2 (ja) 精密部品洗浄装置
WO2008053871A1 (fr) Purificateur d'air
WO2013077303A1 (ja) 空気清浄装置
JP6202804B2 (ja) 空気清浄装置
JP5108085B2 (ja) 局部洗浄機能付き便座、床洗浄機、クーリングタワー、空気洗浄システム、排水処理システム、コンタクトレンズ洗浄器、シャワー装置、ダイアライザー、医療器具洗浄装置、農業向け潅水及び散水システム、除菌マスク、食器洗浄機、食肉等洗浄除菌装置、洗濯システム、排便機消臭システム、食品徐菌洗浄システムおよび浴場・プール除菌システム
JP5385101B2 (ja) 脱臭装置
JP2009034593A (ja) 浄水器、局部洗浄機能付き便座、床洗浄機、クーリングタワー、空気洗浄システム、排水処理システム、コンタクトレンズ洗浄器、シャワー装置、ダイアライザー、医療器具洗浄装置、農業向け潅水及び散水システム、除菌マスク、食器洗浄機、食肉等洗浄除菌装置、洗濯システム、排便機消臭システム、食品徐菌洗浄システムおよび浴場・プール除菌システム
CN103945874B (zh) 空气清洁装置
JP2010017413A (ja) 空気除菌装置
JP6598566B2 (ja) 空気清浄装置
JP6814927B2 (ja) 車両空調システム
JP2022113450A (ja) 空気清浄装置
JP6223112B2 (ja) 空気清浄装置および空気調和機
JP5869213B2 (ja) 空気清浄システム
JP6594089B2 (ja) 空気清浄装置
JP6614854B2 (ja) 空気清浄装置
JP6091170B2 (ja) 空気清浄装置
JP2013226371A (ja) 空気清浄装置
JP2003225292A (ja) 空気除菌装置
JP2011200818A (ja) 浄化用濾過器および浄化方法
JP5202208B2 (ja) 脱臭システム、脱臭装置及び脱臭方法
KR20080018115A (ko) 이물질 제거 기구를 갖는 공기 제균 장치
JP5369804B2 (ja) 水処理装置
JP6572051B2 (ja) 空気清浄装置および運転方法
JP6594088B2 (ja) 空気清浄装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851200

Country of ref document: EP

Kind code of ref document: A1