WO2013077019A1 - ゴム組成物及びスタッドレスタイヤ - Google Patents

ゴム組成物及びスタッドレスタイヤ Download PDF

Info

Publication number
WO2013077019A1
WO2013077019A1 PCT/JP2012/066217 JP2012066217W WO2013077019A1 WO 2013077019 A1 WO2013077019 A1 WO 2013077019A1 JP 2012066217 W JP2012066217 W JP 2012066217W WO 2013077019 A1 WO2013077019 A1 WO 2013077019A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
silica
carbon atoms
parts
Prior art date
Application number
PCT/JP2012/066217
Other languages
English (en)
French (fr)
Inventor
馬渕 貴裕
隆一 時宗
一哉 鳥田
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to CN201280055283.9A priority Critical patent/CN103917590B/zh
Priority to EP12851673.9A priority patent/EP2749594B1/en
Priority to US14/346,845 priority patent/US20140213693A1/en
Priority to JP2013545813A priority patent/JP5918262B2/ja
Publication of WO2013077019A1 publication Critical patent/WO2013077019A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene

Definitions

  • the present invention relates to a rubber composition and a studless tire produced using the rubber composition.
  • tread rubber for studless tires is made of natural rubber or butadiene rubber as the main component, not only for trucks and buses and light trucks, but also for passenger cars because it can achieve both high strength and flexibility at low temperatures. It is often done.
  • the combination of natural rubber and butadiene rubber can improve fuel economy, wear resistance, and rubber strength as well as grip performance on ice and snow. There is still room for improvement in terms of sex.
  • Patent Document 1 proposes a method for improving fuel economy and the like using a diene rubber (modified rubber) modified with an organosilicon compound containing an amino group and an alkoxy group. There is room for improvement (gripping performance on ice and snow, steering stability, etc.).
  • the present invention solves the above-mentioned problems and improves the performance on ice and snow, fuel efficiency, abrasion resistance and rubber strength, and also provides a rubber composition capable of obtaining good wet grip performance and dry handling stability.
  • the object is to provide a studless tire.
  • R 11 represents a hydrocarbylene group having 1 to 100 carbon atoms
  • R 12 and R 13 are hydrocarbyl groups which may have a substituent, Alternatively, it represents a trihydrocarbylsilyl group, or R 12 and R 13 are bonded to each other and have at least one atom selected from the atomic group consisting of a silicon atom, a nitrogen atom and an oxygen atom as a hetero atom.
  • An optionally substituted hydrocarbylene group, and M represents an alkali metal atom
  • R 11 in the above formula (I) is preferably a group represented by the following formula (Ia).
  • R 14 represents a hydrocarbylene group composed of a structural unit derived from a conjugated diene compound and / or a structural unit derived from an aromatic vinyl compound, and n represents an integer of 1 to 10)
  • R 14 in the above formula (Ia) is preferably a hydrocarbylene group composed of 1 to 10 structural units derived from isoprene.
  • the silicon-containing vinyl compound is preferably a compound represented by the following formula (II).
  • m is 0 or 1
  • R 21 represents a hydrocarbylene group
  • X 1 , X 2 and X 3 have a substituted amino group, a hydrocarbyloxy group, or a substituent. Represents a good hydrocarbyl group
  • the conjugated diene polymer preferably has a structural unit derived from an aromatic vinyl compound.
  • the silica preferably contains silica (1) having a nitrogen adsorption specific surface area of 40 m 2 / g or more and less than 120 m 2 / g and silica (2) having a nitrogen adsorption specific surface area of 120 m 2 / g or more.
  • the rubber composition preferably contains 1 to 30 parts by mass of a solid resin having a glass transition temperature of 60 to 120 ° C. with respect to 100 parts by mass of the rubber component.
  • the rubber composition comprises a silica (1) having a nitrogen adsorption specific surface area of 40 m 2 / g or more and less than 120 m 2 / g and a silica (2) having a nitrogen adsorption specific surface area of 120 m 2 / g or more,
  • the rubber component contains 1 to 30 parts by mass of a solid resin having a glass transition temperature of 60 to 120 ° C. with respect to 100 parts by mass of the rubber component.
  • the rubber composition preferably contains 0.5 to 20 parts by mass of a silane coupling agent having a mercapto group with respect to 100 parts by mass of silica.
  • the rubber composition, per 100 parts by mass of the silica includes 0.5 to 20 parts by weight of a silane coupling agent having a mercapto group, the silica, the nitrogen adsorption specific surface area of 40 m 2 / g or more, 120 m 2 / It is preferable that silica (1) less than g and silica (2) having a nitrogen adsorption specific surface area of 120 m 2 / g or more are included.
  • the rubber composition contains 0.5 to 20 parts by mass of a silane coupling agent having a mercapto group with respect to 100 parts by mass of silica, and has a glass transition temperature of 60 to 120 ° C. with respect to 100 parts by mass of the rubber component.
  • the solid resin is preferably contained in an amount of 1 to 30 parts by mass.
  • the rubber composition per 100 parts by mass of the silica includes 0.5 to 20 parts by weight of a silane coupling agent having a mercapto group, the silica, the nitrogen adsorption specific surface area of 40 m 2 / g or more, 120 m 2 / silica (1) less than g and silica (2) having a nitrogen adsorption specific surface area of 120 m 2 / g or more, and the rubber composition has a glass transition temperature of 60 to 100 parts by mass with respect to 100 parts by mass of the rubber component. It is preferable to contain 1 to 30 parts by mass of a 120 ° C. solid resin.
  • the rubber composition contains 0.5 to 20 parts by mass of a silane coupling agent having a mercapto group with respect to 100 parts by mass of silica.
  • the silane coupling agent is a compound containing a compound represented by the following formula (1) and / or a binding unit A represented by the following formula (2) and a binding unit B represented by the following formula (3). It is preferable.
  • R 101 to R 103 are each a branched or unbranched alkyl group having 1 to 12 carbon atoms, a branched or unbranched alkoxy group having 1 to 12 carbon atoms, or —O— (R 111 — O) z —R 112
  • z R 111 represents a branched or unbranched divalent hydrocarbon group having 1 to 30 carbon atoms.
  • the z R 111 may be the same or different.
  • R 112 represents a branched or unbranched alkyl group having 1 to 30 carbon atoms, a branched or unbranched alkenyl group having 2 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms.
  • Z represents an integer of 1 to 30.
  • R 101 to R 103 may be the same or different, and R 104 is a branched or unbranched carbon atom having 1 to 6 carbon atoms.
  • R 201 is hydrogen, halogen, branched or unbranched alkyl group having 1 to 30 carbon atoms, branched or unbranched alkenyl group having 2 to 30 carbon atoms, branched or unbranched.
  • R 202 represents a branched or unbranched alkylene group having 1 to 30 carbon atoms, a branched or non-branched alkynyl group having 2 to 30 carbon atoms, or a group in which the terminal hydrogen of the alkyl group is substituted with a hydroxyl group or a carboxyl group.
  • R 201 and R 202 may form a ring structure.
  • the silica includes a silica (1) having a nitrogen adsorption specific surface area of 40 m 2 / g or more and less than 120 m 2 / g, and a silica (2) having a nitrogen adsorption specific surface area of 120 m 2 / g or more, and the silica (1 It is preferable that the nitrogen adsorption specific surface area and the content of (2) and (2) satisfy the following formula. (Nitrogen adsorption specific surface area of silica (2)) / (Nitrogen adsorption specific surface area of silica (1)) ⁇ 1.4 (Content of silica (1)) ⁇ 0.06 ⁇ (content of silica (2)) ⁇ (content of silica (1)) ⁇ 15
  • the rubber composition is preferably used for a tread of a studless tire.
  • the present invention also relates to a studless tire produced using the rubber composition.
  • a rubber composition comprising a specific amount of a specific conjugated diene polymer, a high cis polybutadiene having a cis structure ratio in the microstructure of 95% by mass or more, a polyisoprene rubber, and silica. Therefore, it is possible to provide a studless tire in which the performance on ice and snow, the wear resistance, the rubber strength, the low fuel consumption, the wet grip performance and the dry handling stability are improved in a well-balanced manner.
  • the hydrocarbyl group represents a monovalent group obtained by removing one hydrogen atom from a hydrocarbon.
  • the hydrocarbylene group represents a divalent group obtained by removing two hydrogen atoms from a hydrocarbon.
  • the hydrocarbyloxy group represents a monovalent group having a structure in which a hydrogen atom of a hydroxy group is replaced with a hydrocarbyl group.
  • a substituted amino group is a group having a structure in which at least one hydrogen atom of an amino group is replaced by a monovalent atom other than a hydrogen atom or a monovalent group, or two hydrogen atoms of an amino group are divalent groups
  • the hydrocarbyl group having a substituent hereinafter sometimes referred to as a substituted hydrocarbyl group
  • the hydrocarbylene group having a heteroatom (hereinafter sometimes referred to as a heteroatom-containing hydrocarbylene group) is a carbon atom and / or a hydrogen atom other than the carbon atom from which the hydrogen atom of the hydrocarbylene group is removed. Represents a divalent group having a structure in which a group having a hetero atom (an atom other than a carbon atom or a hydrogen atom) is substituted.
  • the conjugated diene polymer according to the present invention is a copolymer obtained by polymerizing a monomer component containing a conjugated diene compound and a silicon-containing vinyl compound using a polymerization initiator represented by the following formula (I). It is obtained by reacting a compound containing a nitrogen atom and / or a silicon atom with the active terminal.
  • R 11 represents a hydrocarbylene group having 1 to 100 carbon atoms
  • R 12 and R 13 are hydrocarbyl groups which may have a substituent, Alternatively, it represents a trihydrocarbylsilyl group, or R 12 and R 13 are bonded to each other and have at least one atom selected from the atomic group consisting of a silicon atom, a nitrogen atom and an oxygen atom as a hetero atom.
  • An optionally substituted hydrocarbylene group, and M represents an alkali metal atom
  • modify means that a compound other than these is bonded to a diene compound or a copolymer having a diene compound and an aromatic vinyl compound.
  • the polymer initiation terminal is modified by the polymerization initiator represented by the above formula (I)
  • the main chain is modified by copolymerizing the silicon-containing vinyl compound, the nitrogen atom and / or Alternatively, it has a structure in which the terminating end is modified with a silicon-containing vinyl compound.
  • I in the formula (I) is 0 or 1, preferably 1.
  • R 11 in the formula (I) is a hydrocarbylene group having 1 to 100 carbon atoms, preferably a hydrocarbylene group having 6 to 100 carbon atoms, more preferably 7 to 80 carbon atoms. It is a hydrocarbylene group.
  • the number of carbon atoms in R 11 exceeds 100, the molecular weight of the polymerization initiator increases, and the economy and operability during polymerization may be reduced.
  • the polymerization initiator represented by formula (I) the number of carbon atoms of R 11 may be used in combination plural kinds of different compounds.
  • R 11 in the formula (I) is preferably a group represented by the following formula (Ia).
  • R 14 represents a hydrocarbylene group composed of a structural unit derived from a conjugated diene compound and / or a structural unit derived from an aromatic vinyl compound, and n represents an integer of 1 to 10)
  • R 14 represents a hydrocarbylene group composed of a structural unit derived from a conjugated diene compound and / or a structural unit derived from an aromatic vinyl compound, preferably a hydrocarbylene group composed of a structural unit derived from isoprene. More preferably, it is a hydrocarbylene group consisting of 1 to 10 structural units derived from isoprene.
  • the number of structural units derived from a conjugated diene compound and / or an aromatic vinyl compound in R 14 is preferably 1 to 10 units, and more preferably 1 to 5 units.
  • n is an integer of 1 to 10, preferably an integer of 2 to 4.
  • R 11 includes a group in which 1 to 10 structural units derived from isoprene and a methylene group are bonded, a group in which 1 to 10 structural units derived from isoprene and an ethylene group are bonded, and a structural unit 1 to 1 derived from isoprene. Examples thereof include a group in which 10 units and a trimethylene group are bonded, and a group in which 1 to 10 structural units derived from isoprene and a trimethylene group are bonded is preferable.
  • R 12 and R 13 in formula (I) represent a hydrocarbyl group or trihydrocarbylsilyl group which may have a substituent, or R 12 and R 13 are bonded to each other to form a silicon atom,
  • the hydrocarbylene group which may have as a hetero atom the atom selected from the group which consists of a nitrogen atom and an oxygen atom is represented.
  • the hydrocarbyl group which may have a substituent is a hydrocarbyl group or a substituted hydrocarbyl group.
  • substituent in the substituted hydrocarbyl group include a substituted amino group and a hydrocarbyloxy group.
  • Hydrocarbyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl and n-octyl.
  • a chain alkyl group such as n-dodecyl group
  • a cyclic alkyl group such as cyclopentyl group and cyclohexyl group
  • an aryl group such as phenyl group and benzyl group, preferably a chain alkyl group, more preferably Is a chain alkyl group having 1 to 4 carbon atoms.
  • the substituted hydrocarbyl group in which the substituent is a substituted amino group include an N, N-dimethylaminomethyl group, a 2-N, N-dimethylaminoethyl group, and a 3-N, N-dimethylaminopropyl group.
  • Examples of the substituted hydrocarbyl group in which the substituent is a hydrocarbyloxy group include a methoxymethyl group, a methoxyethyl group, and an ethoxymethyl group.
  • a hydrocarbyl group is preferable, a chain alkyl group having 1 to 4 carbon atoms is more preferable, and a methyl group or an ethyl group is further preferable.
  • trihydrocarbylsilyl group examples include a trimethylsilyl group and a tert-butyl-dimethylsilyl group, and a trimethylsilyl group is preferable.
  • the hydrocarbylene group which may have at least one atom selected from the atomic group consisting of a silicon atom, a nitrogen atom and an oxygen atom as a heteroatom is a hydrocarbylene group, or a heteroatom is a silicon atom, nitrogen It is a heteroatom-containing hydrocarbylene group which is at least one atom selected from an atomic group consisting of an atom and an oxygen atom.
  • hydrocarbylene group examples include a tetramethylene group, a pentamethylene group, a hexamethylene group, a pentane-2-ene-1,5-diyl group, and a 2,2,4-trimethylhexane-1,6-diyl group.
  • Alkylene group Alkenediyl group such as pentane-2-ene-1,5-diyl group can be mentioned, preferably an alkylene group, more preferably an alkylene group having 4 to 7 carbon atoms.
  • heteroatom-containing hydrocarbylene group in which the heteroatom is a silicon atom examples include a group represented by —Si (CH 3 ) 2 —CH 2 —CH 2 —Si (CH 3 ) 2 —.
  • heteroatom-containing hydrocarbylene group in which the heteroatom is a nitrogen atom examples include a group represented by —CH ⁇ N—CH ⁇ CH— and a group represented by —CH ⁇ N—CH 2 —CH 2 —. be able to.
  • heteroatom-containing hydrocarbylene group in which the heteroatom is an oxygen atom examples include a group represented by —CH 2 —CH 2 —O—CH 2 —CH 2 —.
  • a hydrocarbylene group is preferable, an alkylene group having 4 to 7 carbon atoms is more preferable, and a tetramethylene group, a pentamethylene group, and a hexamethylene group are further preferable.
  • R 12 and R 13 are preferably hydrocarbyl groups, or R 12 and R 13 are preferably bonded to form a hydrocarbylene group, and may be a chain alkyl group having 1 to 4 carbon atoms or bonded to each other.
  • An alkylene group having 4 to 7 carbon atoms is more preferable, and a methyl group or an ethyl group is further preferable.
  • M represents an alkali metal atom.
  • alkali metal atom examples include Li, Na, K, and Cs, and Li is preferable.
  • examples of the compound in which i is 1 include compounds obtained by polymerizing 1 to 5 structural units derived from isoprene on an aminoalkyl lithium compound.
  • the aminoalkyl lithium compounds include 3- (N, N-dimethylamino) -1-propyllithium, 3- (N, N-diethylamino) -1-propyllithium, 3- (N, N-di-n- Butylamino) -1-propyllithium, 4- (N, N-dimethylamino) -1-butyllithium, 4- (N, N-diethylamino) -1-butyllithium, 4- (N, N-di-n N, N-dialkylaminoalkyllithium such as -propylamino) -1-butyllithium, 3- (N, N-di-n-butylamino) -1-butyllithium; 3- (1-pyrrolidino)
  • Heteroatom-containing cyclic aminoalkyllithium compounds can be mentioned, N, N-dialkylaminoalkyllithium is preferred, 3- (N, N-dimethylamino) -1-propyllithium or 3- (N, N-diethylamino) More preferred is 1-propyllithium.
  • compounds in which i is 0 include lithium hexamethylene imide, lithium pyrrolidide, lithium piperidide, lithium heptamethylene imide, lithium dodecamethylene imide, and lithium dimethylamide.
  • a compound in which i is 0 may be preliminarily prepared from a secondary amine and a hydrocarbyl lithium compound and used for the polymerization reaction, or generated in a polymerization system. Also good.
  • examples of the secondary amine include dimethylamine, diethylamine, dibutylamine, dioctylamine, dicyclohexylamine, diisobutylamine and the like, azacycloheptane (ie, hexamethyleneimine), 2- (2-ethylhexyl) pyrrolidine, 3 -(2-propyl) pyrrolidine, 3,5-bis (2-ethylhexyl) piperidine, 4-phenylpiperidine, 7-decyl-1-azacyclotridecane, 3,3-dimethyl-1-azacyclotetradecane, 4- Dodecyl-1-azacyclooctane, 4- (2-phenylbutyl) -1-azacyclooctane, 3-ethyl-5-cyclohexyl-1-azacycloheptane, 4-hexyl-1-azacycloheptane, 9-isoamyl -1-Azacycloh
  • the polymerization initiator represented by the formula (I) is preferably a compound in which i is 1, more preferably a compound obtained by polymerizing 1 to 5 structural units derived from isoprene on N, N-aminoalkyllithium. More preferred is a compound obtained by polymerizing 1 to 5 structural units derived from isoprene to-(N, N-dimethylamino) -1-propyllithium or 3- (N, N-diethylamino) -1-propyllithium.
  • the amount of the polymerization initiator represented by the formula (I) is preferably 0.01 to 15 mmol, more preferably 0.1 to 10 mmol, per 100 g of monomer components used in the polymerization.
  • n-butyl lithium may be used in combination.
  • conjugated diene compound examples include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, 1,3-hexadiene, and myrcene. These may be one kind, Two or more kinds may be used. From the viewpoint of availability, 1,3-butadiene and isoprene are preferable.
  • the silicon-containing vinyl compound is preferably a compound represented by the following formula (II).
  • m is 0 or 1
  • R 21 represents a hydrocarbylene group
  • X 1 , X 2 and X 3 have a substituted amino group, a hydrocarbyloxy group, or a substituent. Represents a good hydrocarbyl group
  • M in the formula (II) is 0 or 1, preferably 0.
  • Examples of the hydrocarbylene group in the formula (II) include an alkylene group, an alkenediyl group, an arylene group, and a group in which an arylene group and an alkylene group are bonded.
  • Examples of the alkylene group include a methylene group, an ethylene group, and a trimethylene group.
  • Examples of the alkenediyl group include a vinylene group and an ethylene-1,1-diyl group.
  • Examples of the arylene group include a phenylene group, a naphthylene group, and a biphenylene group.
  • Examples of the group in which an arylene group and an alkylene group are bonded include a group in which a phenylene group and a methylene group are bonded, and a group in which a phenylene group and an ethylene group are bonded.
  • R 21 is preferably an arylene group, more preferably a phenylene group.
  • X 1 , X 2 and X 3 represent a substituted amino group, a hydrocarbyloxy group, or a hydrocarbyl group which may have a substituent.
  • at least one of X 1 , X 2 and X 3 is a substituted amino group, more preferably two of X 1 , X 2 and X 3 are substituted amino groups.
  • the substituted amino group in formula (II) is preferably a group represented by the following formula (IIa).
  • R 22 and R 23 represent a hydrocarbyl group or a trihydrocarbylsilyl group which may have a substituent, or R 22 and R 23 are bonded to form a nitrogen atom.
  • R 22 and R 23 are bonded to form a nitrogen atom.
  • / or a hydrocarbylene group which may have an oxygen atom as a hetero atom
  • the hydrocarbyl group which may have a substituent in formula (IIa) is a hydrocarbyl group or a substituted hydrocarbyl group.
  • the substituted hydrocarbyl group include a substituted hydrocarbyl group in which the substituent is a hydrocarbyloxy group.
  • Hydrocarbyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl and n-octyl.
  • a chain alkyl group such as a group; a cyclic alkyl group such as a cyclopentyl group and a cyclohexyl group; and an aryl group such as a phenyl group, a benzyl group, and a naphthyl group.
  • a chain alkyl group is preferred, and a methyl group or an ethyl group is preferred. More preferred.
  • Examples of the substituted hydrocarbyl group in which the substituent is a hydrocarbyloxy group include alkoxyalkyl groups such as a methoxymethyl group, ethoxymethyl group, and methoxyethyl group; aryloxyalkyl groups such as a phenoxymethyl group.
  • trihydrocarbylsilyl group in the formula (IIa) examples include trialkylsilyl groups such as a trimethylsilyl group, a triethylsilyl group, and a tert-butyldimethylsilyl group.
  • the hydrocarbylene group which may have a nitrogen atom and / or an oxygen atom in formula (IIa) as a heteroatom is a heteroatom-containing hydrocarbyl group in which the hydrocarbylene group or heteroatom is a nitrogen atom and / or an oxygen atom. It is a len group.
  • the heteroatom-containing hydrocarbylene group in which the heteroatom is a nitrogen atom and / or an oxygen atom includes a heteroatom-containing hydrocarbylene group in which the heteroatom is a nitrogen atom, and a heteroatom-containing hydrocarbylene in which the heteroatom is an oxygen atom You can raise a group.
  • hydrocarbylene group examples include trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, decamethylene group, dodecamethylene group, 2,2,4-trimethylhexane-1,6.
  • An alkylene group such as a diyl group; and an alkenediyl group such as a pentane-2-ene-1,5-diyl group.
  • heteroatom-containing hydrocarbylene group in which the heteroatom is a nitrogen atom include a group represented by —CH ⁇ N—CH ⁇ CH— and a group represented by —CH ⁇ N—CH 2 —CH 2 —. be able to.
  • heteroatom-containing hydrocarbylene group in which the heteroatom is an oxygen atom examples include a group represented by —CH 2 —CH 2 —O—CH 2 —CH 2 —.
  • R 22 and R 23 are alkyl groups, or R 22 and R 23 are preferably bonded to form an alkylene group, more preferably an alkyl group, and a methyl group or an ethyl group. Is more preferable.
  • R 22 and R 23 are hydrocarbyl groups
  • R 22 and R 23 are hydrocarbyl groups
  • R 22 and R 23 are hydrocarbyl groups
  • Dialkylamino groups such as di-n-butylamino group, diisobutylamino group, di-sec-butylamino group and di-tert-butylamino group
  • diarylamino groups such as diphenylamino group.
  • Group is preferred, and dimethylamino group, diethylamino group, and di-n-butylamino group are more preferred.
  • Examples of the substituted hydrocarbyl group in which R 22 and R 23 have a hydrocarbyloxy group as a substituent include di (alkoxyalkyl) amino groups such as di (methoxymethyl) amino group and di (ethoxymethyl) amino group.
  • R 22 and R 23 are trihydrocarbylsilyl groups containing trialkylsilyl groups such as bis (trimethylsilyl) amino group, bis (tert-butyldimethylsilyl) amino group, N-trimethylsilyl-N-methylamino group An amino group can be mentioned.
  • substituted amino groups represented by the formula (IIa) include 1-trimethyleneimino group, 1-pyrrolidino group, 1- Examples include 1-alkyleneimino groups such as piperidino group, 1-hexamethyleneimino group, 1-heptamethyleneimino group, 1-octamethyleneimino group, 1-decamethyleneimino group, 1-dodecamethyleneimino group.
  • Examples of the hetero atom-containing hydrocarbylene group in which the hetero atom is a nitrogen atom include a 1-imidazolyl group and a 4,5-dihydro-1-imidazolyl group.
  • the hetero atom-containing hydrocarbylene group in which the hetero atom is an oxygen atom include a morpholino group.
  • the substituted amino group represented by the formula (IIa) is preferably a dialkylamino group or a 1-alkyleneimino group, more preferably a dialkylamino group, and further preferably a dimethylamino group, a diethylamino group, or a di-n-butylamino group. .
  • hydrocarbyloxy group in the formula (II) examples include alkoxy groups such as methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group; phenoxy group, benzyloxy And aryloxy groups such as a group.
  • the hydrocarbyl group which may have a substituent in formula (II) is a hydrocarbyl group or a substituted hydrocarbyl group.
  • the substituted hydrocarbyl group include a substituted hydrocarbyl group in which the substituent is a hydrocarbyloxy group.
  • the hydrocarbyl group include an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group; a phenyl group, a 4-methyl-1-phenyl group, An aryl group such as a benzyl group can be mentioned.
  • the substituted hydrocarbyl group in which the substituent is a hydrocarbyloxy group include alkoxyalkyl groups such as a methoxymethyl group, an ethoxymethyl group, and an ethoxyethyl group.
  • one of X 1 , X 2 and X 3 is a substituted amino group, and m is 0.
  • one of X 1 , X 2 and X 3 is a substituted amino group, and m is 1, (Dimethylamino) dimethyl-4-vinylphenylsilane, (dimethylamino) dimethyl-3-vinylphenylsilane, (diethylamino) dimethyl-4-vinylphenylsilane, (diethylamino) dimethyl-3-vinylphenylsilane, (di-n -Propylamino) dimethyl-4-vinylphenylsilane, (di-n-propylamino) dimethyl-3-vinylphenylsilane, (di-n-butylamino) dimethyl-4-vinylphenylsilane, (di-n-butyl) Amino) dimethyl-3-vinylphenylsilane, (dimethylamino) diethyl-4-vinylsilane, (dimethylamino) dieth
  • X 1 , X 2 and X 3 are substituted amino groups, and m is 0.
  • X 1 , X 2 and X 3 are substituted amino groups, and m is 1, Bis (dimethylamino) methyl-4-vinylphenylsilane, bis (dimethylamino) methyl-3-vinylphenylsilane, bis (diethylamino) methyl-4-vinylphenylsilane, bis (diethylamino) methyl-3-vinylphenylsilane, Bis (di-n-propylamino) methyl-4-vinylphenylsilane, bis (di-n-propylamino) methyl-3-vinylphenylsilane, bis (di-n-butylamino) methyl-4-vinylphenylsilane Bis (di-n-butylamino) methyl-3-vinylphenylsilane, bis (dimethylamino) ethyl-4
  • silicon-containing vinyl compounds represented by the formula (II) three of X 1 , X 2 and X 3 are substituted amino groups, and m is 0.
  • examples thereof include tris (dialkylamino) vinylsilane such as tris (dimethylamino) vinylsilane, tris (diethylamino) vinylsilane, tris (di-n-propylamino) vinylsilane, and tris (di-n-butylamino) vinylsilane.
  • X 1 , X 2 and X 3 are substituted amino groups and m is 1, Tris (dimethylamino) -4-vinylphenylsilane, Tris (dimethylamino) -3-vinylphenylsilane, Tris (diethylamino) -4-vinylphenylsilane, Tris (diethylamino) -3-vinylphenylsilane, Tris (di- n-propylamino) -4-vinylphenylsilane, tris (di-n-propylamino) -3-vinylphenylsilane, tris (di-n-butylamino) -4-vinylphenylsilane, tris (di-n- And tris (dialkylamino) vinylphenylsilane such as butylamino) -3-vinylpheny
  • Trialkoxyvinylsilanes such as trimethoxyvinylsilane, triethoxyvinylsilane, tripropoxyvinylsilane; dialkoxyalkylvinylsilanes such as methyldimethoxyvinylsilane and methyldiethoxyvinylsilane; di (tert-pentoxy) phenylvinylsilane, di (tert-butoxy) phenylvinylsilane, etc.
  • Dialkoxyaryl vinyl silanes monoalkoxy dialkyl vinyl silanes such as dimethylmethoxy vinyl silane; monoalkoxy diaryl vinyl silanes such as tert-butoxy diphenyl vinyl silane; tert-pentoxy diphenyl vinyl silane; tert-butoxymethyl phenyl vinyl silane; Monoalkoxyalkylary Vinylsilane; tris (beta-methoxyethoxy) substitution such as vinyl silane alkoxy vinyl silane compounds can be mentioned.
  • examples of the silicon-containing vinyl compound include bis (trialkylsilyl) aminostyrene such as 4-N, N-bis (trimethylsilyl) aminostyrene and 3-N, N-bis (trimethylsilyl) aminostyrene; 4-bis (trimethylsilyl) Bis (trialkylsilyl) aminoalkylstyrene such as aminomethylstyrene, 3-bis (trimethylsilyl) aminomethylstyrene, 4-bis (trimethylsilyl) aminoethylstyrene, 3-bis (trimethylsilyl) aminoethylstyrene .
  • the silicon-containing vinyl compound is preferably a compound represented by formula (II), more preferably a compound in which m in formula (II) is 0, and among X 1 , X 2 and X 3 in formula (II) More preferred are compounds in which two are dialkylamino groups.
  • Particularly preferred compounds as the silicon-containing vinyl compound are bis (dimethylamino) methylvinylsilane, bis (diethylamino) methylvinylsilane, and bis (di-n-butylamino) methylvinylsilane.
  • the amount of silicon-containing vinyl compound used is 100% by mass based on the total amount of monomer components used in the polymerization, performance on ice and snow, wear resistance, rubber strength, low fuel consumption.
  • it is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and further preferably 0.05% by mass or more. is there.
  • the content is preferably 20% by mass or less, more preferably 2% by mass or less, and further preferably 1% by mass or less.
  • a polymerizable monomer may be used as the monomer component in addition to the conjugated diene compound and the silicon-containing vinyl compound.
  • the monomer include aromatic vinyl compounds, vinyl nitriles and unsaturated carboxylic acid esters.
  • the aromatic vinyl compound include styrene, ⁇ -methylstyrene, vinyl toluene, vinyl naphthalene, divinyl benzene, trivinyl benzene, and divinyl naphthalene.
  • Examples of the vinyl nitrile include acrylonitrile, and examples of the unsaturated carboxylic acid ester include methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate. In these, an aromatic vinyl compound is preferable and styrene is more preferable.
  • the amount of the aromatic vinyl compound used is preferably 10% by mass, with the total amount of the conjugated diene compound and the aromatic vinyl compound being 100% by mass. It is at least mass% (the amount of conjugated diene compound used is 90% by mass or less), more preferably at least 15% by mass (the amount of conjugated diene compound used is 85% by mass or less). From the viewpoint of performance on ice and snow and low fuel consumption, the amount of aromatic vinyl compound used is preferably 50% by mass or less (the amount of conjugated diene compound used is 50% by mass or more), more preferably 45% by mass. The following is (the amount of the conjugated diene compound used is 55% by mass or more).
  • the polymerization is preferably performed in a hydrocarbon solvent.
  • the hydrocarbon solvent is a solvent that does not deactivate the polymerization initiator of formula (I), and examples thereof include aliphatic hydrocarbons, aromatic hydrocarbons, and alicyclic hydrocarbons.
  • examples of the aliphatic hydrocarbon include propane, n-butane, iso-butane, n-pentane, iso-pentane, n-hexane, n-heptane, and n-octane.
  • the aromatic hydrocarbon include benzene, toluene, xylene, and ethylbenzene.
  • the alicyclic hydrocarbon examples include cyclopentane and cyclohexane.
  • the hydrocarbon solvent may be a mixture of various components such as industrial hexane. Preferably, it is a hydrocarbon having 2 to 12 carbon atoms.
  • Polymerization reaction is an agent that adjusts the amount of vinyl bonds of conjugated diene units, an agent that adjusts the distribution of monomer units based on monomers other than conjugated diene units and conjugated dienes in the conjugated diene polymer chain , And collectively referred to as “regulators”).
  • agents include ether compounds, tertiary amine compounds, and phosphine compounds.
  • ether compounds include cyclic ethers such as tetrahydrofuran, tetrahydropyran, and 1,4-dioxane; aliphatic monoethers such as diethyl ether and dibutyl ether; ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, and diethylene glycol diethyl ether. And aliphatic diethers such as diethylene glycol dibutyl ether; aromatic ethers such as diphenyl ether and anisole.
  • cyclic ethers such as tetrahydrofuran, tetrahydropyran, and 1,4-dioxane
  • aliphatic monoethers such as diethyl ether and dibutyl ether
  • ethylene glycol dimethyl ether ethylene glycol diethyl ether
  • ethylene glycol dibutyl ether ethylene glycol dibutyl ether
  • Examples of the tertiary amine compound include triethylamine, tripropylamine, tributylamine, N, N, N ′, N′-tetramethylethylenediamine, N, N-diethylaniline, pyridine, quinoline and the like.
  • Examples of the phosphine compound include trimethylphosphine, triethylphosphine, triphenylphosphine, and the like. One or more of these are used.
  • a polymerization initiator may be supplied to the polymerization reactor before supplying the monomer component to the polymerization reactor.
  • the polymerization initiator may be supplied to the polymerization reactor after being supplied to the reactor, or a part of the monomer components used for the polymerization may be supplied to the polymerization reactor and then supplied to the polymerization reactor. Good.
  • a polymerization initiator may be supplied to a polymerization reactor at a time, and may be supplied continuously.
  • the monomer component may be supplied to the polymerization reactor at a time, may be supplied continuously, or may be supplied intermittently. Moreover, each monomer may be supplied separately to the polymerization reactor or may be supplied simultaneously.
  • the polymerization temperature in the production of the conjugated diene polymer is usually 25 to 100 ° C., preferably 35 to 90 ° C. More preferably, it is 50 to 80 ° C.
  • the polymerization time is usually 10 minutes to 5 hours.
  • the conjugated diene polymer is prepared by polymerizing a monomer component containing a conjugated diene compound and a silicon-containing vinyl compound using a polymerization initiator represented by the formula (I) (active terminal (copolymer)). It can be obtained by reacting a compound containing a nitrogen atom and / or a silicon atom with the active terminal of the polymer (which is considered to have an alkali metal derived from the polymerization initiator) (terminal modification reaction). Specifically, a compound containing a nitrogen atom and / or a silicon atom is added to the polymerization solution and mixed.
  • a polymerization initiator represented by the formula (I) (active terminal (copolymer)
  • the amount of the compound containing nitrogen atoms and / or silicon atoms added to the polymerization solution is usually 0.1 to 3 mol per 1 mol of the alkali metal derived from the polymerization initiator represented by the formula (I) used.
  • the amount is preferably 0.5 to 2 mol, and more preferably 0.7 to 1.5 mol.
  • the reaction temperature of the terminal modification reaction is usually 25 to 100 ° C., preferably 35 to 90 ° C., more preferably 50 to 80 ° C.
  • the reaction time for the terminal reaction is usually 60 seconds to 5 hours, preferably 5 minutes to 1 hour, more preferably 15 minutes to 1 hour.
  • the compounds containing a nitrogen atom and / or a silicon atom preferred are compounds containing a nitrogen atom and a carbonyl group.
  • R 31 is a hydrocarbyl group which may have a substituent, a hydrocarbylene group which may be bonded to R 32 and have a nitrogen atom and / or an oxygen atom as a hetero atom, or represents divalent group bonded to R 34
  • R 32 are have an optionally substituted hydrocarbyl group, or a nitrogen atom and / or oxygen atom bonded to R 31 as a hetero atom
  • R 34 may be a hydrocarbyl group which may have a substituent, a hydrogen atom, or a divalent group bonded to R 31.
  • R 33 represents a divalent group.
  • K represents 0 or 1)
  • the hydrocarbyl group which may have a substituent of R 31 , R 32 and R 34 is a hydrocarbyl group or a substituted hydrocarbyl group.
  • the substituted hydrocarbyl group include a substituted hydrocarbyl group in which the substituent is a hydrocarbyloxy group, and a substituted hydrocarbyl group in which the substituent is a substituted amino group.
  • the hydrocarbyl group include alkyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group and n-butyl group; alkenyl groups such as vinyl group, allyl group and isopropenyl group; and aryl groups such as phenyl group.
  • Examples of the substituted hydrocarbyl group in which the substituent is a hydrocarbyloxy group include alkoxyalkyl groups such as a methoxymethyl group, an ethoxymethyl group, and an ethoxyethyl group.
  • the substituted hydrocarbyl group in which the substituent is a substituted amino group includes 2- (N, N-dimethylamino) ethyl group, 2- (N, N-diethylamino) ethyl group, 3- (N, N-dimethylamino) propyl Groups, (N, N-dialkylamino) alkyl groups such as 3- (N, N-diethylamino) propyl group; 4- (N, N-dimethylamino) phenyl group, 3- (N, N-dimethylamino) phenyl Groups, (N, N-dialkylamino) aryl groups such as 4- (N, N-diethylamino) phenyl group, 3- (N, N-diethylamino) phenyl group; 4- (N, N-dimethylamino) methylphenyl Groups, (N, N-dialkylamino) alkylaryl groups such as 4- (N, N-
  • the hydrocarbylene group optionally having a nitrogen atom and / or an oxygen atom to which R 31 and R 32 are bonded as a hetero atom is a hydrocarbylene group, or a hetero atom is a nitrogen atom and And / or a heteroatom-containing hydrocarbylene group which is an oxygen atom.
  • the heteroatom-containing hydrocarbylene group in which the heteroatom is a nitrogen atom and / or an oxygen atom includes a heteroatom-containing hydrocarbylene group in which the heteroatom is a nitrogen atom, and a heteroatom-containing hydrocarbylene in which the heteroatom is an oxygen atom You can raise a group.
  • the hydrocarbylene group includes trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, pentane-2-ene-1,5-diyl group, 2,2,4-trimethylhexane-1,6-diyl
  • An alkylene group such as a group
  • an arylene group such as a 1,4-phenylene group.
  • heteroatom-containing hydrocarbylene group in which the heteroatom is a nitrogen atom include a group represented by —CH ⁇ N—CH ⁇ CH— and a group represented by —CH ⁇ N—CH 2 —CH 2 —. be able to.
  • heteroatom-containing hydrocarbylene group in which the heteroatom is an oxygen atom examples include groups represented by — (CH 2 ) s —O— (CH 2 ) t — (s and t are integers of 1 or more). Can do.
  • the divalent group in which R 31 and R 34 are bonded and the divalent group of R 33 include a hydrocarbylene group, a heteroatom-containing hydrocarbylene group in which the hetero atom is a nitrogen atom, hetero A heteroatom-containing hydrocarbylene group in which the atom is an oxygen atom, a group in which a hydrocarbylene group and an oxygen atom are bonded, a group represented by a hydrocarbylene group and —NR 35 — (R 35 is a hydrocarbyl group or a hydrogen atom And a group bonded to each other.
  • the hydrocarbylene group includes trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, pentane-2-ene-1,5-diyl group, 2,2,4-trimethylhexane-1,6-diyl
  • An alkylene group such as a group
  • an arylene group such as a 1,4-phenylene group.
  • heteroatom-containing hydrocarbylene group in which the heteroatom is a nitrogen atom include a group represented by —CH ⁇ N—CH ⁇ CH— and a group represented by —CH ⁇ N—CH 2 —CH 2 —. be able to.
  • heteroatom-containing hydrocarbylene group in which the heteroatom is an oxygen atom examples include groups represented by — (CH 2 ) s —O— (CH 2 ) t — (s and t are integers of 1 or more). Can do.
  • R 35 represents a hydrocarbyl group or a hydrogen atom
  • a group represented by — (CH 2 ) p —NR 35 — R 35 represents a hydrocarbyl group (preferably a hydrocarbyl group having 1 to 6 carbon atoms) or a hydrogen atom
  • p represents an integer of 1 or more.
  • Preferred examples of the compound represented by the formula (III) include a compound represented by the following formula (IIIa) in which k is 0 and R 34 is a hydrocarbyl group or a hydrogen atom which may have a substituent. it can.
  • R 31 represents a hydrocarbyl group which may have a substituent, or a hydrocarbylene which may be bonded to R 32 and have a nitrogen atom and / or an oxygen atom as a hetero atom.
  • R 32 represents a hydrocarbyl group which may have a substituent or a hydrocarbylene group which may combine with R 31 and have a nitrogen atom and / or an oxygen atom as a hetero atom.
  • R 34 represents an optionally substituted hydrocarbyl group or a hydrogen atom
  • a hydrocarbyl group which may have a substituent of R 31 , R 32 and R 34 , a nitrogen atom and / or an oxygen atom to which R 31 and R 32 are bonded have a hetero atom.
  • the description and examples of the preferred hydrocarbylene group are the same as those described in the description of formula (III).
  • R 31 is preferably a hydrocarbyl group having 1 to 10 carbon atoms, or a hydrocarbylene group having 3 to 10 carbon atoms bonded to R 32 or a hetero atom is a nitrogen atom. It is a heteroatom-containing hydrocarbylene group having 3 to 10 carbon atoms. More preferably, it is an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms, or an alkylene group having 3 to 10 carbon atoms bonded to R 32 , —CH ⁇ N—CH ⁇ A group represented by CH— or a group represented by —CH ⁇ N—CH 2 —CH 2 —. More preferably, it is an alkyl group having 1 to 6 carbon atoms. Particularly preferred is a methyl group or an ethyl group.
  • R 32 is preferably a hydrocarbyl group having 1 to 10 carbon atoms, or a hydrocarbylene group having 3 to 10 carbon atoms bonded to R 31 or a hetero atom is a nitrogen atom. It is a heteroatom-containing hydrocarbylene group having 3 to 10 carbon atoms. More preferably, it is an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms, or an alkylene group having 3 to 10 carbon atoms bonded to R 31 , —CH ⁇ N—CH ⁇ A group represented by CH— or a group represented by —CH ⁇ N—CH 2 —CH 2 —. More preferably, it is an alkyl group having 1 to 6 carbon atoms. Particularly preferred is a methyl group or an ethyl group.
  • R 34 is preferably a hydrocarbyl group or a hydrogen atom, more preferably a hydrocarbyl group or a hydrogen atom having 1 to 10 carbon atoms, still more preferably an alkyl group having 1 to 6 carbon atoms or A hydrogen atom, particularly preferably a hydrogen atom, a methyl group, or an ethyl group.
  • R 34 is a hydrocarbyl group
  • those in which R 34 is a hydrocarbyl group include N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-N-ethylacetamide and the like.
  • those in which R 34 is a hydrogen atom include N, N-dimethylformamide, N, N-dimethylformamide, N-methyl-N-ethylformamide and the like N, N Mention may be made of dihydrocarbylformamide.
  • Preferable compounds represented by the formula (III) include compounds represented by the following formula (IIIb) in which k is 0 and R 34 is bonded to R 31 to form a divalent group.
  • R 32 represents an optionally substituted hydrocarbyl group
  • R 36 is a hydrocarbylene group or a group obtained by bonding a hydrocarbylene group to a group represented by —NR 35 —.
  • R 35 represents a hydrocarbyl group or a hydrogen atom
  • R 36 trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, pentane-2-ene-1,5-diyl group, 2,2,4- Examples thereof include alkylene groups such as trimethylhexane-1,6-diyl group; and arylene groups such as 1,4-phenylene group.
  • the group of R 36 to which a hydrocarbylene group and a group represented by —NR 35 — (R 35 represents a hydrocarbyl group or a hydrogen atom) is bonded is represented by — (CH 2 ) p —NR 35 —.
  • Group (R 35 represents a hydrocarbyl group or a hydrogen atom, and p represents an integer of 1 or more).
  • R 32 is preferably a hydrocarbyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms, and further preferably Is an alkyl group having 1 to 6 carbon atoms or a phenyl group, particularly preferably a methyl group, an ethyl group or a phenyl group.
  • R 36 is preferably a hydrocarbylene group having 1 to 10 carbon atoms, or a group represented by —NR 35 — and a hydrocarbylene group having 1 to 10 carbon atoms
  • R 35 is A group bonded to a hydrocarbyl group (preferably a hydrocarbyl group having 1 to 10 carbon atoms) or a hydrogen atom, more preferably an alkylene group having 3 to 6 carbon atoms or — (CH 2 ) p —NR 35 - group represented by (R 35 is a hydrocarbyl group (preferably an hydrocarbyl group) of 1 to 10 carbon atoms, p is an integer of 1 or more (preferably an integer) of 2 to 5), and More preferred is a trimethylene group, a tetramethylene group, a pentamethylene group, or a group represented by — (CH 2 ) 2 —N (CH 3 ) —.
  • R 36 is a hydrocarbylene group
  • R 36 is a hydrocarbylene group
  • R 36 is a hydrocarbylene group
  • N-methyl-2-pyrrolidone N-vinyl-2-pyrrolidone, N-phenyl-2-pyrrolidone, N-tert-butyl-2-pyrrolidone, N-methyl-5-methyl-2- N-hydrocarbyl-2-pyrrolidone such as pyrrolidone
  • N-hydrocarbyl-2-piperidone such as N-methyl-2-piperidone, N-vinyl-2-piperidone, N-phenyl-2-piperidone
  • N-methyl- ⁇ - N-hydrocarbyl- ⁇ -caprolactam such as caprolactam, N-phenyl- ⁇ -caprolactam
  • R 36 is a group in which a hydrocarbylene group and a group represented by —NR 35 — (R 35 represents a hydrocarbyl group or a hydrogen atom) are combined.
  • Examples include 1,3-dihydrocarbyl-2-imidazolidinone such as non-one, among which 1,3-dimethyl-2-imidazolidinone is preferable.
  • Preferable compounds represented by the formula (III) include compounds represented by the following formula (IIIc) in which k is 1 and R 33 is a hydrocarbylene group.
  • R 31 represents a hydrocarbyl group which may have a substituent, or a hydrocarbyl which may be bonded to R 32 and have a nitrogen atom and / or an oxygen atom as a hetero atom.
  • R 32 represents a hydrocarbyl group which may have a substituent, or R 32 may be bonded to R 31 and may have a nitrogen atom and / or an oxygen atom as a hetero atom
  • R 33 represents a hydrocarbylene group
  • R 34 represents a hydrocarbyl group or a hydrogen atom which may have a substituent.
  • a hydrocarbyl group which may have a substituent of R 31 , R 32 and R 34 , and a nitrogen atom and / or an oxygen atom to which R 31 and R 32 are bonded have a hetero atom.
  • the description and illustration of the preferred hydrocarbylene group, the hydrocarbylene group of R 33 are the same as those described in the description of formula (III).
  • R 33 is preferably a hydrocarbylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 10 carbon atoms or an arylene group having 6 to 10 carbon atoms, An alkylene group having 1 to 6 carbon atoms or a phenylene group is more preferable, and an ethylene group, trimethylene group, or 1,4-phenylene group is particularly preferable.
  • R 34 is preferably a hydrocarbyl group having 1 to 10 carbon atoms, or a substituted hydrocarbyl group having 1 to 10 carbon atoms in which the substituent is a dialkylamino group, more preferably 1 carbon atom.
  • R 31 is preferably a hydrocarbyl group having 1 to 10 carbon atoms, a hydrocarbylene group having 3 to 10 carbon atoms bonded to R 32 , or a hetero atom having a nitrogen atom or oxygen atom
  • a heteroatom-containing hydrocarbylene group having 3 to 10 carbon atoms more preferably an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms, or a bond to R 32
  • CH N—CH ⁇ CH—
  • R 32 is preferably a hydrocarbyl group having 1 to 10 carbon atoms, or a hydrocarbylene group having 3 to 10 carbon atoms bonded to R 31 , or a hetero atom having a nitrogen atom or oxygen atom
  • a C3-C10 heteroatom-containing hydrocarbylene group more preferably an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms, or a bond to R 31
  • CH N—CH ⁇ CH— A group represented by —CH ⁇ N—CH 2
  • 4-N, N-dihydrocarbylaminoacetophenone such as 4- (N, N-dimethylamino) acetophenone, 4-N-methyl-N-ethylaminoacetophenone, 4-N, N-diethylaminoacetophenone; 4 ′-(imidazole Examples include 4-cyclic aminoacetophenone compounds such as -1-yl) acetophenone and 4-pyrazolylacetophenone, among which 4-cyclic aminoacetophenone compounds are preferable, and 4 ′-(imidazol-1-yl) acetophenone is more preferable. .
  • k is 1, and R 33 is a group in which a hydrocarbylene group and an oxygen atom are bonded, or a group represented by a hydrocarbylene group and —NR 35 — ( R 35 represents a compound represented by the following formula (IIId) which is a group bonded to a hydrocarbyl group or a hydrogen atom.
  • R 31 represents a hydrocarbyl group which may have a substituent, or a hydrocarbyl which may be bonded to R 32 and have a nitrogen atom and / or an oxygen atom as a hetero atom.
  • R 32 represents a hydrocarbyl group which may have a substituent, or R 32 may be bonded to R 31 and may have a nitrogen atom and / or an oxygen atom as a hetero atom
  • R 37 represents a hydrocarbylene group
  • A represents an oxygen atom or —NR 35 —
  • R 35 represents a hydrocarbyl group or a hydrogen atom
  • R 34 represents a hydrocarbyl group which may have a substituent or (Represents a hydrogen atom)
  • a hydrocarbyl group which may have a substituent of R 31 , R 32 and R 34 , a nitrogen atom and / or an oxygen atom to which R 31 and R 32 are bonded have a hetero atom.
  • the description and examples of the preferred hydrocarbylene group are the same as those described in the description of formula (III).
  • the hydrocarbyl group of R 35 is the same as that described for the hydrocarbyl group of R 31 , R 32 , and R 34 .
  • A is preferably an oxygen atom or a group represented by —NR 35 — (R 35 is a hydrocarbyl group (preferably a hydrocarbyl group having 1 to 5 carbon atoms) or a hydrogen atom), More preferred is an oxygen atom or a group represented by —NH—, and even more preferred is a group represented by —NH—.
  • the hydrocarbylene group represented by R 37 includes trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, pentane-2-ene-1,5-diyl group, 2,2,4- Examples thereof include alkylene groups such as trimethylhexane-1,6-diyl group; and arylene groups such as 1,4-phenylene group.
  • R 34 is preferably a hydrocarbyl group having 1 to 10 carbon atoms, more preferably an alkenyl group having 2 to 5 carbon atoms, and further preferably a vinyl group.
  • R 37 is preferably a hydrocarbylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 6 carbon atoms, still more preferably an ethylene group or a trimethylene group. Particularly preferred is a trimethylene group.
  • R 31 is preferably a hydrocarbyl group having 1 to 10 carbon atoms, or a hydrocarbylene group having 3 to 10 carbon atoms bonded to R 32 , or a hetero atom having a nitrogen atom or oxygen
  • R 32 is preferably a hydrocarbyl group having 1 to 10 carbon atoms, a hydrocarbylene group having 3 to 10 carbon atoms bonded to R 31 , or a hetero atom having a nitrogen atom or oxygen
  • a C3-C10 heteroatom-containing hydrocarbylene group more preferably an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms, or a bond to R 31
  • N N-dihydrocarbylaminoethylacrylamide, such as N, N-dimethylaminoethylacrylamide, N, N-diethylaminoethylacrylamide; N, N-, such as N, N-dimethylaminopropylacrylamide, N, N-diethylaminopropylacrylamide Dihydrocarbylaminopropylacrylamide; N, N-dihydrocarbylaminobutylacrylamide such as N, N-dimethylaminobutylacrylamide, N, N-diethylaminobutylacrylamide; N, N-dimethylaminoethylmethacrylamide, N, N-diethylaminoethyl N, N-dihydrocarbylaminoe
  • a preferred compound represented by the formula (III) is a compound represented by the formula (IIId), among which N, N-dihydrocarbylaminopropylacrylamide is particularly preferred, and N, N-dimethylaminopropylacrylamide is most preferred. .
  • a compound containing an alkoxysilyl group can also be mentioned as a preferable compound containing a nitrogen atom and / or a silicon atom.
  • R 41 represents a hydrocarbyl group
  • R 42 and R 43 represent a hydrocarbyl group or a hydrocarbyloxy group
  • R 44 represents a hydrocarbyl group or trihydrocarbylsilyl group which may have a substituent.
  • R 45 represents a silicon atom, a nitrogen atom and hydrocarbylene group optionally having at least one atom as a hetero atom selected from the group of atoms consisting of oxygen atoms
  • R 45 is substituted represent a hydrocarbyl group or a trihydrocarbylsilyl group which may have a group, or combined with R 44, at least one atom selected from the group of atoms of silicon atoms, nitrogen atoms and oxygen atoms as a hetero atom
  • j represents an integer of 1 to 5
  • the hydrocarbyl group which may have a substituent is a hydrocarbyl group or a substituted hydrocarbyl group.
  • hydrocarbyl groups include alkyl groups such as methyl, ethyl, n-propyl, isopropyl and n-butyl groups; alkenyl groups such as vinyl, allyl and isopropenyl groups; and aryl groups such as phenyl groups. It is preferably an alkyl group, more preferably a methyl group or an ethyl group.
  • the substituted hydrocarbyl group include oxacycloalkyl groups such as an oxiranyl group and a tetrahydrofuranyl group, and a tetrahydrofuranyl group is preferable.
  • the oxacycloalkyl group represents a group in which CH 2 on the alicyclic ring of the cycloalkyl group is replaced with an oxygen atom.
  • Hydrocarbyloxy groups include alkoxy groups such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, and tert-butoxy; aryloxy such as phenoxy and benzyloxy Group, and preferably an alkoxy group, more preferably a methoxy group or an ethoxy group.
  • trihydrocarbylsilyl group examples include a trimethylsilyl group and a tert-butyl-dimethylsilyl group, and a trimethylsilyl group is preferable.
  • the hydrocarbylene group which may have at least one atom selected from the atomic group consisting of a silicon atom, a nitrogen atom and an oxygen atom as a heteroatom is a hydrocarbylene group, or the heteroatom is a silicon atom or a nitrogen atom And a heteroatom-containing hydrocarbylene group that is at least one atom selected from the group consisting of oxygen atoms.
  • hydrocarbylene group examples include a tetramethylene group, a pentamethylene group, a hexamethylene group, a pentane-2-ene-1,5-diyl group, and a 2,2,4-trimethylhexane-1,6-diyl group.
  • An alkylene group can be mentioned. Among them, an alkylene group having 4 to 7 carbon atoms is preferable, and a pentamethylene group or a hexamethylene group is particularly preferable.
  • heteroatom-containing hydrocarbylene group in which the heteroatom is a silicon atom include a group represented by —Si (CH 3 ) 2 —CH 2 —CH 2 —Si (CH 3 ) 2 —.
  • the heteroatom-containing hydrocarbylene group in which the heteroatom is a nitrogen atom includes a group represented by —CH ⁇ N—CH ⁇ CH— or a group represented by —CH ⁇ N—CH 2 —CH 2 —.
  • I can give you. Examples thereof include a heteroatom-containing hydrocarbylene group in which the heteroatom is an oxygen atom, and a group represented by —CH 2 —CH 2 —O—CH 2 —CH 2 —.
  • R 41 is preferably an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group or an ethyl group.
  • R 42 and R 43 are preferably a hydrocarbyloxy group, more preferably an alkoxy group having 1 to 4 carbon atoms, and still more preferably a methoxy group or an ethoxy group.
  • R 44 and R 45 are preferably a hydrocarbyl group, more preferably an alkyl group having 1 to 4 carbon atoms, and still more preferably a methyl group or an ethyl group.
  • J is preferably an integer of 2 to 4.
  • Examples of the compound represented by the formula (IV) include 3-dimethylaminopropyltriethoxysilane, 3-dimethylaminopropyltrimethoxysilane, 3-diethylaminopropyltriethoxysilane, 3-diethylaminopropyltrimethoxysilane, and 3-dimethyl.
  • [(Dialkylamino) alkyl] alkoxysilane compounds such as aminopropylmethyldiethoxysilane, 2-dimethylaminoethyltriethoxysilane, 2-dimethylaminoethyltrimethoxysilane; hexamethyleneiminomethyltrimethoxysilane, 3-hexamethyleneimino Cyclic amino such as propyltriethoxysilane, N- (3-triethoxysilylpropyl) -4,5-dihydroimidazole, N- (3-trimethoxysilylpropyl) -4,5-imidazole [Di (tetrahydrofuranyl) amino] alkylalkoxysilane compounds such as 3- [di (tetrahydrofuranyl) amino] propyltrimethoxysilane and 3- [di (tetrahydrofuranyl) amino] propyltriethoxysilane; N N, N-bis (t
  • Tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane; trialkoxyhydrocarbylsilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, phenyltrimethoxysilane; trimethoxychlorosilane, Trialkoxyhalosilanes such as triethoxychlorosilane and tri-n-propoxychlorosilane; dialkoxydihydrocarbylsilanes such as dimethoxydimethylsilane, diethoxydimethylsilane and dimethoxydiethylsilane; dimethoxydichlorosilane, diethoxydichloro
  • the compound containing an alkoxysilyl group may contain a nitrogen atom and a carbonyl group.
  • tris [3- (trimethoxysilyl) propyl] isocyanurate tris [3- (triethoxysilyl) propyl] isocyanurate
  • tris [3 Examples include tris [(alkoxysilyl) alkyl] isocyanurate compounds such as-(tripropoxysilyl) propyl] isocyanurate and tris [3- (tributoxysilyl) propyl] isocyanurate, among which tris [3- (tri Methoxysilyl) propyl] isocyanurate is preferred.
  • examples of the compound containing a nitrogen atom and / or a silicon atom include N, N-dialkyl-substituted carboxylic acid amide dialkyl acetal compounds.
  • Examples of N, N-dialkyl-substituted carboxylic acid amide dialkyl acetal compounds include N, N-dimethylformamide dimethyl acetal, N, N-diethylformamide dimethyl acetal and the like; N, N-dialkylformamide dialkyl acetal; N, N-dialkylacetamido dialkyl acetals such as acetal and N, N-diethylacetamidodimethylacetal; N, N-dialkylpropionamide dialkyl such as N, N-dimethylpropionamide dimethylacetal and N, N-diethylpropionamide dimethylacetal Acetal and the like.
  • N, N-dialkylformamide dialkylacetal is preferable, and N, N-dimethylformamide dimethyl
  • a coupling agent may be added to the hydrocarbon solution of the conjugated diene polymer from the start of polymerization of the monomer to the recovery of the polymer described later.
  • An example of the coupling agent is a compound represented by the following formula (V).
  • R 51 a ML 4-a (V) (In the formula (V), R 51 represents an alkyl group, an alkenyl group, a cycloalkenyl group or an aryl group, M represents a silicon atom or a tin atom, L represents a halogen atom or a hydrocarbyloxy group, and a represents 0 to Represents an integer of 2)
  • silicon tetrachloride methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, tin tetrachloride, methyltrichlorotin, dimethyldichlorotin, trimethylchlorotin, tetramethoxysilane
  • examples thereof include methyltrimethoxysilane, dimethoxydimethylsilane, methyltriethoxysilane, ethyltrimethoxysilane, dimethoxydiethylsilane, diethoxydimethylsilane, tetraethoxysilane, ethyltriethoxysilane, and diethoxydiethylsilane.
  • the addition amount of the coupling agent is preferably 0.03 mol or more, more preferably 0.05 mol or more, per 1 mol of alkali metal derived from the alkali metal catalyst in order to improve the processability of the conjugated diene polymer. Moreover, in order to improve low-fuel-consumption property, Preferably it is 0.4 mol or less, More preferably, it is 0.3 mol or less.
  • an unreacted active terminal may be treated with an alcohol such as methanol or isopropyl alcohol before recovering the polymer described later.
  • a known method can be used as a method for recovering the conjugated diene polymer from the conjugated diene polymer hydrocarbon solution.
  • a known method can be used. For example, (A) a method of adding a coagulant to the conjugated diene polymer hydrocarbon solution. (B) A method of adding steam to the hydrocarbon solution of the conjugated diene polymer (steam stripping treatment) can be mentioned.
  • the recovered conjugated diene polymer may be dried by a known dryer such as a band dryer or an extrusion dryer.
  • the content of the structural unit derived from the polymerization initiator represented by the formula (I) is the performance on ice and snow, wear resistance, rubber strength, fuel efficiency, wet grip performance and dry handling stability.
  • per unit mass of the polymer preferably 0.0001 mmol / g polymer or more, more preferably 0.001 mmol / g polymer or more, preferably 0.15 mmol / g polymer or less. More preferably, it is 0.1 mmol / g polymer or less.
  • the content of the structural unit derived from the silicon-containing vinyl compound is from the viewpoint of improving the snow / snow performance, wear resistance, rubber strength, fuel efficiency, wet grip performance and dry handling stability in a well-balanced manner.
  • Per unit polymer mass preferably 0.01 mmol / g polymer or more, more preferably 0.02 mmol / g polymer or more, preferably 0.4 mmol / g polymer or less, more preferably 0. 2 mmol / g polymer or less.
  • the conjugated diene polymer is derived from the compound represented by the formula (II). It preferably has a structural unit.
  • the structural unit derived from the compound represented by the formula (II) in the conjugated diene polymer means a structural unit represented by the following formula (IIb). (In the formula (IIb), m, R 21 , X 1 , X 2 and X 3 are the same as those in the formula (II)).
  • the conjugated diene polymer according to the present invention in the structural unit derived from the compound represented by formula (II) in the conjugated diene polymer, at least one of X 1 , X 2 and X 3 is substituted with a hydroxyl group. It is preferable that two or more are substituted with a hydroxyl group, and it is more preferable that two are substituted with a hydroxyl group. Thereby, the improvement effect of the performance on snow and ice, abrasion resistance, rubber strength, fuel efficiency, wet grip performance, and dry handling stability can be enhanced.
  • the method for substituting X 1 , X 2 and X 3 with a hydroxyl group is not particularly limited, and an example is a method by steam stripping treatment.
  • the conjugated diene polymer is a structural unit derived from an aromatic vinyl compound (aromatic vinyl). Unit).
  • aromatic vinyl aromatic vinyl
  • the content of the aromatic vinyl unit in the conjugated diene polymer is such that the structural unit derived from the conjugated diene compound (conjugated diene unit) and the aromatic vinyl unit.
  • the total amount is preferably 10% by mass or more (content of the conjugated diene unit content compound is 90% by mass or less), more preferably 15% by mass or more (content of the conjugated diene unit is 85% by mass or less).
  • the content of the aromatic vinyl unit is preferably 50% by mass or less (the content of the conjugated diene unit is 50% by mass or more), more preferably 45% by mass. It is below (the content of the conjugated diene unit is 55% by mass or more).
  • the vinyl bond content (vinyl content) of the conjugated diene polymer is low fuel consumption, with the conjugated diene unit content being 100 mol%. From this viewpoint, it is preferably 80 mol% or less, more preferably 70 mol% or less. Moreover, from a viewpoint of wet grip performance, Preferably it is 10 mol% or more, More preferably, it is 15 mol% or more, More preferably, it is 20 mol% or more, Especially preferably, it is 40 mol% or more.
  • the conjugated diene polymer preferably does not have a structural unit of an aromatic vinyl compound.
  • the vinyl bond content (vinyl content) of the conjugated diene polymer ) is 100 mol%, preferably 20 mol% or less, more preferably 15 mol% or less.
  • the vinyl bond amount of the said conjugated diene type polymer can be measured by the method as described in the Example mentioned later.
  • the molecular weight distribution of the conjugated diene polymer is preferably 1 to 5 and more preferably 1 to 2 in order to improve fuel efficiency.
  • the molecular weight distribution is obtained by measuring the number average molecular weight (Mn) and the weight average molecular weight (Mw) by gel permeation chromatography (GPC) method and dividing Mw by Mn.
  • the conjugated diene polymer can be used in the rubber composition of the present invention as a rubber component.
  • the content of the conjugated diene polymer in 100% by mass of the rubber component is 45% by mass or less, preferably 35% by mass or less, and more preferably 25% by mass or less. If it exceeds 45 mass%, the wear resistance tends to decrease and the cost tends to increase.
  • content of the said conjugated diene type polymer is 1 mass% or more, Preferably it is 5 mass% or more, More preferably, it is 10 mass% or more, More preferably, it is 15 mass% or more. If it is less than 1% by mass, the effect of improving fuel economy tends to be difficult to obtain.
  • the rubber composition of the present invention contains high cis polybutadiene having a cis structure (cis-1,4 bond) ratio (cis content) in the microstructure (bonding mode of monomer units) of 95% by mass or more.
  • the high cis polybutadiene is not particularly limited as long as it has a cis content of 95% by mass or more. Common ones can be used.
  • the cis content is a value calculated by infrared absorption spectrum analysis.
  • the content of the high cis butadiene in 100% by mass of the rubber component is 20% by mass or more, preferably 25% by mass or more, more preferably 30% by mass or more. If it is less than 20% by mass, sufficient flexibility at low temperatures cannot be ensured, and the performance on ice and snow tends to deteriorate, or the wear resistance tends to decrease.
  • the content of the high cis butadiene is 64% by mass or less, preferably 60% by mass or less. If it exceeds 64% by mass, the wet grip performance tends to decrease.
  • the rubber composition of the present invention contains a polyisoprene rubber.
  • the polyisoprene rubber include natural rubber (NR) and polyisoprene rubber (IR).
  • NR is not particularly limited.
  • SIR20, RSS # 3, TSR20, deproteinized natural rubber (DPNR), high purity natural rubber (HPNR), epoxidized natural rubber (ENR), etc. which are common in the tire industry Can be used.
  • DPNR deproteinized natural rubber
  • HPNR high purity natural rubber
  • EMR epoxidized natural rubber
  • the content of the polyisoprene rubber in 100% by mass of the rubber component is 35% by mass or more, preferably 40% by mass or more. If it is less than 35% by mass, the rubber strength may be reduced, or the rubber may not be tightly kneaded at the time of kneading, so that productivity may be deteriorated.
  • the content of the polyisoprene rubber is 60% by mass or less, preferably 50% by mass or less, more preferably 45% by mass or less. If the content of the polyisoprene rubber exceeds 60% by mass, sufficient wet grip performance may not be obtained.
  • Examples of rubber components that can be used in addition to the high cis butadiene and polyisoprene rubbers include conventional styrene-butadiene copolymer rubber (SBR), butadiene-isoprene copolymer rubber, and butyl rubber.
  • SBR styrene-butadiene copolymer rubber
  • butadiene-isoprene copolymer rubber butyl rubber.
  • an ethylene-propylene copolymer, an ethylene-octene copolymer, and the like can be given. Two or more of these rubber components may be used in combination.
  • the rubber composition of the present invention contains silica having a nitrogen adsorption specific surface area (N 2 SA) of 40 to 400 m 2 / g.
  • the silica is not particularly limited, and examples thereof include dry process silica (anhydrous silica), wet process silica (hydrous silica), and wet process silica is preferred because of its large number of silanol groups.
  • the nitrogen adsorption specific surface area (N 2 SA) of silica is 40 m 2 / g or more, preferably 50 m 2 / g or more, more preferably 60 m 2 / g or more. If it is less than 40 m 2 / g, the reinforcing effect is small, and the wear resistance and rubber strength tend to decrease.
  • the N 2 SA of the silica 400 meters 2 / g or less, preferably 360 m 2 / g or less, and more preferably not more than 300m 2 / g. When it exceeds 400 m 2 / g, silica is difficult to disperse and fuel economy tends to deteriorate. Note that N 2 SA of silica is a value measured by the BET method according to ASTM D3037-93.
  • the content of silica (when using two or more types of silica, the total amount) is 5 parts by mass or more, preferably 10 parts by mass or more, more preferably 30 parts by mass or more with respect to 100 parts by mass of the rubber component. More preferably, it is 45 parts by mass or more. If the amount is less than 5 parts by mass, the effect of blending silica cannot be obtained sufficiently, and the wear resistance and rubber strength tend to decrease.
  • the content of silica is 150 parts by mass or less, preferably 100 parts by mass or less. If it exceeds 150 parts by mass, the fuel efficiency tends to deteriorate.
  • Silica one kind may be used alone, it is preferable to use a combination of two or more, N 2 SA is 40 m 2 / g or more, 120 m and 2 / g less than the silica (1), N 2 SA is More preferably, 120 m 2 / g or more of silica (2) is used in combination.
  • silica (1) and (2) are well dispersed, and the improvement effect of each performance can be enhanced synergistically.
  • the improvement effect of each performance can further be heightened by using together silica (1) and (2), the silane coupling agent which has a mercapto group mentioned later, and specific solid resin.
  • Silica (1) and (2) it is preferable to satisfy the ⁇ 1.4 relationship (N 2 SA of the silica (1)) N 2 SA is (silica (2) N 2 SA) of /, (silica ( it is more preferable to satisfy the N 2 SA) / (N 2 SA) ⁇ 2.0 relationship silica (1) 2). If it is less than 1.4, the difference in particle diameter between silica (1) and (2) is small, and the dispersion improving effect by blending two types of silica tends to be insufficient.
  • N 2 SA of silica (1) is 40 m 2 / g or more, preferably 50 m 2 / g or more. If it is less than 40 m 2 / g, sufficient reinforcing properties cannot be obtained, and rubber strength, wear resistance, and dry handling stability may be deteriorated. Also, N 2 SA of the silica (1) is less than 120 m 2 / g, preferably 100 m 2 / g, more preferably at most 80 m 2 / g. If it is 120 m 2 / g or more, there is a possibility that the effect of the combined use of silica (1) and (2) cannot be obtained sufficiently.
  • N 2 SA of silica (2) is 120 m 2 / g or more, preferably 150 m 2 / g or more. If it is less than 120 m 2 / g, the effect of the combined use of silica (1) and (2) may not be sufficiently obtained. Further, N 2 SA of silica (2) is preferably 250 m 2 / g or less, more preferably 220 m 2 / g or less. If it exceeds 250 m 2 / g, the fuel efficiency tends to deteriorate.
  • the contents of silica (1) and (2) preferably satisfy the following formula. (Content of silica (1)) ⁇ 0.06 ⁇ (content of silica (2)) ⁇ (content of silica (1)) ⁇ 15
  • content of silica (2) is less than 0.06 times the content of silica (1), there is a tendency that sufficient rubber strength cannot be obtained.
  • content of a silica (2) exceeds 15 times of content of a silica (1), there exists a tendency for rolling resistance to increase.
  • the content of silica (2) is more preferably 0.3 times or more and more preferably 0.5 times or more of the content of silica (1). Further, the content of silica (2) is more preferably 7 times or less of the content of silica (1), and further preferably 4 times or less.
  • the content of silica (1) is preferably 5 parts by mass or more, more preferably 10 parts by mass or more with respect to 100 parts by mass of the rubber component. If it is less than 5 parts by mass, the fuel economy may not be sufficiently improved. Moreover, content of silica (1) becomes like this. Preferably it is 60 mass parts or less, More preferably, it is 40 mass parts or less. If it exceeds 60 parts by mass, the fuel efficiency is good, but the rubber strength, wear resistance, and dry handling stability tend to decrease.
  • the content of silica (2) is preferably 5 parts by mass or more, more preferably 20 parts by mass or more, and further preferably 40 parts by mass or more with respect to 100 parts by mass of the rubber component. If it is less than 5 parts by mass, sufficient rubber strength, wear resistance and dry handling stability may not be obtained. Further, the content of silica (2) is preferably 90 parts by mass or less, more preferably 70 parts by mass or less. If it exceeds 90 parts by mass, the rubber strength, wear resistance, and dry handling stability are good, but the fuel efficiency tends to deteriorate.
  • the total content of silica (1) and (2) is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 30 parts by mass or more, particularly preferably 45 parts per 100 parts by mass of the rubber component. More than part by mass. If the amount is less than 5 parts by mass, the effect of blending silica (1) and (2) cannot be obtained sufficiently, and the wear resistance and rubber strength tend to decrease.
  • the total content of silica (1) and (2) is preferably 150 parts by mass or less, more preferably 100 parts by mass or less. If it exceeds 150 parts by mass, the workability tends to deteriorate.
  • the rubber composition of the present invention preferably contains a silane coupling agent having a mercapto group.
  • a silane coupling agent having a mercapto group can be improved synergistically by blending a silane coupling agent having a mercapto group together with the conjugated diene polymer and silica.
  • the improvement effect of each performance can further be heightened by using together the above-mentioned silica (1) and (2) and the specific solid resin mentioned later with the silane coupling agent which has a mercapto group.
  • Examples of the silane coupling agent having a mercapto group include a compound represented by the following formula (1) and / or a binding unit A represented by the following formula (2) and a binding unit B represented by the following formula (3).
  • the compound containing can be used conveniently.
  • R 101 to R 103 are each a branched or unbranched alkyl group having 1 to 12 carbon atoms, a branched or unbranched alkoxy group having 1 to 12 carbon atoms, or —O— (R 111 — O) z —R 112
  • z R 111 represents a branched or unbranched divalent hydrocarbon group having 1 to 30 carbon atoms.
  • the z R 111 may be the same or different.
  • R 112 represents a branched or unbranched alkyl group having 1 to 30 carbon atoms, a branched or unbranched alkenyl group having 2 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms.
  • Z represents an integer of 1 to 30.
  • R 101 to R 103 may be the same or different, and R 104 is a branched or unbranched carbon atom having 1 to 6 carbon atoms.
  • R 201 is hydrogen, halogen, branched or unbranched alkyl group having 1 to 30 carbon atoms, branched or unbranched alkenyl group having 2 to 30 carbon atoms, branched or unbranched.
  • R 202 represents a branched or unbranched alkylene group having 1 to 30 carbon atoms, a branched or non-branched alkynyl group having 2 to 30 carbon atoms, or a group in which the terminal hydrogen of the alkyl group is substituted with a hydroxyl group or a carboxyl group.
  • R 201 and R 202 may form a ring structure.
  • silica is dispersed well, and the effects of the present invention are obtained well. In particular, the wet grip performance can be greatly improved.
  • R 101 to R 103 are each a branched or unbranched alkyl group having 1 to 12 carbon atoms, a branched or unbranched alkoxy group having 1 to 12 carbon atoms, or —O— (R 111 —O) z —R 112 . Represents the group represented.
  • At least one of R 101 to R 103 is preferably a group represented by —O— (R 111 —O) z —R 112 , and two of them are — More preferably, it is a group represented by O— (R 111 —O) z —R 112 , and one is a branched or unbranched C 1-12 alkoxy group.
  • Examples of the branched or unbranched alkyl group having 1 to 12 carbon atoms (preferably 1 to 5 carbon atoms) of R 101 to R 103 include, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and n-butyl. Group, iso-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, 2-ethylhexyl group, octyl group, nonyl group and the like.
  • Examples of the branched or unbranched alkoxy group having 1 to 12 carbon atoms (preferably 1 to 5 carbon atoms) of R 101 to R 103 include, for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n- Examples include butoxy, iso-butoxy, sec-butoxy, tert-butoxy, pentyloxy, hexyloxy, heptyloxy, 2-ethylhexyloxy, octyloxy, nonyloxy and the like.
  • R 111 is a branched or unbranched carbon number of 1 to 30 (preferably having a carbon number of 1 to 15, more preferably a carbon number of 1).
  • a divalent hydrocarbon group examples include a branched or unbranched alkylene group having 1 to 30 carbon atoms, a branched or unbranched alkenylene group having 2 to 30 carbon atoms, and a branched or unbranched alkynylene group having 2 to 30 carbon atoms. And an arylene group having 6 to 30 carbon atoms. Of these, branched or unbranched alkylene groups having 1 to 30 carbon atoms are preferred.
  • Examples of the branched or unbranched alkylene group having 1 to 30 carbon atoms (preferably 1 to 15 carbon atoms, more preferably 1 to 3 carbon atoms) of R 111 include, for example, a methylene group, an ethylene group, a propylene group, and a butylene group. Pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, undecylene group, dodecylene group, tridecylene group, tetradecylene group, pentadecylene group, hexadecylene group, heptadecylene group, octadecylene group and the like.
  • the branched or unbranched 2 carbon atoms to 30 (preferably 2 to 15 carbon atoms, more preferably having 2 to 3 carbon atoms) alkenylene group of R 111, for example, vinylene group, propenylene group, 2-propenylene Group, 1-butenylene group, 2-butenylene group, 1-pentenylene group, 2-pentenylene group, 1-hexenylene group, 2-hexenylene group, 1-octenylene group and the like.
  • Examples of the branched or unbranched alkynylene group having 2 to 30 carbon atoms (preferably 2 to 15 carbon atoms, more preferably 2 to 3 carbon atoms) of R 111 include, for example, an ethynylene group, a propynylene group, a butynylene group, and a pentynylene group. Hexynylene group, heptynylene group, octynylene group, noninylene group, decynylene group, undecynylene group, dodecynylene group and the like.
  • Examples of the arylene group having 6 to 30 carbon atoms (preferably 6 to 15 carbon atoms) of R 111 include a phenylene group, a tolylene group, a xylylene group, and a naphthylene group.
  • z represents an integer of 1 to 30 (preferably 2 to 20, more preferably 3 to 7, even more preferably 5 to 6).
  • R 112 represents a branched or unbranched alkyl group having 1 to 30 carbon atoms, a branched or unbranched alkenyl group having 2 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms. To express. Of these, branched or unbranched alkyl groups having 1 to 30 carbon atoms are preferred.
  • Examples of the branched or unbranched alkyl group having 1 to 30 carbon atoms (preferably 3 to 25 carbon atoms, more preferably 10 to 15 carbon atoms) of R 112 include, for example, a methyl group, an ethyl group, an n-propyl group, Isopropyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, 2-ethylhexyl, octyl, nonyl, decyl, undecyl , Dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, octadecyl group and the like.
  • Examples of the branched or unbranched alkenyl group having 2 to 30 carbon atoms (preferably 3 to 25 carbon atoms, more preferably 10 to 15 carbon atoms) of R 112 include, for example, vinyl group, 1-propenyl group, 2-propenyl group. Group, 1-butenyl group, 2-butenyl group, 1-pentenyl group, 2-pentenyl group, 1-hexenyl group, 2-hexenyl group, 1-octenyl group, decenyl group, undecenyl group, dodecenyl group, tridecenyl group, tetradecenyl group Group, pentadecenyl group, octadecenyl group and the like.
  • Examples of the aryl group having 6 to 30 carbon atoms (preferably 10 to 20 carbon atoms) of R 112 include a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and a biphenyl group.
  • Examples of the aralkyl group having 7 to 30 carbon atoms (preferably 10 to 20 carbon atoms) of R 112 include a benzyl group and a phenethyl group.
  • —O— (R 111 —O) z —R 112 include, for example, —O— (C 2 H 4 —O) 5 —C 11 H 23 , —O— (C 2 H 4 —O) 5 —C 12 H 25 , —O— (C 2 H 4 —O) 5 —C 13 H 27 , —O— (C 2 H 4 —O) 5 —C 14 H 29 , —O -(C 2 H 4 -O) 5 -C 15 H 31 , -O- (C 2 H 4 -O) 3 -C 13 H 27 , -O- (C 2 H 4 -O) 4 -C 13 H 27 , —O— (C 2 H 4 —O) 6 —C 13 H 27 , —O— (C 2 H 4 —O) 7 —C 13 H 27, and the like.
  • —O— (C 2 H 4 —O) 5 —C 11 H 23 , —O— (C 2 H 4 —O) 5 —C 13 H 27 , —O— (C 2 H 4 —O) 5 —C 15 H 31 , —O— (C 2 H 4 —O) 6 —C 13 H 27 are preferred.
  • Examples of the branched or unbranched alkylene group having 1 to 6 carbon atoms (preferably 1 to 5 carbon atoms) of R 104 include the same groups as the branched or unbranched alkylene group having 1 to 30 carbon atoms of R 111. Can give.
  • Examples of the compound represented by the above formula (1) include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane,
  • the compound represented by the following formula (Si363 manufactured by EVONIK-DEGUSSA) and the like can be suitably used. These may be used alone or in combination of two or more.
  • the compound containing the bond unit A represented by the formula (2) and the bond unit B represented by the formula (3) is more viscous during processing than the polysulfide silane such as bis- (3-triethoxysilylpropyl) tetrasulfide.
  • the rise is suppressed. This is presumably because the increase in Mooney viscosity is small because the sulfide portion of the bond unit A is a C—S—C bond and is thermally stable compared to tetrasulfide and disulfide.
  • the shortening of the scorch time is suppressed as compared with mercaptosilane such as 3-mercaptopropyltrimethoxysilane.
  • the bonding unit B has a mercaptosilane structure, but the —C 7 H 15 portion of the bonding unit A covers the —SH group of the bonding unit B, so that it does not easily react with the polymer and scorch is less likely to occur. This is probably because of this.
  • the content of the bond unit A is preferably 30 from the viewpoint that the effect of suppressing the increase in viscosity during processing and the effect of suppressing the shortening of the scorch time can be enhanced. It is at least mol%, more preferably at least 50 mol%, preferably at most 99 mol%, more preferably at most 90 mol%. Further, the content of the bond unit B is preferably 1 mol% or more, more preferably 5 mol% or more, further preferably 10 mol% or more, preferably 70 mol% or less, more preferably 65 mol% or less, More preferably, it is 55 mol% or less.
  • the total content of the binding units A and B is preferably 95 mol% or more, more preferably 98 mol% or more, and particularly preferably 100 mol%.
  • the content of the bond units A and B is an amount including the case where the bond units A and B are located at the terminal of the silane coupling agent.
  • the form in which the bonding units A and B are located at the end of the silane coupling agent is not particularly limited, as long as the units corresponding to the formulas (2) and (3) indicating the bonding units A and B are formed. .
  • halogen for R 201 examples include chlorine, bromine, and fluorine.
  • Examples of the branched or unbranched alkyl group having 1 to 30 carbon atoms of R 201 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, and a tert-butyl group. Examples thereof include a butyl group, a pentyl group, a hexyl group, a heptyl group, a 2-ethylhexyl group, an octyl group, a nonyl group and a decyl group.
  • the alkyl group preferably has 1 to 12 carbon atoms.
  • Examples of the branched or unbranched alkenyl group having 2 to 30 carbon atoms of R 201 include a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 1-pentenyl group, and 2-pentenyl group. Group, 1-hexenyl group, 2-hexenyl group, 1-octenyl group and the like.
  • the alkenyl group preferably has 2 to 12 carbon atoms.
  • Examples of the branched or unbranched alkynyl group having 2 to 30 carbon atoms of R 201 include ethynyl group, propynyl group, butynyl group, pentynyl group, hexynyl group, heptynyl group, octynyl group, nonynyl group, decynyl group, undecynyl group, And dodecynyl group.
  • the alkynyl group preferably has 2 to 12 carbon atoms.
  • Examples of the branched or unbranched alkylene group having 1 to 30 carbon atoms of R 202 include ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, undecylene group, Examples include dodecylene group, tridecylene group, tetradecylene group, pentadecylene group, hexadecylene group, heptadecylene group, octadecylene group and the like.
  • the alkylene group preferably has 1 to 12 carbon atoms.
  • Examples of the branched or unbranched C 2-30 alkenylene group of R 202 include vinylene group, 1-propenylene group, 2-propenylene group, 1-butenylene group, 2-butenylene group, 1-pentenylene group, 2-pentenylene. Group, 1-hexenylene group, 2-hexenylene group, 1-octenylene group and the like.
  • the alkenylene group preferably has 2 to 12 carbon atoms.
  • Examples of the branched or unbranched C 2-30 alkynylene group of R 202 include ethynylene group, propynylene group, butynylene group, pentynylene group, hexynylene group, heptynylene group, octynylene group, noninylene group, decynylene group, undecynylene group, And dodecynylene group.
  • the alkynylene group preferably has 2 to 12 carbon atoms.
  • the repetition of the total of the repeating number (x) of the bonding unit A and the repeating number (y) of the bonding unit B is preferably in the range of 3 to 300. Within this range, the mercaptosilane of the bond unit B is covered with —C 7 H 15 of the bond unit A, so that it is possible to suppress the scorch time from being shortened and to have good reactivity with silica and rubber components. Can be secured.
  • NXT-Z30, NXT-Z45, NXT-Z60, etc. manufactured by Momentive are used as the compound containing the binding unit A represented by the formula (2) and the coupling unit B represented by the formula (3). Can do. These may be used alone or in combination of two or more.
  • the content of the silane coupling agent having a mercapto group is preferably 0.5 parts by mass or more, more preferably 2 parts by mass or more, and further preferably 3 parts by mass or more with respect to 100 parts by mass of silica. If it is less than 0.5 mass part, there exists a tendency for the effect which mix
  • the rubber composition of the present invention preferably uses another silane coupling agent in combination with the silane coupling agent having a mercapto group.
  • silane coupling agents include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, bis (2- Triethoxysilylethyl) tetrasulfide, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3 -Triethoxysilylpropyl-N, N-dimethylthiocarbamoyl t
  • the content of the other silane coupling agent is preferably 0.5 parts by mass or more, more preferably 3 parts by mass or more with respect to 100 parts by mass of silica. If it is less than 0.5 mass part, there exists a tendency for the effect which mix
  • the total content of the silane coupling agent is preferably 0.5 parts by mass or more, more preferably 3 parts by mass or more with respect to 100 parts by mass of silica. If it is less than 0.5 part by mass, the viscosity of the unvulcanized rubber composition is high, and good processability may not be ensured. Moreover, the total content of the silane coupling agent is preferably 20 parts by mass or less, more preferably 10 parts by mass or less. If it exceeds 20 parts by mass, the rubber strength and wear resistance tend to decrease.
  • the rubber composition of the present invention preferably contains a solid resin having a glass transition temperature of 60 to 120 ° C.
  • a solid resin having a glass transition temperature of 60 to 120 ° C.
  • the glass transition temperature (Tg) of the solid resin is 60 ° C. or higher, preferably 75 ° C. or higher. If it is less than 60 degreeC, there exists a possibility that sufficient wet grip performance improvement effect may not be acquired. Moreover, Tg of the said solid resin is 120 degrees C or less, Preferably it is 100 degrees C or less. When exceeding 120 degreeC, the loss elastic modulus in a high temperature area
  • the Tg of the solid resin is a value measured according to JIS-K7121, using a differential scanning calorimeter (Q200) manufactured by T.A. (Midpoint glass transition temperature).
  • the solid resin is not particularly limited as long as it is a resin satisfying the above Tg, but aromatic resins such as ⁇ -methylstyrene and / or aromatic vinyl polymer obtained by polymerizing styrene, coumarone indene resin, and indene resin. Alternatively, a terpene resin, a rosin resin, or the like can be used. Moreover, these derivatives can be used. Of these, aromatic resins are preferred because of their excellent unvulcanized tackiness and low fuel consumption, and more preferred are aromatic vinyl polymers obtained by polymerizing ⁇ -methylstyrene and / or styrene, and coumarone indene resins. preferable.
  • aromatic vinyl polymer obtained by polymerizing ⁇ -methylstyrene and / or styrene (resin obtained by polymerizing ⁇ -methylstyrene and / or styrene)
  • styrene, ⁇ - Methylstyrene is used, and the polymer may be either a homopolymer of each monomer or a copolymer of both monomers.
  • aromatic vinyl polymer ⁇ -methylstyrene homopolymer, ⁇ -methylstyrene and styrene copolymer are preferable because they are economical, easy to process and have excellent wet grip performance.
  • the weight average molecular weight (Mw) of the aromatic vinyl polymer is preferably 500 or more, more preferably 800 or more. If it is less than 500, there is a tendency that a sufficient improvement effect of wet grip performance cannot be obtained.
  • the weight average molecular weight of the aromatic vinyl polymer is preferably 3000 or less, more preferably 2000 or less. When 3000 is exceeded, the dispersibility of a filler will fall and there exists a tendency for low-fuel-consumption property to deteriorate.
  • the weight average molecular weight is determined in terms of standard polystyrene based on the measured value by gel permeation chromatograph (GPC) (GPC-8000 series, manufactured by Tosoh Corporation, detector: differential refractometer). be able to.
  • the coumarone indene resin and the indene resin are coal-based or petroleum-based resins having coumarone having 8 carbon atoms and indenene having 9 carbon atoms as main monomers and inden as main monomers, respectively.
  • Specific examples include vinyltoluene- ⁇ -methylstyrene-indene resin, vinyltoluene-indene resin, ⁇ -methylstyrene-indene resin, ⁇ -methylstyrene-vinyltoluene-indene copolymer resin, and the like.
  • the terpene resin is a resin having a terpene compound having a terpene as a basic skeleton such as monoterpene, sesquiterpene, and diterpene as a main monomer.
  • ⁇ -pinene resin, ⁇ -pinene resin, limonene resin, dipentene resin, ⁇ - Examples include pinene / limonene resin, aromatic modified terpene resin, terpene phenol resin, and hydrogenated terpene resin.
  • rosin resins natural rosin resins (polymerized rosin) such as gum rosin, wood rosin, tall oil rosin, etc., mainly composed of resin acids such as abietic acid and pimaric acid obtained by processing pine resin, hydrogen Examples thereof include an added rosin resin, a maleic acid-modified rosin resin, a rosin-modified phenol resin, a rosin glycerin ester, and a disproportionated rosin resin.
  • the content of the solid resin is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and further preferably 5 parts by mass or more with respect to 100 parts by mass of the rubber component. If it is less than 1 part by mass, there is a tendency that a sufficient wet grip performance improvement effect cannot be obtained.
  • the content of the solid resin is preferably 30 parts by mass or less, more preferably 15 parts by mass or less. When it exceeds 30 parts by mass, the elastic modulus of the rubber composition in the low temperature region is significantly increased, and the performance on ice and snow tends to be lowered.
  • additives can be used, such as sulfur vulcanizing agents; thiazole vulcanization accelerators, thiuram vulcanization accelerators, sulfenamide vulcanization accelerators, guanidine vulcanization accelerators.
  • Vulcanization accelerators such as stearic acid and zinc oxide; organic peroxides; fillers such as carbon black, calcium carbonate, talc, alumina, clay, aluminum hydroxide and mica; Examples include processing aids such as lubricants; anti-aging agents.
  • the carbon black examples include furnace black (furness carbon black) such as SAF, ISAF, HAF, MAF, FEF, SRF, GPF, APF, FF, CF, SCF and ECF; acetylene black (acetylene carbon black); FT and Examples thereof include thermal black (thermal carbon black) such as MT; channel black (channel carbon black) such as EPC, MPC and CC; graphite and the like. These can be used alone or in combination of two or more.
  • the content of carbon black is preferably 1 part by mass or more, more preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component. If the amount is less than 1 part by mass, sufficient reinforcement may not be obtained.
  • the carbon black content is preferably 60 parts by mass or less, more preferably 30 parts by mass or less, still more preferably 15 parts by mass or less, and particularly preferably 10 parts by mass or less. If it exceeds 60 parts by mass, the fuel efficiency tends to deteriorate.
  • Nitrogen adsorption specific surface area (N 2 SA) of carbon black is usually 5 ⁇ 200m 2 / g, the lower limit is preferably 50 m 2 / g, the upper limit is 150 meters 2 / g.
  • Carbon black has a dibutyl phthalate (DBP) absorption of usually 5 to 300 ml / 100 g, preferably a lower limit of 80 ml / 100 g and an upper limit of 180 ml / 100 g. If the N 2 SA or DBP absorption amount of the carbon black is less than the lower limit of the above range, the reinforcing effect tends to be small and the wear resistance tends to decrease.
  • DBP dibutyl phthalate
  • the extending oil examples include aromatic mineral oil (viscosity specific gravity constant (VGC value) 0.900 to 1.049), naphthenic mineral oil (VGC value 0.850 to 0.899), paraffinic mineral oil (VGC value 0.790 to 0.849), and the like.
  • the polycyclic aromatic content of the extender oil is preferably less than 3% by mass, more preferably less than 1% by mass.
  • the polycyclic aromatic content is measured according to the British Petroleum Institute 346/92 method.
  • the aromatic compound content (CA) of the extending oil is preferably 20% by mass or more. These extending oils may be used in combination of two or more.
  • the content of the developing oil (oil) is preferably 25 parts by mass or more, more preferably 35 parts by mass or more, preferably 100 parts by mass of the rubber component. Is 100 parts by mass or less, more preferably 80 parts by mass or less.
  • vulcanization accelerator examples include thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and N-cyclohexyl-2-benzothiazylsulfenamide; tetramethylthiuram monosulfide, tetramethylthiuram Thiuram vulcanization accelerators such as disulfides; N-cyclohexyl-2-benzothiazole sulfenamide, Nt-butyl-2-benzothiazole sulfenamide, N-oxyethylene-2-benzothiazole sulfenamide, N -Sulfenamide vulcanization accelerators such as oxyethylene-2-benzothiazole sulfenamide and N, N'-diisopropyl-2-benzothiazole sulfenamide; diphenylguanidine, diortolylguanidine, orthotolylbiguanidine What guanidine-based
  • a known method for example, using a known mixer such as a roll or a banbury for each component.
  • a kneading method can be used.
  • the kneading temperature is usually 50 to 200 ° C., preferably 80 to 190 ° C.
  • the kneading time is usually 30 seconds. -30 minutes, and preferably 1-30 minutes.
  • the kneading temperature is usually 100 ° C. or lower, preferably room temperature to 80 ° C.
  • a composition containing a vulcanizing agent and a vulcanization accelerator is usually used after vulcanization treatment such as press vulcanization.
  • the vulcanization temperature is usually 120 to 200 ° C, preferably 140 to 180 ° C.
  • the rubber composition of the present invention is excellent in balance between performance on ice and snow, wear resistance, rubber strength, fuel efficiency, wet grip performance and dry handling stability, and can obtain a remarkable improvement effect of these performances. it can.
  • the rubber composition of this invention can be used for each member of a tire, and can be used suitably for the tread of a studless tire.
  • the studless tire of this invention is manufactured by a normal method using the said rubber composition. That is, a rubber composition containing various additives as necessary is extruded according to the shape of a tire tread, etc. at an unvulcanized stage, and molded by a normal method on a tire molding machine, Bonding together with other tire members forms an unvulcanized tire.
  • the unvulcanized tire can be heated and pressurized in a vulcanizer to produce the studless tire of the present invention.
  • the studless tire of the present invention can be suitably used as a studless tire for passenger cars.
  • THF anhydrous tetrahydrofuran hydride manufactured by Kanto Chemical Co., Ltd .: diethylamine manufactured by Kanto Chemical Co., Ltd .: methyl vinyl dichlorosilane manufactured by Kanto Chemical Co., Ltd .: anhydrous hexane manufactured by Shin-Etsu Chemical Co., Ltd .: styrene manufactured by Kanto Chemical Co., Ltd. : Kanto Chemical Co., Ltd. Butadiene: Tokyo Chemical Industry Co., Ltd. 1,3-Butadiene TMEDA: Kanto Chemical Co., Ltd.
  • tetramethylethylenediamine n-butyllithium solution 1.6M n- from Kanto Chemical Co., Ltd.
  • Butyllithium hexane solution initiator (1) Compound in which two units of structural units derived from isoprene are bonded to AI-200CE2 (3- (N, N-dimethylamino) -1-propyllithium manufactured by FMC (represented by the following formula) Compound)) (0.9M) Piperidine: Diamylamine manufactured by Tokyo Chemical Industry Co., Ltd .: 2,6-di-tert-butyl-p-cresol manufactured by Tokyo Chemical Industry Co., Ltd. Nocrack 200 manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • Bis (dimethylamino) methylvinylsilane N, N-dimethylaminopropyl acrylamide manufactured by Shin-Etsu Chemical Co., Ltd .: 3-diethylaminopropyltriethoxysilane manufactured by Tokyo Chemical Industry Co., Ltd .: 1,3-dimethyl- manufactured by Amax Co., Ltd.
  • 2-Imidazolidinone N-phenyl-2-pyrrolidone manufactured by Tokyo Chemical Industry Co., Ltd .: N-methyl- ⁇ -caprolactam manufactured by Tokyo Chemical Industry Co., Ltd .: Tris [3- (trimethoxy manufactured by Tokyo Chemical Industry Co., Ltd.
  • ⁇ Preparation of modifier (3) (main chain modifier)> 1000 mL of THF and 13 g of sodium hydride were added to a 2 L three-necked flask sufficiently purged with nitrogen, and 36.5 g of diethylamine was slowly added dropwise with stirring on an ice-water bath. After stirring for 30 minutes, 36 g of methylvinyldichlorosilane was added dropwise over 30 minutes and stirred for 2 hours. The resulting solution was concentrated, filtered, and purified by distillation under reduced pressure to synthesize bis (diethylamino) methylvinylsilane.
  • ⁇ Preparation of initiator (4) (bifunctional initiator)> 550 ml of cyclohexane, 27 ml of TMEDA and 200 ml of sec-butyllithium solution were added to a 1 L eggplant flask which had been thoroughly dried and purged with nitrogen, and 17 ml of 1,3-diisopropenylbenzene was slowly added over 30 minutes while stirring at 45 ° C. Furthermore, after stirring for 1 hour, it was made to cool to normal temperature and created.
  • the weight average molecular weight Mw and number average molecular weight Mn of the copolymer were determined by gel permeation chromatography (GPC) (GPC-8000 series, manufactured by Tosoh Corporation, detector: differential refractometer, column: TSKGEL manufactured by Tosoh Corporation) It was determined as a standard polystyrene equivalent value based on the measured value by SUPERMULTIPORE HZ-M). From the measurement results, the molecular weight distribution Mw / Mn was calculated.
  • GPC gel permeation chromatography
  • Copolymer (1) was obtained.
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (2)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (2)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (2) was obtained by the same formulation as the synthesis of the copolymer (1) except that 34 mL of the initiator (2) was changed to 34 mL of the initiator (3).
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (3)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (2)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (3) was obtained by the same formulation as the synthesis of the copolymer (1) except that the amount of styrene was changed to 900 g and the amount of butadiene was changed to 1100 g.
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (2)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (2)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (4) was obtained by the same formulation as the synthesis of the copolymer (1) except that 34 mL of the initiator (2) was changed to 19 ml of the initiator (1).
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component. Further, the polymerization initiator (initiator (1)) charged was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (2)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (7) was obtained by the same formulation as the synthesis of the copolymer (4) except that 40 mL of the modifier (1) was changed to 40 mL of the modifier (3).
  • the silicon-containing vinyl compound (modifier (3)) added was 0.43 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (1)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (2)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (8) was obtained by the same formulation as the synthesis of the copolymer (7) except that 19 mL of the initiator (1) was changed to 10.6 mL of n-butyllithium solution.
  • the silicon-containing vinyl compound (modifier (3)) added was 0.43 g per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (2)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (9) was obtained by the same formulation as the synthesis of the copolymer (6) except that 23 mL of the initiator (1) was changed to 13 mL of n-butyllithium solution.
  • the silicon-containing vinyl compound (modifier (1)) added was 0.43 g per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (2)) added was 0.95 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (10) was obtained by the same formulation as the synthesis of the copolymer (1) except that 40 mL of the modifier (1) was changed to 0 mL.
  • the charged polymerization initiator (initiator (2)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (2)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (11) was obtained by the same formulation as the synthesis of the copolymer (1) except that 20 mL of the modifier (2) was changed to 0 mL.
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (2)) was 0.85 mmol per 100 g of the monomer component.
  • a copolymer (14) was obtained by the same formulation as the synthesis of the copolymer (7) except that 40 mL of the modifier (3) was changed to 0 mL and 20 mL of the modifier (2) was changed to 0 mL.
  • the charged polymerization initiator (initiator (1)) was 8.5 mmol per 100 g of the monomer component.
  • the copolymer (15) was prepared in the same formulation as the copolymer (7) except that 19 mL of the initiator (1) was changed to 6.8 mL of n-butyllithium solution and 20 mL of the modifier (2) was changed to 0 mL. Got. In addition, the silicon-containing vinyl compound (modifier (3)) added was 0.43 g per 100 g of the monomer component.
  • the copolymer (16) was prepared in the same formulation as the copolymer (7) except that 19 mL of the initiator (1) was changed to 6.8 mL of n-butyllithium solution and 40 mL of the modifier (3) was changed to 0 mL. Got. The amount of the nitrogen atom and / or silicon atom-containing compound (modifier (2)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (19) was obtained by the same formulation as the synthesis of the copolymer (8) except that the amount of styrene was changed to 0 g, the amount of butadiene was changed to 2000 g, and TMEDA 10 mmol was changed to THF 5 mmol.
  • the silicon-containing vinyl compound (modifier (3)) added was 0.43 g per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (2)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (22) was obtained by the same formulation as the synthesis of the copolymer (1) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (4).
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (2)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (4)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (23) was obtained by the same formulation as the synthesis of the copolymer (2) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (4).
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (3)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (4)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (24) was obtained by the same formulation as the synthesis of the copolymer (3) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (4).
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (2)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (4)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (25) was obtained by the same formulation as the synthesis of the copolymer (4) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (4).
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (1)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (4)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (26) was obtained by the same formulation as the synthesis of the copolymer (5) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (4).
  • the silicon-containing vinyl compound (modifier (1)) added was 1.19 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (1)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (4)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (27) was obtained by the same formulation as the synthesis of the copolymer (6) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (4).
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (1)) was 1.05 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (4)) added was 0.95 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (28) was obtained by the same formulation as the synthesis of the copolymer (7) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (4).
  • the silicon-containing vinyl compound (modifier (3)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (1)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (4)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • Copolymer (30) was prepared in the same manner as the synthesis of copolymer (28) except that 19 mL of initiator (1) was changed to 10.6 mL of n-butyllithium solution and 40 mL of modifier (3) was changed to 0 mL. Got. The amount of the nitrogen atom and / or silicon atom-containing compound (modifier (4)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (31) was obtained by the same formulation as the synthesis of the copolymer (18) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (4).
  • the silicon-containing vinyl compound (modifier (3)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (1)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (4)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (33) was obtained by the same formulation as the synthesis of the copolymer (1) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (5).
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (2)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (5)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (34) was obtained by the same formulation as the synthesis of the copolymer (2) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (5).
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (3)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (5)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (35) was obtained by the same formulation as the synthesis of the copolymer (3) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (5).
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (2)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (5)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (36) was obtained by the same formulation as the synthesis of the copolymer (4) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (5).
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (1)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (5)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (37) was obtained by the same formulation as the synthesis of the copolymer (5) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (5).
  • the silicon-containing vinyl compound (modifier (1)) added was 1.19 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (1)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (5)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (38) was obtained by the same formulation as the synthesis of the copolymer (7) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (5).
  • the silicon-containing vinyl compound (modifier (3)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (1)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (5)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (40) was obtained by the same formulation as the synthesis of the copolymer (7) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (6).
  • the silicon-containing vinyl compound (modifier (3)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (1)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the compound containing nitrogen atom and / or silicon atom (modifier (6)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (41) was obtained by the same formulation as the synthesis of the copolymer (7) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (7).
  • the silicon-containing vinyl compound (modifier (3)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (1)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (7)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (42) is obtained by the same formulation as the synthesis of the copolymer (38) except that 19 mL of the initiator (1) is changed to 10.6 mL of the butyllithium solution and 40 mL of the modifier (3) is changed to 0 mL. It was. The amount of the compound containing nitrogen atom and / or silicon atom (modifier (5)) added was 1.18 mol per 1 mol of alkali metal derived from the added polymerization initiator.
  • a copolymer (43) was obtained by the same formulation as the synthesis of the copolymer (1) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (8).
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (2)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (8)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (44) was obtained by the same formulation as the synthesis of the copolymer (2) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (8).
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (3)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (8)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (45) was obtained by the same formulation as the synthesis of the copolymer (3) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (8).
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (2)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (8)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (46) was obtained by the same formulation as the synthesis of the copolymer (4) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (8).
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (1)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (8)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (47) was obtained by the same formulation as the synthesis of the copolymer (5) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (8).
  • the silicon-containing vinyl compound (modifier (1)) added was 1.19 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (1)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (8)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (48) was obtained by the same formulation as the synthesis of the copolymer (7) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (8).
  • the silicon-containing vinyl compound (modifier (3)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (1)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (8)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (50) is obtained by the same formulation as the synthesis of the copolymer (48) except that 19 mL of the initiator (1) is changed to 10.6 mL of the butyllithium solution and 40 mL of the modifier (3) is changed to 0 mL. It was. In addition, the compound (modifying agent (8)) containing the nitrogen atom and / or silicon atom added was 1.18 mol per 1 mol of the alkali metal derived from the polymerization initiator added.
  • a copolymer (51) was obtained by the same formulation as the synthesis of the copolymer (1) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (9).
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (2)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (9)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (52) was obtained by the same formulation as the synthesis of the copolymer (2) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (9).
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (3)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (9)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (53) was obtained by the same formulation as the synthesis of the copolymer (3) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (9).
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (2)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (9)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (54) was obtained by the same formulation as the synthesis of the copolymer (4) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (9).
  • the silicon-containing vinyl compound (modifier (1)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (1)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (9)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (55) was obtained by the same formulation as the synthesis of the copolymer (5) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (9).
  • the silicon-containing vinyl compound (modifier (1)) added was 1.19 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (1)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (9)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • a copolymer (56) was obtained by the same formulation as the synthesis of the copolymer (7) except that 20 mL of the modifier (2) was changed to 20 mL of the modifier (9).
  • the silicon-containing vinyl compound (modifier (3)) added was 0.32 g per 100 g of the monomer component.
  • the charged polymerization initiator (initiator (1)) was 0.85 mmol per 100 g of the monomer component.
  • the amount of the nitrogen atom and / or silicon atom-containing compound (modifier (9)) added was 1.18 mol per 1 mol of the alkali metal derived from the added polymerization initiator.
  • the copolymer (58) was obtained by the same formulation as the synthesis of the copolymer (56) except that 19 mL of the initiator (1) was changed to 10.6 mL of the butyllithium solution and 40 mL of the modifier (3) was changed to 0 mL. It was. The amount of the compound containing nitrogen atom and / or silicon atom (modifier (9)) added was 1.18 mol per 1 mol of alkali metal derived from the added polymerization initiator.
  • the monomer components of the copolymers (1) to (58) are summarized in Tables 1 to 5.
  • Copolymers (1) to (58) Synthetic natural rubber by the above method: TSR20 High cis polybutadiene (High cis BR): Ubepol BR150B manufactured by Ube Industries, Ltd.
  • silane coupling agent A Si69 (bis (3-triethoxysilylpropyl) tetrasulfide) manufactured by EVONIK-DEGUSSA
  • Silane coupling agent B Si363 manufactured by EVONIK-DEGUSSA
  • Silane coupling agent C NXT-Z45 manufactured by Momentive (compound containing bonding unit A and bonding unit B (bonding unit A: 55 mol%, bonding unit B: 45 mol%)) Carbon black: Dia Black N339 manufactured by Mitsubishi Chemical Corporation (N 2 SA: 96 m 2 / g, DBP ab
  • Oil X-140 manufactured by JX Nippon Oil & Energy Anti-aging agent: Antigen 3C manufactured by Sumitomo Chemical Co., Ltd.
  • Stearic acid Beads manufactured by NOF Corporation
  • Zinc stearate zinc oxide Zinc flower No. 1 manufactured by Mitsui Kinzoku Mining Co., Ltd.
  • Wax Sunnock N manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • Sulfur Powder sulfur vulcanization accelerator manufactured by Tsurumi Chemical Industry Co., Ltd. 1: Soxinol CZ manufactured by Sumitomo Chemical Co., Ltd.
  • Vulcanization accelerator 2 Soxinol D manufactured by Sumitomo Chemical Co., Ltd.
  • the obtained unvulcanized rubber composition is molded into a tread shape and bonded together with other tire members on a tire molding machine to form an unvulcanized tire, which is vulcanized at 170 ° C. for 12 minutes, and tested.
  • Tires (195 / 65R15 size, DS-2 pattern studless tires for passenger cars) were manufactured.
  • tan ⁇ of the vulcanized rubber composition was measured at a dynamic strain amplitude of 1%, a frequency of 10 Hz, and a temperature of 50 ° C.
  • the reciprocal value of tan ⁇ was expressed as an index with the reference comparative example being 100. The larger the value, the smaller the rolling resistance (less heat generation) and the better the fuel efficiency.
  • ⁇ Dry handling stability> The test tire was mounted on all domestic FF2000cc wheels, and dry handling stability was evaluated by sensory evaluation of the driver on a test course (dry road surface). The evaluation was a 10-point scale, and a relative comparison was made with a reference comparative example of 4 points. The greater the score, the better the steering stability.
  • the examples have a specific amine structure at the initiation terminal, a structural unit derived from a silicon-containing compound in the main chain portion, and a nitrogen atom and / or a silicon atom at the termination terminal.
  • Example 28 showed particularly good performance.
  • the main chain portion has a structural unit derived from a silicon-containing compound, and the terminal end has a structural unit derived from a compound containing a nitrogen atom and / or a silicon atom.
  • Comparative Examples 8, 29 and 52 containing a copolymer (17) having no amine structure at the starting terminal had lower performance than the Examples, and were inferior to the Reference Comparative Example in terms of wear resistance. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

氷雪上性能、低燃費性、耐摩耗性、ゴム強度、ウェットグリップ性能及びドライ操縦安定性をバランス良く改善できるゴム組成物、及びこれを用いたスタッドレスタイヤを提供する。 下記式(I)で表される重合開始剤を用いて得られる特定の共役ジエン系重合体と、ミクロ構造におけるシス構造の割合が95質量%以上であるハイシスポリブタジエンと、ポリイソプレン系ゴムと、NSAが40~400m/gのシリカとを含み、ゴム成分100質量%中、共役ジエン系重合体の含有量が1~45質量%、ハイシスポリブタジエンの含有量が20~64質量%、ポリイソプレン系ゴムの含有量が35~60質量%であり、ゴム成分100質量部に対するシリカの含有量が5~150質量部であるゴム組成物に関する。

Description

ゴム組成物及びスタッドレスタイヤ
本発明は、ゴム組成物及びそれを用いて作製したスタッドレスタイヤに関するものである。
スパイクタイヤによる粉塵公害を防止するために、スパイクタイヤ禁止が法制化され、寒冷地では、スパイクタイヤに代わってスタッドレスタイヤが使用される様になった。
かかるスタッドレスタイヤの氷上や雪上でのグリップ性能を向上させるには、ゴムの硬度を低くして、低温における弾性率(モジュラス)を低下させて粘着摩擦を向上させる方法がある。特に、氷上での制動力はゴムの氷との有効接触面積による影響が大きいため、それを大きくするために、柔軟なゴムにすることが求められる。
しかし、オイル量を増やす等の方法により、単にゴムの硬度だけを下げてしまうと、氷上や雪上でのしっかり感(剛性)が低下し、操縦安定性が悪くなるという問題がある。また、近年の道路整備の向上から、氷上、雪上だけでなく、湿潤路面でのグリップ性能(ウェットグリップ性能)、乾燥路面での操縦安定性(ドライ操縦安定性)、低燃費性への要求も高まっている。
一般にスタッドレスタイヤのトレッドゴムは、高い強度と低温での柔軟性とを両立できるという理由から、トラック・バス用やライトトラック用に限らず、乗用車用でも、天然ゴムやブタジエンゴムを主成分として作られていることが多い。しかし、天然ゴム及びブタジエンゴムを組合せただけでは、氷上や雪上でのグリップ性能とともに、低燃費性、耐摩耗性、ゴム強度を改善することは可能であっても、ウェットグリップ性能、ドライ操縦安定性の点で未だ改善の余地がある。
また、特許文献1では、アミノ基及びアルコキシ基を含有する有機ケイ素化合物で変性されたジエン系ゴム(変性ゴム)を用いて低燃費性などを改善する方法が提案されているが、氷雪上性能(氷雪上でのグリップ性能、操縦安定性など)については改善の余地がある。
特開2000-344955号公報
本発明は、前記課題を解決し、氷雪上性能、低燃費性、耐摩耗性及びゴム強度を改善するとともに、良好なウェットグリップ性能及びドライ操縦安定性も得られるゴム組成物、及びこれを用いたスタッドレスタイヤを提供することを目的とする。
本発明は、下記式(I)で表される重合開始剤を用いて共役ジエン化合物及びケイ素含有ビニル化合物を含む単量体成分を重合させて得られる共重合体の活性末端に、窒素原子及び/又はケイ素原子を含有する化合物を反応させて得られる共役ジエン系重合体と、ミクロ構造におけるシス構造の割合が95質量%以上であるハイシスポリブタジエンと、ポリイソプレン系ゴムと、窒素吸着比表面積が40~400m/gのシリカとを含み、ゴム成分100質量%中、上記共役ジエン系重合体の含有量が1~45質量%、上記ハイシスポリブタジエンの含有量が20~64質量%、上記ポリイソプレン系ゴムの含有量が35~60質量%であり、上記ゴム成分100質量部に対する上記シリカの含有量が5~150質量部であるゴム組成物に関する。
Figure JPOXMLDOC01-appb-C000007
(式(I)中、iは0又は1であり、R11は炭素原子数1~100のヒドロカルビレン基を表し、R12及びR13は、置換基を有してもよいヒドロカルビル基、又は、トリヒドロカルビルシリル基を表すか、あるいは、R12とR13とが結合して、ケイ素原子、窒素原子及び酸素原子からなる原子群から選択される少なくとも1種の原子をヘテロ原子として有していてもよいヒドロカルビレン基を表し、Mはアルカリ金属原子を表す)
上記式(I)のR11が下記式(Ia)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
(式(Ia)中、R14は共役ジエン化合物由来の構造単位及び/又は芳香族ビニル化合物由来の構造単位からなるヒドロカルビレン基を表し、nは1~10の整数を表す)
上記式(Ia)のR14がイソプレン由来の構造単位1~10単位からなるヒドロカルビレン基であることが好ましい。
上記ケイ素含有ビニル化合物が、下記式(II)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
(式(II)中、mは0又は1であり、R21はヒドロカルビレン基を表し、X、X及びXは置換アミノ基、ヒドロカルビルオキシ基、又は置換基を有していてもよいヒドロカルビル基を表す)
上記共役ジエン系重合体が芳香族ビニル化合物由来の構造単位を有することが好ましい。
上記シリカが、窒素吸着比表面積が40m/g以上、120m/g未満のシリカ(1)と、窒素吸着比表面積が120m/g以上のシリカ(2)とを含むことが好ましい。
上記ゴム組成物は、上記ゴム成分100質量部に対して、ガラス転移温度が60~120℃の固体樹脂を1~30質量部含むことが好ましい。
上記シリカが、窒素吸着比表面積が40m/g以上、120m/g未満のシリカ(1)と、窒素吸着比表面積が120m/g以上のシリカ(2)とを含み、上記ゴム組成物は、上記ゴム成分100質量部に対して、ガラス転移温度が60~120℃の固体樹脂を1~30質量部含むことが好ましい。
上記ゴム組成物は、シリカ100質量部に対して、メルカプト基を有するシランカップリング剤を0.5~20質量部含むことが好ましい。
上記ゴム組成物は、シリカ100質量部に対して、メルカプト基を有するシランカップリング剤を0.5~20質量部含み、上記シリカが、窒素吸着比表面積が40m/g以上、120m/g未満のシリカ(1)と、窒素吸着比表面積が120m/g以上のシリカ(2)とを含むことが好ましい。
上記ゴム組成物は、シリカ100質量部に対して、メルカプト基を有するシランカップリング剤を0.5~20質量部含み、上記ゴム成分100質量部に対して、ガラス転移温度が60~120℃の固体樹脂を1~30質量部含むことが好ましい。
上記ゴム組成物は、シリカ100質量部に対して、メルカプト基を有するシランカップリング剤を0.5~20質量部含み、上記シリカが、窒素吸着比表面積が40m/g以上、120m/g未満のシリカ(1)と、窒素吸着比表面積が120m/g以上のシリカ(2)とを含み、上記ゴム組成物は、上記ゴム成分100質量部に対して、ガラス転移温度が60~120℃の固体樹脂を1~30質量部含むことが好ましい。
上記ゴム組成物は、シリカ100質量部に対して、メルカプト基を有するシランカップリング剤を0.5~20質量部含み、
上記シランカップリング剤が、下記式(1)で表される化合物、及び/又は下記式(2)で示される結合単位Aと下記式(3)で示される結合単位Bとを含む化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
(式(1)中、R101~R103は、分岐若しくは非分岐の炭素数1~12のアルキル基、分岐若しくは非分岐の炭素数1~12のアルコキシ基、又は-O-(R111-O)-R112(z個のR111は、分岐若しくは非分岐の炭素数1~30の2価の炭化水素基を表す。z個のR111はそれぞれ同一でも異なっていてもよい。R112は、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、炭素数6~30のアリール基、又は炭素数7~30のアラルキル基を表す。zは1~30の整数を表す)で表される基を表す。R101~R103はそれぞれ同一でも異なっていてもよい。R104は、分岐若しくは非分岐の炭素数1~6のアルキレン基を表す)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(式(2)及び(3)中、R201は水素、ハロゲン、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、分岐若しくは非分岐の炭素数2~30のアルキニル基、又は該アルキル基の末端の水素が水酸基若しくはカルボキシル基で置換されたものを表す。R202は分岐若しくは非分岐の炭素数1~30のアルキレン基、分岐若しくは非分岐の炭素数2~30のアルケニレン基、又は分岐若しくは非分岐の炭素数2~30のアルキニレン基を表す。R201とR202とで環構造を形成してもよい。)
上記シリカが、窒素吸着比表面積が40m/g以上、120m/g未満のシリカ(1)と、窒素吸着比表面積が120m/g以上のシリカ(2)とを含み、上記シリカ(1)及び(2)の窒素吸着比表面積及び含有量が以下の式を満たすことが好ましい。
(シリカ(2)の窒素吸着比表面積)/(シリカ(1)の窒素吸着比表面積)≧1.4
(シリカ(1)の含有量)×0.06≦(シリカ(2)の含有量)≦(シリカ(1)の含有量)×15
上記ゴム組成物は、スタッドレスタイヤのトレッドに使用されることが好ましい。
本発明はまた、上記ゴム組成物を用いて作製したスタッドレスタイヤに関する。
本発明によれば、特定の共役ジエン系重合体と、ミクロ構造におけるシス構造の割合が95質量%以上であるハイシスポリブタジエンと、ポリイソプレン系ゴムと、シリカとをそれぞれ特定量配合したゴム組成物であるので、氷雪上性能、耐摩耗性、ゴム強度、低燃費性、ウェットグリップ性能及びドライ操縦安定性がバランス良く改善されたスタッドレスタイヤを提供できる。
本明細書では、ヒドロカルビル基は炭化水素から1個の水素原子を除いた1価の基を表す。ヒドロカルビレン基は、炭化水素から2個の水素原子を除いた2価の基を表す。ヒドロカルビルオキシ基は、ヒドロキシ基の水素原子がヒドロカルビル基で置き換えられた構造を有する1価の基を表す。置換アミノ基は、アミノ基の少なくとも1個の水素原子が、水素原子以外の1価の原子又は1価基に置き換えられた構造を有する基、又はアミノ基の2個の水素原子が2価基で置き換えられた構造を有する基を表す。置換基を有するヒドロカルビル基(以下、置換ヒドロカルビル基と記すこともある)は、ヒドロカルビル基の少なくとも1個の水素原子が置換基で置き換えられた構造を有する1価の基を表す。ヘテロ原子を有するヒドロカルビレン基(以下、ヘテロ原子含有ヒドロカルビレン基と記すこともある)とは、ヒドロカルビレン基の水素原子が除かれている炭素原子以外の炭素原子及び/又は水素原子が、ヘテロ原子(炭素原子、水素原子以外の原子)を有する基で置き換えられた構造を有する2価の基を表す。
本発明に係る共役ジエン系重合体は、下記式(I)で表される重合開始剤を用いて共役ジエン化合物及びケイ素含有ビニル化合物を含む単量体成分を重合させて得られる共重合体の活性末端に、窒素原子及び/又はケイ素原子を含有する化合物を反応させて得られるものである。
Figure JPOXMLDOC01-appb-C000013
(式(I)中、iは0又は1であり、R11は炭素原子数1~100のヒドロカルビレン基を表し、R12及びR13は、置換基を有してもよいヒドロカルビル基、又は、トリヒドロカルビルシリル基を表すか、あるいは、R12とR13とが結合して、ケイ素原子、窒素原子及び酸素原子からなる原子群から選択される少なくとも1種の原子をヘテロ原子として有していてもよいヒドロカルビレン基を表し、Mはアルカリ金属原子を表す)
本明細書において「変性する」とは、ジエン化合物、又はジエン化合物及び芳香族ビニル化合物を有する共重合体に、これら以外の化合物を結合させることを意味する。上記共役ジエン系重合体の場合、上記式(I)で表される重合開始剤により重合体開始末端が変性され、ケイ素含有ビニル化合物を共重合させる事により主鎖が変性され、窒素原子及び/又はケイ素原子を含有する化合物ケイ素含有ビニル化合物によって停止末端が変性された構造を有する。上記共役ジエン系重合体を、ミクロ構造におけるシス構造の割合が95質量%以上であるハイシスポリブタジエン、及びポリイソプレン系ゴムとともに併用することで、高い強度と低温での柔軟性とを両立させながら、シリカを良好に分散させることができる。これにより、氷雪上性能、耐摩耗性、ゴム強度及び低燃費性とともに、従来は困難であったウェットグリップ性能及びドライ操縦安定性を同時に改善することができる。また、上記共役ジエン系重合体は、開始末端、主鎖、停止末端のそれぞれを特定の化合物の組合せで変性しているため、各性能の改善効果を相乗的に高めることができる。これらの作用により、氷雪上性能、耐摩耗性、ゴム強度、低燃費性、ウェットグリップ性能及びドライ操縦安定性を高次元でバランス良く改善することができる。
式(I)中のiは0又は1であり、好ましくは1である。
式(I)中のR11は、炭素原子数1~100のヒドロカルビレン基であり、好ましくは炭素原子数6~100のヒドロカルビレン基であり、より好ましくは炭素原子数7~80のヒドロカルビレン基である。R11の炭素原子数が100を超えると、重合開始剤の分子量が大きくなり、経済性及び重合時の操作性が低下することがある。
なお、式(I)で表される重合開始剤としては、R11の炭素原子数が異なる化合物を複数種併用してもよい。
式(I)中のR11は、好ましくは下記式(Ia)で表される基である。
Figure JPOXMLDOC01-appb-C000014
(式(Ia)中、R14は共役ジエン化合物由来の構造単位及び/又は芳香族ビニル化合物由来の構造単位からなるヒドロカルビレン基を表し、nは1~10の整数を表す)
式(Ia)中、R14は共役ジエン化合物由来の構造単位及び/又は芳香族ビニル化合物由来の構造単位からなるヒドロカルビレン基を表し、好ましくはイソプレン由来の構造単位からなるヒドロカルビレン基であり、より好ましくはイソプレン由来の構造単位1~10単位からなるヒドロカルビレン基である。
14における共役ジエン化合物由来の構造単位及び/又は芳香族ビニル化合物由来の構造単位の数は、1~10単位であることが好ましく、1~5単位であることがより好ましい。
式(Ia)中、nは1~10の整数であり、好ましくは2~4の整数である。
11としては、イソプレン由来の構造単位1~10単位とメチレン基とを結合させた基、イソプレン由来の構造単位1~10単位とエチレン基とを結合させた基、イソプレン由来の構造単位1~10単位とトリメチレン基とを結合させた基をあげることができ、好ましくはイソプレン由来の構造単位1~10単位とトリメチレン基とを結合させた基である。
式(I)中のR12及びR13は、置換基を有してもよいヒドロカルビル基、又は、トリヒドロカルビルシリル基を表すか、あるいは、R12とR13とが結合して、ケイ素原子、窒素原子、酸素原子からなる群より選択される原子をヘテロ原子として有していてもよいヒドロカルビレン基を表す。
置換基を有してもよいヒドロカルビル基は、ヒドロカルビル基又は置換ヒドロカルビル基である。置換ヒドロカルビル基における置換基としては、置換アミノ基又はヒドロカルビルオキシ基をあげることができる。ヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-ドデシル基などの鎖状アルキル基;シクロペンチル基、シクロヘキシル基などの環状アルキル基;フェニル基、ベンジル基などのアリール基をあげることができ、好ましくは鎖状アルキル基であり、より好ましくは炭素原子数1~4の鎖状アルキル基である。置換基が置換アミノ基である置換ヒドロカルビル基としては、N,N-ジメチルアミノメチル基、2-N,N-ジメチルアミノエチル基、3-N,N-ジメチルアミノプロピル基をあげることができる。置換基がヒドロカルビルオキシ基である置換ヒドロカルビル基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基をあげることができる。これらの中では、ヒドロカルビル基が好ましく、炭素原子数1~4の鎖状アルキル基がより好ましく、メチル基又はエチル基がさらに好ましい。
トリヒドロカルビルシリル基としては、トリメチルシリル基、tert-ブチル-ジメチルシリル基をあげることができ、トリメチルシリル基が好ましい。
ケイ素原子、窒素原子及び酸素原子からなる原子群より選択される少なくとも一種の原子をヘテロ原子として有していてもよいヒドロカルビレン基は、ヒドロカルビレン基、又は、ヘテロ原子がケイ素原子、窒素原子、酸素原子からなる原子群より選択される少なくとも一種の原子であるヘテロ原子含有ヒドロカルビレン基である。ヘテロ原子がケイ素原子、窒素原子、酸素原子からなる原子群より選択される少なくとも一種の原子であるヘテロ原子含有ヒドロカルビレン基としては、ヘテロ原子がケイ素原子であるヘテロ原子含有ヒドロカルビレン基、ヘテロ原子が窒素原子であるヘテロ原子含有ヒドロカルビレン基、ヘテロ原子が酸素原子であるヘテロ原子含有ヒドロカルビレン基をあげることができる。ヒドロカルビレン基としては、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ペンタン-2-エン-1,5-ジイル基、2,2,4-トリメチルへキサン-1,6-ジイル基などのアルキレン基;ペンタン-2-エン-1,5-ジイル基などのアルケンジイル基をあげることができ、好ましくはアルキレン基であり、より好ましくは炭素原子数4~7のアルキレン基である。ヘテロ原子がケイ素原子であるヘテロ原子含有ヒドロカルビレン基としては、-Si(CH-CH-CH-Si(CH-で表される基をあげることができる。ヘテロ原子が窒素原子であるヘテロ原子含有ヒドロカルビレン基としては、-CH=N-CH=CH-で表される基、-CH=N-CH-CH-で表される基をあげることができる。ヘテロ原子が酸素原子であるヘテロ原子含有ヒドロカルビレン基としては、-CH-CH-O-CH-CH-で表される基をあげることができる。これらの中では、ヒドロカルビレン基が好ましく、炭素原子数4~7のアルキレン基がより好ましく、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基がさらに好ましい。
12及びR13はヒドロカルビル基であるか、R12とR13とが結合してヒドロカルビレン基であることが好ましく、炭素原子数1~4の鎖状アルキル基であるか、結合して炭素原子数4~7のアルキレン基であることがより好ましく、メチル基又はエチル基であることがさらに好ましい。
式(I)中、Mはアルカリ金属原子を表す。アルカリ金属原子としては、Li、Na、K、Csをあげることができ、好ましくはLiである。
式(I)で表される重合開始剤のうち、iが1である化合物としては、アミノアルキルリチウム化合物にイソプレン由来の構造単位1~5単位を重合させた化合物をあげることができる。当該アミノアルキルリチウム化合物としては、3-(N,N-ジメチルアミノ)-1-プロピルリチウム、3-(N,N-ジエチルアミノ)-1-プロピルリチウム、3-(N,N-ジ-n-ブチルアミノ)-1-プロピルリチウム、4-(N,N-ジメチルアミノ)-1-ブチルリチウム、4-(N,N-ジエチルアミノ)-1-ブチルリチウム、4-(N,N-ジ-n-プロピルアミノ)-1-ブチルリチウム,3-(N,N-ジ-n-ブチルアミノ)-1-ブチルリチウムなどのN,N-ジアルキルアミノアルキルリチウム;3-(1-ピロリジノ)-1-プロピルリチウム、3-(1-ピペリジノ)-1-プロピルリチウム、3-(1-ヘキサメチレンイミノ)-1-プロピルリチウム、3-[1-(1,2,3,6-テトラヒドロピリジノ)]-1-プロピルリチウムなどのヘテロ原子非含有環状アミノアルキルリチウム化合物;3-(1-モルホリノ)-1-プロピルリチウム、3-(1-イミダゾリル)-1-プロピルリチウム、3-(4,5-ジヒドロ-1-イミダゾリル)-1-プロピルリチウム、3-(2,2,5,5-テトラメチル-1-アザ-2,5-ジシラ-1-シクロペンチル)-1-プロピルリチウムなどのヘテロ原子含有環状アミノアルキルリチウム化合物をあげることができ、N,N-ジアルキルアミノアルキルリチウムが好ましく、3-(N,N-ジメチルアミノ)-1-プロピルリチウム又は3-(N,N-ジエチルアミノ)-1-プロピルリチウムがより好ましい。
式(I)で表される重合開始剤のうち、iが0である化合物としては、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピペリジド、リチウムヘプタメチレンイミド、リチウムドデカメチレンイミド、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジプロピルアミド、リチウムジブチルアミド、リチウムジヘキシルアミド、リチウムジヘプチルアミド、リチウムジオクチルアミド、リチウムジ-2-エチルヘキシルアミド、リチウムジデシルアミド、リチウム-N-メチルピペラジド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムメチルブチルアミド、リチウムエチルベンジルアミド、リチウムメチルフェネチルアミドなどがあげられる。
式(I)で表される重合開始剤のうち、iが0である化合物は、二級アミンとヒドロカルビルリチウム化合物から予備調製して重合反応に用いてもよいし、重合系中で生成させてもよい。ここで、二級アミンとしては、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジオクチルアミン、ジシクロヘキシルアミン、ジイソブチルアミンなどの他、アザシクロヘプタン(即ち、ヘキサメチレンイミン)、2-(2-エチルヘキシル)ピロリジン、3-(2-プロピル)ピロリジン、3,5-ビス(2-エチルヘキシル)ピペリジン、4-フェニルピペリジン、7-デシル-1-アザシクロトリデカン、3,3-ジメチル-1-アザシクロテトラデカン、4-ドデシル-1-アザシクロオクタン、4-(2-フェニルブチル)-1-アザシクロオクタン、3-エチル-5-シクロヘキシル-1-アザシクロヘプタン、4-ヘキシル-1-アザシクロヘプタン、9-イソアミル-1-アザシクロヘプタデカン、2-メチル-1-アザシクロヘプタデセ-9-エン、3-イソブチル-1-アザシクロドデカン、2-メチル-7-t-ブチル-1-アザシクロドデカン、5-ノニル-1-アザシクロドデカン、8-(4-メチルフェニル)-5-ペンチル-3-アザビシクロ[5.4.0]ウンデカン、1-ブチル-6-アザビシクロ[3.2.1]オクタン、8-エチル-3-アザビシクロ[3.2.1]オクタン、1-プロピル-3-アザビシクロ[3.2.2]ノナン、3-(t-ブチル)-7-アザビシクロ[4.3.0]ノナン、1,5,5-トリメチル-3-アザビシクロ[4.4.0]デカンなどの環状アミンがあげられる。
式(I)で表される重合開始剤としては、iが1である化合物が好ましく、N,N-アミノアルキルリチウムにイソプレン由来の構造単位1~5単位を重合させた化合物がより好ましく、3-(N,N-ジメチルアミノ)-1-プロピルリチウム又は3-(N,N-ジエチルアミノ)-1-プロピルリチウムにイソプレン由来の構造単位1~5単位を重合させた化合物がさらに好ましい。
式(I)で表される重合開始剤の使用量は、重合で使用される単量体成分100gあたり0.01~15mmolであることが好ましく、0.1~10mmolであることがより好ましい。
本発明においては、必要に応じて、n-ブチルリチウムなどの他の重合開始剤を併用してもよい。
共役ジエン化合物としては、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ヘキサジエン、ミルセンがあげられ、これらは1種でもよく、2種以上でもよい。入手容易性の観点から、1,3-ブタジエン、イソプレンであることが好ましい。
ケイ素含有ビニル化合物は、好ましくは下記式(II)で表される化合物である。
Figure JPOXMLDOC01-appb-C000015
(式(II)中、mは0又は1であり、R21はヒドロカルビレン基を表し、X、X及びXは置換アミノ基、ヒドロカルビルオキシ基、又は置換基を有していてもよいヒドロカルビル基を表す)
式(II)のmは0又は1であり、好ましくは0である。
式(II)におけるヒドロカルビレン基としては、アルキレン基、アルケンジイル基、アリーレン基、アリーレン基とアルキレン基とが結合した基をあげることができる。アルキレン基としては、メチレン基、エチレン基、トリメチレン基をあげることができる。アルケンジイル基としてはビニレン基、エチレン-1,1-ジイル基をあげることができる。アリーレン基としては、フェニレン基、ナフチレン基、ビフェニレン基をあげることができる。アリーレン基とアルキレン基とが結合した基としては、フェニレン基とメチレン基とが結合した基、フェニレン基とエチレン基とが結合した基をあげることができる。
21は好ましくはアリーレン基であり、より好ましくはフェニレン基である。
式(II)において、X、X及びXは置換アミノ基、ヒドロカルビルオキシ基、又は置換基を有していてもよいヒドロカルビル基を表す。好ましくは、X、X及びXの少なくとも1つが置換アミノ基であり、より好ましくは、X、X及びXの2つが置換アミノ基である。
式(II)における置換アミノ基は、好ましくは下記式(IIa)で表される基である。
Figure JPOXMLDOC01-appb-C000016
(式(IIa)中、R22及びR23は、置換基を有してもよいヒドロカルビル基、又は、トリヒドロカルビルシリル基を表すか、あるいは、R22とR23とが結合して、窒素原子及び/又は酸素原子をヘテロ原子として有していてもよいヒドロカルビレン基を表す)
式(IIa)における置換基を有してもよいヒドロカルビル基は、ヒドロカルビル基又は置換ヒドロカルビル基である。置換ヒドロカルビル基としては、置換基がヒドロカルビルオキシ基である置換ヒドロカルビル基をあげることができる。ヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基などの鎖状アルキル基;シクロペンチル基、シクロヘキシル基などの環状アルキル基;フェニル基、ベンジル基、ナフチル基などのアリール基をあげることができ、鎖状アルキル基が好ましく、メチル基又はエチル基がより好ましい。置換基がヒドロカルビルオキシ基である置換ヒドロカルビル基としては、メトキシメチル基、エトキシメチル基、メトキシエチル基などのアルコキシアルキル基;フェノキシメチル基などのアリールオキシアルキル基をあげることができる。
式(IIa)におけるトリヒドロカルビルシリル基としては、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基などのトリアルキルシリル基をあげることができる。
式(IIa)における窒素原子及び/又は酸素原子をヘテロ原子として有していてもよいヒドロカルビレン基は、ヒドロカルビレン基又はヘテロ原子が窒素原子及び/又は酸素原子であるヘテロ原子含有ヒドロカルビレン基である。ヘテロ原子が窒素原子及び/又は酸素原子であるヘテロ原子含有ヒドロカルビレン基としては、ヘテロ原子が窒素原子であるヘテロ原子含有ヒドロカルビレン基、ヘテロ原子が酸素原子であるヘテロ原子含有ヒドロカルビレン基をあげることができる。ヒドロカルビレン基としては、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、デカメチレン基、ドデカメチレン基、2,2,4-トリメチルへキサン-1,6-ジイル基などのアルキレン基;ペンタン-2-エン-1,5-ジイル基などのアルケンジイル基をあげることができる。ヘテロ原子が窒素原子であるヘテロ原子含有ヒドロカルビレン基としては、-CH=N-CH=CH-で表される基、-CH=N-CH-CH-で表される基をあげることができる。ヘテロ原子が酸素原子であるヘテロ原子含有ヒドロカルビレン基としては、-CH-CH-O-CH-CH-で表される基をあげることができる。
22及びR23はアルキル基であるか、あるいはR22とR23とが結合してアルキレン基となっていることが好ましく、アルキル基であることがより好ましく、メチル基又はエチル基であることがさらに好ましい。
式(IIa)で表される置換アミノ基のうち、R22及びR23がヒドロカルビル基であるものとして、ジメチルアミノ基、ジエチルアミノ基、エチルメチルアミノ基、ジ-n-プロピルアミノ基、ジイソプロピルアミノ基、ジ-n-ブチルアミノ基、ジイソブチルアミノ基、ジ-sec-ブチルアミノ基、ジ-tert-ブチルアミノ基などのジアルキルアミノ基;ジフェニルアミノ基などのジアリールアミノ基をあげることができ、ジアルキルアミノ基が好ましく、ジメチルアミノ基、ジエチルアミノ基、ジ-n-ブチルアミノ基がより好ましい。R22及びR23が置換基としてヒドロカルビルオキシ基を有する置換ヒドロカルビル基であるものとしては、ジ(メトキシメチル)アミノ基、ジ(エトキシメチル)アミノ基などのジ(アルコキシアルキル)アミノ基をあげることができる。R22及びR23がトリヒドロカルビルシリル基であるものとしては、ビス(トリメチルシリル)アミノ基、ビス(tert-ブチルジメチルシリル)アミノ基、N-トリメチルシリル-N-メチルアミノ基などのトリアルキルシリル基含有アミノ基をあげることができる。
式(IIa)で表される置換アミノ基のうち、R22とR23とが結合してヒドロカルビレン基となっているものとしては、1-トリメチレンイミノ基、1-ピロリジノ基、1-ピペリジノ基、1-ヘキサメチレンイミノ基、1-ヘプタメチレンイミノ基、1-オクタメチレンイミノ基、1-デカメチレンイミノ基、1-ドデカメチレンイミノ基などの1-アルキレンイミノ基をあげることができる。ヘテロ原子が窒素原子であるヘテロ原子含有ヒドロカルビレン基となっているものとしては、1-イミダゾリル基、4,5-ジヒドロ-1-イミダゾリル基をあげることができる。ヘテロ原子が酸素原子であるヘテロ原子含有ヒドロカルビレン基となっているものとしては、モルホリノ基をあげることができる。
式(IIa)で表される置換アミノ基としては、ジアルキルアミノ基又は1-アルキレンイミノ基が好ましく、ジアルキルアミノ基がより好ましく、ジメチルアミノ基、ジエチルアミノ基、ジ-n-ブチルアミノ基がさらに好ましい。
式(II)におけるヒドロカルビルオキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基などのアルコキシ基;フェノキシ基、ベンジルオキシ基などのアリールオキシ基をあげることができる。
式(II)における置換基を有してもよいヒドロカルビル基は、ヒドロカルビル基又は置換ヒドロカルビル基である。置換ヒドロカルビル基としては、置換基がヒドロカルビルオキシ基である置換ヒドロカルビル基をあげることができる。ヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などのアルキル基;フェニル基、4-メチル-1-フェニル基、ベンジル基などのアリール基をあげることができる。置換基がヒドロカルビルオキシ基である置換ヒドロカルビル基としては、メトキシメチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基をあげることができる。
式(II)で表されるケイ素含有ビニル化合物のうち、X、X及びXのうちの1つが置換アミノ基であり、mが0である化合物としては、
(ジメチルアミノ)ジメチルビニルシラン、(エチルメチルアミノ)ジメチルビニルシラン、(ジ-n-プロピルアミノ)ジメチルビニルシラン、(ジイソプロピルアミノ)ジメチルビニルシラン、(ジメチルアミノ)ジエチルビニルシラン、(エチルメチルアミノ)ジエチルビニルシラン、(ジ-n-プロピルアミノ)ジエチルビニルシラン、(ジイソプロピルアミノ)ジエチルビニルシランなどの(ジアルキルアミノ)ジアルキルビニルシラン;[ビス(トリメチルシリル)アミノ]ジメチルビニルシラン、[ビス(t-ブチルジメチルシリル)アミノ]ジメチルビニルシラン、[ビス(トリメチルシリル)アミノ]ジエチルビニルシラン、[ビス(t-ブチルジメチルシリル)アミノ]ジエチルビニルシランなどの[ビス(トリアルキルシリル)アミノ]ジアルキルビニルシラン;(ジメチルアミノ)ジ(メトキシメチル)ビニルシラン、(ジメチルアミノ)ジ(メトキシエチル)ビニルシラン、(ジメチルアミノ)ジ(エトキシメチル)ビニルシラン、(ジメチルアミノ)ジ(エトキシエチル)ビニルシラン、(ジエチルアミノ)ジ(メトキシメチル)ビニルシラン、(ジエチルアミノ)ジ(メトキシエチル)ビニルシラン、(ジエチルアミノ)ジ(エトキシメチル)ビニルシラン、(ジエチルアミノ)ジ(エトキシエチル)ビニルシランなどの(ジアルキルアミノ)ジ(アルコキシアルキル)ビニルシラン;ピロリジノジメチルビニルシラン、ピペリジノジメチルビニルシラン、ヘキサメチレンイミノジメチルビニルシラン、4,5-ジヒドロイミダゾリルジメチルビニルシラン、モルホリノジメチルビニルシランなどの環状アミノジアルキルビニルシラン化合物をあげることができる。
式(II)で表されるケイ素含有ビニル化合物のうち、X、X及びXのうちの1つが置換アミノ基であり、mが1である化合物としては、
(ジメチルアミノ)ジメチル-4-ビニルフェニルシラン、(ジメチルアミノ)ジメチル-3-ビニルフェニルシラン、(ジエチルアミノ)ジメチル-4-ビニルフェニルシラン、(ジエチルアミノ)ジメチル-3-ビニルフェニルシラン、(ジ-n-プロピルアミノ)ジメチル-4-ビニルフェニルシラン、(ジ-n-プロピルアミノ)ジメチル-3-ビニルフェニルシラン、(ジ-n-ブチルアミノ)ジメチル-4-ビニルフェニルシラン、(ジ-n-ブチルアミノ)ジメチル-3-ビニルフェニルシラン、(ジメチルアミノ)ジエチル-4-ビニルフェニルシラン、(ジメチルアミノ)ジエチル-3-ビニルフェニルシラン、(ジエチルアミノ)ジエチル-4-ビニルフェニルシラン、(ジエチルアミノ)ジエチル-3-ビニルフェニルシラン、(ジ-n-プロピルアミノ)ジエチル-4-ビニルフェニルシラン、(ジ-n-プロピルアミノ)ジエチル-3-ビニルフェニルシラン、(ジ-n-ブチルアミノ)ジエチル-4-ビニルフェニルシラン、(ジ-n-ブチルアミノ)ジエチル-3-ビニルフェニルシランなどの(ジアルキルアミノ)ジアルキルビニルフェニルシランをあげることができる。
式(II)で表されるケイ素含有ビニル化合物のうち、X、X及びXのうちの2つが置換アミノ基であり、mが0である化合物としては、
ビス(ジメチルアミノ)メチルビニルシラン、ビス(ジエチルアミノ)メチルビニルシラン、ビス(ジ-n-プロピルアミノ)メチルビニルシラン、ビス(ジ-n-ブチルアミノ)メチルビニルシラン、ビス(ジメチルアミノ)エチルビニルシラン、ビス(ジエチルアミノ)エチルビニルシラン、ビス(ジ-n-プロピルアミノ)エチルビニルシラン、ビス(ジ-n-ブチルアミノ)エチルビニルシランなどのビス(ジアルキルアミノ)アルキルビニルシラン;ビス[ビス(トリメチルシリル)アミノ]メチルビニルシラン、ビス[ビス(tert-ブチルジメチルシリル)アミノ]メチルビニルシラン、ビス[ビス(トリメチルシリル)アミノ]エチルビニルシラン、ビス[ビス(tert-ブチルジメチルシリル)アミノ]エチルビニルシランなどのビス[ビス(トリアルキルシリル)アミノ]アルキルビニルシラン;ビス(ジメチルアミノ)メトキシメチルビニルシラン、ビス(ジメチルアミノ)メトキシエチルビニルシラン、ビス(ジメチルアミノ)エトキシメチルビニルシラン、ビス(ジメチルアミノ)エトキシエチルビニルシラン、ビス(ジエチルアミノ)メトキシメチルビニルシラン、ビス(ジエチルアミノ)メトキシエチルビニルシラン、ビス(ジエチルアミノ)エトキシメチルビニルシラン、ビス(ジメチルアミノ)エトキシエチルビニルシランなどのビス(ジアルキルアミノ)アルコキシアルキルシラン;ビス(ピロリジノ)メチルビニルシラン、ビス(ピペリジノ)メチルビニルシラン、ビス(ヘキサメチレンイミノ)メチルビニルシラン、ビス(4,5-ジヒドロイミダゾリル)メチルビニルシラン、ビス(モルホリノ)メチルビニルシランなどのビス(環状アミノ)アルキルビニルシラン化合物をあげることができる。
式(II)で表されるケイ素含有ビニル化合物のうち、X、X及びXのうちの2つが置換アミノ基であり、mが1である化合物としては、
ビス(ジメチルアミノ)メチル-4-ビニルフェニルシラン、ビス(ジメチルアミノ)メチル-3-ビニルフェニルシラン、ビス(ジエチルアミノ)メチル-4-ビニルフェニルシラン、ビス(ジエチルアミノ)メチル-3-ビニルフェニルシラン、ビス(ジ-n-プロピルアミノ)メチル-4-ビニルフェニルシラン、ビス(ジ-n-プロピルアミノ)メチル-3-ビニルフェニルシラン、ビス(ジ-n-ブチルアミノ)メチル-4-ビニルフェニルシラン、ビス(ジ-n-ブチルアミノ)メチル-3-ビニルフェニルシラン、ビス(ジメチルアミノ)エチル-4-ビニルフェニルシラン、ビス(ジメチルアミノ)エチル-3-ビニルフェニルシラン、ビス(ジエチルアミノ)エチル-4-ビニルフェニルシラン、ビス(ジエチルアミノ)エチル-3-ビニルフェニルシラン、ビス(ジ-n-プロピルアミノ)エチル-4-ビニルフェニルシラン、ビス(ジ-n-プロピルアミノ)エチル-3-ビニルフェニルシラン、ビス(ジ-n-ブチルアミノ)エチル-4-ビニルフェニルシラン、ビス(ジ-n-ブチルアミノ)エチル-3-ビニルフェニルシランなどのビス(ジアルキルアミノ)アルキルビニルフェニルシランをあげることができる。
式(II)で表されるケイ素含有ビニル化合物のうち、X、X及びXのうちの3つが置換アミノ基であり、mが0である化合物としては、
トリス(ジメチルアミノ)ビニルシラン、トリス(ジエチルアミノ)ビニルシラン、トリス(ジ-n-プロピルアミノ)ビニルシラン、トリス(ジ-n-ブチルアミノ)ビニルシランなどのトリス(ジアルキルアミノ)ビニルシランをあげることができる。
式(II)で表されるケイ素含有ビニル化合物のうち、X、X及びXのうちの3つが置換アミノ基であり、mが1である化合物としては、
トリス(ジメチルアミノ)-4-ビニルフェニルシラン、トリス(ジメチルアミノ)-3-ビニルフェニルシラン、トリス(ジエチルアミノ)-4-ビニルフェニルシラン、トリス(ジエチルアミノ)-3-ビニルフェニルシラン、トリス(ジ-n-プロピルアミノ)-4-ビニルフェニルシラン、トリス(ジ-n-プロピルアミノ)-3-ビニルフェニルシラン、トリス(ジ-n-ブチルアミノ)-4-ビニルフェニルシラン、トリス(ジ-n-ブチルアミノ)-3-ビニルフェニルシランなどのトリス(ジアルキルアミノ)ビニルフェニルシランをあげることができる。
式(II)で表されるケイ素含有ビニル化合物のうち、X、X及びXが置換アミノ基ではなく、mが0である化合物としては、
トリメトキシビニルシラン、トリエトキシビニルシラン、トリプロポキシビニルシランなどのトリアルコキシビニルシラン;メチルジメトキシビニルシラン、メチルジエトキシビニルシランなどのジアルコキシアルキルビニルシラン;ジ(tert-ペントキシ)フェニルビニルシラン、ジ(tert-ブトキシ)フェニルビニルシランなどのジアルコキシアリールビニルシラン;ジメチルメトキシビニルシランなどのモノアルコキシジアルキルビニルシラン;tert-ブトキシジフェニルビニルシラン、tert-ペントキシジフェニルビニルシランなどのモノアルコキシジアリールビニルシラン;tert-ブトキシメチルフェニルビニルシラン、tert-ブトキシエチルフェニルビニルシランなどのモノアルコキシアルキルアリールビニルシラン;トリス(β-メトキシエトキシ)ビニルシランなどの置換アルコキシビニルシラン化合物をあげることができる。
さらに、ケイ素含有ビニル化合物としては、4-N,N-ビス(トリメチルシリル)アミノスチレン、3-N,N-ビス(トリメチルシリル)アミノスチレンなどのビス(トリアルキルシリル)アミノスチレン;4-ビス(トリメチルシリル)アミノメチルスチレン、3-ビス(トリメチルシリル)アミノメチルスチレン、4-ビス(トリメチルシリル)アミノエチルスチレン、3-ビス(トリメチルシリル)アミノエチルスチレンなどのビス(トリアルキルシリル)アミノアルキルスチレンをあげることができる。
ケイ素含有ビニル化合物は、式(II)で表される化合物が好ましく、式(II)中のmが0である化合物がより好ましく、式(II)中のX、X及びXのうち2つがジアルキルアミノ基である化合物がさらに好ましい。
ケイ素含有ビニル化合物として特に好ましい化合物は、ビス(ジメチルアミノ)メチルビニルシラン、ビス(ジエチルアミノ)メチルビニルシラン、ビス(ジ-n-ブチルアミノ)メチルビニルシランである。
上記共役ジエン系重合体の製造において、ケイ素含有ビニル化合物の使用量は、重合で使用した単量体成分の総使用量を100質量%として、氷雪上性能、耐摩耗性、ゴム強度、低燃費性、ウェットグリップ性能及びドライ操縦安定性をバランス良く高めるために、好ましくは0.01質量%以上であり、より好ましくは0.02質量%以上であり、さらに好ましくは0.05質量%以上である。経済性を高めるために、また、ゴム強度を大きくするために、好ましくは20質量%以下であり、より好ましくは2質量%以下であり、さらに好ましくは1質量%以下である。
上記共役ジエン系重合体の製造においては、単量体成分として、共役ジエン化合物やケイ素含有ビニル化合物に加え、さらに、重合可能な単量体を用いてもよい。該単量体としては、芳香族ビニル化合物、ビニルニトリル、不飽和カルボン酸エステルなどがあげられる。芳香族ビニル化合物としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルナフタレン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレンを例示することができる。また、ビニルニトリルとしては、アクリロニトリルなどを、不飽和カルボン酸エステルとしては、アクリル酸メチル、アクリル酸エチル、メタアクリル酸メチル、メタアクリル酸エチルなどを例示することができる。これらの中では、芳香族ビニル化合物が好ましく、スチレンがより好ましい。
上記共役ジエン系重合体を製造する際に、芳香族ビニル化合物を用いる場合、芳香族ビニル化合物の使用量としては、共役ジエン化合物と芳香族ビニル化合物との総量を100質量%として、好ましくは10質量%以上(共役ジエン化合物の使用量は90質量%以下)であり、より好ましくは15質量%以上(共役ジエン化合物の使用量は85質量%以下)である。また、氷雪上性能、低燃費性の観点から、芳香族ビニル化合物の使用量は、好ましくは50質量%以下(共役ジエン化合物の使用量は50質量%以上)であり、より好ましくは45質量%以下(共役ジエン化合物の使用量は55質量%以上)である。
上記共役ジエン系重合体の製造においては、重合は炭化水素溶媒中で行うことが好ましい。炭化水素溶媒は式(I)の重合開始剤を失活させない溶媒であり、脂肪族炭化水素、芳香族炭化水素、脂環族炭化水素などをあげることができる。脂肪族炭化水素としては、プロパン、n-ブタン、iso-ブタン、n-ペンタン、iso-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタンなどをあげることができる。芳香族炭化水素としては、ベンゼン、トルエン、キシレン、エチルベンゼンをあげることができる。脂環族炭化水素としては、シクロペンタン、シクロヘキサンなどをあげることができる。炭化水素溶媒は、工業用ヘキサンのような各種成分の混合物であってもよい。好ましくは、炭素原子数が2~12の炭化水素である。
重合反応は、共役ジエン単位のビニル結合量を調整する剤、共役ジエン系重合体鎖中での共役ジエン単位と共役ジエン以外の単量体に基づく単量体単位の分布を調整する剤(以下、総称して「調整剤」と記す。)の存在下で行ってもよい。このような剤としては、エーテル化合物、第三級アミン化合物、ホスフィン化合物などをあげることができる。該エーテル化合物としては、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサンなど環状のエーテル;ジエチルエーテル、ジブチルエーテルなどの脂肪族モノエーテル;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテルなどの脂肪族ジエーテル;ジフェニルエーテル、アニソールなどの芳香族エーテルなどがあげられる。該第三級アミン化合物として、トリエチルアミン、トリプロピルアミン、トリブチルアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N-ジエチルアニリン、ピリジン、キノリンなどをあげることができる。また、該ホスフィン化合物として、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィンなどをあげることができる。これらは1種類以上用いられる。
上記共役ジエン系重合体の製造においては、重合反応器に単量体成分を供給する前に重合開始剤を重合反応器に供給してもよく、重合に使用する単量体成分全量を重合反応器に供給した後に重合開始剤を重合反応器に供給してもよく、重合に使用する単量体成分の一部を重合反応器に供給した後に重合開始剤を重合反応器に供給してもよい。また、重合開始剤を、重合反応器に一時に供給してもよく、連続的に供給してもよい。
上記共役ジエン系重合体の製造においては、単量体成分を、重合反応器に一時に供給してもよく、連続的に供給してもよく、間欠的に供給してもよい。また、各単量体を、重合反応器に別々に供給してもよく、同時に供給してもよい。
上記共役ジエン系重合体の製造における重合温度は、通常25~100℃であり、好ましくは35~90℃である。さらに好ましくは50~80℃である。重合時間は、通常10分~5時間である。
上記共役ジエン系重合体は、式(I)で表される重合開始剤を用いて共役ジエン化合物及びケイ素含有ビニル化合物を含む単量体成分を重合させて得られる共重合体の活性末端(共重合体の活性末端には、当該重合開始剤由来のアルカリ金属を有すると考えられる。)に、窒素原子及び/又はケイ素原子を含有する化合物を反応させて得られる(末端変性反応)。具体的には、窒素原子及び/又はケイ素原子を含有する化合物を重合溶液に添加し、混合することにより行われる。重合溶液に添加する窒素原子及び/又はケイ素原子を含有する化合物の量は、使用する式(I)で表される重合開始剤に由来するアルカリ金属1molあたり、通常、0.1~3molであり、好ましくは、0.5~2molであり、より好ましくは、0.7~1.5molである。
上記末端変性反応の反応温度は、通常、25~100℃であり、好ましくは35~90℃であり、より好ましくは50~80℃である。また、末端反応の反応時間は、通常、60秒~5時間であり、好ましくは5分~1時間、より好ましくは15分~1時間である。
窒素原子及び/又はケイ素原子を含有する化合物のうち好ましいものとして、窒素原子及びカルボニル基を含有する化合物をあげることができる。
窒素原子及びカルボニル基を含有する化合物としては、下記式(III)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000017
(式(III)中、R31は置換基を有してもよいヒドロカルビル基、R32と結合して窒素原子及び/又は酸素原子をヘテロ原子として有していてもよいヒドロカルビレン基、あるいは、R34と結合して2価基を表し、R32は置換基を有してもよいヒドロカルビル基、あるいは、R31と結合して窒素原子及び/又は酸素原子をヘテロ原子として有していてもよいヒドロカルビレン基を表し、R34は置換基を有してもよいヒドロカルビル基、水素原子、あるいは、R31と結合して2価基を表す。また、R33は2価基を表し、kは0又は1を表す)
式(III)において、R31、R32、R34の置換基を有してもよいヒドロカルビル基は、ヒドロカルビル基又は置換ヒドロカルビル基である。置換ヒドロカルビル基としては、置換基がヒドロカルビルオキシ基である置換ヒドロカルビル基、置換基が置換アミノ基である置換ヒドロカルビル基をあげることができる。ヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基などのアルキル基;ビニル基、アリル基、イソプロペニル基などのアルケニル基;フェニル基などのアリール基をあげることができる。置換基がヒドロカルビルオキシ基である置換ヒドロカルビル基としては、メトキシメチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基をあげることができる。置換基が置換アミノ基である置換ヒドロカルビル基としては、2-(N,N-ジメチルアミノ)エチル基、2-(N,N-ジエチルアミノ)エチル基、3-(N,N-ジメチルアミノ)プロピル基、3-(N,N-ジエチルアミノ)プロピル基などの(N,N-ジアルキルアミノ)アルキル基;4-(N,N-ジメチルアミノ)フェニル基、3-(N,N-ジメチルアミノ)フェニル基、4-(N,N-ジエチルアミノ)フェニル基、3-(N,N-ジエチルアミノ)フェニル基などの(N,N-ジアルキルアミノ)アリール基;4-(N,N-ジメチルアミノ)メチルフェニル基、4-(N,N-ジメチルアミノ)エチルフェニル基などの(N,N-ジアルキルアミノ)アルキルアリール基;3-ピロリジノプロピル基、3-ピペリジノプロピル基、3-イミダゾリルプロピル基などの環状アミノ基含有アルキル基;4-ピロリジノフェニル基、4-ピペリジノフェニル基、4-イミダゾリルフェニル基などの環状アミノ基含有アリール基;4-ピロリジノエチルフェニル基、4-ピペリジノエチルフェニル基、4-イミダゾリルエチルフェニル基などの環状アミノ基含有アルキルアリール基をあげることができる。
式(III)において、R31とR32とが結合した窒素原子及び/又は酸素原子をヘテロ原子として有していてもよいヒドロカルビレン基は、ヒドロカルビレン基、又はヘテロ原子が窒素原子及び/又は酸素原子であるヘテロ原子含有ヒドロカルビレン基である。ヘテロ原子が窒素原子及び/又は酸素原子であるヘテロ原子含有ヒドロカルビレン基としては、ヘテロ原子が窒素原子であるヘテロ原子含有ヒドロカルビレン基、ヘテロ原子が酸素原子であるヘテロ原子含有ヒドロカルビレン基をあげることができる。ヒドロカルビレン基としては、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ペンタン-2-エン-1,5-ジイル基、2,2,4-トリメチルへキサン-1,6-ジイル基などのアルキレン基;1,4-フェニレン基などのアリーレン基をあげることができる。ヘテロ原子が窒素原子であるヘテロ原子含有ヒドロカルビレン基としては、-CH=N-CH=CH-で表される基、-CH=N-CH-CH-で表される基をあげることができる。ヘテロ原子が酸素原子であるヘテロ原子含有ヒドロカルビレン基としては、-(CH-O-(CH-で表される基(s、tは1以上の整数)をあげることができる。
式(III)において、R31とR34とが結合した2価基、及びR33の2価基としては、ヒドロカルビレン基、ヘテロ原子が窒素原子であるヘテロ原子含有ヒドロカルビレン基、ヘテロ原子が酸素原子であるヘテロ原子含有ヒドロカルビレン基、ヒドロカルビレン基と酸素原子とが結合した基、ヒドロカルビレン基と-NR35-で表される基(R35はヒドロカルビル基又は水素原子を表す)とが結合した基をあげることができる。ヒドロカルビレン基としては、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ペンタン-2-エン-1,5-ジイル基、2,2,4-トリメチルへキサン-1,6-ジイル基などのアルキレン基;1,4-フェニレン基などのアリーレン基をあげることができる。ヘテロ原子が窒素原子であるヘテロ原子含有ヒドロカルビレン基としては、-CH=N-CH=CH-で表される基、-CH=N-CH-CH-で表される基をあげることができる。ヘテロ原子が酸素原子であるヘテロ原子含有ヒドロカルビレン基としては、-(CH-O-(CH-で表される基(s、tは1以上の整数)をあげることができる。ヒドロカルビレン基と酸素原子とが結合した基としては、-(CH-O-で表される基(rは1以上の整数を表す)をあげることができる。ヒドロカルビレン基と-NR35-で表される基(R35はヒドロカルビル基又は水素原子を表す)とが結合した基としては、-(CH-NR35-で表される基(R35はヒドロカルビル基(好ましくは炭素原子数1~6のヒドロカルビル基)、又は水素原子を表し、pは1以上の整数を表す)をあげることができる。
式(III)で表される好ましい化合物として、kが0であり、R34が置換基を有してもよいヒドロカルビル基又は水素原子である下記式(IIIa)で表される化合物をあげることができる。
Figure JPOXMLDOC01-appb-C000018
(式(IIIa)中、R31は置換基を有してもよいヒドロカルビル基を表すか、R32と結合して窒素原子及び/又は酸素原子をヘテロ原子として有していてもよいヒドロカルビレン基を表し、R32は置換基を有してもよいヒドロカルビル基を表すか、R31と結合して窒素原子及び/又は酸素原子をヘテロ原子として有していてもよいヒドロカルビレン基を表し、R34は置換基を有してもよいヒドロカルビル基又は水素原子を表す)
式(IIIa)において、R31、R32、R34の置換基を有してもよいヒドロカルビル基、R31とR32とが結合した窒素原子及び/又は酸素原子をヘテロ原子として有していてもよいヒドロカルビレン基の説明及び例示は、式(III)の説明において述べたものと同じである。
式(IIIa)において、R31は、好ましくは炭素原子数1~10のヒドロカルビル基であるか、R32と結合して炭素原子数3~10のヒドロカルビレン基又はヘテロ原子が窒素原子である炭素原子数3~10のヘテロ原子含有ヒドロカルビレン基である。より好ましくは、炭素原子数1~10のアルキル基又は炭素原子数6~10のアリール基であるか、R32と結合して炭素原子数3~10のアルキレン基、-CH=N-CH=CH-で表される基又は-CH=N-CH-CH-で表される基である。さらに好ましくは、炭素原子数1~6のアルキル基である。特に好ましくは、メチル基又はエチル基である。
式(IIIa)において、R32は、好ましくは炭素原子数1~10のヒドロカルビル基であるか、R31と結合して炭素原子数3~10のヒドロカルビレン基又はヘテロ原子が窒素原子である炭素原子数3~10のヘテロ原子含有ヒドロカルビレン基である。より好ましくは、炭素原子数1~10のアルキル基又は炭素原子数6~10のアリール基であるか、R31と結合して炭素原子数3~10のアルキレン基、-CH=N-CH=CH-で表される基又は-CH=N-CH-CH-で表される基である。さらに好ましくは、炭素原子数1~6のアルキル基である。特に好ましくは、メチル基又はエチル基である。
式(IIIa)において、R34は好ましくはヒドロカルビル基又は水素原子であり、より好ましくは炭素原子数1~10のヒドロカルビル基又は水素原子であり、さらに好ましくは炭素原子数1~6のアルキル基又は水素原子であり、特に好ましくは、水素原子、メチル基、エチル基である。
式(IIIa)により表される化合物のうち、R34がヒドロカルビル基であるものとしては、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-N-エチルアセトアミドなどのN,N-ジヒドロカルビルアセトアミド;N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N-メチル-N-エチルアクリルアミドなどのN,N-ジヒドロカルビルアクリルアミド;N,N-ジメチルメタクリルアミド、N,N-ジエチルメタクリルアミド、N-メチル-N-エチルメタクリルアミドなどのN,N-ジヒドロカルビルメタクリルアミドをあげることができる。
式(IIIa)により表される化合物のうち、R34が水素原子であるものとしては、N,N-ジメチルホルムアミド、N,N-ジメチルホルムアミド、N-メチル-N-エチルホルムアミドなどのN,N-ジヒドロカルビルホルムアミドをあげることができる。
式(III)で表される好ましい化合物として、kが0であり、R34がR31と結合して2価基となっている下記式(IIIb)で表される化合物をあげることができる。
Figure JPOXMLDOC01-appb-C000019
(式(IIIb)中、R32は置換基を有してもよいヒドロカルビル基を表し、R36はヒドロカルビレン基又はヒドロカルビレン基と-NR35-で表される基とが結合した基を表し、R35はヒドロカルビル基又は水素原子を表す)
式(IIIb)において、R32の置換基を有してもよいヒドロカルビル基の説明及び例示は、式(III)の説明において述べたものと同じである。
式(IIIb)において、R36のヒドロカルビレン基としては、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ペンタン-2-エン-1,5-ジイル基、2,2,4-トリメチルへキサン-1,6-ジイル基などのアルキレン基;1,4-フェニレン基などのアリーレン基をあげることができる。R36の、ヒドロカルビレン基と-NR35-で表される基(R35はヒドロカルビル基又は水素原子を表す)とが結合した基としては、-(CH-NR35-で表される基(R35はヒドロカルビル基又は水素原子を表し、pは1以上の整数を表す)をあげることができる。
式(IIIb)において、R32は好ましくは炭素原子数1~10のヒドロカルビル基であり、より好ましくは炭素原子数1~10のアルキル基又は炭素原子数6~10のアリール基であり、さらに好ましくは炭素原子数1~6のアルキル基、又はフェニル基であり、特に好ましくはメチル基、エチル基、フェニル基である。
式(IIIb)において、R36は好ましくは炭素原子数1~10のヒドロカルビレン基、又は、炭素原子数1~10のヒドロカルビレン基と-NR35-で表される基(R35はヒドロカルビル基(好ましくは炭素原子数1~10のヒドロカルビル基)又は水素原子を表す)とが結合した基であり、より好ましくは炭素原子数3~6のアルキレン基又は-(CH-NR35-で表される基(R35はヒドロカルビル基(好ましくは炭素原子数1~10のヒドロカルビル基)を表し、pは1以上の整数(好ましくは2~5の整数)を表す)であり、さらに好ましくはトリメチレン基、テトラメチレン基、ペンタメチレン基、又は-(CH-N(CH)-で表される基である。
式(IIIb)で表される化合物のうち、R36がヒドロカルビレン基であるものとしては、N-メチル-β-プロピオラクタム、N-フェニル-β-プロピオラクタムなどのN-ヒドロカルビル-β-プロピオラクタム;N-メチル-2-ピロリドン、N-ビニル-2-ピロリドン、N-フェニル-2-ピロリドン、N-tert-ブチル-2-ピロリドン、N-メチル-5-メチル-2-ピロリドンなどのN-ヒドロカルビル-2-ピロリドン;N-メチル-2-ピペリドン、N-ビニル-2-ピペリドン、N-フェニル-2-ピペリドンなどのN-ヒドロカルビル-2-ピペリドン;N-メチル-ε-カプロラクタム、N-フェニル-ε-カプロラクタムなどのN-ヒドロカルビル-ε-カプロラクタム;N-メチル-ω-ラウリロラクタム、N-ビニル-ω-ラウリロラクタムなどのN-ヒドロカルビル-ω-ラウリロラクタムをあげることができ、中でもN-フェニル-2-ピロリドン、N-メチル-ε-カプロラクタムが好ましい。
式(IIIb)で表される化合物のうち、R36がヒドロカルビレン基と-NR35-で表される基(R35はヒドロカルビル基又は水素原子を表す)とが結合した基である化合物としては、1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、1,3-ジビニル-2-イミダゾリジノン、1-メチル-3-エチル-2-イミダゾリジノンなどの1,3-ジヒドロカルビル-2-イミダゾリジノンをあげることができ、中でも1,3-ジメチル-2-イミダゾリジノンが好ましい。
式(III)で表される好ましい化合物として、kが1であり、R33がヒドロカルビレン基である下記式(IIIc)で表される化合物をあげることができる。
Figure JPOXMLDOC01-appb-C000020
(式(IIIc)中、R31は置換基を有してもよいヒドロカルビル基を表すか、あるいはR32と結合して窒素原子及び/又は酸素原子をヘテロ原子として有していてもよいヒドロカルビレン基を表し、R32は置換基を有してもよいヒドロカルビル基を表すか、あるいはR31と結合して窒素原子及び/又は酸素原子をヘテロ原子として有していてもよいヒドロカルビレン基を表し、R33はヒドロカルビレン基を表し、R34は置換基を有してもよいヒドロカルビル基又は水素原子を表す)
式(IIIc)において、R31、R32、R34の置換基を有してもよいヒドロカルビル基、R31とR32とが結合した窒素原子及び/又は酸素原子をヘテロ原子として有していてもよいヒドロカルビレン基、R33のヒドロカルビレン基の説明及び例示は、式(III)の説明において述べたものと同じである。
式(IIIc)において、R33は好ましくは炭素原子数1~10のヒドロカルビレン基であり、より好ましくは炭素原子数1~10のアルキレン基又は炭素原子数6~10のアリーレン基であり、さらに好ましくは炭素原子数1~6のアルキレン基又はフェニレン基であり、特に好ましくはエチレン基、トリメチレン基、1,4-フェニレン基である。
式(IIIc)において、R34は好ましくは炭素原子数1~10のヒドロカルビル基、又は置換基がジアルキルアミノ基である炭素原子数1~10の置換ヒドロカルビル基であり、より好ましくは炭素原子数1~6のアルキル基若しくは炭素原子数6~10のアリール基、又は炭素原子数1~6のジアルキルアミノアルキル基若しくは炭素原子数6~10のジアルキルアミノアリール基であり、さらに好ましくはメチル基、エチル基、フェニル基、3-ジメチルアミノエチル基、4-ジエチルアミノフェニル基である。
式(IIIc)において、R31は好ましくは炭素原子数1~10のヒドロカルビル基であるか、R32と結合して炭素原子数3~10のヒドロカルビレン基、又はヘテロ原子が窒素原子若しくは酸素原子である炭素原子数3~10のヘテロ原子含有ヒドロカルビレン基であり、より好ましくは炭素原子数1~10のアルキル基又は炭素原子数6~10のアリール基であるか、R32と結合して炭素原子数3~10のアルキレン基、-CH=N-CH=CH-で表される基、-CH=N-CH-CH-で表される基、-(CH-O-(CH-で表される基であり、さらに好ましくは炭素原子数1~6のアルキル基であるか、R32と結合して炭素原子数3~6のアルキレン基、-CH=N-CH=CH-で表される基、-CH=N-CH-CH-で表される基であり、特に好ましくはメチル基、エチル基であるか、R32と結合してテトラメチレン基、ヘキサメチレン基、-CH=N-CH=CH-で表される基である。
式(IIIc)において、R32は好ましくは炭素原子数1~10のヒドロカルビル基であるか、R31と結合して炭素原子数3~10のヒドロカルビレン基、又はヘテロ原子が窒素原子若しくは酸素原子である炭素原子数3~10のヘテロ原子含有ヒドロカルビレン基であり、より好ましくは炭素原子数1~10のアルキル基又は炭素原子数6~10のアリール基であるか、R31と結合して炭素原子数3~10のアルキレン基、-CH=N-CH=CH-で表される基、-CH=N-CH-CH-で表される基、-(CH-O-(CH-で表される基であり、さらに好ましくは炭素原子数1~6のアルキル基であるか、R31と結合して炭素原子数3~6のアルキレン基、-CH=N-CH=CH-で表される基、-CH=N-CH-CH-で表される基であり、特に好ましくはメチル基、エチル基であるか、R31と結合してテトラメチレン基、ヘキサメチレン基、-CH=N-CH=CH-で表される基である。
式(IIIc)で表される化合物のうち、R34がヒドロカルビル基である化合物としては、
4-(N,N-ジメチルアミノ)アセトフェノン、4-N-メチル-N-エチルアミノアセトフェノン、4-N,N-ジエチルアミノアセトフェノンなどの4-N,N-ジヒドロカルビルアミノアセトフェノン;4’-(イミダゾール-1-イル)アセトフェノン、4-ピラゾリルアセトフェノンなどの4-環状アミノアセトフェノン化合物などをあげることができ、中でも4-環状アミノアセトフェノン化合物が好ましく、4’-(イミダゾール-1-イル)アセトフェノンがより好ましい。
式(IIIc)で表される化合物のうち、R34が置換ヒドロカルビル基である化合物としては、
1,7-ビス(メチルエチルアミノ)-4-ヘプタノン、1,3-ビス(ジフェニルアミノ)-2-プロパノンなどのビス(ジヒドロカルビルアミノアルキル)ケトン;4-N,N-ジメチルアミノベンゾフェノン、4-N,N-ジ-t-ブチルアミノベンゾフェノン、4-N,N-ジフェニルアミノベンゾフェノンなどの4-(ジヒドロカルビルアミノ)ベンゾフェノン;4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ビス(ジフェニルアミノ)ベンゾフェノンなどの4,4’-ビス(ジヒドロカルビルアミノ)ベンゾフェノンをあげることができ、中でも4,4’-ビス(ジヒドロカルビルアミノ)ベンゾフェノンが好ましく、4,4’-ビス(ジエチルアミノ)ベンゾフェノンがより好ましい。
式(III)で表される好ましい化合物として、kが1であり、R33がヒドロカルビレン基と酸素原子とが結合した基、又はヒドロカルビレン基と-NR35-で表される基(R35はヒドロカルビル基又は水素原子を表す)とが結合した基である下記式(IIId)で表される化合物をあげることができる。
Figure JPOXMLDOC01-appb-C000021
(式(IIId)中、R31は置換基を有してもよいヒドロカルビル基を表すか、あるいはR32と結合して窒素原子及び/又は酸素原子をヘテロ原子として有していてもよいヒドロカルビレン基を表し、R32は置換基を有してもよいヒドロカルビル基を表すか、あるいはR31と結合して窒素原子及び/又は酸素原子をヘテロ原子として有していてもよいヒドロカルビレン基を表し、R37はヒドロカルビレン基を表し、Aは酸素原子又は-NR35-を表し、R35はヒドロカルビル基又は水素原子を表し、R34は置換基を有してもよいヒドロカルビル基又は水素原子を表す)
式(IIId)において、R31、R32、R34の置換基を有してもよいヒドロカルビル基、R31とR32とが結合した窒素原子及び/又は酸素原子をヘテロ原子として有していてもよいヒドロカルビレン基の説明及び例示は、式(III)の説明において述べたものと同じである。また、R35のヒドロカルビル基は、R31、R32、R34のヒドロカルビル基で述べたものと同じである。
式(IIId)において、Aは好ましくは酸素原子又は-NR35-(R35はヒドロカルビル基(好ましくは炭素原子数1~5のヒドロカルビル基)又は水素原子である)で表される基であり、より好ましくは酸素原子又は-NH-で表される基であり、さらに好ましくは-NH-で表される基である。
式(IIId)において、R37のヒドロカルビレン基としては、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ペンタン-2-エン-1,5-ジイル基、2,2,4-トリメチルへキサン-1,6-ジイル基などのアルキレン基;1,4-フェニレン基などのアリーレン基をあげることができる。
式(IIId)において、R34は好ましくは炭素原子数1~10のヒドロカルビル基であり、より好ましくは炭素原子数2~5のアルケニル基であり、さらに好ましくはビニル基である。
式(IIId)において、R37は好ましくは炭素原子数1~10のヒドロカルビレン基であり、より好ましくは炭素原子数1~6のアルキレン基であり、さらに好ましくはエチレン基又はトリメチレン基であり、特に好ましくはトリメチレン基である。
式(IIId)において、R31は好ましくは炭素原子数1~10のヒドロカルビル基であるか、R32と結合して炭素原子数3~10のヒドロカルビレン基、又はヘテロ原子が窒素原子若しくは酸素原子である炭素原子数3~10のヘテロ原子含有ヒドロカルビレン基であり、より好ましくは炭素原子数1~10のアルキル基又は炭素原子数6~10のアリール基であるか、R32と結合して炭素原子数3~10のアルキレン基、-CH=N-CH=CH-で表される基、-CH=N-CH-CH-で表される基、-(CH-O-(CH-で表される基であり、さらに好ましくは炭素原子数1~6のアルキル基であるか、R32と結合して炭素原子数3~6のアルキレン基、-CH=N-CH=CH-で表される基、-CH=N-CH-CH-で表される基であり、特に好ましくはメチル基、エチル基であるか、R32と結合してテトラメチレン基、ヘキサメチレン基、-CH=N-CH=CH-で表される基である。
式(IIId)において、R32は好ましくは炭素原子数1~10のヒドロカルビル基であるか、R31と結合して炭素原子数3~10のヒドロカルビレン基、又はヘテロ原子が窒素原子若しくは酸素原子である炭素原子数3~10のヘテロ原子含有ヒドロカルビレン基であり、より好ましくは炭素原子数1~10のアルキル基又は炭素原子数6~10のアリール基であるか、R31と結合して炭素原子数3~10のアルキレン基、-CH=N-CH=CH-で表される基、-CH=N-CH-CH-で表される基、-(CH-O-(CH-で表される基であり、さらに好ましくは炭素原子数1~6のアルキル基であるか、R31と結合して炭素原子数3~6のアルキレン基、-CH=N-CH=CH-で表される基、-CH=N-CH-CH-で表される基であり、特に好ましくはメチル基、エチル基であるか、R31と結合してテトラメチレン基、ヘキサメチレン基、-CH=N-CH=CH-で表される基である。
式(IIId)で表される化合物のうち、Aが酸素原子である化合物としては、
2-N,N-ジメチルアミノエチルアクリレート、2-N,N-ジエチルアミノエチルアクリレートなどの2-N,N-ジヒドロカルビルアミノエチルアクリレート;3-N,N-ジメチルアミノプロピルアクリレートなどの3-N,N-ジヒドロカルビルアミノプロピルアクリレート;2-N,N-ジメチルアミノエチルメタクリレート、2-N,N-ジエチルアミノエチルメタクリレートなどの2-N,N-ジヒドロカルビルアミノエチルメタクリレート;3-N,N-ジメチルアミノプロピルメタクリレートなどの3-N,N-ジヒドロカルビルアミノプロピルメタクリレートをあげることができ、3-N,N-ジヒドロカルビルアミノプロピルアクリレートが好ましく、3-N,N-ジメチルアミノプロピルアクリレートがより好ましい。
式(IIId)で表される化合物のうち、Aが-NR35-(R35はヒドロカルビル基又は水素原子を表す)で表される基である化合物としては、
N,N-ジメチルアミノエチルアクリルアミド、N,N-ジエチルアミノエチルアクリルアミドなどのN、N-ジヒドロカルビルアミノエチルアクリルアミド;N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジエチルアミノプロピルアクリルアミドなどのN,N-ジヒドロカルビルアミノプロピルアクリルアミド;N,N-ジメチルアミノブチルアクリルアミド、N,N-ジエチルアミノブチルアクリルアミドなどのN,N-ジヒドロカルビルアミノブチルアクリルアミド;N,N-ジメチルアミノエチルメタクリルアミド、N,N-ジエチルアミノエチルメタクリルアミドなどのN、N-ジヒドロカルビルアミノエチルメタクリルアミド;N,N-ジメチルアミノプロピルメタクリルアミド、N,N-ジエチルアミノプロピルメタクリルアミドなどのN,N-ジヒドロカルビルアミノプロピルメタクリルアミド;N,N-ジメチルアミノブチルメタクリルアミド、N,N-ジエチルアミノブチルメタクリルアミドなどのN,N-ジヒドロカルビルアミノブチルメタクリルアミドをあげることができ、N,N-ジヒドロカルビルアミノプロピルアクリルアミドが好ましく、N,N-ジメチルアミノプロピルアクリルアミドがより好ましい。
式(III)で表される化合物として好ましい化合物は式(IIId)で表される化合物であり、中でもN,N-ジヒドロカルビルアミノプロピルアクリルアミドが特に好ましく、N,N-ジメチルアミノプロピルアクリルアミドが最も好ましい。
上記のほか、窒素原子及び/又はケイ素原子を含有する化合物のうち好ましいものとして、アルコキシシリル基を含有する化合物をあげることもできる。
アルコキシシリル基を含有する化合物としては、窒素原子及びアルコキシシリル基を含有する化合物が好ましく、下記式(IV)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000022
(式(IV)中、R41はヒドロカルビル基を表し、R42、R43はヒドロカルビル基又はヒドロカルビルオキシ基を表し、R44は置換基を有してもよいヒドロカルビル基又はトリヒドロカルビルシリル基を表すか、あるいはR45と結合して、ケイ素原子、窒素原子及び酸素原子からなる原子群より選択される少なくとも一種の原子をヘテロ原子として有してもよいヒドロカルビレン基を表し、R45は置換基を有してもよいヒドロカルビル基又はトリヒドロカルビルシリル基を表すか、あるいはR44と結合して、ケイ素原子、窒素原子及び酸素原子からなる原子群より選択される少なくとも一種の原子をヘテロ原子として有してもよいヒドロカルビレン基を表し、jは1~5の整数を表す)
上記式(IV)において、置換基を有してもよいヒドロカルビル基は、ヒドロカルビル基又は置換ヒドロカルビル基である。ヒドロカルビル基としてはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基などのアルキル基;ビニル基、アリル基、イソプロペニル基などのアルケニル基;フェニル基などのアリール基をあげることができ、好ましくはアルキル基であり、より好ましくはメチル基又はエチル基である。置換ヒドロカルビル基としては、オキシラニル基、テトラヒドロフラニル基などのオキサシクロアルキル基をあげることができ、好ましくはテトラヒドロフラニル基である。
本明細書において、オキサシクロアルキル基は、シクロアルキル基の脂環上のCHが酸素原子に置き換わった基を表す。
ヒドロカルビルオキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基などのアルコキシ基;フェノキシ基、ベンジルオキシ基などのアリールオキシ基をあげることができ、好ましくはアルコキシ基であり、より好ましくはメトキシ基又はエトキシ基である。
トリヒドロカルビルシリル基としては、トリメチルシリル基、tert-ブチル-ジメチルシリル基をあげることができ、好ましくはトリメチルシリル基である。
ケイ素原子、窒素原子及び酸素原子からなる原子群より選択される少なくとも一種の原子をヘテロ原子として有していてもよいヒドロカルビレン基は、ヒドロカルビレン基、又はヘテロ原子がケイ素原子、窒素原子及び酸素原子からなる原子群より選択される少なくとも一種の原子であるヘテロ原子含有ヒドロカルビレン基である。ヘテロ原子がケイ素原子、窒素原子及び酸素原子からなる原子群より選択される少なくとも一種の原子であるヘテロ原子含有ヒドロカルビレン基としては、ヘテロ原子がケイ素原子であるヘテロ原子含有ヒドロカルビレン基、ヘテロ原子が窒素原子であるヘテロ原子含有ヒドロカルビレン基、ヘテロ原子が酸素原子であるヘテロ原子含有ヒドロカルビレン基をあげることができる。ヒドロカルビレン基としては、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ペンタン-2-エン-1,5-ジイル基、2,2,4-トリメチルへキサン-1,6-ジイル基などのアルキレン基をあげることができ、中でも炭素原子数4~7のアルキレン基が好ましく、ペンタメチレン基又はヘキサメチレン基が特に好ましい。ヘテロ原子がケイ素原子であるヘテロ原子含有ヒドロカルビレン基としては、-Si(CH-CH-CH-Si(CH-で表される基をあげることができる。ヘテロ原子が窒素原子であるヘテロ原子含有ヒドロカルビレン基としては、-CH=N-CH=CH-で表される基、又は-CH=N-CH-CH-で表される基をあげることができる。ヘテロ原子が酸素原子であるヘテロ原子含有ヒドロカルビレン基、-CH-CH-O-CH-CH-で表される基をあげることができる。
上記式(IV)において、R41は好ましくは炭素原子数1~4のアルキル基であり、より好ましくはメチル基又はエチル基である。R42、R43は好ましくはヒドロカルビルオキシ基であり、より好ましくは炭素原子数1~4のアルコキシ基であり、さらに好ましくはメトキシ基又はエトキシ基である。R44、R45は好ましくはヒドロカルビル基であり、より好ましくは炭素原子数1~4のアルキル基であり、さらに好ましくはメチル基又はエチル基である。また、jは好ましくは2~4の整数である。
上記式(IV)で表される化合物としては、3-ジメチルアミノプロピルトリエトキシシラン、3-ジメチルアミノプロピルトリメトキシシラン、3-ジエチルアミノプロピルトリエトキシシラン、3-ジエチルアミノプロピルトリメトキシシラン、3-ジメチルアミノプロピルメチルジエトキシシラン、2-ジメチルアミノエチルトリエトキシシラン、2-ジメチルアミノエチルトリメトキシシランなどの[(ジアルキルアミノ)アルキル]アルコキシシラン化合物;ヘキサメチレンイミノメチルトリメトキシシラン、3-ヘキサメチレンイミノプロピルトリエトキシシラン、N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾ-ル、N-(3-トリメトキシシリルプロピル)-4,5-イミダゾ-ルなどの環状アミノアルキルアルコキシシラン化合物;3-[ジ(テトラヒドロフラニル)アミノ]プロピルトリメトキシシラン、3-[ジ(テトラヒドロフラニル)アミノ]プロピルトリエトキシシランなどの[ジ(テトラヒドロフラニル)アミノ]アルキルアルコキシシラン化合物;N,N-ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシランなどのN,N-ビス(トリアルキルシリル)アミノアルキルアルコキシシラン化合物をあげることができ、中でも[(ジアルキルアミノ)アルキル]アルコキシシラン化合物が好ましく、3-ジメチルアミノプロピルトリエトキシシラン、3-ジメチルアミノプロピルトリメトキシシラン、3-ジエチルアミノプロピルトリエトキシシラン、3-ジエチルアミノプロピルトリメトキシシランがより好ましい。
アルコキシシリル基を含有する化合物として、上記の窒素原子及びアルコキシシリル基を含有する化合物以外には、
テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシランなどのテトラアルコキシシラン;メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、フェニルトリメトキシシランなどのトリアルコキシヒドロカルビルシラン;トリメトキシクロロシラン、トリエトキシクロロシラン、トリ-n-プロポキシクロロシランなどのトリアルコキシハロシラン;ジメトキシジメチルシラン、ジエトキシジメチルシラン、ジメトキシジエチルシランなどのジアルコキシジヒドロカルビルシラン;ジメトキシジクロロシラン、ジエトキシジクロロシラン、ジ-n-プロポキシジクロロシランなどのジアルコキシジハロシラン;メトキシトリメチルシランなどのモノアルコキシトリヒドロカルビルシラン;メトキシトリクロロシラン、エトキシトリクロロシランなどのモノアルコキシトリハロシラン;2-グリシドキシエチルトリメトキシシラン、2-グリシドキシエチルトリエトキシシラン、(2-グリシドキシエチル)メチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、(3-グリシドキシプロピル)メチルジメトキシシランなどの(グリシドキシアルキル)アルコキシシラン化合物;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチル(メチル)ジメトキシシランなどの(3,4-エポキシシクロヘキシル)アルキルアルコキシシラン化合物;3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシリルプロピルコハク酸無水物などのアルコキシシリルアルキルコハク酸無水物;3-メタクリロイロキシプロピルトリメトキシシラン、3-メタクリロイロキシプロピルトリエトキシシランなどの(メタクリロイロキシアルキル)アルコキシシラン化合物をあげることができる。
また、アルコキシシリル基を含有する化合物は、窒素原子及びカルボニル基を含有していてもよい。アルコキシシリル基を含有し、かつ窒素原子及びカルボニル基を含有する化合物として、トリス[3-(トリメトキシシリル)プロピル]イソシアヌレート、トリス[3-(トリエトキシシリル)プロピル]イソシアヌレート、トリス[3-(トリプロポキシシリル)プロピル]イソシアヌレート、トリス[3-(トリブトキシシリル)プロピル]イソシアヌレートなどのトリス[(アルコキシシリル)アルキル]イソシアヌレート化合物をあげることができ、中でもトリス[3-(トリメトキシシリル)プロピル]イソシアヌレートが好ましい。
また、窒素原子及び/又はケイ素原子を含有する化合物としては、N,N-ジアルキル置換カルボン酸アミドジアルキルアセタール化合物をあげることもできる。N,N-ジアルキル置換カルボン酸アミドジアルキルアセタール化合物としては、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジエチルホルムアミドジメチルアセタールなどのN,N-ジアルキルホルムアミドジアルキルアセタール;N,N-ジメチルアセトアミドジメチルアセタール、N,N-ジエチルアセトアミドジメチルアセタールなどのN,N-ジアルキルアセトアミドジアルキルアセタール;N,N-ジメチルプロピオンアミドジメチルアセタール、N,N-ジエチルプロピオンアミドジメチルアセタールなどのN,N-ジアルキルプロピオンアミドジアルキルアセタールなどをあげることができ、中でも、N,N-ジアルキルホルムアミドジアルキルアセタールが好ましく、N,N-ジメチルホルムアミドジメチルアセタールがより好ましい。
上記共役ジエン系重合体の製造方法においては、単量体の重合開始から、後述する重合体の回収までに、共役ジエン系重合体の炭化水素溶液にカップリング剤を添加してもよい。カップリング剤としては、下記式(V)で表される化合物をあげることができる。
51 ML4-a      (V)
(式(V)中、R51はアルキル基、アルケニル基、シクロアルケニル基又はアリール基を表し、Mはケイ素原子又はスズ原子を表し、Lはハロゲン原子又はヒドロカルビルオキシ基を表し、aは0~2の整数を表す)
上記式(V)で表されるカップリング剤としては、四塩化ケイ素、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、四塩化スズ、メチルトリクロロスズ、ジメチルジクロロスズ、トリメチルクロロスズ、テトラメトキシシラン、メチルトリメトキシシラン、ジメトキシジメチルシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、ジメトキシジエチルシラン、ジエトキシジメチルシラン、テトラエトキシシラン、エチルトリエトキシシラン、ジエトキシジエチルシランなどをあげることができる。
カップリング剤の添加量は、共役ジエン系重合体の加工性を高めるために、アルカリ金属触媒由来のアルカリ金属1mol当たり、好ましくは0.03mol以上であり、より好ましくは0.05mol以上である。また、低燃費性を高めるために、好ましくは0.4mol以下であり、より好ましくは0.3mol以下である。
上記共役ジエン系重合体の製造方法においては、後述する重合体の回収を行う前に未反応の活性末端をメタノール、イソプロピルアルコールなどのアルコールにより処理してもよい。
共役ジエン系重合体の炭化水素溶液から共役ジエン系重合体を回収する方法としては公知の方法を用いることができ、例えば(A)共役ジエン系重合体の炭化水素溶液に凝固剤を添加する方法、(B)共役ジエン系重合体の炭化水素溶液にスチームを添加する方法(スチームストリッピング処理)をあげることができる。回収した共役ジエン系重合体は、バンドドライヤーや押出型ドライヤーなどの公知の乾燥機で乾燥してもよい。
上記共役ジエン系重合体において、式(I)で表される重合開始剤由来の構造単位の含有量は、氷雪上性能、耐摩耗性、ゴム強度、低燃費性、ウェットグリップ性能及びドライ操縦安定性をバランス良く高める観点から、重合体単位質量あたり、好ましくは、0.0001mmol/g重合体以上、より好ましくは0.001mmol/g重合体以上であり、好ましくは0.15mmol/g重合体以下、より好ましくは、0.1mmol/g重合体以下である。
上記共役ジエン系重合体において、ケイ素含有ビニル化合物由来の構造単位の含有量は、氷雪上性能、耐摩耗性、ゴム強度、低燃費性、ウェットグリップ性能及びドライ操縦安定性をバランス良く高める観点から、重合体単位質量あたり、好ましくは、0.01mmol/g重合体以上、より好ましくは0.02mmol/g重合体以上であり、好ましくは0.4mmol/g重合体以下、より好ましくは、0.2mmol/g重合体以下である。
氷雪上性能、耐摩耗性、ゴム強度、低燃費性、ウェットグリップ性能及びドライ操縦安定性をバランス良く高める観点から、上記共役ジエン系重合体は、上記式(II)で表される化合物由来の構造単位を有することが好ましい。なお、上記共役ジエン系重合体中の上記式(II)で表される化合物由来の構造単位は、下記式(IIb)で表される構造単位を意味する。
Figure JPOXMLDOC01-appb-C000023
(式(IIb)中、m、R21、X、X及びXは、式(II)におけるものと同一である)
本発明に係る共役ジエン系重合体は、該共役ジエン系重合体中の式(II)で表される化合物由来の構造単位において、X、X及びXの少なくとも1つが水酸基に置換されたものであることが好ましく、2つ以上が水酸基に置換されたものであることがより好ましく、2つが水酸基に置換されたものであることがさらに好ましい。これにより、氷雪上性能、耐摩耗性、ゴム強度、低燃費性、ウェットグリップ性能及びドライ操縦安定性の改善効果を高めることができる。X、X及びXを水酸基に置換する方法としては特に限定されないが、例えば、スチームストリッピング処理による方法があげられる。
氷雪上性能、耐摩耗性、ゴム強度、低燃費性、ウェットグリップ性能及びドライ操縦安定性をバランス良く高める観点から、上記共役ジエン系重合体は、芳香族ビニル化合物由来の構造単位(芳香族ビニル単位)を有することが好ましい。上記共役ジエン系重合体が芳香族ビニル単位を有する場合、上記共役ジエン系重合体中の芳香族ビニル単位の含有量は、共役ジエン化合物由来の構造単位(共役ジエン系単位)と芳香族ビニル単位との総量を100質量%として、好ましくは10質量%以上(共役ジエン単位の含有量化合物の含有量は90質量%以下)であり、より好ましくは15質量%以上(共役ジエン単位の含有量は85質量%以下)である。また、氷雪上性能、低燃費性の観点から、芳香族ビニル単位の含有量は、好ましくは50質量%以下(共役ジエン単位の含有量は50質量%以上)であり、より好ましくは45質量%以下(共役ジエン単位の含有量は55質量%以上)である。
上記共役ジエン系重合体が芳香族ビニル化合物に基づく構造単位を有する場合、上記共役ジエン系重合体のビニル結合量(ビニル含有量)は、共役ジエン単位の含有量を100mol%として、低燃費性の観点から、好ましくは80mol%以下であり、より好ましくは70mol%以下である。また、ウェットグリップ性能の観点から、好ましくは10mol%以上であり、より好ましくは15mol%以上であり、さらに好ましくは20mol%以上であり、特に好ましくは40mol%以上である。
特に耐摩耗性能を向上させる観点からは、上記共役ジエン系重合体は、芳香族ビニル化合物の構造単位を有しないことが好ましく、この場合、上記共役ジエン系重合体のビニル結合量(ビニル含有量)は、共役ジエン単位の含有量を100mol%として、好ましくは20mol%以下であり、より好ましくは15mol%以下である。
なお、上記共役ジエン系重合体のビニル結合量は、後述する実施例に記載の方法で測定できる。
上記共役ジエン系重合体の分子量分布は、低燃費性を高めるために、好ましくは1~5であり、より好ましくは1~2である。分子量分布は、ゲル・パーミエイション・クロマトグラフ(GPC)法により、数平均分子量(Mn)及び重量平均分子量(Mw)を測定し、MwをMnで除すことにより求められる。
上記共役ジエン系重合体は、ゴム成分として本発明のゴム組成物に用いることができる。
ゴム成分100質量%中の上記共役ジエン系重合体の含有量は、45質量%以下、好ましくは35質量%以下、より好ましくは25質量%以下である。45質量%を超えると、耐摩耗性が低下するとともに、高コストになる傾向がある。また、上記共役ジエン系重合体の含有量は、1質量%以上、好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは15質量%以上である。1質量%未満であると、低燃費性の改善効果が得られにくい傾向がある。
本発明のゴム組成物は、ミクロ構造(モノマー単位の結合様式)におけるシス構造(シス-1,4結合)の割合(シス含量)が95質量%以上であるハイシスポリブタジエンを含有する。上記ハイシスポリブタジエンとしては、シス含量が95質量%以上であるものであれば特に限定されず、例えば、日本ゼオン(株)製のBR1220、宇部興産(株)製のBR130B、BR150Bなど、タイヤ工業において一般的なものを使用できる。
なお、シス含量は、赤外吸収スペクトル分析により算出される値である。
ゴム成分100質量%中の上記ハイシスブタジエンの含有量は、20質量%以上、好ましくは25質量%以上、より好ましくは30質量%以上である。20質量%未満であると、低温での充分な柔軟性を確保できなくなって氷雪上性能が低下したり、耐摩耗性が低下する傾向がある。また、上記ハイシスブタジエンの含有量は、64質量%以下、好ましくは60質量%以下である。64質量%を超えると、ウェットグリップ性能が低下する傾向がある。
本発明のゴム組成物は、ポリイソプレン系ゴムを含有する。ポリイソプレン系ゴムとしては、天然ゴム(NR)、ポリイソプレンゴム(IR)などがあげられる。NRとしては特に限定されず、例えば、SIR20、RSS#3、TSR20、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(HPNR)、エポキシ化天然ゴム(ENR)など、タイヤ工業において一般的なものを使用できる。同様に、IRについても、タイヤ工業において一般的なものを使用できる。
ゴム成分100質量%中のポリイソプレン系ゴムの含有量は、35質量%以上、好ましくは40質量%以上である。35質量%未満であると、ゴム強度が低下したり、混練り時のゴムの纏まりが悪くなって生産性が悪化するおそれがある。また、ポリイソプレン系ゴムの含有量は、60質量%以下、好ましくは50質量%以下、より好ましくは45質量%以下である。ポリイソプレン系ゴムの含有量が60質量%を超えると、充分なウェットグリップ性能が得られないおそれがある。
上記ハイシスブタジエン、ポリイソプレン系ゴム以外に使用できるゴム成分としては、従来のスチレン-ブタジエン共重合体ゴム(SBR)、ブタジエン-イソプレン共重合体ゴム、ブチルゴムなどをあげることができる。また、エチレン-プロピレン共重合体、エチレン-オクテン共重合体などもあげることができる。これらのゴム成分は、2種以上組み合わせて用いてもよい。
本発明のゴム組成物は、窒素吸着比表面積(NSA)が40~400m/gのシリカを含有する。シリカとしては特に限定されず、例えば、乾式法シリカ(無水シリカ)、湿式法シリカ(含水シリカ)などがあげられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。
シリカの窒素吸着比表面積(NSA)は、40m/g以上、好ましくは50m/g以上、より好ましくは60m/g以上である。40m/g未満では、補強効果が小さく、耐摩耗性やゴム強度が低下する傾向がある。また、シリカのNSAは、400m/g以下、好ましくは360m/g以下、より好ましくは300m/g以下である。400m/gを超えると、シリカが分散しにくくなり、低燃費性が悪化する傾向がある。
なお、シリカのNSAは、ASTM D3037-93に準じてBET法で測定される値である。
シリカの含有量(2種以上のシリカを使用する場合は、その合計量)は、ゴム成分100質量部に対して、5質量部以上、好ましくは10質量部以上、より好ましくは30質量部以上、さらに好ましくは45質量部以上である。5質量部未満であると、シリカを配合した効果が充分に得られず、耐摩耗性やゴム強度が低下する傾向がある。また、シリカの含有量は、150質量部以下、好ましくは100質量部以下である。150質量部を超えると、低燃費性が悪化する傾向がある。
シリカは1種を単独で用いてもよいが、2種以上を組み合わせて用いることが好ましく、NSAが40m/g以上、120m/g未満のシリカ(1)と、NSAが120m/g以上のシリカ(2)とを併用することがより好ましい。上記共役ジエン系重合体とともにシリカ(1)及び(2)を配合することで、シリカ(1)及び(2)が良好に分散し、各性能の改善効果を相乗的に高めることができる。また、シリカ(1)及び(2)と、後述するメルカプト基を有するシランカップリング剤や、特定の固体樹脂とを併用することで、各性能の改善効果をさらに高めることができる。
シリカ(1)及び(2)は、NSAが(シリカ(2)のNSA)/(シリカ(1)のNSA)≧1.4の関係を満たすことが好ましく、(シリカ(2)のNSA)/(シリカ(1)のNSA)≧2.0の関係を満たすことがより好ましい。1.4未満であると、シリカ(1)及び(2)の粒子径の差が小さく、2種類のシリカをブレンドすることによる分散向上効果が充分に得られない傾向がある。
シリカ(1)のNSAは、40m/g以上、好ましくは50m/g以上である。40m/g未満であると、充分な補強性が得られず、ゴム強度、耐摩耗性、ドライ操縦安定性が悪化するおそれがある。また、シリカ(1)のNSAは、120m/g未満、好ましくは100m/g以下、より好ましくは80m/g以下である。120m/g以上であると、シリカ(1)及び(2)の併用による効果が充分に得られないおそれがある。
シリカ(2)のNSAは、120m/g以上、好ましくは150m/g以上である。120m/g未満であると、シリカ(1)及び(2)の併用による効果が充分に得られないおそれがある。また、シリカ(2)のNSAは、好ましくは250m/g以下、より好ましくは220m/g以下である。250m/gを超えると、低燃費性が悪化する傾向がある。
シリカ(1)及び(2)は、含有量が下記式を満たすことが好ましい。
(シリカ(1)の含有量)×0.06≦(シリカ(2)の含有量)≦(シリカ(1)の含有量)×15 
シリカ(2)の含有量がシリカ(1)の含有量の0.06倍未満では、充分なゴム強度が得られない傾向がある。また、シリカ(2)の含有量がシリカ(1)の含有量の15倍を超えると、転がり抵抗が増大する傾向がある。なお、シリカ(2)の含有量は、シリカ(1)の含有量の0.3倍以上がより好ましく、0.5倍以上がさらに好ましい。また、シリカ(2)の含有量は、シリカ(1)の含有量の7倍以下がより好ましく、4倍以下がさらに好ましい。
シリカ(1)の含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上である。5質量部未満では、低燃費性を充分に改善できないおそれがある。また、シリカ(1)の含有量は、好ましくは60質量部以下、より好ましくは40質量部以下である。60質量部を超えると、低燃費性は良好であるが、ゴム強度、耐摩耗性、ドライ操縦安定性が低下する傾向がある。
シリカ(2)の含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは20質量部以上、さらに好ましくは40質量部以上である。5質量部未満では、充分なゴム強度、耐摩耗性、ドライ操縦安定性が得られないおそれがある。また、シリカ(2)の含有量は、好ましくは90質量部以下、より好ましくは70質量部以下である。90質量部を超えると、ゴム強度、耐摩耗性、ドライ操縦安定性は良好であるが、低燃費性が悪化する傾向がある。
シリカ(1)及び(2)の合計含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、さらに好ましくは30質量部以上、特に好ましくは45質量部以上である。5質量部未満であると、シリカ(1)及び(2)を配合した効果が充分に得られず、耐摩耗性やゴム強度が低下する傾向がある。また、シリカ(1)及び(2)の合計含有量は、好ましくは150質量部以下、より好ましくは100質量部以下である。150質量部を超えると、加工性が悪化する傾向がある。
本発明のゴム組成物は、メルカプト基を有するシランカップリング剤を含有することが好ましい。上記共役ジエン系重合体及びシリカとともに、メルカプト基を有するシランカップリング剤を配合することで、各性能を相乗的に改善することができる。また、メルカプト基を有するシランカップリング剤とともに、上述のシリカ(1)及び(2)や、後述する特定の固体樹脂を併用することで、各性能の改善効果をさらに高めることができる。
メルカプト基を有するシランカップリング剤としては、下記式(1)で表される化合物、及び/又は下記式(2)で示される結合単位Aと下記式(3)で示される結合単位Bとを含む化合物を好適に使用できる。
Figure JPOXMLDOC01-appb-C000024
(式(1)中、R101~R103は、分岐若しくは非分岐の炭素数1~12のアルキル基、分岐若しくは非分岐の炭素数1~12のアルコキシ基、又は-O-(R111-O)-R112(z個のR111は、分岐若しくは非分岐の炭素数1~30の2価の炭化水素基を表す。z個のR111はそれぞれ同一でも異なっていてもよい。R112は、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、炭素数6~30のアリール基、又は炭素数7~30のアラルキル基を表す。zは1~30の整数を表す)で表される基を表す。R101~R103はそれぞれ同一でも異なっていてもよい。R104は、分岐若しくは非分岐の炭素数1~6のアルキレン基を表す)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
(式(2)及び(3)中、R201は水素、ハロゲン、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、分岐若しくは非分岐の炭素数2~30のアルキニル基、又は該アルキル基の末端の水素が水酸基若しくはカルボキシル基で置換されたものを表す。R202は分岐若しくは非分岐の炭素数1~30のアルキレン基、分岐若しくは非分岐の炭素数2~30のアルケニレン基、又は分岐若しくは非分岐の炭素数2~30のアルキニレン基を表す。R201とR202とで環構造を形成してもよい。)
以下、式(1)で表される化合物について説明する。
式(1)で表される化合物を使用することで、シリカが良好に分散し、本発明の効果が良好に得られる。特に、ウェットグリップ性能をより大きく改善することができる。
101~R103は、分岐若しくは非分岐の炭素数1~12のアルキル基、分岐若しくは非分岐の炭素数1~12のアルコキシ基、又は-O-(R111-O)-R112で表される基を表す。本発明の効果が良好に得られるという点から、R101~R103は、少なくとも1つが-O-(R111-O)-R112で表される基であることが好ましく、2つが-O-(R111-O)-R112で表される基であり、かつ、1つが分岐若しくは非分岐の炭素数1~12のアルコキシ基であることがより好ましい。
101~R103の分岐若しくは非分岐の炭素数1~12(好ましくは炭素数1~5)のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、へキシル基、へプチル基、2-エチルヘキシル基、オクチル基、ノニル基などがあげられる。
101~R103の分岐若しくは非分岐の炭素数1~12(好ましくは炭素数1~5)のアルコキシ基としては、例えば、メトキシ基、エトシキ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、iso-ブトキシ基、sec-ブトシキ基、tert-ブトシキ基、ペンチルオキシ基、へキシルオキシ基、へプチルオキシ基、2-エチルヘキシルオキシ基、オクチルオキシ基、ノニルオキシ基などがあげられる。
101~R103の-O-(R111-O)-R112において、R111は、分岐若しくは非分岐の炭素数1~30(好ましくは炭素数1~15、より好ましくは炭素数1~3)の2価の炭化水素基を表す。
該炭化水素基としては、例えば、分岐若しくは非分岐の炭素数1~30のアルキレン基、分岐若しくは非分岐の炭素数2~30のアルケニレン基、分岐若しくは非分岐の炭素数2~30のアルキニレン基、炭素数6~30のアリーレン基などがあげられる。中でも、分岐若しくは非分岐の炭素数1~30のアルキレン基が好ましい。
111の分岐若しくは非分岐の炭素数1~30(好ましくは炭素数1~15、より好ましくは炭素数1~3)のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基などがあげられる。
111の分岐若しくは非分岐の炭素数2~30(好ましくは炭素数2~15、より好ましくは炭素数2~3)のアルケニレン基としては、例えば、ビニレン基、1-プロペニレン基、2-プロペニレン基、1-ブテニレン基、2-ブテニレン基、1-ペンテニレン基、2-ペンテニレン基、1-ヘキセニレン基、2-ヘキセニレン基、1-オクテニレン基などがあげられる。
111の分岐若しくは非分岐の炭素数2~30(好ましくは炭素数2~15、より好ましくは炭素数2~3)のアルキニレン基としては、例えば、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基、ヘキシニレン基、へプチニレン基、オクチニレン基、ノニニレン基、デシニレン基、ウンデシニレン基、ドデシニレン基などがあげられる。
111の炭素数6~30(好ましくは炭素数6~15)のアリーレン基としては、例えば、フェニレン基、トリレン基、キシリレン基、ナフチレン基などがあげられる。
zは1~30(好ましくは2~20、より好ましくは3~7、さらに好ましくは5~6)の整数を表す。
112は、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、炭素数6~30のアリール基又は炭素数7~30のアラルキル基を表す。中でも、分岐若しくは非分岐の炭素数1~30のアルキル基が好ましい。
112の分岐若しくは非分岐の炭素数1~30(好ましくは炭素数3~25、より好ましくは炭素数10~15)のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、へキシル基、へプチル基、2-エチルヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基などがあげられる。
112の分岐若しくは非分岐の炭素数2~30(好ましくは炭素数3~25、より好ましくは炭素数10~15)のアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基、1-オクテニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、オクタデセニル基などがあげられる。
112の炭素数6~30(好ましくは炭素数10~20)のアリール基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基などがあげられる。
112の炭素数7~30(好ましくは炭素数10~20)のアラルキル基としては、ベンジル基、フェネチル基などがあげられる。
-O-(R111-O)-R112で表される基の具体例としては、例えば、-O-(C-O)-C1123、-O-(C-O)-C1225、-O-(C-O)-C1327、-O-(C-O)-C1429、-O-(C-O)-C1531、-O-(C-O)-C1327、-O-(C-O)-C1327、-O-(C-O)-C1327、-O-(C-O)-C1327などがあげられる。中でも、-O-(C-O)-C1123、-O-(C-O)-C1327、-O-(C-O)-C1531、-O-(C-O)-C1327が好ましい。
104の分岐若しくは非分岐の炭素数1~6(好ましくは炭素数1~5)のアルキレン基としては、例えば、R111の分岐若しくは非分岐の炭素数1~30のアルキレン基と同様の基をあげることができる。
上記式(1)で表される化合物としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシランや、下記式で表される化合物(EVONIK-DEGUSSA社製のSi363)などがあげられ、下記式で表される化合物を好適に使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000027
次に、式(2)で示される結合単位Aと式(3)で示される結合単位Bとを含む化合物について説明する。
式(2)で示される結合単位Aと式(3)で示される結合単位Bとを含む化合物は、ビス-(3-トリエトキシシリルプロピル)テトラスルフィドなどのポリスルフィドシランに比べ、加工中の粘度上昇が抑制される。これは結合単位Aのスルフィド部分がC-S-C結合であるため、テトラスルフィドやジスルフィドに比べ熱的に安定であることから、ムーニー粘度の上昇が少ないためと考えられる。
また、3-メルカプトプロピルトリメトキシシランなどのメルカプトシランに比べ、スコーチ時間の短縮が抑制される。これは、結合単位Bはメルカプトシランの構造を持っているが、結合単位Aの-C15部分が結合単位Bの-SH基を覆うため、ポリマーと反応しにくく、スコーチが発生しにくいためと考えられる。
上述した加工中の粘度上昇を抑制する効果や、スコーチ時間の短縮を抑制する効果を高めることができるという点から、上記構造のシランカップリング剤において、結合単位Aの含有量は、好ましくは30モル%以上、より好ましくは50モル%以上であり、好ましくは99モル%以下、より好ましくは90モル%以下である。また、結合単位Bの含有量は、好ましくは1モル%以上、より好ましくは5モル%以上、さらに好ましくは10モル%以上であり、好ましくは70モル%以下、より好ましくは65モル%以下、さらに好ましくは55モル%以下である。また、結合単位A及びBの合計含有量は、好ましくは95モル%以上、より好ましくは98モル%以上、特に好ましくは100モル%である。
なお、結合単位A、Bの含有量は、結合単位A、Bがシランカップリング剤の末端に位置する場合も含む量である。結合単位A、Bがシランカップリング剤の末端に位置する場合の形態は特に限定されず、結合単位A、Bを示す式(2)、(3)と対応するユニットを形成していればよい。
201のハロゲンとしては、塩素、臭素、フッ素などがあげられる。
201の分岐若しくは非分岐の炭素数1~30のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、へキシル基、へプチル基、2-エチルヘキシル基、オクチル基、ノニル基、デシル基などがあげられる。該アルキル基の炭素数は、好ましくは1~12である。
201の分岐若しくは非分岐の炭素数2~30のアルケニル基としては、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基、1-オクテニル基などがあげられる。該アルケニル基の炭素数は、好ましくは2~12である。
201の分岐若しくは非分岐の炭素数2~30のアルキニル基としては、エチニル基、プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基、へプチニル基、オクチニル基、ノニニル基、デシニル基、ウンデシニル基、ドデシニル基などがあげられる。該アルキニル基の炭素数は、好ましくは2~12である。
202の分岐若しくは非分岐の炭素数1~30のアルキレン基としては、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基などがあげられる。該アルキレン基の炭素数は、好ましくは1~12である。
202の分岐若しくは非分岐の炭素数2~30のアルケニレン基としては、ビニレン基、1-プロペニレン基、2-プロペニレン基、1-ブテニレン基、2-ブテニレン基、1-ペンテニレン基、2-ペンテニレン基、1-ヘキセニレン基、2-ヘキセニレン基、1-オクテニレン基などがあげられる。該アルケニレン基の炭素数は、好ましくは2~12である。
202の分岐若しくは非分岐の炭素数2~30のアルキニレン基としては、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基、ヘキシニレン基、へプチニレン基、オクチニレン基、ノニニレン基、デシニレン基、ウンデシニレン基、ドデシニレン基などがあげられる。該アルキニレン基の炭素数は、好ましくは2~12である。
式(2)で示される結合単位Aと式(3)で示される結合単位Bとを含む化合物において、結合単位Aの繰り返し数(x)と結合単位Bの繰り返し数(y)の合計の繰り返し数(x+y)は、3~300の範囲が好ましい。この範囲内であると、結合単位Bのメルカプトシランを、結合単位Aの-C15が覆うため、スコーチタイムが短くなることを抑制できるとともに、シリカやゴム成分との良好な反応性を確保することができる。
式(2)で示される結合単位Aと式(3)で示される結合単位Bとを含む化合物としては、例えば、Momentive社製のNXT-Z30、NXT-Z45、NXT-Z60などを使用することができる。これらは、単独で用いてもよく、2種以上を併用してもよい。
メルカプト基を有するシランカップリング剤の含有量は、シリカ100質量部に対して、好ましくは0.5質量部以上、より好ましくは2質量部以上、さらに好ましくは3質量部以上である。0.5質量部未満では、メルカプト基を有するシランカップリング剤を配合した効果が充分に得られない傾向がある。また、メルカプト基を有するシランカップリング剤の含有量は、好ましくは20質量部以下、より好ましくは10質量部以下である。20質量部を超えると、ゴム強度、耐摩耗性が低下する傾向がある。
本発明のゴム組成物は、メルカプト基を有するシランカップリング剤とともに、他のシランカップリング剤を併用することが好ましい。これにより、各性能の改善効果を高めることができる。他のシランカップリング剤としては、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾールテトラスルフィドなどがあげられ、ビス(3-トリエトキシシリルプロピル)テトラスルフィドを好適に使用できる。
他のシランカップリング剤の含有量は、シリカ100質量部に対して、好ましくは0.5質量部以上、より好ましくは3質量部以上である。0.5質量部未満では、他のシランカップリング剤を配合した効果が充分に得られない傾向がある。また、他のシランカップリング剤の含有量は、好ましくは20質量部以下、より好ましくは10質量部以下である。20質量部を超えると、ゴム強度、耐摩耗性が低下する傾向がある。
シランカップリング剤の合計含有量は、シリカ100質量部に対して、好ましくは0.5質量部以上、より好ましくは3質量部以上である。0.5質量部未満では、未加硫ゴム組成物の粘度が高く、良好な加工性を確保できないおそれがある。また、シランカップリング剤の合計含有量は、好ましくは20質量部以下、より好ましくは10質量部以下である。20質量部を超えると、ゴム強度、耐摩耗性が低下する傾向がある。
本発明のゴム組成物は、ガラス転移温度が60~120℃の固体樹脂を含むことが好ましい。上記共役ジエン系重合体とともに上記固体樹脂を配合することで、各性能の改善効果を相乗的に高めることができる。また、上記固体樹脂と、上述のメルカプト基を有するシランカップリング剤や、シリカ(1)及び(2)とを併用することで、各性能の改善効果をさらに高めることができる。
上記固体樹脂のガラス転移温度(Tg)は、60℃以上、好ましくは75℃以上である。60℃未満では、充分なウェットグリップ性能改善効果が得られないおそれがある。また、上記固体樹脂のTgは、120℃以下、好ましくは100℃以下である。120℃を超える場合、高温領域での損失弾性率が大幅に上昇し、低燃費性が悪化する傾向がある。
なお、上記固体樹脂のTgは、JIS-K7121に従い、ティー・エイ・インスツルメント・ジャパン社製の示差走査熱量計(Q200)を用いて、昇温速度10℃/分の条件で測定した値(中間点ガラス転移温度)である。
上記固体樹脂としては、上記Tgを満たした樹脂であれば特に限定されないが、α-メチルスチレン及び/又はスチレンを重合した芳香族ビニル重合体、クマロンインデン樹脂、インデン樹脂などの芳香族系樹脂や、テルペン系樹脂、ロジン系樹脂などを使用することができる。また、これらの誘導体を使用することできる。中でも、未加硫時の粘着性や、低燃費性が良好なことから、芳香族系樹脂が好ましく、α-メチルスチレン及び/又はスチレンを重合した芳香族ビニル重合体、クマロンインデン樹脂がより好ましい。
上記α-メチルスチレン及び/又はスチレンを重合した芳香族ビニル重合体(α-メチルスチレン及び/又はスチレンを重合して得られる樹脂)では、芳香族ビニル単量体(単位)としてスチレン、α-メチルスチレンが使用され、該重合体は、それぞれの単量体の単独重合体、両単量体の共重合体のいずれでもよい。上記芳香族ビニル重合体としては、経済的で加工しやすく、ウェットグリップ性能に優れていることから、α-メチルスチレンの単独重合体、α-メチルスチレン及びスチレンの共重合体が好ましい。
上記芳香族ビニル重合体の重量平均分子量(Mw)は、好ましくは500以上、より好ましくは800以上である。500未満では、ウェットグリップ性能の充分な改善効果が得られにくい傾向がある。また、上記芳香族ビニル重合体の重量平均分子量は、好ましくは3000以下、より好ましくは2000以下である。3000を超えると、フィラーの分散性が低下し、低燃費性が悪化する傾向がある。
なお、本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)(東ソー(株)製GPC-8000シリーズ、検出器:示差屈折計)による測定値をもとに標準ポリスチレン換算により求めることができる。
クマロンインデン樹脂、インデン樹脂は、それぞれ炭素数8のクマロン及び炭素数9のインデンを主要なモノマー、インデンを主要なモノマーとする石炭系又は石油系樹脂である。具体的には、ビニルトルエン-α-メチルスチレン-インデン樹脂、ビニルトルエン-インデン樹脂、α-メチルスチレン-インデン樹脂、α-メチルスチレン-ビニルトルエン-インデン共重合体樹脂などがあげられる。
テルペン系樹脂は、モノテルペン、セスキテルペン、ジテルペンなどのテルペンを基本骨格とするテルペン化合物を主要なモノマーとする樹脂であり、α-ピネン樹脂、β-ピネン樹脂、リモネン樹脂、ジペンテン樹脂、β-ピネン/リモネン樹脂、芳香族変性テルペン樹脂、テルペンフェノール樹脂、水素添加テルペン樹脂などがあげられる。また、ロジン系樹脂としては、松脂を加工することにより得られるアビエチン酸、ピマール酸などの樹脂酸を主成分とするガムロジン、ウッドロジン、トール油ロジンなどの天然産のロジン樹脂(重合ロジン)、水素添加ロジン樹脂、マレイン酸変性ロジン樹脂、ロジン変性フェノール樹脂、ロジングリセリンエステル、不均化ロジン樹脂などがあげられる。
上記固体樹脂の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、さらに好ましくは5質量部以上である。1質量部未満では、充分なウェットグリップ性能の改善効果が得られない傾向がある。また、固体樹脂の含有量は、好ましくは30質量部以下、より好ましくは15質量部以下である。30質量部を超えると、低温領域におけるゴム組成物の弾性率が大幅に上昇してしまい、氷雪上性能が低下する傾向にある。
添加剤としては、公知のものを用いることができ、硫黄などの加硫剤;チアゾール系加硫促進剤、チウラム系加硫促進剤、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤などの加硫促進剤;ステアリン酸、酸化亜鉛などの加硫活性化剤;有機過酸化物;カーボンブラック、炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、マイカなどの充填剤;伸展油、滑剤などの加工助剤;老化防止剤を例示することができる。
上記カーボンブラックとしては、SAF、ISAF、HAF、MAF、FEF、SRF、GPF、APF、FF、CF、SCF及びECFのようなファーネスブラック(ファーネスカーボンブラック);アセチレンブラック(アセチレンカーボンブラック);FT及びMTのようなサーマルブラック(サーマルカーボンブラック);EPC、MPC及びCCのようなチャンネルブラック(チャンネルカーボンブラック);グラファイトなどをあげることができる。これらは1種又は2種以上組み合わせて用いることができる。
カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上である。1質量部未満では、充分な補強性が得られないおそれがある。カーボンブラックの含有量は、好ましくは60質量部以下、より好ましくは30質量部以下、さらに好ましくは15質量部以下、特に好ましくは10質量部以下である。60質量部を超えると、低燃費性が悪化する傾向がある。
カーボンブラックの窒素吸着比表面積(NSA)は、通常、5~200m/gであり、下限は50m/g、上限は150m/gであることが好ましい。また、カーボンブラックのジブチルフタレート(DBP)吸収量は、通常、5~300ml/100gであり、下限は80ml/100g、上限は180ml/100gであることが好ましい。カーボンブラックのNSAやDBP吸収量が上記範囲の下限未満では、補強効果が小さく耐摩耗性が低下する傾向があり、上記範囲の上限を超えると、分散性が悪く、ヒステリシスロスが増大し低燃費性が低下する傾向がある。該窒素吸着比表面積は、ASTM D4820-93に従って測定され、該DBP吸収量は、ASTM D2414-93に従って測定される。市販品としては、東海カーボン(株)製商品名シースト6、シースト7HM、シーストKH、EVONIK-DEGUSSA社製商品名CK3、SpecialBlack4Aなどを用いることができる。
上記伸展油としては、アロマチック系鉱物油(粘度比重恒数(V.G.C.値)0.900~1.049)、ナフテン系鉱物油(V.G.C.値0.850~0.899)、パラフィン系鉱物油(V.G.C.値0.790~0.849)などをあげることができる。伸展油の多環芳香族含有量は、好ましくは3質量%未満であり、より好ましくは1質量%未満である。該多環芳香族含有量は、英国石油学会346/92法に従って測定される。また、伸展油の芳香族化合物含有量(CA)は、好ましくは20質量%以上である。これらの伸展油は、2種以上組み合わされて用いられてもよい。
本発明の効果が良好に得られるという点から、進展油(オイル)の含有量は、ゴム成分100質量部に対して、好ましくは25質量部以上、より好ましくは35質量部以上であり、好ましくは100質量部以下、より好ましくは80質量部以下である。
上記加硫促進剤としては、2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミドなどのチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどのチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミドなどのスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系加硫促進剤をあげることができ、その使用量は、ゴム成分100質量部に対して0.1~5質量部が好ましく、0.2~3質量部がより好ましい。
上記共役ジエン系重合体に、他のゴム成分や添加剤などを配合してゴム組成物を製造する方法としては、公知の方法、例えば、各成分をロールやバンバリーのような公知の混合機で混練する方法を用いることができる。
混練条件としては、加硫剤及び加硫促進剤以外の添加剤を配合する場合、混練温度は、通常50~200℃であり、好ましくは80~190℃であり、混練時間は、通常30秒~30分であり、好ましくは1分~30分である。
加硫剤、加硫促進剤を配合する場合、混練温度は、通常100℃以下であり、好ましくは室温~80℃である。また、加硫剤、加硫促進剤を配合した組成物は、通常、プレス加硫などの加硫処理を行って用いられる。加硫温度としては、通常120~200℃、好ましくは140~180℃である。
本発明のゴム組成物は、氷雪上性能、耐摩耗性、ゴム強度、低燃費性、ウェットグリップ性能及びドライ操縦安定性のバランスに優れており、これらの性能の顕著な改善効果を得ることができる。
本発明のゴム組成物は、タイヤの各部材に用いることができ、スタッドレスタイヤのトレッドに好適に用いることができる。
本発明のスタッドレスタイヤは、上記ゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて各種添加剤を配合したゴム組成物を、未加硫の段階でタイヤのトレッドなどの形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、他のタイヤ部材とともに貼り合わせ、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧して、本発明のスタッドレスタイヤを製造できる。
本発明のスタッドレスタイヤは、乗用車用スタッドレスタイヤとして好適に用いることができる。
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
以下、合成、重合時に用いた各種薬品について、まとめて説明する。なお、薬品は必要に応じて定法に従い精製を行った。
THF:関東化学(株)製無水テトラヒドロフラン
水素化ナトリウム:関東化学(株)製
ジエチルアミン:関東化学(株)製
メチルビニルジクロロシラン:信越化学工業(株)製
無水ヘキサン:関東化学(株)製
スチレン:関東化学(株)製
ブタジエン:東京化成工業(株)製1,3-ブタジエン
TMEDA:関東化学(株)製テトラメチルエチレンジアミン
n-ブチルリチウム溶液:関東化学(株)製の1.6M n-ブチルリチウムヘキサン溶液
開始剤(1):FMC社製AI-200CE2(3-(N,N-ジメチルアミノ)-1-プロピルリチウムにイソプレン由来の構造単位が2単位結合した化合物(下記式で表される化合物))(0.9M)
Figure JPOXMLDOC01-appb-C000028
ピペリジン:東京化成工業(株)製
ジアミルアミン:東京化成工業(株)製
2,6-ジ-tert-ブチル-p-クレゾール:大内新興化学工業(株)製のノクラック200
ビス(ジメチルアミノ)メチルビニルシラン:信越化学工業(株)製
N,N-ジメチルアミノプロピルアクリルアミド:東京化成工業(株)製
3-ジエチルアミノプロピルトリエトキシシラン:アヅマックス(株)製
1,3-ジメチル-2-イミダゾリジノン:東京化成工業(株)製
N-フェニル-2-ピロリドン:東京化成工業(株)製
N-メチル-ε-カプロラクタム:東京化成工業(株)製
トリス[3-(トリメトキシシリル)プロピル]イソシアヌレート:信越化学工業(株)製
N,N-ジメチルホルムアミドジメチルアセタール:東京化成工業(株)製
1,3-ジイソプロペニルベンゼン:東京化成工業(株)製
sec-ブチルリチウム溶液:関東化学(株)製(1.0mol/L)
シクロヘキサン:関東化学(株)製
<変性剤(1)(主鎖変性剤)の作製>
窒素雰囲気下、100mlメスフラスコにビス(ジメチルアミノ)メチルビニルシランを15.8g入れ、さらに無水ヘキサンを加え全量を100mlにして作成した。
<変性剤(2)(末端変性剤)の作製>
窒素雰囲気下、100mlメスフラスコにN,N-ジメチルアミノプロピルアクリルアミドを15.6g入れ、さらに無水ヘキサンを加え全量を100mlにして作成した。
<変性剤(3)(主鎖変性剤)の作製>
充分に窒素置換した2L三つ口フラスコにTHF1000mL、水素化ナトリウム13gを加え、氷水バス上で撹拌しながらジエチルアミン36.5gをゆっくり滴下した。30分撹拌後、メチルビニルジクロロシラン36gを30分かけて滴下し、2時間撹拌させた。得られた溶液を濃縮し、ろ過後、減圧蒸留精製を行い、ビス(ジエチルアミノ)メチルビニルシランを合成した。得られたビス(ジエチルアミノ)メチルビニルシラン21.4gを窒素雰囲気下で100mlメスフラスコに入れ、さらに無水ヘキサンを加え全量を100mlにした。
<開始剤(2)の作製>
充分に窒素置換した200mLナスフラスコに、無水ヘキサン127.6ml、ピペリジン8.5gを加えた。0℃に冷却後、n-ブチルリチウム溶液62.5mLを1時間かけてゆっくり添加し、作製した。
<開始剤(3)の作製>
充分に窒素置換した200mLナスフラスコに、無水ヘキサン117ml、ジアミルアミン15.7gを加えた。0℃に冷却後、n-ブチルリチウム溶液62.5mLを1時間かけてゆっくり添加し、作製した。
<変性剤(4)(末端変性剤)の作製>
窒素雰囲気下、100mlメスフラスコに3-ジエチルアミノプロピルトリエトキシシランを27.7g入れ、さらに無水ヘキサンを加え全量を100mlにして作製した。
<開始剤(4)(二官能開始剤)の作成>
充分に乾燥及び窒素置換された1Lナスフラスコにシクロヘキサン550mlとTMEDA27mlとsec-ブチルリチウム溶液200mlを加え、45℃で撹拌しながら30分かけて1,3-ジイソプロペニルベンゼン17mlをゆっくり加えた。さらに1時間撹拌後、常温まで冷却させて作成した。
<変性剤(5)(末端変性剤)の作製>
窒素雰囲気下、100mlメスフラスコに1,3-ジメチル-2-イミダゾリジノンを11.4g入れ、さらに無水ヘキサンを加え全量を100mlにして作製した。
<変性剤(6)(末端変性剤)の作製>
窒素雰囲気下、100mlメスフラスコにN-フェニル-2-ピロリドンを16.1g入れ、さらに無水ヘキサンを加え全量を100mlにして作製した。
<変性剤(7)(末端変性剤)の作製>
窒素雰囲気下、100mlメスフラスコにN-メチル-ε-カプロラクタムを12.7g入れ、さらに無水ヘキサンを加え全量を100mlにして作製した。
<変性剤(8)(末端変性剤)の作製>
窒素雰囲気下、100mlメスフラスコにトリス[3-(トリメトキシシリル)プロピル]イソシアヌレートを30.7g入れ、さらに無水ヘキサンを加え全量を200mlにして作製した。
<変性剤(9)(末端変性剤)の作製>
窒素雰囲気下、100mlメスフラスコにN,N-ジメチルホルムアミドジメチルアセタールを11.9g入れ、さらに無水ヘキサンを加え全量を200mlにして作製した。
<共重合体の分析>
下記により得られた共重合体(共役ジエン系重合体)の分析は以下の方法で行った。
<重量平均分子量Mw及び数平均分子量Mnの測定>
共重合体の重量平均分子量Mw及び数平均分子量Mnは、ゲルパーミエーションクロマトグラフ(GPC)(東ソー(株)製GPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMULTIPORE HZ-M)による測定値を基に標準ポリスチレン換算値として求めた。測定結果から、分子量分布Mw/Mnを算出した。
<共重合体の構造同定>
共重合体の構造同定(スチレン含有量、ビニル含有量)は、日本電子(株)製JNM-ECAシリーズの装置を用いて行った。測定は、重合体0.1gを15mlのトルエンに溶解させ、30mlのメタノール中にゆっくり注ぎ込んで再沈殿させたものを、減圧乾燥後に測定した。
<共重合体(1)の合成>
充分に窒素置換した30L耐圧容器にn-ヘキサンを18L、スチレンを600g、ブタジエンを1400g、変性剤(1)を40mL、TMEDAを10mmol加え、40℃に昇温した。次に、開始剤(2)を34mL加えた後、50℃に昇温させ3時間撹拌した。次に、変性剤(2)を20mL追加し30分間撹拌を行った。反応溶液にメタノール15mL及び2,6-tert-ブチル-p-クレゾール0.1gを添加後、スチームストリッピング処理によって重合体溶液から凝集体を回収し、得られた凝集体を24時間減圧乾燥させ、共重合体(1)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(2))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(2))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(2)の合成>
開始剤(2)34mLを開始剤(3)34mLに変えた以外は、共重合体(1)の合成と同じ処方により、共重合体(2)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(3))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(2))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(3)の合成>
スチレンの量を900gに、ブタジエンの量を1100gに変えた以外は、共重合体(1)の合成と同じ処方により、共重合体(3)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(2))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(2))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(4)の合成>
開始剤(2)34mLを開始剤(1)19mlに変えた以外は、共重合体(1)の合成と同じ処方により、共重合体(4)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。また、投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(2))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(5)の合成>
充分に窒素置換した30L耐圧容器にn-ヘキサンを18L、スチレンを600g、ブタジエンを1400g、変性剤(1)を75mL、TMEDAを10mmol加え、40℃に昇温した。次に、開始剤(1)を19mL加えた後、50℃に昇温させ30分撹拌し、さらに変性剤(1)を75mL追加し2.5時間撹拌した。次に、変性剤(2)を20mL追加し30分間撹拌を行った。反応溶液にメタノール1mL及び2,6-tert-ブチル-p-クレゾール0.1gを添加後、スチームストリッピング処理によって重合体溶液から凝集体を回収し、得られた凝集体を24時間減圧乾燥させ、共重合体(5)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり1.19gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(2))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(6)の合成>
スチレンの量を0gに、ブタジエンの量を2000gに、TMEDA10mmoLをTHF5mmoLに、開始剤(1)19mLを開始剤(1)23mLに変えた以外は、共重合体(4)の合成と同じ処方により、共重合体(6)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり1.05mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(2))は、投入した重合開始剤に由来するアルカリ金属1molあたり、0.95molであった。
<共重合体(7)の合成>
変性剤(1)40mLを変性剤(3)40mLに変えた以外は、共重合体(4)の合成と同じ処方により、共重合体(7)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(3))は、単量体成分100gあたり0.43gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(2))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(8)の合成>
開始剤(1)19mLをn-ブチルリチウム溶液10.6mLに変えた以外は、共重合体(7)の合成と同じ処方により、共重合体(8)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(3))は、単量体成分100gあたり0.43gであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(2))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(9)の合成>
開始剤(1)23mLをn-ブチルリチウム溶液13mLに変えた以外は、共重合体(6)の合成と同じ処方により、共重合体(9)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.43gであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(2))は、投入した重合開始剤に由来するアルカリ金属1molあたり、0.95molであった。
<共重合体(10)の合成>
変性剤(1)40mLを0mLに変えた以外は、共重合体(1)の合成と同じ処方により、共重合体(10)を得た。投入した重合開始剤(開始剤(2))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(2))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(11)の合成>
変性剤(2)20mLを0mLに変えた以外は、共重合体(1)の合成と同じ処方により、共重合体(11)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(2))は、単量体成分100gあたり0.85mmolであった。
<共重合体(12)の合成>
充分に窒素置換した30L耐圧容器にn-ヘキサンを18L、スチレンを600g、ブタジエンを1400g、TMEDAを10mmol加え、40℃に昇温した。次に、n-ブチルリチウム溶液を11mL加えた後、50℃に昇温させ3時間撹拌した。次に、反応溶液にメタノール1mL及び2,6-tert-ブチル-p-クレゾール0.1gを添加後、スチームストリッピング処理によって重合体溶液から凝集体を回収し、得られた凝集体を24時間減圧乾燥させ、共重合体(12)を得た。
<共重合体(13)の合成>
重合体溶液から凝集体を回収する際、スチームストリッピング処理の代わりに、重合体溶液を常温で24時間蒸発させ、その後減圧乾燥をさせることで凝集体を回収した以外は、共重合体(7)の合成と同じ処方により、共重合体(13)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(3))は、単量体成分100gあたり0.43gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(2))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(14)の合成>
変性剤(3)40mLを0mLに、変性剤(2)20mLを0mLに変えた以外は、共重合体(7)の合成と同じ処方により、共重合体(14)を得た。なお、投入した重合開始剤(開始剤(1))は、単量体成分100gあたり8.5mmolであった。
<共重合体(15)の合成>
開始剤(1)19mLをn-ブチルリチウム溶液6.8mLに、変性剤(2)20mLを0mLに変えた以外は、共重合体(7)の合成と同じ処方により、共重合体(15)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(3))は、単量体成分100gあたり0.43gであった。
<共重合体(16)の合成>
開始剤(1)19mLをn-ブチルリチウム溶液6.8mLに、変性剤(3)40mLを0mLに変えた以外は、共重合体(7)の合成と同じ処方により、共重合体(16)を得た。なお、投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(2))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(17)の合成>
開始剤(2)34mLを開始剤(4)(二官能開始剤)68mLに、変性剤(2)20mLを変性剤(2)40mlに変えた以外は、共重合体(1)の合成と同じ処方により、共重合体(17)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(2))は、投入した重合開始剤に由来するアルカリ金属1molあたり、2.28mol(片方の末端当り1.14mol)であった。
<共重合体(18)の合成>
スチレンの量を0gに、ブタジエンの量を2000gに、TMEDA10mmoLをTHF5mmoLに、開始剤(1)19mLを開始剤(1)23mLに変えた以外は、共重合体(7)の合成と同じ処方により、共重合体(18)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(3))は、単量体成分100gあたり0.43gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。
投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(2))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(19)の合成> 
スチレンの量を0gに、ブタジエンの量を2000gに、TMEDA10mmoLをTHF5mmoLに変えた以外は、共重合体(8)の合成と同じ処方により、共重合体(19)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(3))は、単量体成分100gあたり0.43gであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(2))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(20)の合成> 
充分に窒素置換した30L耐圧容器にn-ヘキサンを18L、ブタジエンを2000g、THFを5mmol加え、40℃に昇温した。次に、n-ブチルリチウム溶液を11mL加えた後、50℃に昇温させ3時間撹拌した。次に、反応溶液にメタノール1mL及び2,6-tert-ブチル-p-クレゾール0.1gを添加後、スチームストリッピング処理によって重合体溶液から凝集体を回収し、得られた凝集体を24時間減圧乾燥させ、共重合体(20)を得た。
<共重合体(21)の合成>
重合体溶液から凝集体を回収する際、スチームストリッピング処理の代わりに、重合体溶液を常温で24時間蒸発させ、その後減圧乾燥をさせることで凝集体を回収した以外は、共重合体(18)の合成と同じ処方により、共重合体(21)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(3))は、単量体成分100gあたり0.43gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(2))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(22)の合成>
変性剤(2)20mLを変性剤(4)20mLに変えた以外は、共重合体(1)の合成と同じ処方により、共重合体(22)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(2))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(4))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(23)の合成>
変性剤(2)20mLを変性剤(4)20mLに変えた以外は、共重合体(2)の合成と同じ処方により、共重合体(23)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(3))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(4))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(24)の合成>
変性剤(2)20mLを変性剤(4)20mLに変えた以外は、共重合体(3)の合成と同じ処方により、共重合体(24)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(2))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(4))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(25)の合成>
変性剤(2)20mLを変性剤(4)20mLに変えた以外は、共重合体(4)の合成と同じ処方により、共重合体(25)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(4))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(26)の合成>
変性剤(2)20mLを変性剤(4)20mLに変えた以外は、共重合体(5)の合成と同じ処方により、共重合体(26)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり1.19gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(4))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(27)の合成>
変性剤(2)20mLを変性剤(4)20mLに変えた以外は、共重合体(6)の合成と同じ処方により、共重合体(27)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり1.05mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(4))は、投入した重合開始剤に由来するアルカリ金属1molあたり、0.95molであった。
<共重合体(28)の合成>
変性剤(2)20mLを変性剤(4)20mLに変えた以外は、共重合体(7)の合成と同じ処方により、共重合体(28)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(3))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(4))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(29)の合成>
重合体溶液から凝集体を回収する際、スチームストリッピング処理の代わりに、重合体溶液を常温で24時間蒸発させ、その後減圧乾燥をさせることで凝集体を回収した以外は、共重合体(28)の合成と同じ処方により、共重合体(29)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(3))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(4))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(30)の合成>
開始剤(1)19mLをn-ブチルリチウム溶液10.6mLに、変性剤(3)40mLを0mLに変えた以外は、共重合体(28)の合成と同じ処方により、共重合体(30)を得た。なお、投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(4))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(31)の合成>
変性剤(2)20mLを変性剤(4)20mLに変えた以外は、共重合体(18)の合成と同じ処方により、共重合体(31)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(3))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(4))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(32)の合成>
重合体溶液から凝集体を回収する際、スチームストリッピング処理の代わりに、重合体溶液を常温で24時間蒸発させ、その後減圧乾燥をさせることで凝集体を回収した以外は、共重合体(31)の合成と同じ処方により、共重合体(32)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(3))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(4))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(33)の合成>
変性剤(2)20mLを変性剤(5)20mLに変えた以外は、共重合体(1)の合成と同じ処方により、共重合体(33)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(2))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(5))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(34)の合成>
変性剤(2)20mLを変性剤(5)20mLに変えた以外は、共重合体(2)の合成と同じ処方により、共重合体(34)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(3))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(5))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(35)の合成>
変性剤(2)20mLを変性剤(5)20mLに変えた以外は、共重合体(3)の合成と同じ処方により、共重合体(35)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(2))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(5))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(36)の合成>
変性剤(2)20mLを変性剤(5)20mLに変えた以外は、共重合体(4)の合成と同じ処方により、共重合体(36)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(5))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(37)の合成>
変性剤(2)20mLを変性剤(5)20mLに変えた以外は、共重合体(5)の合成と同じ処方により、共重合体(37)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり1.19gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(5))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(38)の合成>
変性剤(2)20mLを変性剤(5)20mLに変えた以外は、共重合体(7)の合成と同じ処方により、共重合体(38)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(3))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(5))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(39)の合成>
重合体溶液から凝集体を回収する際、スチームストリッピング処理の代わりに、重合体溶液を常温で24時間蒸発させ、その後減圧乾燥をさせることで凝集体を回収した以外は、共重合体(38)の合成と同じ処方により、共重合体(39)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(3))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(5))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(40)の合成>
変性剤(2)20mLを変性剤(6)20mLに変えた以外は、共重合体(7)の合成と同じ処方により、共重合体(40)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(3))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(6))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(41)の合成>
変性剤(2)20mLを変性剤(7)20mLに変えた以外は、共重合体(7)の合成と同じ処方により、共重合体(41)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(3))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(7))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(42)の合成>
開始剤(1)19mLをブチルリチウム溶液10.6mLに、変性剤(3)40mLを0mLに変えた以外は、共重合体(38)の合成と同じ処方により、共重合体(42)を得た。なお、投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(5))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(43)の合成>
変性剤(2)20mLを変性剤(8)20mLに変えた以外は、共重合体(1)の合成と同じ処方により、共重合体(43)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(2))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(8))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(44)の合成>
変性剤(2)20mLを変性剤(8)20mLに変えた以外は、共重合体(2)の合成と同じ処方により、共重合体(44)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(3))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(8))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(45)の合成>
変性剤(2)20mLを変性剤(8)20mLに変えた以外は、共重合体(3)の合成と同じ処方により、共重合体(45)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(2))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(8))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(46)の合成>
変性剤(2)20mLを変性剤(8)20mLに変えた以外は、共重合体(4)の合成と同じ処方により、共重合体(46)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(8))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(47)の合成>
変性剤(2)20mLを変性剤(8)20mLに変えた以外は、共重合体(5)の合成と同じ処方により、共重合体(47)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり1.19gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(8))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(48)の合成>
変性剤(2)20mLを変性剤(8)20mLに変えた以外は、共重合体(7)の合成と同じ処方により、共重合体(48)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(3))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(8))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(49)の合成>
重合体溶液から凝集体を回収する際、スチームストリッピング処理の代わりに、重合体溶液を常温で24時間蒸発させ、その後減圧乾燥をさせることで凝集体を回収した以外は、共重合体(48)の合成と同じ処方により、共重合体(49)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(3))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(8))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(50)の合成>
開始剤(1)19mLをブチルリチウム溶液10.6mLに、変性剤(3)40mLを0mLに変えた以外は、共重合体(48)の合成と同じ処方により、共重合体(50)を得た。なお、投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(8))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(51)の合成>
変性剤(2)20mLを変性剤(9)20mLに変えた以外は、共重合体(1)の合成と同じ処方により、共重合体(51)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(2))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(9))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(52)の合成>
変性剤(2)20mLを変性剤(9)20mLに変えた以外は、共重合体(2)の合成と同じ処方により、共重合体(52)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(3))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(9))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(53)の合成>
変性剤(2)20mLを変性剤(9)20mLに変えた以外は、共重合体(3)の合成と同じ処方により、共重合体(53)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(2))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(9))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(54)の合成>
変性剤(2)20mLを変性剤(9)20mLに変えた以外は、共重合体(4)の合成と同じ処方により、共重合体(54)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(9))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(55)の合成>
変性剤(2)20mLを変性剤(9)20mLに変えた以外は、共重合体(5)の合成と同じ処方により、共重合体(55)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(1))は、単量体成分100gあたり1.19gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(9))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(56)の合成>
変性剤(2)20mLを変性剤(9)20mLに変えた以外は、共重合体(7)の合成と同じ処方により、共重合体(56)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(3))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(9))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(57)の合成>
重合体溶液から凝集体を回収する際、スチームストリッピング処理の代わりに、重合体溶液を常温で24時間蒸発させ、その後減圧乾燥をさせることで凝集体を回収した以外は、共重合体(56)の合成と同じ処方により、共重合体(57)を得た。なお、投入したケイ素含有ビニル化合物(変性剤(3))は、単量体成分100gあたり0.32gであった。投入した重合開始剤(開始剤(1))は、単量体成分100gあたり0.85mmolであった。投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(9))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
<共重合体(58)の合成>
開始剤(1)19mLをブチルリチウム溶液10.6mLに、変性剤(3)40mLを0mLに変えた以外は、共重合体(56)の合成と同じ処方により、共重合体(58)を得た。なお、投入した窒素原子及び/又はケイ素原子を含有する化合物(変性剤(9))は、投入した重合開始剤に由来するアルカリ金属1molあたり、1.18molであった。
共重合体(1)~(58)の単量体成分などについて、表1~5にまとめた。
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
以下に、実施例及び比較例で用いた各種薬品について説明する。
共重合体(1)~(58):上記方法で合成
天然ゴム:TSR20
ハイシスポリブタジエン(ハイシスBR):宇部興産(株)製のウベポールBR150B(シス含量:97質量%)
シリカA:EVONIK-DEGUSSA社製のウルトラジルVN3-G(NSA:175m/g)
シリカB:ローディア社製のゼオシル1205MP(NSA:200m/g)
シリカC:EVONIK-DEGUSSA社製のウルトラジル360(NSA:50m/g)
シランカップリング剤A:EVONIK-DEGUSSA社製のSi69(ビス(3-トリエトキシシリルプロピル)テトラスルフィド)
シランカップリング剤B:EVONIK-DEGUSSA社製のSi363
シランカップリング剤C:Momentive社製のNXT-Z45(結合単位A及び結合単位Bを含む化合物(結合単位A:55モル%、結合単位B:45モル%))
カーボンブラック:三菱化学(株)製のダイアブラックN339(NSA:96m/g、DBP吸収量:124ml/100g)
クマロンインデン樹脂(固体樹脂):ルトガーズケミカル社製のNOVARES C90(Tg:90℃)
オイル:JX日鉱日石エネルギー(株)製のX-140
老化防止剤:住友化学(株)製のアンチゲン3C
ステアリン酸:日油(株)製のビーズステアリン酸つばき
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
ワックス:大内新興化学工業(株)製のサンノックN
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤1:住友化学(株)製のソクシノールCZ
加硫促進剤2:住友化学(株)製のソクシノールD
(実施例及び比較例)
表6~25に示す配合内容に従い、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の材料を150℃の条件下で5分間混練りし、混練り物を得た。次に、得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて、80℃の条件下で5分間練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を170℃で20分間、0.5mm厚の金型でプレス加硫し、加硫ゴム組成物を得た。
また、得られた未加硫ゴム組成物をトレッドの形状に成形し、タイヤ成型機上で他のタイヤ部材とともに貼り合わせて未加硫タイヤを形成し、170℃で12分間加硫し、試験用タイヤ(195/65R15サイズ、DS-2パターンの乗用車用スタッドレスタイヤ)を製造した。
<評価項目及び試験方法>
以下の評価において、表6~12の基準比較例を比較例1、表13~19の基準比較例を比較例22、表20~25の基準比較例を比較例45とした。
<ゴム強度指数>
JIS K 6251:2010に準じて引張試験を行い、破断伸びを測定した。測定結果を、基準比較例を100とした指数で示した。指数が大きい程、ゴム強度(破壊強度)が大きいことを示している。
(ゴム強度指数)=(各配合の破断伸び)/(基準比較例の破断伸び)×100
<低発熱性指数>
(株)上島製作所製スペクトロメーターを用いて、動的歪振幅1%、周波数10Hz、温度50℃で加硫ゴム組成物のtanδを測定した。tanδの逆数の値について基準比較例を100として指数表示した。数値が大きいほど転がり抵抗が小さく(発熱しにくく)、低燃費性に優れることを示している。
<ハンドリング性能指数>
上記試験用タイヤを国産2000ccのFF車に装着し、下記の条件下で雪氷上を実車走行し、発進、加速及び停止についてフィーリングによる評価を行った。フィーリング評価は、基準比較例を100として、明らかに性能が向上したとテストドライバーが判断したものを120、これまでで全く見られなかった良いレベルであるものを140とする様な評点付けをした。
                (氷上)       (雪上)
   試験場所 :  北海道名寄テストコ-ス      ←
   気温 :       -1~-6゜C    -2゜~-10゜C
<氷上制動性能指数>
上記車両を用いて氷上を走行し、時速30km/hでロックブレーキを踏み、停止させるまでに要した停止距離(氷上制動停止距離)を測定した。結果は、基準比較例を100として、下記式により指数表示した。指数が大きいほど、氷上制動性能が良好である。
(氷上制動性能指数)=(基準比較例の氷上制動停止距離)/(各配合の氷上制動停止距離)×100
<耐摩耗性指数>
上記試験用タイヤを国産FF車に装着し、走行距離8000km後のタイヤトレッド部の溝深さを測定し、タイヤ溝深さが1mm減るときの走行距離を算出した。結果は、基準比較例を100として、下記式により指数表示した。指数が大きいほど、耐摩耗性が良好である。
(耐摩耗性指数)=(各配合の走行距離)/(基準比較例の走行距離)×100
<ウェットグリップ性能指数>
上記試験用タイヤを車両(国産FF2000cc)の全輪に装着して、湿潤アスファルト路面にて初速度100km/hからの制動距離を求めた。結果は指数で表し、数値が大きいほどウェットスキッド性能(ウェットグリップ性能)が良好である。指数は次の式で求めた。
(ウェットグリップ性能指数)=(基準比較例の制動距離)/(各配合の制動距離)×100
<ドライ操縦安定性>
上記試験用タイヤを国産FF2000ccの全輪に装着し、テストコース(乾燥路面)でドライバーの官能評価により、ドライ操縦安定性を評価した。評価は10点満点とし、基準比較例を4点として相対評価をした。評点が大きいほど操縦安定性に優れている。
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
表6~25に示すように、実施例は、特定のアミン構造を開始末端に有し、かつ、主鎖部分にケイ素含有化合物由来の構造単位を、停止末端に窒素原子及び/又はケイ素原子を含有する化合物由来の構造単位を有する共役ジエン系共重合体と、ミクロ構造におけるシス構造の割合が95質量%以上であるハイシスポリブタジエンと、ポリイソプレン系ゴムと、シリカと、メルカプト基を有するシランカップリング剤とをそれぞれ特定量含んでいる為、比較例のゴム組成物に比べて氷雪上性能、耐摩耗性、ゴム強度、低燃費性、ウェットグリップ性能及びドライ操縦安定性がバランス良く改善された。また、開始末端、主鎖、停止末端の3箇所が特定の化合物で変性された構造を有する上記共役ジエン系重合体と、開始末端のみ、主鎖のみ、停止末端のみが変性された共重合体との比較から、開始末端、主鎖、停止末端の3箇所を変性することで、各性能の改善効果が相乗的に高まることが分かった。
実施例の中でも、上記共役ジエン系重合体メルカプト基とともに、メルカプト基を有するシランカップリング剤、特定の窒素吸着比表面積を有する2種のシリカ、及び特定のガラス転移温度を有する固体樹脂を併用した実施例28が特に良好な性能を示した。
上記共役ジエン系重合体の代わりに、主鎖部分にケイ素含有化合物由来の構造単位を、停止末端に窒素原子及び/又はケイ素原子を含有する化合物由来の構造単位を有しているが、特定のアミン構造を開始末端に有しない共重合体(17)を含んだ比較例8、29、52は、実施例と比較して性能が低く、耐摩耗性に至っては基準比較例よりも劣っていた。

Claims (16)

  1. 下記式(I)で表される重合開始剤を用いて共役ジエン化合物及びケイ素含有ビニル化合物を含む単量体成分を重合させて得られる共重合体の活性末端に、窒素原子及び/又はケイ素原子を含有する化合物を反応させて得られる共役ジエン系重合体と、
    ミクロ構造におけるシス構造の割合が95質量%以上であるハイシスポリブタジエンと、
    ポリイソプレン系ゴムと、
    窒素吸着比表面積が40~400m/gのシリカとを含み、
    ゴム成分100質量%中、前記共役ジエン系重合体の含有量が1~45質量%、前記ハイシスポリブタジエンの含有量が20~64質量%、前記ポリイソプレン系ゴムの含有量が35~60質量%であり、
    前記ゴム成分100質量部に対して、前記シリカの含有量が5~150質量部であるゴム組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、iは0又は1であり、R11は炭素原子数1~100のヒドロカルビレン基を表し、R12及びR13は、置換基を有してもよいヒドロカルビル基、又は、トリヒドロカルビルシリル基を表すか、あるいは、R12とR13とが結合して、ケイ素原子、窒素原子及び酸素原子からなる原子群から選択される少なくとも1種の原子をヘテロ原子として有していてもよいヒドロカルビレン基を表し、Mはアルカリ金属原子を表す)
  2. 前記式(I)のR11が下記式(Ia)で表される基である請求項1記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(Ia)中、R14は共役ジエン化合物由来の構造単位及び/又は芳香族ビニル化合物由来の構造単位からなるヒドロカルビレン基を表し、nは1~10の整数を表す)
  3. 前記式(Ia)のR14がイソプレン由来の構造単位1~10単位からなるヒドロカルビレン基である請求項2記載のゴム組成物。
  4. 前記ケイ素含有ビニル化合物が、下記式(II)で表される化合物である請求項1~3のいずれかに記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(II)中、mは0又は1であり、R21はヒドロカルビレン基を表し、X、X及びXは置換アミノ基、ヒドロカルビルオキシ基、又は置換基を有していてもよいヒドロカルビル基を表す)
  5. 前記共役ジエン系重合体が芳香族ビニル化合物由来の構造単位を有する請求項1~4のいずれかに記載のゴム組成物。
  6. 前記シリカが、窒素吸着比表面積が40m/g以上、120m/g未満のシリカ(1)と、窒素吸着比表面積が120m/g以上のシリカ(2)とを含む請求項1~5のいずれかに記載のゴム組成物。
  7. 前記ゴム成分100質量部に対して、ガラス転移温度が60~120℃の固体樹脂を1~30質量部含む請求項1~6のいずれかに記載のゴム組成物。
  8. 前記シリカが、窒素吸着比表面積が40m/g以上、120m/g未満のシリカ(1)と、窒素吸着比表面積が120m/g以上のシリカ(2)とを含み、
    前記ゴム成分100質量部に対して、ガラス転移温度が60~120℃の固体樹脂を1~30質量部含む請求項1~7のいずれかに記載のゴム組成物。
  9. 前記シリカ100質量部に対して、メルカプト基を有するシランカップリング剤を0.5~20質量部含む請求項1~8のいずれかに記載のゴム組成物。
  10. 前記シリカ100質量部に対して、メルカプト基を有するシランカップリング剤を0.5~20質量部含み、
    前記シリカが、窒素吸着比表面積が40m/g以上、120m/g未満のシリカ(1)と、窒素吸着比表面積が120m/g以上のシリカ(2)とを含む請求項1~9のいずれかに記載のゴム組成物。
  11. 前記シリカ100質量部に対して、メルカプト基を有するシランカップリング剤を0.5~20質量部含み、
    前記ゴム成分100質量部に対して、ガラス転移温度が60~120℃の固体樹脂を1~30質量部含む請求項1~10のいずれかに記載のゴム組成物。
  12. 前記シリカ100質量部に対して、メルカプト基を有するシランカップリング剤を0.5~20質量部含み、
    前記シリカが、窒素吸着比表面積が40m/g以上、120m/g未満のシリカ(1)と、窒素吸着比表面積が120m/g以上のシリカ(2)とを含み、
    前記ゴム成分100質量部に対して、ガラス転移温度が60~120℃の固体樹脂を1~30質量部含む請求項1~11のいずれかに記載のゴム組成物。
  13. 前記シリカ100質量部に対して、メルカプト基を有するシランカップリング剤を0.5~20質量部含み、
    前記シランカップリング剤が、下記式(1)で表される化合物、及び/又は下記式(2)で示される結合単位Aと下記式(3)で示される結合単位Bとを含む化合物である請求項1~12のいずれかに記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(1)中、R101~R103は、分岐若しくは非分岐の炭素数1~12のアルキル基、分岐若しくは非分岐の炭素数1~12のアルコキシ基、又は-O-(R111-O)-R112(z個のR111は、分岐若しくは非分岐の炭素数1~30の2価の炭化水素基を表す。z個のR111はそれぞれ同一でも異なっていてもよい。R112は、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、炭素数6~30のアリール基、又は炭素数7~30のアラルキル基を表す。zは1~30の整数を表す)で表される基を表す。R101~R103はそれぞれ同一でも異なっていてもよい。R104は、分岐若しくは非分岐の炭素数1~6のアルキレン基を表す)
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (式(2)及び(3)中、R201は水素、ハロゲン、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、分岐若しくは非分岐の炭素数2~30のアルキニル基、又は該アルキル基の末端の水素が水酸基若しくはカルボキシル基で置換されたものを表す。R202は分岐若しくは非分岐の炭素数1~30のアルキレン基、分岐若しくは非分岐の炭素数2~30のアルケニレン基、又は分岐若しくは非分岐の炭素数2~30のアルキニレン基を表す。R201とR202とで環構造を形成してもよい。)
  14. 前記シリカが、窒素吸着比表面積が40m/g以上、120m/g未満のシリカ(1)と、窒素吸着比表面積が120m/g以上のシリカ(2)とを含み、
    前記シリカ(1)及び(2)の窒素吸着比表面積及び含有量が以下の式を満たす請求項1~13のいずれかに記載のゴム組成物。
    (シリカ(2)の窒素吸着比表面積)/(シリカ(1)の窒素吸着比表面積)≧1.4
    (シリカ(1)の含有量)×0.06≦(シリカ(2)の含有量)≦(シリカ(1)の含有量)×15
  15. スタッドレスタイヤのトレッドに使用される請求項1~14のいずれかに記載のゴム組成物。
  16. 請求項1~15のいずれかに記載のゴム組成物を用いて作製したスタッドレスタイヤ。
PCT/JP2012/066217 2011-11-24 2012-06-26 ゴム組成物及びスタッドレスタイヤ WO2013077019A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280055283.9A CN103917590B (zh) 2011-11-24 2012-06-26 橡胶组合物以及无钉防滑轮胎
EP12851673.9A EP2749594B1 (en) 2011-11-24 2012-06-26 Rubber composition and studless tire
US14/346,845 US20140213693A1 (en) 2011-11-24 2012-06-26 Rubber composition and studless tire
JP2013545813A JP5918262B2 (ja) 2011-11-24 2012-06-26 ゴム組成物及びスタッドレスタイヤ

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011256622 2011-11-24
JP2011-256623 2011-11-24
JP2011256623 2011-11-24
JP2011256624 2011-11-24
JP2011-256622 2011-11-24
JP2011-256624 2011-11-24

Publications (1)

Publication Number Publication Date
WO2013077019A1 true WO2013077019A1 (ja) 2013-05-30

Family

ID=48469481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066217 WO2013077019A1 (ja) 2011-11-24 2012-06-26 ゴム組成物及びスタッドレスタイヤ

Country Status (5)

Country Link
US (1) US20140213693A1 (ja)
EP (1) EP2749594B1 (ja)
JP (1) JP5918262B2 (ja)
CN (1) CN103917590B (ja)
WO (1) WO2013077019A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006148A (ja) * 2014-05-27 2016-01-14 住友ゴム工業株式会社 冬用空気入りタイヤ
WO2021020189A1 (ja) * 2019-07-26 2021-02-04 Jsr株式会社 重合体組成物、架橋重合体、及びタイヤ
JP2021523261A (ja) * 2018-05-04 2021-09-02 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー タイヤトレッドゴム組成物
JP2022534568A (ja) * 2019-05-29 2022-08-02 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー タイヤトレッドゴム組成物及びその関連方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014002423A2 (pt) * 2011-08-03 2017-02-21 Sumitomo Rubber Ind composição de borracha e pneumático
US9428641B2 (en) 2011-11-24 2016-08-30 Sumitomo Rubber Industries, Ltd. Rubber composition, and pneumatic tire
JP5918261B2 (ja) * 2011-11-24 2016-05-18 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
US9120890B2 (en) 2011-11-24 2015-09-01 Sumitomo Rubber Industries, Ltd. Rubber composition and pneumatic tire
JP6050254B2 (ja) 2011-12-26 2016-12-21 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
WO2013099324A1 (ja) 2011-12-26 2013-07-04 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
US9109073B1 (en) * 2014-08-19 2015-08-18 The Goodyear Tire & Rubber Company Bifunctionalized polymer
JP6240731B1 (ja) * 2016-09-30 2017-11-29 住友ゴム工業株式会社 スタッドレスタイヤ用キャップトレッドゴム組成物
KR102084129B1 (ko) * 2018-03-29 2020-03-03 한국타이어앤테크놀로지 주식회사 타이어 트레드용 고무 조성물 및 이를 포함하는 타이어
TW202022035A (zh) * 2018-10-25 2020-06-16 日商Jsr股份有限公司 聚合物組成物、交聯聚合物及輪胎

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817674B1 (ja) * 1970-03-23 1973-05-31
JPH08193147A (ja) * 1995-01-19 1996-07-30 Yokohama Rubber Co Ltd:The ゴム組成物
JPH08253520A (ja) * 1995-02-01 1996-10-01 Bridgestone Corp 環状アミン含有アミノアルキルリチウム化合物およびそれらを用いて得られるポリマー類
JP2000239444A (ja) * 1999-02-19 2000-09-05 Bridgestone Corp ゴム組成物及びそれを用いた重荷重用空気入りタイヤ
JP2000344955A (ja) 1999-06-04 2000-12-12 Sumitomo Rubber Ind Ltd 変性ジエン系ゴム組成物
JP2004137463A (ja) * 2002-08-21 2004-05-13 Sumitomo Rubber Ind Ltd タイヤトレッド用ゴム組成物
JP2006233177A (ja) * 2005-01-28 2006-09-07 Sumitomo Rubber Ind Ltd ゴム組成物およびそれを用いたトレッドを有するタイヤ
WO2009048006A1 (ja) * 2007-10-10 2009-04-16 Sumitomo Rubber Industries, Ltd. スタッドレスタイヤに用いるトレッド用ゴム組成物およびそれを用いたトレッドを有するスタッドレスタイヤ
JP2010077413A (ja) * 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP2011079913A (ja) * 2009-10-05 2011-04-21 Sumitomo Rubber Ind Ltd 重合体、タイヤ用ゴム組成物及び空気入りタイヤ
WO2011087004A1 (ja) * 2010-01-13 2011-07-21 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
WO2012011571A1 (ja) * 2010-07-23 2012-01-26 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
JP2012167257A (ja) * 2011-01-24 2012-09-06 Sumitomo Chemical Co Ltd 共役ジエン系重合体の製造方法、共役ジエン系重合体、及び、共役ジエン系重合体組成物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19721917A1 (de) * 1997-05-26 1998-12-03 Continental Ag Kautschukmischung für Laufstreifen für Fahrzeugluftreifen
US7084228B2 (en) * 2002-07-29 2006-08-01 Michelin Recherche Et Technique S.A. Rubber composition for a tire tread
US7339005B2 (en) * 2003-01-31 2008-03-04 Sumitomo Chemical Company, Limited Process for producing modified diene polymer rubber
US20060173118A1 (en) * 2005-01-28 2006-08-03 Sumitomo Rubber Industries, Ltd. Rubber composition and tire having tread comprising thereof
US8299167B2 (en) * 2008-08-27 2012-10-30 Sumitomo Chemical Company, Limited Conjugated diene polymer, conjugated diene polymer composition, and method for producing conjugated diene polymer
SG159479A1 (en) * 2008-08-27 2010-03-30 Sumitomo Chemical Co Conjugated diene polymer, conjugated diene polymer composition, and method for producing conjugated diene polymer
TW201026727A (en) * 2008-08-27 2010-07-16 Sumitomo Chemical Co Conjugated diene polymer, conjugated diene polymer composition, and method for porducing conjugated diene polymer
SG159473A1 (en) * 2008-08-27 2010-03-30 Sumitomo Chemical Co Conjugated diene polymer, conjugated diene polymer composition, and method for producing conjugated diene polymer
JP4810567B2 (ja) * 2008-12-10 2011-11-09 住友ゴム工業株式会社 スタッドレスタイヤ用トレッドゴム組成物及びスタッドレスタイヤ
CN102365306B (zh) * 2009-04-07 2014-04-02 住友橡胶工业株式会社 含极性基的共聚物、橡胶组合物以及无防滑钉轮胎
CN102115554B (zh) * 2010-01-04 2014-09-10 住友橡胶工业株式会社 轮胎用橡胶组合物以及无钉防滑轮胎
JP5691623B2 (ja) * 2010-02-26 2015-04-01 住友化学株式会社 共役ジエン系重合体ゴム、及び、共役ジエン系重合体ゴム組成物

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817674B1 (ja) * 1970-03-23 1973-05-31
JPH08193147A (ja) * 1995-01-19 1996-07-30 Yokohama Rubber Co Ltd:The ゴム組成物
JPH08253520A (ja) * 1995-02-01 1996-10-01 Bridgestone Corp 環状アミン含有アミノアルキルリチウム化合物およびそれらを用いて得られるポリマー類
JP2000239444A (ja) * 1999-02-19 2000-09-05 Bridgestone Corp ゴム組成物及びそれを用いた重荷重用空気入りタイヤ
JP2000344955A (ja) 1999-06-04 2000-12-12 Sumitomo Rubber Ind Ltd 変性ジエン系ゴム組成物
JP2004137463A (ja) * 2002-08-21 2004-05-13 Sumitomo Rubber Ind Ltd タイヤトレッド用ゴム組成物
JP2006233177A (ja) * 2005-01-28 2006-09-07 Sumitomo Rubber Ind Ltd ゴム組成物およびそれを用いたトレッドを有するタイヤ
WO2009048006A1 (ja) * 2007-10-10 2009-04-16 Sumitomo Rubber Industries, Ltd. スタッドレスタイヤに用いるトレッド用ゴム組成物およびそれを用いたトレッドを有するスタッドレスタイヤ
JP2010077413A (ja) * 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP2011079913A (ja) * 2009-10-05 2011-04-21 Sumitomo Rubber Ind Ltd 重合体、タイヤ用ゴム組成物及び空気入りタイヤ
WO2011087004A1 (ja) * 2010-01-13 2011-07-21 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
WO2012011571A1 (ja) * 2010-07-23 2012-01-26 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
JP2012167257A (ja) * 2011-01-24 2012-09-06 Sumitomo Chemical Co Ltd 共役ジエン系重合体の製造方法、共役ジエン系重合体、及び、共役ジエン系重合体組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2749594A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006148A (ja) * 2014-05-27 2016-01-14 住友ゴム工業株式会社 冬用空気入りタイヤ
JP2021523261A (ja) * 2018-05-04 2021-09-02 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー タイヤトレッドゴム組成物
JP2022534568A (ja) * 2019-05-29 2022-08-02 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー タイヤトレッドゴム組成物及びその関連方法
WO2021020189A1 (ja) * 2019-07-26 2021-02-04 Jsr株式会社 重合体組成物、架橋重合体、及びタイヤ

Also Published As

Publication number Publication date
EP2749594A1 (en) 2014-07-02
JPWO2013077019A1 (ja) 2015-04-27
EP2749594B1 (en) 2016-06-08
JP5918262B2 (ja) 2016-05-18
US20140213693A1 (en) 2014-07-31
CN103917590B (zh) 2016-06-01
EP2749594A4 (en) 2015-04-15
CN103917590A (zh) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5918263B2 (ja) ゴム組成物及び空気入りタイヤ
JP5918261B2 (ja) ゴム組成物及び空気入りタイヤ
JP6050253B2 (ja) ゴム組成物及び空気入りタイヤ
JP5723009B2 (ja) ゴム組成物及び空気入りタイヤ
JP5918262B2 (ja) ゴム組成物及びスタッドレスタイヤ
JP5918259B2 (ja) ゴム組成物及び空気入りタイヤ
US9120890B2 (en) Rubber composition and pneumatic tire
JP6050254B2 (ja) ゴム組成物及び空気入りタイヤ
JP5902447B2 (ja) ゴム組成物及び空気入りタイヤ
JP5918260B2 (ja) ゴム組成物及び空気入りタイヤ
WO2013077017A1 (ja) ゴム組成物及び空気入りタイヤ
JP2013133387A (ja) ゴム組成物及び空気入りタイヤ
JP5917895B2 (ja) ゴム組成物及び空気入りタイヤ
JP5902446B2 (ja) ゴム組成物及び空気入りタイヤ
JP5967907B2 (ja) ゴム組成物及び空気入りタイヤ
JP5902445B2 (ja) ゴム組成物及び空気入りタイヤ
JP5917894B2 (ja) ゴム組成物及び空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013545813

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14346845

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012851673

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE