WO2013075556A1 - 起重机吊装垂直度偏差测量显示设置及吊装法 - Google Patents

起重机吊装垂直度偏差测量显示设置及吊装法 Download PDF

Info

Publication number
WO2013075556A1
WO2013075556A1 PCT/CN2012/082894 CN2012082894W WO2013075556A1 WO 2013075556 A1 WO2013075556 A1 WO 2013075556A1 CN 2012082894 W CN2012082894 W CN 2012082894W WO 2013075556 A1 WO2013075556 A1 WO 2013075556A1
Authority
WO
WIPO (PCT)
Prior art keywords
crane
lifting
hoisting
angle
deviation angle
Prior art date
Application number
PCT/CN2012/082894
Other languages
English (en)
French (fr)
Inventor
林汉丁
Original Assignee
Lin Handing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lin Handing filed Critical Lin Handing
Priority to US14/353,904 priority Critical patent/US9481554B2/en
Publication of WO2013075556A1 publication Critical patent/WO2013075556A1/zh
Priority to IN3855CHN2014 priority patent/IN2014CN03855A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • B66C23/90Devices for indicating or limiting lifting moment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/08Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions
    • B66C13/085Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/04Transmission means between sensing element and final indicator for giving an enlarged reading
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/58Wireless transmission of information between a sensor or probe and a control or evaluation unit

Definitions

  • Crane lifting vertical deviation measurement display setting (this setting, the same below) and lifting method belong to the crane lifting monitoring technology field, specifically it is a setting and lifting method for monitoring the vertical lifting of the crane.
  • the crane requires vertical lifting, but the driver cannot judge whether the hook is in a vertical state. Whether it is from the hook eccentric hook and other reasons, the weight yaw may damage the surrounding equipment and personnel, or realize the automation of the crane operation, or realize Safety hoisting and overcoming the risk of crane lifting, the detection of the verticality of the hook has become a problem that the crane itself needs to be perfected.
  • the "201110148371.0 crane lifting risk dynamics in the synergy display setting" has been proposed for collaborative lifting; and when the crane lifting pulley block or hook vertical state is detected by the angle sensor, the passing detection hook is used. The angle of the wire rope (sling, the same below) is obtained.
  • Angle measuring device for crane sling is to install a tested sling C (L is hoist) in each of two directions perpendicular to each other. And maintain the contact U-shaped frame UX, UY (shown in Figure 2), the angle sensor EX, EY is installed on the rotating shaft of the U-shaped frame, when the sling C is yawed, the U-shaped frame is used to install the rotating shaft The angle sensor rotates to output a yaw signal, realizing the two-dimensional detection of the sling; "200910166488.4 A crane and its sling swing detecting device” is that the crane boom arm 1 is fixed at the pulley end The rope 3 is externally fitted with a sleeve 2 (shown in Fig.
  • the measuring platform is installed on the outer side of the guard plate, and the vertical deviation angle is satisfied.
  • the measuring platform surface is a horizontal plane
  • the crane single-slide method when used, and the single-machine rotating method is used to hoist heavy objects, the driver of the machine should cooperate with other monitoring points.
  • the sliding method should be combined with the operator of the traction and slipping machine.
  • the vertical deviation angle is displayed on the machine. Outside the operation room, the vertical deviation angle is also displayed on the screens of other monitoring points that match each other.
  • the vertical deviation of the main and auxiliary machines (main and auxiliary) is about the same as that of the main and auxiliary machines.
  • the load is inversely proportional, (if the main and auxiliary machines each bear a load of 6:1, when the host is vertically lag After 0.5°, the verticality of the auxiliary machine is more than 3°.
  • the deviation angle of the auxiliary machine meets the requirements, the deviation angle of the verticality of the main machine must meet the requirements. Therefore, both the main and auxiliary machines should be lifted when the machine is lifted. It is controlled based on the vertical lifting of the auxiliary machine. stone
  • One method of this setting is to first install a measuring platform on the outer side of the lifting pulley assembly moving pulley guard plate, and meet the vertical angle deviation angle of the crane hoisting, the measuring platform surface is a horizontal plane, because if the angle sensor is set on the table surface at this time, In the case of vertical deviation, the angle of the horizontal deviation of the table surface indicated by the direction of the sensitive axis of the angle sensor is equal to the angle of deviation of the vertical direction of the crane lifting pulley group. Therefore, the vertical coordinate of the cross is established in the center of the table, and the axis and axis are measured by the two-axis angle sensor.
  • the vertical deviation signal of the direction, and the inclination deviation angle is dynamically displayed on the monitoring points of the crane hoisting, including the crane driver (operating room) monitoring point, and the coordinated lifting crane driver (operating room).
  • the double-axis inclinometer tends to be small and ultra-small. Therefore, another method of this setting is to first install a measuring platform on the outer side of the lift pulley moving pulley guard plate, and meet the crane lifting vertical deviation angle.
  • the measuring platform surface is a horizontal plane. Based on the angle between the measuring platform surface and the horizontal plane, the vertical deviation angle of the lifting block of the crane is determined, the vertical coordinate of the cross is established in the center of the table, and the axial and the two-axis digital inclinometer are set.
  • the axial perpendicularity deviation angle, and the measured vertical deviation angle by wireless transmission, is dynamically displayed at each monitoring point of the crane hoisting. This includes the crane driver (operating room) monitoring point, the coordinated lifting crane driver (operating room) monitoring point, and the associated lifting tractor driver monitoring point and lifting command monitoring point. Stone
  • the map country is a schematic diagram of the angle measuring device of the existing crane sling. Stone
  • the crane hoisting vertical deviation measurement display setting provides the vertical angle deviation angle display for each monitoring point, so it can cooperate with the hoisting.
  • the crane vertical deviation control hoisting method matched with this setting is: stone
  • the lifting speed is controlled according to the vertical deviation angle displayed by the crane operator's operating room, and the mechanical driver pulling the heavy object slip is displayed according to the monitoring point set at the traction machinery.
  • the vertical deviation angle manipulates the traction, and cooperates to eliminate the vertical deviation
  • / «X machine lifts the main and auxiliary machines to control the vertical lifting of the auxiliary machine as the reference, that is, the auxiliary machine controls the speed of the follow-up according to the vertical deviation angle displayed by the driver's operation room.
  • the host is based on the host operation.
  • the auxiliary machine hoisting vertical deviation deviation angle control is displayed in the monitoring point of the room.
  • the main and auxiliary machines cooperate to eliminate the vertical deviation of the auxiliary machine hoisting.
  • the main and auxiliary machines are still used to realize the vertical lifting of the auxiliary machine. Control for the benchmark.
  • I. Crane lifting vertical deviation Biaxial inclination sensor measures dynamic display settings.
  • the set/pilot first makes a right-angled frame formed by the upper plate and the vertical plate, and a measuring platform matched with the upper plate.
  • Three measuring heads and countersunk bolts are arranged on the measuring platform and the corresponding position of the upper plate and the platform.
  • the measuring platform is connected to the upper plate by countersunk bolts and nuts, and the adjusting washers are placed on the bolts between the measuring platform and the upper plate, and are placed on the outside of the crane moving pulley guard (vacancy) , welding three short bolts arranged in the foot, drilling three connecting holes in the corresponding position of the vertical plate of the r-shaped frame, fixing the ⁇ -shaped frame to the outer side of the moving pulley guard with a nut, and then arranging the vertical deviation angle of the crane Adjust the surface of the measuring platform to a horizontal plane by adjusting the thickness of the gasket on the three bolts between the measuring platform and the upper plate.
  • the /J «E measuring platform tops the center to establish the vertical coordinate of the cross, set the dual-axis angle sensor, and set the wireless transmitter and antenna. It is also protected by a non-metallic solid outer casing welded to the outer periphery of the pulley guard.
  • the crane hoisting monitoring points set the wireless receiver, antenna, and control display to dynamically display the vertical deviation angle at each monitoring point of the crane.
  • the setting of each monitoring point is made portable except for the crane driver's operation outside the room, the hoisting crane driver's operation room, and the coordination of the traction machine driver monitoring point and the hoisting command monitoring point.
  • the graph is a block diagram of the dual-axis tilt wireless acquisition. It is mainly composed of a sensor module, a wireless transmitting module, a wireless receiving module, and a machine.
  • the sensor module and the wireless transmitting module (with antenna) are installed outside the crane moving pulley guard, and the wireless receiving module (with antenna) and the machine are installed at the monitoring points of the crane lifting.
  • the sensor module is composed of a dual-axis tilt sensor and a conditioning circuit.
  • the wireless transmitting module is composed of a converting part, a wireless transmitting and receiving single-chip microcomputer and a transmitting circuit
  • the wireless receiving module is composed of a wireless receiving and receiving single-chip microcomputer, a receiving circuit, and a serial port circuit
  • the machine part is mainly composed of a machine.
  • serial communication software indicating circuit components.
  • the first r-shaped frame formed by the upper plate and the vertical plate, and the measuring platform matched with the upper plate, three drilled and snails are arranged in the corresponding positions of the measuring platform and the upper plate and the platform. Plug the matching connecting hole, connect the measuring platform to the upper plate with countersunk bolts and nuts, and put the adjusting pad on the bolt between the measuring platform and the upper plate.
  • the measuring platform table is centered to establish the vertical coordinate of the cross, and the dual-axis inclinometer is set to monitor the wireless camera head. It is also protected by a non-metallic, rugged enclosure that is welded to the outside of the pulley guard. Supervisor
  • Fifii installs a wireless receiver and control display that is matched with the wireless camera at each monitoring point of the crane.
  • the vertical deviation angle of the lifting is dynamically displayed on the screen of the monitoring point.
  • each monitoring point is made portable except for the crane driver's operation outside the room, the hoisting crane driver's operating room, and the hoisting of the traction machine driver monitoring point and the hoisting command monitoring point.
  • Supervision 3 Crane lifting vertical deviation control lifting method. Supervisor
  • the display monitoring setting of the crane lifting pulley vertical deviation angle is added, and the vertical deviation angle is displayed in the crane operation room monitoring point, and also displayed in the coordination crane monitoring. Point, to achieve information exchange, so that the two sides achieve coordinated lifting under the condition of "knowing the other.” Therefore, the method for controlling the verticality deviation of the crane matched with this setting is as follows: When the lifting of the heavy object by the single-machine rotary method, the lifting speed between the crane and the side rotation speed is adjusted according to the vertical deviation angle displayed by the crane operator's operation room. Cooperate to eliminate the vertical deviation
  • the lifting speed is controlled according to the vertical deviation angle ⁇ displayed by the crane operator's operating room, and the mechanical driver pulling the heavy object slips according to the vertical deviation angle displayed at the traction machinery monitoring point. , cooperate with each other to eliminate the vertical deviation ⁇
  • the main and auxiliary machines are controlled according to the vertical lifting of the auxiliary machine, that is, the auxiliary machine controls the speed of the follow-up according to the vertical deviation angle displayed by the driver's operation room, and the host is based on the host operation room.
  • the auxiliary machine hoisting vertical deviation angle control is displayed at the monitoring point.
  • the main and auxiliary machines cooperate to eliminate the vertical deviation of the auxiliary machine hoisting.
  • the main machine and the auxiliary machine are synchronously upgraded, the main and auxiliary machines are still used to realize the vertical of the auxiliary machine. Lifting is controlled as a reference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Control And Safety Of Cranes (AREA)
  • Jib Cranes (AREA)

Abstract

公开了一种起重机协同吊装垂直度偏差角度监测装置,该装置包括用于测量起重机提升滑轮组角度的角度传感器和将所测角度无线传输并进行动态显示的装置,在起重机提升滑轮组动滑轮护板外侧上装设测量平台,且满足起重机吊装垂直度偏差度为0度时,所设的测量平台面为水平面,在台面安设测量所述测量平台面相对于水平面倾斜度的双轴倾角仪,以测量起重机提升滑轮组垂直度偏差角度,同时装设将所测得双轴向垂直偏差度信号无线发射的装置,在起重机操作室装设接收处理无线发射装置发射的、将起重机吊装垂直度偏车角度动态显示的接收显示装置。还公开了一种起重机吊装垂直度偏差控制吊装法。

Description

说明书 起重机吊装垂直度偏差测量显示设置及吊装法
技术领域
起重机吊装垂直度偏差测量显示设置 (本设置, 下同) 及吊装法, 属于起 重机吊装监控技术领域, 确切地说它是监控起重机垂直吊装的一种设置及吊装 法。
背景技术
起重机要求垂直吊装, 司机却无法判断其吊钩是否处于垂直状态, 无论从 吊钩偏心起钩以及其他原因使重物偏摆可能伤及周围设备和人员,还是从实现起 重机操作自动化, 或从实现安全吊装和克服起重机抬吊的风险考虑, 吊钩垂直度 的检测都成为起重机自身亟须完善的问题。 为克服起重机抬吊的风险在 "201110148371.0吊车抬吊风险动态于协同方显示设置"已提出协同吊装的设想; 而对起重机提升滑轮组或吊钩垂直度状态用角度传感器检测时,沿用通过检测吊 钩钢丝绳(吊绳,下同)的角度得到, "ZL02104525.9 吊车吊绳的角度测量装置" 作法是, 在互相垂直的二个方向各安设一个被检测吊绳 C (L为吊重)通过且保 持接触的 U型框 UX、 UY (图 2所示) , U型框的转轴上分别安设角度传感器 EX、 EY, 当吊绳 C发生偏摆时, 通过 U型框使转轴上安设的角度传感器转动而 输出偏摆信号, 实现了对吊绳的二维检测; "200910166488.4 一种起重机及其吊 绳摆动检测量装置" 作法是, 在起重机吊臂臂头 1定滑轮端被检测吊绳 3外装 一个套筒 2 (图 3所示) , 在套筒外壁上安设角度传感器 4, 同时在起重机吊臂 臂头 1与套筒之间安设防转装置 5、 6以限制套筒转动, 当吊绳发生偏摆时, 通 过与其一起偏摆的套筒由安设的角度传感器输出偏摆信号,并用此种方式检测的 信号创立了 "ZL200910171349.0 —种吊钩偏摆控制方法、 系统及装置" 。 发明内容
由于起重机稳定性差, 其吊装垂直度偏差不得超过 °, 还有不垂直起吊重 物摆动可能伤及周围设备和人员,尤其是大仰角下的不垂直抬吊破坏了起重机载 荷的正常分配, 又由于起重机自身缺失垂直吊装的显示, 司机无法判断提升滑轮 组是否处于垂直状态, 而要由吊装指挥者, 依据监视被吊重物垂直吊装者提供的 信息指挥司机操控, 既不及时又不准确…故起重机抬吊风险大, 依据《石油化工 工程起重施工规范》 的条文说明中指出: "双机抬吊是比较危险的作业, 对吊装 指挥及司机要求都比较高。国外有些工程管理人员对于双机抬吊作业是持否定態 度的…"因而要回避起重机吊装和抬吊的风险, 一是增设起重机提升滑轮组垂直 度偏差的显示监视设置, 二是将垂直度偏差不仅显示于本起重机操作室,还要显 示于协同方(抬吊双方互为协同方)起重机操作室,达到信息互通,令双方在"知 已知彼"条件下实现协同吊装。 由于起重机提升滑轮组垂直度偏差角度(垂直度偏差角度, 下同)就等于把 角度传感器放在与提升滑轮组相垂直平面上所测得该平面偏离水平面角度,因而 本设置首先突破常规在提升滑轮组动滑轮护板外侧上装设测量平台,且满足垂直 度偏差角度 业时, 测量平台面为水平面愧 于起重机单机滑移法、 单机旋转法 吊装重物时, 要通过本机司机与其他监控点人员配合, 如滑移法吊装要与牵引滑 移机械的操作工配合, 抬吊作业时更是要通过抬吊双方配合以及吊装指挥协同 下, 才能实现垂直吊装, 因而除将垂直度偏差角度显示于本机的操作室外, 还要 将垂直度偏差角度显示于相互配合的其他监控点屏幕上個时由于主、 辅机产生 的 (主、 辅机间) 垂直度偏差, 约与主、 辅机各自承担的载荷成反比, (若主、 辅机各自承担载荷为 6: 1,当主机垂直度滞后 0.5°时,而辅机垂直度竟超前 3° ), 当辅机的垂直度偏差角度符合要求时, 主机的垂直度偏差角度必符合要求, 因而 双机抬吊时主、 辅机均应以实现辅机的垂直吊装为基准进行操控。 石
本设置的一种作法是, 先在提升滑轮组动滑轮护板外侧上装设测量平台, 且满足起重机吊装垂直度偏差角度业时,测量平台面为水平面, 由于若此时在 台面上设置角度传感器, 当出现垂直度偏差时角度传感器敏感轴方向显示的台 面偏离的水平面角度, 等于起重机提升滑轮组沿该方向的垂直度偏差角度, 因 而在台面居中建立十字垂直坐标, 设置双轴角度传感器测量 轴向与 轴向的 垂直度偏差信号, 并经倾角采集、 无线传输、 处理, 将垂直度偏差角度动态显 示于起重机吊装的各监控点, 包括本起重机司机 (操作室)监控点、 协同吊装 起重机司机(操作室)监控点以及协同吊装的牵引机械司机监控点和吊装指挥 监控点。 石
弓 MMea鉴于先进的 技术发展, 双轴倾角仪趋向小型、超小型化, 故本设 置的另一种作法是,先在提升滑轮组动滑轮护板外侧上装设测量平台, 且满足起 重机吊装垂直度偏差角度 业时, 测量平台面为水平面, 基于通过测量平台面与 水平面间夹角, 以确定起重机提升滑轮组的垂直度偏差角度,在台面居中建立十 字垂直坐标, 设置双轴数显倾角仪测量 轴向与 轴向的垂直度偏差角度, 并经 无线传输将测量的垂直度偏差角度, 再动态显示于起重机吊装的各监控点。包括 本起重机司机(操作室)监控点、 协同吊装起重机司机(操作室)监控点以及协 同吊装的牵引机械司机监控点和吊装指挥监控点。 石
附图说明^^ W
¾¾双轴倾角无线采集方框图。 石
图国是现有吊车吊绳的角度测量装置的原理图。 石
图些是现有吊绳摆动检测装置的结构示意图。 石
图^^ 传感器模块和无线发射模块装设于起重机动滑轮护板外侧, 无 线接收模块和 机装设于起重机吊装的监控点。 石
起重机吊装垂直度偏差测量显示设置, 为各监控点提供了吊装中垂直度 偏差角度显示, 因而可以相互配合协同吊装, 与本设置配套的起重机垂直度偏 差控制吊装作法是: 石
旋转法吊装重物时, 依据起重机司机操作室显示的垂直度偏差角 度, 调整起重机边提升速度与边旋转速度间的配合, 以消除垂直度偏差衞
机滑移法吊装重物时, 依据起重机司机操作室显示的垂直度偏差角 度操控提升速度,牵引重物滑移的机械司机则依据设于牵引机械监控点显示的 垂直度偏差角度操控牵引, 相互配合以消除垂直度偏差艮集
/«X机抬吊时主、 辅机均以实现辅机的垂直吊装为基准进行操控, 即辅 机依据司机操作室显示的垂直度偏差角度操控跟送的速度, 主机则依据设于主 机操作室监控点显示的辅机吊装垂直度偏差角度操控提升, 主、 辅机配合以消 除辅机吊装的垂直度偏差 主、 辅机同步提升时, 主、 辅机仍均以实现辅机 的垂直吊装为基准进行操控。
本设置及吊装法, 首次提出在提升滑轮组动滑轮护板外侧上装设测量平 台, 设置双轴倾角传感器测量提升滑轮组垂直度偏差角度, 并显示于起重机吊 装的各监控点, 同时提出起重机吊装垂直度偏差控制吊装法因而具有新颖性, 又由于实现起重机垂直度偏差角度动态显示, 同时实行起重机吊装垂直度偏差 控制吊装法, 较好克服了起重机不垂直吊装, 尤其是不垂直抬吊的风险, 开发 出既适合于所有单机吊装, 也适合于抬吊作业的监控设置与吊装法因而具有创 造性。 本设置可用于监测、 操控起重机垂直吊装。 集
具体实施方式皿
一、 起重机吊装垂直度偏差双轴倾角传感器测量动态显示设置。 集 /擺先制作由上平板与竖平板组成直角的 Γ形框, 和与上平板相配的测 量平台, 在测量平台和上平板同平台相应的位置各钻三个呈鼎足排列的与沉头 螺栓相配的连接孔, 用沉头螺栓和螺帽将测量平台与上平板连接, 且在测量平 台与上平板之间的螺栓上套上调整垫片 g腠着在吊车动滑轮护板外侧 (空位) 上,焊三个呈鼎足排列的短螺栓,在 r形框架的竖平板相应位置钻三个连接孔, 用螺帽将 Γ形框架固定于动滑轮护板外侧 g然后在起重机吊装垂直度偏差角度 意时, 通过测量平台与上平板之间三个螺栓上套的垫片厚薄的调整, 将测量平 台面调为水平面。 集
/J«E测量平台台面居中建立十字垂直坐标, 设置双轴角度传感器, 同时 设置无线发射器及天线, 此外通过焊于滑轮护板外侧周边的螺钉装设非金属坚 固的外壳加以保护。 集
/ 起重机吊装各监控点设置无线接收器、 天线, 和控制显示器, 将垂 直度偏差角度动态显示于起重机吊装的各监控点。各监控点的设置除本起重机 司机操作室外,协同吊装起重机司机操作室以及协同吊装的牵引机械司机监控 点和吊装指挥监控点的设置作成便携式。 集
图模为双轴倾角无线采集方框图。 主要由传感器模块, 无线发射模块, 无 线接收模块, 机 ^分组成。传感器模块和无线发射模块(配天线)装设于 起重机动滑轮护板外侧, 无线接收模块 (配天线) 和 机装设于起重机吊装 的各监控点。 其中传感器模块由双轴倾角传感器、 调理电路组成, 无线发射模 块由构 转换部分、 无线收发单片机和发射电路组成, 无线接收模块由无线收 发单片机、 接收电路, 及串口电路组成, 机部分主要由 机及串口通信软 件、 指示电路组成。 集
二、 起重机吊装垂直度偏差双轴倾角仪测量动态显示设置。 集
/擺先制作由上平板与竖平板组成直角的 r形框, 和与上平板相配的测量 平台,在测量平台和上平板同平台相应的位置各钻三个呈鼎足排列的与沉头螺 栓相配的连接孔, 用沉头螺栓和螺帽将测量平台与上平板连接, 且在测量平台 与上平板之间的螺栓上套上调整垫片 i傻着在吊车动滑轮护板外侧(空位)上, 焊三个呈鼎足排列的短螺栓, 在 Γ形框架的竖平板相应位置钻三个连接孔, 用 螺帽将 r形框架固定于动滑轮护板外侧 i燃后在起重机吊装垂直度偏差角度司 时, 通过测量平台与上平板之间三个螺栓上套的垫片厚薄的调整, 将测量平台 面调为水平面。 监
测量平台台面居中建立十字垂直坐标, 设置双轴倾角仪监 同时设 置无线摄象头。此外通过焊于滑轮护板外侧周边的螺钉装设非金属坚固的外壳 加以保护。 监
fifii在起重机吊装各监控点装设与无线攝象头配套的无线接收机、 控制显 示器, 将吊装中垂直度偏差角度再动态显示于监控点的屏幕上。 监
各监控点的设置除本起重机司机操作室外, 协同吊装起重机司机操作室 以及协同吊装的牵引机械司机监控点和吊装指挥监控点的设置作成便携式。 监 三、 起重机吊装垂直度偏差控制吊装法。 监
为回避起重机吊装和抬吊的风险,增设了起重机提升滑轮组垂直度偏差角度 的显示监视设置, 并将垂直度偏差角度在显示于本起重机操作室监控点的同时, 也显示于协同方的起重机监控点, 达到信息互通, 令双方在"知已知彼"条件下 实现协同吊装。 因而与本设置配套的起重机垂直度偏差控制吊装的作法是: 监 ή#单机旋转法吊装重物时, 依据起重机司机操作室显示的垂直度偏差角 度, 调整起重机边提升速度与边旋转速度间的配合, 以消除垂直度偏差 i傲
½6单机滑移法吊装重物时, 依据起重机司机操作室显示的垂直度偏差角 度 β控提升速度,牵引重物滑移的机械司机则依据设于牵引机械监控点显示 的垂直度偏差角度操控牵引, 相互配合以消除垂直度偏差谄
fifii双机抬吊时主、 辅机均以实现辅机的垂直吊装为基准进行操控, 即辅 机依据司机操作室显示的垂直度偏差角度操控跟送的速度, 主机则依据设于主 机操作室监控点显示的辅机吊装垂直度偏差角度操控提升, 主、 辅机配合以消 除辅机吊装的垂直度偏差 i倍主、 辅机同步提升时, 主、 辅机仍均以实现辅机 的垂直吊装为基准进行操控。
! ΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑ' HA"
mi mi mi mi mi mi mi mi ntm. rm.
!! ^

Claims

权利要求书
、 一种起重机协同吊装垂直度偏差角度监测装置, 系包括采用角度传感器测 量起重机提升滑轮组角度,和将所测角度无线传输并进行动态显示的装置,其特 征是,在起重机提升滑轮组动滑轮护板外侧上装设测量平台, 且满足起重机吊装 垂直度偏差角度 °时, 所设的测量平台面为水平面 在台面安设测量所设测量平 台面相对于水平面倾斜度的双轴倾角仪,以测量起重机提升滑轮组垂直度偏差角 度 同时装设将所测的双轴向垂直度偏差角度信号无线发射的装置 在起重机操 作室装设接收处理无线发射装置发射的、将起重机吊装垂直度偏差角度动态显示 的接收显示装置 在协同吊装监控点装设接收处理无线发射装置发射的、将起重 机吊装垂直度偏差角度动态显示的便携式接收显示装置。
、 根据权利要求 所述的起重机协同吊装垂直度偏差角度监测装置, 其特征 是,起重机协同吊装时,将作为操控起重机垂直抬吊依据的便携式接收显示装置 设于协同吊装监控点。
、 根据权利要求 所述的起重机协同吊装垂直度偏差角度监测装置, 其特征 在于, 所述的双轴倾角仪采用双轴倾角传感器或数显双轴倾角仪。
、 一种起重机吊装垂直度偏差角度监测装置, 系包括采用角度传感器测量起 重机提升滑轮组角度,和将所测角度无线传输并进行动态显示的装置,其特征是, 在起重机提升滑轮组动滑轮护板外侧上装设测量平台,且满足起重机吊装垂直度 偏差角度 °时, 所设的测量平台面为水平面 在台面安设测量所设测量平台面相 对于水平面倾斜度的双轴倾角仪, 以测量起重机提升滑轮组垂直度偏差角度 同 时装设将所测的双轴向垂直度偏差角度信号无线发射的装置 在起重机操作室 装设接收处理无线发射装置发射的、将起重机吊装垂直度偏差角度动态显示作为 操控起重机垂直吊装依据的的接收显示装置。
、根据权利要求 所述的起重机吊装垂直度偏差角度监测装置,其特征在于, 所述的双轴倾角仪采用双轴倾角传感器或数显双轴倾角仪。 起重机吊装垂直度偏差控制吊装法, 其特征是: ( 1 )单机旋转法吊装重物时, 依据起重机司机操作室显示的垂直度偏差角度, 调整起重机边提升速度与边旋转速度间的配合, 以消除垂直度偏差;
( 2)单机滑移法吊装重物时,依据起重机司机操作室显示的垂直度偏差角度 操 控提升速度,牵引重物滑移的机械司机则依据设于牵引机械监控点显示的垂直度 偏差角度操控牵引, 相互配合以消除垂直度偏差;
( 3)双机抬吊时主、 辅机均以实现辅机的垂直吊装为基准进行操控, 即辅机依 据司机操作室显示的垂直度偏差角度操控跟送的速度,主机则依据设于主机操作 室监控点显示的辅机吊装垂直度偏差角度操控提升, 主、辅机配合以消除辅机吊 装的垂直度偏差; 当主、辅机同步提升时, 主、辅机仍均以实现辅机的垂直吊装 为基准进行操控。
PCT/CN2012/082894 2011-11-25 2012-10-13 起重机吊装垂直度偏差测量显示设置及吊装法 WO2013075556A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/353,904 US9481554B2 (en) 2011-11-25 2012-10-13 Monitoring apparatus and control method of crane hoisting vertical deviation angle
IN3855CHN2014 IN2014CN03855A (zh) 2011-11-25 2014-05-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110387199.4A CN102431897B (zh) 2011-11-25 2011-11-25 起重机吊装垂直度偏差测量显示装置及吊装法
CN201110387199.4 2011-11-25

Publications (1)

Publication Number Publication Date
WO2013075556A1 true WO2013075556A1 (zh) 2013-05-30

Family

ID=45980311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082894 WO2013075556A1 (zh) 2011-11-25 2012-10-13 起重机吊装垂直度偏差测量显示设置及吊装法

Country Status (4)

Country Link
US (1) US9481554B2 (zh)
CN (1) CN102431897B (zh)
IN (1) IN2014CN03855A (zh)
WO (1) WO2013075556A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110203829A (zh) * 2019-06-20 2019-09-06 中铁九桥工程有限公司 一种三桁同步起升控制系统

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102431897B (zh) * 2011-11-25 2014-04-30 林汉丁 起重机吊装垂直度偏差测量显示装置及吊装法
CN103130098B (zh) * 2012-08-11 2016-02-24 林汉丁 一种吊钩偏角万向水平仪监测装置及起重机
CN103213902B (zh) * 2013-01-10 2015-10-07 林汉丁 吊钩偏角检监测、协同方监测、磁方位监测装置及起重机
CN103318765B (zh) * 2013-06-21 2015-01-07 林汉丁 吊重摆角、吊重载荷或吊重姿态的监测方法与装置及起重机
US11142434B1 (en) * 2014-02-18 2021-10-12 Link-Belt Cranes, L.P., Lllp Apparatus and methods for sensing boom side deflection or twist
CN105293380A (zh) * 2015-11-30 2016-02-03 厦门海普智能科技有限公司 叉装车货叉姿态显示方法及显示装置
DK179142B1 (da) * 2015-12-03 2017-12-04 Liftra Ip Aps Løftebeslag
CN106185627B (zh) 2016-07-06 2020-09-08 林汉丁 吊钩偏角监测装置、垂直吊装监控装置及移动式起重机
CN106066163B (zh) * 2016-07-21 2017-12-22 国网河北省电力公司电力科学研究院 一种堆垛机与立体货架垂直度的在线监测方法
CN106276587B (zh) * 2016-08-27 2018-10-23 林汉丁 设立吊钩姿态检测载体的吊钩总成及起重机
US10899401B2 (en) 2017-06-05 2021-01-26 Entro Industries, Inc. Yaw alignment system
CN107188056B (zh) * 2017-06-05 2018-11-09 国家电网公司 一种安全自控装置
US10793409B2 (en) 2017-07-12 2020-10-06 Entro Industries, Inc. Lifting loads with lifting devices
US10895882B2 (en) * 2017-08-01 2021-01-19 Entro Industries, Inc. Controlling load transporting devices
US10889961B2 (en) 2017-08-08 2021-01-12 Entro Industries, Inc. Automatic walking for a load transporting apparatus
US11180319B2 (en) 2017-11-22 2021-11-23 Entro Industries, Inc. Skid system for load transport apparatus
US11407460B2 (en) 2018-05-31 2022-08-09 Entro Industries, Inc. Nonlinear walking apparatus
CN108445824B (zh) * 2018-06-11 2024-07-09 上海汇焰智能科技有限公司 吊挂系统控制台及吊挂系统
CN109678057A (zh) * 2019-02-18 2019-04-26 上海应用技术大学 基于立体视觉的桥式吊车的摆角测量方法
CN110425999B (zh) * 2019-03-22 2021-06-01 浙江大学 一种基于无人机图像的起重设备垂直度检测方法及系统
CN110487237A (zh) * 2019-08-27 2019-11-22 中国煤炭地质总局第一勘探局科教中心 一种工程勘察钻杆垂直监测装置及其监测方法
CN110561434A (zh) * 2019-09-12 2019-12-13 武汉宝悍焊接设备有限公司 一种激光焊机双刃剪下刀座直线垂直升降运动轨迹分析法
CN110980525B (zh) * 2020-03-04 2020-05-19 上海驭矩信息科技有限公司 一种吊装系统的自动纠偏控制方法
CN112758829A (zh) * 2021-01-21 2021-05-07 湖南中创国瑞科技有限公司 一种用于物料搬运的吊装设备
CN113003430B (zh) * 2021-03-12 2022-11-08 上海海事大学 一种桥吊吊绳摆角测量装置及使用方法
EP4323302A1 (en) 2021-04-12 2024-02-21 Structural Services, Inc. Systems and methods for assisting a crane operator
CN113086855B (zh) * 2021-04-13 2022-12-23 上海海事大学 一种基于凸透镜成像原理的双吊具摆角检测装置及方法
CN113148851B (zh) * 2021-04-20 2022-11-08 上海海事大学 一种基于气体的桥吊吊绳检测装置
CN114622729B (zh) * 2022-04-01 2024-03-12 中国化学工程重型机械化有限公司 一种异形钢结构的提升方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274203A (ja) * 1985-05-30 1986-12-04 Komatsu Ltd クレ−ンの振れ角検出装置
US5764066A (en) * 1995-10-11 1998-06-09 Sandia Corporation Object locating system
CN201217609Y (zh) * 2008-05-19 2009-04-08 宝山钢铁股份有限公司 吊钩倾斜报警装置
CN101650174A (zh) * 2009-09-01 2010-02-17 中国石油化工集团公司 用于测量吊车吊钩垂直度偏差的动态测量装置及方法
CN101659374A (zh) * 2009-09-21 2010-03-03 林汉丁 起重机垂直吊装激光监视装置
CN101792100A (zh) * 2009-12-29 2010-08-04 沈阳建筑大学 基于可编程控制器的高处作业工作平台自动控制装置
CN102249151A (zh) * 2011-05-20 2011-11-23 林汉丁 吊车吊钩偏角激光显示与监视设置
CN102431897A (zh) * 2011-11-25 2012-05-02 林汉丁 起重机吊装垂直度偏差测量显示设置及吊装法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1257050A1 (ru) * 1985-03-25 1986-09-15 Проектно-Конструкторское Бюро "Гипрохиммонтаж" Устройство дл контрол вертикальности полиспаста
JPH04112190A (ja) * 1990-07-17 1992-04-14 Kobe Steel Ltd 旋回式クレーン
JPH04223992A (ja) * 1990-12-25 1992-08-13 Kobe Steel Ltd クレーンにおけるロープの振れ角検出装置
AUPN681195A0 (en) * 1995-11-24 1995-12-21 Patrick Stevedores Holdings Pty Limited Container handling crane
JPH11255475A (ja) * 1998-03-09 1999-09-21 Railway Technical Res Inst 荷振れ防止装置付き走行クレーン
DE102007039408A1 (de) * 2007-05-16 2008-11-20 Liebherr-Werk Nenzing Gmbh Kransteuerung, Kran und Verfahren
CN101659379B (zh) * 2009-08-27 2012-02-08 三一汽车制造有限公司 一种吊钩偏摆控制方法、系统及装置
CN101723239B (zh) * 2009-11-20 2012-05-02 三一汽车制造有限公司 吊钩姿态检测装置和起重机
US8682541B2 (en) * 2010-02-01 2014-03-25 Trimble Navigation Limited Sensor unit system
US8768609B2 (en) * 2010-02-01 2014-07-01 Trimble Navigation Limited Sensor unit system
US9269255B2 (en) * 2010-02-01 2016-02-23 Trimble Navigation Limited Worksite proximity warning
CN201686411U (zh) * 2010-04-06 2010-12-29 上海多为电子科技有限公司 起重机抬吊监控系统
IT1403097B1 (it) * 2010-12-14 2013-10-04 Vinati Service Di Vinati Felice & C S A S Dispositivo per la localizzazione dei carichi in impianti di sollevamento
FI20115922A0 (fi) * 2011-09-20 2011-09-20 Konecranes Oyj Nosturin ohjaus
US8985354B2 (en) * 2011-11-04 2015-03-24 GM Global Technology Operations LLC Movement system configured for moving a payload in a plurality of directions

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274203A (ja) * 1985-05-30 1986-12-04 Komatsu Ltd クレ−ンの振れ角検出装置
US5764066A (en) * 1995-10-11 1998-06-09 Sandia Corporation Object locating system
CN201217609Y (zh) * 2008-05-19 2009-04-08 宝山钢铁股份有限公司 吊钩倾斜报警装置
CN101650174A (zh) * 2009-09-01 2010-02-17 中国石油化工集团公司 用于测量吊车吊钩垂直度偏差的动态测量装置及方法
CN101659374A (zh) * 2009-09-21 2010-03-03 林汉丁 起重机垂直吊装激光监视装置
CN101792100A (zh) * 2009-12-29 2010-08-04 沈阳建筑大学 基于可编程控制器的高处作业工作平台自动控制装置
CN102249151A (zh) * 2011-05-20 2011-11-23 林汉丁 吊车吊钩偏角激光显示与监视设置
CN102431897A (zh) * 2011-11-25 2012-05-02 林汉丁 起重机吊装垂直度偏差测量显示设置及吊装法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110203829A (zh) * 2019-06-20 2019-09-06 中铁九桥工程有限公司 一种三桁同步起升控制系统

Also Published As

Publication number Publication date
CN102431897B (zh) 2014-04-30
CN102431897A (zh) 2012-05-02
US9481554B2 (en) 2016-11-01
US20140299564A1 (en) 2014-10-09
IN2014CN03855A (zh) 2015-09-04

Similar Documents

Publication Publication Date Title
WO2013075556A1 (zh) 起重机吊装垂直度偏差测量显示设置及吊装法
US9415977B2 (en) Crane and apparatus for monitoring the swing angle, weight or gesture of the crane load
US9938118B2 (en) Lifting hook bias angle monitoring apparatus, vertical hoisting monitoring apparatus and mobile crane
US10472214B2 (en) Crane and method for monitoring the overload protection of such a crane
CN101633478B (zh) 绳索牵引自动水平调节吊具及方法
CN103613014B (zh) 塔式起重机防碰撞系统、方法、装置及塔式起重机
CN110015611A (zh) 一种吊具及吊装方法
US10597266B2 (en) Crane and method for monitoring the overload protection of such a crane
US20190359455A1 (en) Tower crane
US10358322B2 (en) Load weighing at the lifting hook
CN101774508B (zh) 履带起重机整机稳定性的闭环式检测系统及其控制方法
CN102815614A (zh) 显示实时吊钩偏角检测监视装置
US11136225B1 (en) Monitoring and measuring apparatuses able to display actual deflection angle of lifting-hook , and crane
CN203740898U (zh) 具有重量、高度监视功能的塔机吊钩可视化控制装置
EP2489625A1 (en) Mobile crane and method of operating a mobile crane.
JP2022508449A (ja) フックの振れ角をリアルタイムで表示する斜吊り防止監視装置及びクレーン
CN105060122A (zh) 起重机安全控制系统和方法、力矩限制器以及起重机
WO2018211489A1 (en) A crane ground control operating system
WO2016177351A2 (zh) 吊钩偏角监测装置、垂直吊装监控装置及移动式起重机
CN104495617B (zh) 用于起重机抓斗的调稳作业系统及调稳方法
CN211647241U (zh) 一种附着式升降脚手架预警控制系统
CN101628694A (zh) 一种起重机用新型力矩限制器
KR102005853B1 (ko) 타워크레인의 텔레스코핑 작업시 흔들림 감지장치
CN212832381U (zh) 单机吊装与抬吊吊装装置及起重机
KR101660253B1 (ko) 과부하와 하중의 불균형을 확인할 수 있는 바튼 시스템.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851374

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14353904

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851374

Country of ref document: EP

Kind code of ref document: A1