WO2013073414A1 - 電極活物質、該電極活物質の製造方法、電極、及び二次電池 - Google Patents

電極活物質、該電極活物質の製造方法、電極、及び二次電池 Download PDF

Info

Publication number
WO2013073414A1
WO2013073414A1 PCT/JP2012/078695 JP2012078695W WO2013073414A1 WO 2013073414 A1 WO2013073414 A1 WO 2013073414A1 JP 2012078695 W JP2012078695 W JP 2012078695W WO 2013073414 A1 WO2013073414 A1 WO 2013073414A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
electrode
secondary battery
battery
Prior art date
Application number
PCT/JP2012/078695
Other languages
English (en)
French (fr)
Inventor
佐藤 正春
尾上 智章
雅典 三田
英久 目代
鋤柄 宜
Original Assignee
株式会社村田製作所
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所, 本田技研工業株式会社 filed Critical 株式会社村田製作所
Priority to EP12849583.5A priority Critical patent/EP2782171B1/en
Priority to CN201280056254.4A priority patent/CN103999273B/zh
Priority to JP2013544221A priority patent/JP5633949B2/ja
Publication of WO2013073414A1 publication Critical patent/WO2013073414A1/ja
Priority to US14/279,720 priority patent/US9601757B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode active material, a method for producing the electrode active material, an electrode, and a secondary battery, and more specifically, an electrode active material that repeats charging and discharging using a battery electrode reaction, a method for producing the electrode active material,
  • the present invention relates to an electrode using an electrode active material and a secondary battery.
  • cordless power supplies for these electronic devices have a high energy density and high output, and long-life secondary batteries are expected.
  • lithium ion secondary batteries using an alkali metal ion such as lithium ion as a charge carrier and utilizing an electrochemical reaction accompanying the charge transfer have been developed.
  • lithium ion secondary batteries have a high energy density and are becoming widespread as in-vehicle batteries.
  • the electrode active material is a substance that directly contributes to the battery electrode reaction such as the charge reaction and the discharge reaction, and has the central role of the secondary battery. That is, the battery electrode reaction is a reaction that occurs with the transfer of electrons by applying a voltage to an electrode active material that is electrically connected to an electrode disposed in the electrolyte, and proceeds during charging and discharging of the battery. To do. Therefore, as described above, the electrode active material has a central role of the secondary battery in terms of system.
  • a lithium-containing transition metal oxide is used as a positive electrode active material
  • a carbon material is used as a negative electrode active material
  • an insertion reaction and a desorption reaction of lithium ions with respect to these electrode active materials are used. Charging / discharging.
  • the lithium ion secondary battery has a problem in that the speed of charging and discharging is limited because the movement of lithium ions in the positive electrode is rate limiting. That is, in the above-described lithium ion secondary battery, the migration rate of lithium ions in the transition metal oxide of the positive electrode is slower than that of the electrolyte and the negative electrode, and therefore the battery reaction rate at the positive electrode becomes the rate-determining rate. As a result, there is a limit to increasing the output and shortening the charging time.
  • Patent Document 1 is known as a prior art document using an organic radical compound as an electrode active material.
  • Patent Document 1 discloses a secondary battery active material using a nitroxyl radical compound, an oxy radical compound, and a nitrogen radical compound having a radical on a nitrogen atom.
  • the unpaired electrons that react are localized in the radical atoms, so that the concentration of the reaction site can be increased, and thus a high-capacity secondary battery can be realized. Further, since the reaction rate of radicals is high, it is considered that the charging time can be completed in a short time by performing charging / discharging utilizing a redox reaction of a stable radical.
  • Example using a highly stable nitroxyl radical as a radical is described, for example, the electrode layer containing a nitronyl nitroxide compound is used as a positive electrode, and lithium bonding copper foil is used as a negative electrode.
  • the electrode layer containing a nitronyl nitroxide compound is used as a positive electrode
  • lithium bonding copper foil is used as a negative electrode.
  • Patent Documents 2 and 3 are known as prior art documents using an organic sulfur compound as an electrode active material.
  • Patent Document 2 discloses a novel organic sulfur compound, which is a positive electrode material, has an SS bond in a charged state, and the SS bond is cleaved during discharge of the positive electrode to form an organic sulfur metal salt having a metal ion.
  • Metal-sulfur battery cells have been proposed.
  • disulfide compound a disulfide organic compound represented by the general formula (1 ′) (hereinafter referred to as “disulfide compound”) is used as the organic sulfur compound.
  • R represents an aliphatic organic group or an aromatic organic group, and each includes the same or different cases.
  • the disulfide compound can undergo a two-electron reaction, and the S—S bond is cleaved in a reduced state (discharge state), thereby forming an organic thiolate (RS—).
  • This organic thiolate forms an S—S bond in the oxidized state (charged state) and is restored to the disulfide compound represented by the general formula (1 ′).
  • the disulfide compound forms an SS bond having a small binding energy, a reversible redox reaction occurs using the bond and cleavage by the reaction, and thus charge and discharge can be performed.
  • Patent Document 3 discloses the following formula (2 ′): -(NH-CS-CS-NH) (2 ')
  • a battery electrode comprising rubeanic acid or a rubeanic acid polymer that has a structural unit represented by the formula (II) and can be bonded to lithium ions has been proposed.
  • the rubeanic acid or rubeanic acid polymer containing the dithione structure represented by the general formula (2 ′) binds to lithium ions during reduction, and releases the bound lithium ions during oxidation. Charging / discharging can be performed by utilizing such a reversible oxidation-reduction reaction of rubeanic acid or rubeanic acid polymer.
  • Patent Document 3 when rubeanic acid is used as the positive electrode active material, a two-electron reaction is possible, and a secondary battery having a capacity density of 400 Ah / kg at room temperature is obtained.
  • Patent Document 4 is known as a prior art document using a quinone compound as an electrode active material.
  • Patent Document 4 proposes an electrode active material containing a specific phenanthrenequinone compound having two quinone groups in the ortho-positional relationship.
  • the specific phenanthrenequinone compound described in Patent Document 4 can cause a two-electron reaction peculiar to the quinone compound between the mobile carrier and a reversible oxidation-reduction reaction. Furthermore, the specific phenanthrenequinone compound is oligomerized or polymerized to achieve insolubilization in an organic solvent without causing a decrease in the number of reaction electrons due to repulsion between electrons. Patent Document 4 shows that the phenanthrenequinone dimer exhibits two oxidation-reduction voltages (around 2.9 V and around 2.5 V), and the initial discharge capacity reaches 200 Ah / kg.
  • JP 2004-207249 A paragraph numbers [0278] to [0282]
  • US Pat. No. 4,833,048 (Claim 1, column 5, line 20 to column 28)
  • JP 2008-147015 A (Claim 1, paragraph number [0011], FIG. 3, FIG. 5)
  • JP 2008-222559 A (Claim 4, paragraph numbers [0027] and [0033], FIGS. 1 and 3)
  • Patent Document 1 although an organic radical compound such as a nitroxyl radical compound is used as an electrode active material, the charge / discharge reaction is limited to a one-electron reaction involving only one electron. That is, in the case of an organic radical compound, when a multi-electron reaction involving two or more electrons is caused, the radical lacks stability and decomposes, and the radical disappears and the reversibility of the charge / discharge reaction is lost. . For this reason, the organic radical compound as in Patent Document 1 must be limited to a one-electron reaction, and it is difficult to realize a multi-electron reaction that can be expected to have a high capacity.
  • an organic radical compound such as a nitroxyl radical compound
  • Patent Document 2 a low-molecular disulfide compound in which two electrons are involved is used. However, since it repeatedly binds and cleaves with other molecules along with the charge / discharge reaction, it lacks stability, and charge / discharge reaction is not performed. If it is repeated, the capacity may decrease.
  • Patent Document 3 a rubeanic acid compound containing a dithione structure is used to cause a two-electron reaction.
  • a polymer compound such as a rubeanic acid polymer
  • an intermolecular interaction in the rubeanic acid polymer is performed.
  • a sufficient reaction rate could not be obtained.
  • it took a long time to charge since the movement of ions is hindered as described above, the proportion of active materials that can be effectively used is reduced, and thus it has been difficult to realize a secondary battery having a desired high output.
  • Patent Document 4 uses a phenanthrenequinone compound having two quinone groups in the ortho-positional position as an electrode active material, and thus is excellent in stability, but is synthesized because it is a condensed ring compound. Difficult and capacity density is small.
  • the present invention has been made in view of such circumstances, and has a high energy density, a high output, and an electrode active material having good cycle characteristics with little decrease in capacity even after repeated charge and discharge, and a method for producing the electrode active material
  • An object of the present invention is to provide an electrode and a secondary battery using the electrode active material.
  • Conjugated dithione (-CS-CS-) in rubeanic acid has good reactivity with cations such as Li + .
  • the present inventors conducted extensive research on an organic compound containing a rubeanic acid structure containing conjugated dithione in the structural unit. As a result, the organic compound having the rubeanic acid structure was filled with oxamide. The inventors have found that the discharge reaction is stable, whereby an electrode active material having good cycle characteristics can be obtained.
  • the electrode active material according to the present invention is an electrode active material used as an active material of a secondary battery that repeats charge and discharge by a battery electrode reaction, It is characterized by comprising mainly a mixture of an organic compound containing a rubeanic acid structure in a structural unit and oxamide.
  • the organic compound is preferably represented by the following general formula.
  • n represents an integer of 1 to 20
  • R 1 to R 4 represent a hydrogen atom, a halogen atom, a hydroxyl group, a substituted or unsubstituted alkyl group having 1 to 3 carbon atoms, a substituted or unsubstituted group.
  • R 1 to R 4 are the same And a case where they are linked to each other to form a saturated or unsaturated ring.
  • the content of the oxamide in the mixture is preferably 0.1% by mass or more.
  • the oxamide can be easily generated by heat-treating an organic compound having a rubeanic acid structure in the structural unit.
  • the method for producing an electrode active material according to the present invention is a method for producing an electrode active material used as an active material of a secondary battery that repeats charging and discharging by a battery electrode reaction, and has a rubeanic acid structure in a structural unit.
  • the organic compound contained is heat-treated to produce oxamide, and an electrode active material containing a mixture of the organic compound and the oxamide is produced.
  • the electrode according to the present invention is characterized by containing any of the electrode active materials described above and a conductive material.
  • any one of the electrode active materials described above is included in at least one of a reaction starting material, a product, and an intermediate product in a discharge reaction of the battery electrode reaction. It is a feature.
  • the secondary battery according to the present invention has a positive electrode, a negative electrode, and an electrolyte, and the positive electrode contains any one of the electrode active materials described above.
  • an electrode active material used as an active material of a secondary battery that repeats charging and discharging by a battery electrode reaction, an organic compound containing a rubeanic acid structure in a structural unit, and oxamide Therefore, it is possible to obtain an electrode active material having a stable charge / discharge reaction and good cycle characteristics.
  • the rubeanic acid structure contains conjugated dithione that is electrochemically active and highly reactive with cations such as Li +, so that charge / discharge efficiency is good and a high capacity density can be achieved.
  • conjugated dithione that is electrochemically active and highly reactive with cations such as Li +
  • an electrode compound containing a mixture of the organic compound and the oxamide is produced by heat-treating an organic compound containing a rubeanic acid structure in a structural unit. Since the material is prepared, an electrode active material having a stable charge / discharge reaction and good cycle characteristics can be easily obtained at low cost without separately procuring oxamide and adding it to the organic compound.
  • the electrode of the present invention since it contains any of the electrode active materials and conductive materials described above, the charge / discharge efficiency is good, the battery can be charged in a short time, and the output is increased. Can be obtained.
  • any one of the electrode active materials described above is included in at least one of reaction starting materials, products, and intermediate products in the discharge reaction of the battery electrode reaction.
  • High energy density, quick charge, discharge at high output, rechargeable battery with good cycle characteristics with little capacity degradation even after repeated charge and discharge, and long battery life with stable battery characteristics It becomes.
  • the electrode active material is mainly composed of the above-described organic compound, a secondary battery with low environmental burden and safety can be obtained.
  • the electrode active material of the present invention is mainly composed of a mixture of an organic compound containing a rubeanic acid structure in a structural unit and oxamide. As a result, the charge / discharge reaction is stabilized, and an electrode active material having good cycle characteristics can be obtained.
  • the organic compound having rubeanic acid in the structural unit can be represented by the following general formula (1).
  • R 1 to R 4 are each a hydrogen atom, a halogen atom, a hydroxyl group, a substituted or unsubstituted alkyl group having 1 to 3 carbon atoms, a substituted or unsubstituted amino group, a substituted or unsubstituted phenyl group, substituted or unsubstituted 1 represents at least one selected from an unsubstituted cyclohexyl group and a substituted or unsubstituted sulfo group, and R 1 to R 4 include the same case and are connected to each other to form a saturated or unsaturated ring. Including the case of forming.
  • this electrode active material is mainly composed of a mixture of an organic compound represented by the general formula (1) and an oxamide represented by the following chemical formula (2).
  • the stability of the charge / discharge reaction can be improved by containing oxamide in the electrode active material. It is considered that this is because the oxamide interacts with a reaction intermediate of an organic compound containing a rubeanic acid structure to stabilize the charge / discharge reaction.
  • the rubeanic acid structure contains conjugated dithione that is electrochemically active and rich in reactivity with cations such as Li + , the charge / discharge efficiency is good and the capacity density can be increased. As a result, it is possible to obtain an electrode active material having a large energy density and improved stability during charging and discharging.
  • the content of oxamide in the electrode active material is not particularly limited. However, if it is less than 0.1% by mass, the content of oxamide is too small, so that the charge / discharge reaction is sufficiently stabilized. May not be possible. Therefore, in order to effectively exhibit sufficient desired stability during charge / discharge, it is preferably at least 0.1% by mass.
  • the content of oxamide exceeds 10% by mass, the content of oxamide becomes excessive, so that the molecular weight of the rubeanic acid structure portion that expresses the desired effect as an electrode active material is relatively reduced, and the electrode The capacity density of the active material may be reduced. Therefore, the content of oxamide is preferably 10% by mass or less.
  • the method for containing oxamide in the electrode active material is not particularly limited.
  • oxamide may be procured separately and added directly to the organic compound. It is preferable to heat-treat the organic compound containing the structure in the structural unit and decompose the organic compound to produce oxamide.
  • an electrode active material composed of a mixture of the organic compound and oxamide can be obtained, and the charge / discharge stability is excellent at low cost.
  • An electrode active material having good cycle characteristics can be obtained.
  • the heat treatment temperature for heat-treating the organic compound is not particularly limited, but the higher the temperature of the heat treatment, the higher the rate of oxamide formation. It is preferable to carry out at a heat treatment temperature of about ° C.
  • the heat-treated mixture that is, the electrode active material or the electrode active material is contained.
  • the content of oxamide in the electrode active material can be easily grasped. Therefore, it is possible to control the content of oxamide to a desired amount by adjusting the heat treatment conditions.
  • the electrode active material is considered to generate a complex salt with the battery electrode reaction.
  • the following chemical reaction formula (A) shows an example of a charge / discharge reaction expected when the organic compound represented by the general formula (1) is used as an electrode active material and Li is used as a cation of an electrolyte salt. .
  • the conjugated dithione moiety contained in the rubeanic acid structure is combined with Li + during reduction, and Li + is released during oxidation.
  • examples of the organic compound belonging to the category of the general formula (1) include organic compounds represented by the following chemical formulas (1a) to (1r).
  • the molecular weight of the organic compound constituting the electrode active material is not particularly limited. However, if the molecular weight is excessively small, it may be easily dissolved in the electrolyte. On the other hand, since the appearance of the effect desired by the present invention depends on the conjugated dithione portion of the rubeanic acid structure, when the portion other than the conjugated dithione increases, the capacity that can be stored per unit mass, that is, the capacity density decreases. Therefore, the molecular weight of each substituent R 1 to R 4 is preferably in the range of up to about 150 in total.
  • molecular weight and molecular weight distribution are not specifically limited.
  • FIG. 1 is a cross-sectional view showing a coin-type secondary battery as an embodiment of a secondary battery according to the present invention.
  • the electrode active material of the present invention is used as a positive electrode active material. ing.
  • the battery can 1 has a positive electrode case 2 and a negative electrode case 3, and both the positive electrode case 2 and the negative electrode case 3 are formed in a disk-like thin plate shape.
  • a positive electrode 4 in which a mixture containing a positive electrode active material (electrode active material) and a conductive auxiliary agent (conductive material) is formed into a sheet shape is disposed.
  • the negative electrode 6 for example, a stainless steel foil or a copper foil overlaid with a lithium metal foil, or a lithium foil occlusion material such as graphite or hard carbon applied to a copper foil can be used.
  • a negative electrode current collector 7 made of metal is laminated on the negative electrode 6, and a metal spring 8 is placed on the negative electrode current collector 7.
  • the electrolyte 9 is filled in the internal space, and the negative electrode case 3 is fixed to the positive electrode case 2 against the urging force of the metal spring 8 and sealed with a gasket 10.
  • an electrode active material is formed into an electrode shape.
  • the electrode active material is mixed with a conductive auxiliary agent and a binder, and a solvent is added to form a slurry.
  • the slurry is applied on the positive electrode current collector by an arbitrary coating method, and dried to obtain the positive electrode. Form.
  • the conductive auxiliary agent is not particularly limited, for example, carbonaceous fine particles such as graphite, carbon black, and acetylene black, vapor grown carbon fibers, carbon nanotubes, carbon fibers such as carbon nanohorns, polyaniline, Conductive polymers such as polypyrrole, polythiophene, polyacetylene, and polyacene can be used. Further, two or more kinds of conductive assistants can be mixed and used.
  • the content of the conductive auxiliary agent in the positive electrode 4 is desirably 10 to 80% by mass.
  • the binder is not particularly limited, and various resins such as polyethylene, polyvinylidene fluoride, polyhexafluoropropylene, polytetrafluoroethylene, polyethylene oxide, carboxymethylcellulose, and the like can be used.
  • the solvent is not particularly limited, and examples thereof include basic solvents such as dimethyl sulfoxide, dimethylformamide, 1-methyl-2-pyrrolidone, propylene carbonate, diethyl carbonate, dimethyl carbonate, and ⁇ -butyrolactone, acetonitrile, Nonaqueous solvents such as tetrahydrofuran, nitrobenzene, and acetone, protic solvents such as methanol and ethanol, water, and the like can be used.
  • basic solvents such as dimethyl sulfoxide, dimethylformamide, 1-methyl-2-pyrrolidone, propylene carbonate, diethyl carbonate, dimethyl carbonate, and ⁇ -butyrolactone
  • acetonitrile Nonaqueous solvents such as tetrahydrofuran, nitrobenzene, and acetone
  • protic solvents such as methanol and ethanol, water, and the like can be used.
  • the type of solvent, the compounding ratio between the organic compound and the solvent, the type of additive and the amount of the additive, etc. can be arbitrarily set in consideration of the required characteristics and productivity of the secondary battery.
  • the positive electrode 4 is impregnated in the electrolyte 9 so that the positive electrode 4 is impregnated with the electrolyte 9, and then the positive electrode 4 at the center of the bottom of the positive electrode case 2 constituting the positive electrode current collector is placed.
  • the separator 5 impregnated with the electrolyte 9 is laminated on the positive electrode 4, the negative electrode 6 and the negative electrode current collector 7 are sequentially laminated, and then the electrolyte 9 is injected into the internal space.
  • a metal spring 8 is placed on the negative electrode current collector 7, and a gasket 10 is arranged on the periphery, and the negative electrode case 3 is fixed to the positive electrode case 2 with a caulking machine or the like, and the outer casing is sealed.
  • a type secondary battery is produced.
  • the electrolyte 9 interposed between the negative electrode 6, which is a counter electrode of the positive electrode 4 and the positive electrode 4 performs a charge carrier transport between the electrodes, but as such a electrolyte 9, at room temperature for 10 -
  • Those having an ionic conductivity of 5 to 10 ⁇ 1 S / cm can be used.
  • an electrolytic solution in which an electrolyte salt is dissolved in an organic solvent can be used.
  • electrolyte salt for example, LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 or the like can be used.
  • organic solvent ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ⁇ -butyrolactone, tetrahydrofuran, dioxolane, sulfolane, dimethylformamide, dimethylacetamide, 1-methyl-2-pyrrolidone, etc. are used. be able to.
  • the electrolyte 9 can be a solid electrolyte, an ionic liquid in which a cation and an anion are combined, a symmetric glycol diether such as glymes, a chain sulfone, or the like.
  • polymer compound used in the solid electrolyte examples include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-monofluoroethylene copolymer, and fluoride compound.
  • Vinylidene fluoride polymers such as vinylidene-trifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, and acrylonitrile-methyl methacrylate copolymer Polymer, acrylonitrile-methyl acrylate copolymer, acrylonitrile-ethyl methacrylate copolymer, acrylonitrile-ethyl acrylate copolymer, acrylonitrile-methacrylic acid copolymer, acrylonitrile-a Acrylic nitrile polymers such as lauric acid copolymer and acrylonitrile-vinyl acetate copolymer, polyethylene oxide, ethylene oxide-propylene oxide copolymer, and polymers of these acrylates and methacrylates. Can do. Further, these polymer compounds containing an electrolytic solution in
  • Examples of the ionic liquid include cations such as 2-ethylimidazolium, 3-propylimidazolium, 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1,3-dimethylimidazolium, and the like.
  • Imidazolium diethylmethylammonium, tetrabutylammonium, cyclohexyltrimethylammonium, methyltri-n-octylammonium, triethyl (2-methoxyethoxymethyl) ammonium, benzyldimethyltetradecylammonium, benzyltrimethylammonium, and other alkylpyridiniums, Dialkylpyrrolidinium, tetraalkylphosphonium, trialkylsulfonium, and the like can be used, and the anion can be a Cl ⁇ , Br ⁇ , I ⁇ or the like.
  • glymes methyltriglyme, ethyltriglyme, butyltriglyme, methyltetraglyme, ethyltetraglyme, butyltetraglyme and the like can be used.
  • 2- (ethylsulfonyl) propane, 2- (ethylsulfonyl) butane, or the like can be used as the chain sulfone.
  • the electrode of the present invention contains the electrode active material and the conductive material described above, the charge / discharge efficiency is good, the battery can be charged in a short time, and the output can be increased.
  • the electrode active material of the secondary battery is reversibly oxidized or reduced by charge and discharge, it has a different structure and state in the charged state, the discharged state, or the state in the middle thereof.
  • the electrode active material is contained in at least one of a reaction starting material in a discharge reaction (a material that causes a chemical reaction in a battery electrode reaction), a product (a material resulting from a chemical reaction), and an intermediate product. .
  • a reaction starting material in a discharge reaction a material that causes a chemical reaction in a battery electrode reaction
  • a product a material resulting from a chemical reaction
  • an intermediate product a material that causes a chemical reaction in a battery electrode reaction
  • it has a high energy density, can be charged quickly, can be discharged at high output, has a good cycle characteristic with little capacity decrease even after repeated charge and discharge, and realizes a long-life secondary battery with stable battery characteristics. It becomes possible to do.
  • the secondary battery is comprised using the said electrode active material, the energy density is large and the secondary battery excellent in stability can be obtained.
  • the electrode active material is mainly composed of organic compounds, it is possible to obtain a secondary battery with low environmental impact and safety.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.
  • the above-listed chemical formulas (1a) to (1r) are also examples of the organic compound that is the main component of the electrode active material, and the present invention is not limited thereto. That is, if the organic compound contains a rubean structure as shown in the general formula (1) in the structural unit, the same battery electrode reaction as in the chemical reaction formula (A) proceeds.
  • oxamide in the electrode active material it becomes possible to obtain a desired secondary battery having a high energy density and good cycle characteristics with improved charge / discharge reaction stability.
  • the coin-type secondary battery has been described.
  • the battery shape is not particularly limited, and can be applied to a cylindrical type, a square type, a sheet type, and the like.
  • the exterior method is not particularly limited, and a metal case, mold resin, aluminum laminate film, or the like may be used.
  • the electrode active material is used as the positive electrode active material, but it is also useful to use it as the negative electrode active material.
  • Example shown below is an example and this invention is not limited to the following Example.
  • this positive electrode was placed on a positive electrode current collector, and a separator having a thickness of 20 ⁇ m made of a polypropylene porous film impregnated with the electrolytic solution was further laminated on the positive electrode, and further a stainless steel current collector plate The negative electrode which stuck lithium on both surfaces was laminated
  • the capacity density per mass of the active material calculated from the discharge capacity was 440 hAh / kg, and it was found that this compound is a high capacity density electrode active material suitable for a high energy density battery.
  • an ionic liquid composed of 1-ethyl-3-methylimidazolium bis (trifluorosulfonyl) imide is used as an electrolyte.
  • a coin-type battery was produced in the same manner as in Example 1 except that an electrolytic solution containing LiN (CF 3 SO 2 ) 2 (electrolyte salt) having a molar concentration of 1M was used.
  • the capacity density per mass of the active material calculated from the discharge capacity was 620 Ah / kg, and it was confirmed that this compound is a high capacity density electrode active material suitable for a high energy density battery.
  • N, N′-dimethyldithiooxamide represented by the chemical formula (1b) was prepared.
  • a coin-type battery was produced in the same manner as in Example 1 except that N, N′-dimethyldithiooxamide was used instead of rubeanic acid in Example 1.
  • the capacity density per mass of the active material calculated from the discharge capacity was 380 Ah / kg, and it was found that this compound is a high capacity density electrode active material suitable for a high energy density battery.
  • N N ′-(2-hydroxyethyl) dithiooxamide represented by the chemical formula (1m) was prepared.
  • a coin-type battery was produced in the same manner as in Example 1 except that N, N ′-(2-hydroxyethyl) dithiooxamide was used instead of rubeanic acid in Example 1.
  • the capacity density per mass of the active material calculated from the discharge capacity was 290 Ah / kg, and it was confirmed that this compound is a high capacity density electrode active material suitable for a high energy density battery.
  • a coin-type battery was produced in the same manner as in Example 1 except that (2-piperidinyl) -2-thioxoethanethioamide was used instead of rubeanic acid in Example 1.
  • the capacity density per mass of the active material calculated from the discharge capacity was 320 Ah / kg, and it was confirmed that this compound is a high capacity density electrode active material suitable for a high energy density battery.
  • a coin-type battery was produced in the same manner as in Example 1 except that the positive electrode active material was composed of rubeanic acid alone without containing oxamide in Example 1.
  • the capacity density per mass of the active material calculated from the discharge capacity was 440 Ah / kg, and it was confirmed that this compound is a high capacity density electrode active material suitable for a high energy density battery.
  • Repetitive charge / discharge reactions can reduce secondary capacity, have excellent cycle characteristics with excellent stability, and can realize a secondary battery with high energy density and high output.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 電極活物質は、下記一般式で表されるルベアン酸を構成単位中に含有する有機化合物とオキサミドとの混合物を主体とする。式中、nは1~20の整数を示し、R~Rは、水素原子、ハロゲン原子、水酸基、炭素数が1~3のアルキル基、アミノ基、フェニル基、シクロヘキシル基、又はスルホ基等、所定の置換基を示す。正極4はこの電極活物質を含有している、これによりエネルギー密度が大きく高出力で、充放電を繰り返しても容量低下の少ないサイクル特性の良好なものを実現する。

Description

電極活物質、該電極活物質の製造方法、電極、及び二次電池
 本発明は電極活物質、該電極活物質の製造方法、電極、及び二次電池に関し、より詳しくは電池電極反応を利用して充放電を繰り返す電極活物質、該電極活物質の製造方法、該電極活物質を使用した電極、及び二次電池に関する。
 携帯電話、ノートパソコン、デジタルカメラ等の携帯用電子機器の市場拡大に伴い、これら電子機器のコードレス電源としてエネルギー密度が大きく高出力化が可能で長寿命の二次電池が待望されている。
 そして、このような要求に応えるべく、リチウムイオン等のアルカリ金属イオンを荷電担体とし、その電荷授受に伴う電気化学反応を利用した二次電池が開発されている。特に、リチウムイオン二次電池は、エネルギー密度が大きく、車載用バッテリーとしても広く普及しつつある。
 ところで、二次電池の構成要素のうち電極活物質は、充電反応、放電反応という電池電極反応に直接寄与する物質であり、二次電池の中心的役割を有する。すなわち、電池電極反応は、電解質中に配された電極と電気的に接続された電極活物質に対し電圧を印加することにより、電子の授受を伴って生じる反応であり、電池の充放電時に進行する。したがって、上述したように電極活物質は、システム的には、二次電池の中心的役割を有する。
 そして、上記リチウムイオン二次電池では、正極活物質としてリチウム含有遷移金属酸化物、負極活物質として炭素材料を使用し、これらの電極活物質に対するリチウムイオンの挿入反応、及び脱離反応を利用して充放電を行っている。
 しかしながら、リチウムイオン二次電池は、正極におけるリチウムイオンの移動が律速となるため、充放電の速度が制限されるという問題があった。すなわち、上述したリチウムイオン二次電池では、電解質や負極に比べて正極の遷移金属酸化物中でのリチウムイオンの移動速度が遅く、このため正極での電池反応速度が律速となって充放電速度が制限され、その結果、高出力化や充電時間の短時間化には限界があった。
 そこで、このような課題を解決すべく、近年、有機ラジカル化合物や有機イオウ化合物、さらにはキノン化合物を電極活物質に使用した二次電池の研究・開発が盛んに行われている。
 例えば、有機ラジカル化合物を電極活物質に使用した先行技術文献としては、特許文献1が知られている。
 この特許文献1には、ニトロキシルラジカル化合物、オキシラジカル化合物、及び窒素原子上にラジカルを有する窒素ラジカル化合物を使用した二次電池用活物質が開示されている。
 有機ラジカル化合物は、反応する不対電子がラジカル原子に局在化して存在するため、反応部位の濃度を増大させることができ、これにより高容量の二次電池の実現を期待することができる。また、ラジカルは反応速度が速いので、安定ラジカルの酸化還元反応を利用して充放電を行うことにより、充電時間を短時間で完了させることが可能と考えられる。
 そして、この特許文献1では、ラジカルとして安定性の高いニトロキシルラジカルを使用した実施例が記載されており、例えば、ニトロニルニトロキシド化合物を含む電極層を正極とし、リチウム貼り合わせ銅箔を負極として二次電池を作製し、繰り返し充放電したところ、10サイクル以上にわたって充放電が可能であることが確認されている。
 また、有機イオウ化合物を電極活物質に使用した先行技術文献としては、特許文献2及び3が知られている。
 特許文献2には、正極材料である有機イオウ化合物が充電状態でS-S結合を有すると共に、正極の放電時にはS-S結合が開裂し、金属イオンを有する有機イオウ金属塩を形成した新規な金属-イオウ型電池セルが提案されている。
 この特許文献2では、有機イオウ化合物として、一般式(1′)で表されるジスルフィド系の有機化合物(以下、「ジスルフィド化合物」という。)を使用している。
 R-S-S-R … (1′)
 ここで、Rは脂肪族有機基又は芳香族有機基を示し、各々は同一又は異なる場合を含んでいる。
 ジスルフィド化合物は、2電子反応が可能であり、還元状態(放電状態)でS-S結合が開裂し、これにより有機チオレート(R-S-)を形成する。そして、この有機チオレートは酸化状態(充電状態)でS-S結合を形成し、一般式(1′)で示すジスルフィド化合物に復元する。つまり、ジスルフィド化合物は結合エネルギーの小さなS-S結合を形成するため、反応による結合と開裂を利用して可逆的な酸化還元反応が生じ、これにより充放電を行うことができる。
 また、特許文献3には、次式(2′):
 -(NH-CS-CS-NH)…(2′)
で示される構造単位を有し、リチウムイオンと結合可能であるルベアン酸またはルベアン酸ポリマーを含む電池用電極が提案されている。
 一般式(2′)で表されるジチオン構造を含有したルベアン酸又はルベアン酸ポリマーは、還元時にリチウムイオンと結合し、酸化時に前記結合したリチウムイオンを放出する。このようなルベアン酸又はルベアン酸ポリマーの可逆的な酸化還元反応を利用することによって充放電を行うことができる。
 この特許文献3では、正極活物質にルベアン酸を使用した場合、2電子反応が可能であり、常温で400Ah/kgの容量密度を有する二次電池を得ている。
 また、電極活物質にキノン化合物を使用した先行技術文献としては、特許文献4が知られている。
 特許文献4には、オルト位の位置関係で2つのキノン基を有する特定のフェナントレンキノン化合物を含有した電極活物質が提案されている。
 特許文献4に記載の特定のフェナントレンキノン化合物は、移動キャリアとの間で、キノン化合物に特有の2電子反応を生じ、可逆的な酸化還元反応を起こすことができる。さらに、前記特定のフェナントレンキノン化合物をオリゴマー化又はポリマー化することによって、電子同士の反発による反応電子数の減少が生じることなく、有機溶媒に対する不溶化を達成している。そして、特許文献4では、フェナントレンキノン2量体が二つの酸化還元電圧(2.9V付近及び2.5V付近)を示し、初回の放電容量が200Ah/kgに達することが示されている。
特開2004-207249号公報(段落番号〔0278〕~〔0282〕) 米国特許第4833048号公報(請求項1、第5欄第20行目~同欄第28行目) 特開2008-147015号公報(請求項1、段落番号〔0011〕、図3、図5) 特開2008-222559号公報(請求項4、段落番号〔0027〕、〔0033〕、図1、図3)
 しかしながら、特許文献1では、ニトロキシルラジカル化合物等の有機ラジカル化合物を電極活物質に使用しているものの、充放電反応は、1つの電子のみが関与する1電子反応に限定されている。すなわち、有機ラジカル化合物の場合、2電子以上の電子が関与する多電子反応を起こさせると、ラジカルが安定性を欠いて分解等が生じ、ラジカルが消失して充放電反応の可逆性が失われる。このため、特許文献1のような有機ラジカル化合物では、1電子反応に限定せざるを得ず、高容量が期待できる多電子反応を実現するのは困難である。
 また、特許文献2では、2電子が関与する低分子のジスルフィド化合物が利用されているが、充放電反応に伴って他の分子と結合、開裂を繰り返すため、安定性に欠け、充放電反応を繰り返すと容量が低下してしまうおそれがある。
 特許文献3では、ジチオン構造を含有したルベアン酸化合物を使用して2電子反応を生じさせているが、ルベアン酸ポリマーのような高分子化合物を使用した場合は、ルベアン酸ポリマー内の分子間相互作用が大きく、イオンの移動が妨げられる結果、十分な反応速度を得ることができなかった。このため充電に長時間を要していた。また、上述のようにイオンの移動が妨げられるため、有効に利用できる活物質の割合が少なくなり、このため所望の高出力を有する二次電池を実現するのは困難な状況にあった。
 特許文献4は、オルト位の位置関係で2つのキノン基を有するフェナントレンキノン化合物を電極活物質に使用しているため、安定性には優れているものの、縮環系化合物であるために合成が難しく、容量密度も小さい。
 このように従来では、有機ラジカル化合物やジスルフィド化合物、ルベアン酸などの有機化合物を電極活物質に使用したとしても、多電子反応と充放電サイクルに対する安定性を両立させることは難しく、したがって、未だ十分に大きなエネルギー密度を有し、高出力でサイクル特性が良好で長寿命の電極活物質を実現できていないのが現状である。
 本発明はこのような事情に鑑みてなされたものであって、エネルギー密度が大きく高出力で、充放電を繰り返しても容量低下の少ないサイクル特性の良好な電極活物質、電極活物質の製造方法、この電極活物質を使用した電極及び二次電池を提供することを目的とする。
 ルベアン酸中の共役ジチオン(-CS-CS-)はLi等のカチオンとの間で良好な反応性を有する。
 そこで、本発明者らは、共役ジチオンを含有するルベアン酸構造を構成単位中に含む有機化合物について鋭意研究を行なったところ、該ルベアン酸構造を有する有機化合物は、オキサミドを含有させることにより、充放電反応が安定し、これにより良好なサイクル特性を有する電極活物質を得ることができるという知見を得た。
 本発明はこのような知見に基づきなされたものであって、本発明に係る電極活物質は、電池電極反応によって充放電を繰り返す二次電池の活物質として使用される電極活物質であって、ルベアン酸構造を構成単位中に含有する有機化合物とオキサミドとの混合物を主体としていることを特徴としている。
 また、本発明の電極活物質は、前記有機化合物が、下記一般式で表わされるのが好ましい。
Figure JPOXMLDOC01-appb-C000002
 ただし、式中、nは1~20の整数を示し、R~Rは、水素原子、ハロゲン原子、水酸基、炭素数が1~3の置換若しくは無置換のアルキル基、置換若しくは無置換のアミノ基、置換若しくは無置換のフェニル基、置換若しくは無置換のシクロヘキシル基、及び置換若しくは無置換のスルホ基のうちから選択された少なくともいずれか1種を示し、R~Rは同一の場合を含み、互いに連結して飽和若しくは不飽和の環を形成する場合を含んでいる。
 また、より安定した充放電反応を確保するためには、前記オキサミドは0.1質量%以上含有させるのが効果的である。
 すなわち、本発明の電極活物質は、前記オキサミドは、前記混合物中の含有量が0.1質量%以上であるのが好ましい。
 また、前記オキサミドは、ルベアン酸構造を構成単位中に有する有機化合物を熱処理することによって容易に生成できることが分かった。
 すなわち、本発明に係る電極活物質の製造方法は、電池電極反応によって充放電を繰り返す二次電池の活物質として使用される電極活物質の製造方法であって、ルベアン酸構造を構成単位中に含有する有機化合物を熱処理してオキサミドを生成し、前記有機化合物と前記オキサミドとの混合物を含有した電極活物質を作製することを特徴としている。
 また、本発明に係る電極は、上記いずれかに記載の電極活物質と導電性物質とを含有していることを特徴としている。
 また、本発明に係る二次電池は、上記いずれかに記載の電極活物質が、電池電極反応の少なくとも放電反応における反応出発物、生成物及び中間生成物のうちのいずれかに含まれることを特徴としている。
 また、本発明に係る二次電池は、正極、負極、及び電解質を有し、前記正極が、上記いずれかに記載の電極活物質を含有していることを特徴としている。
 本発明の電極活物質によれば、電池電極反応によって充放電を繰り返す二次電池の活物質として使用される電極活物質であって、ルベアン酸構造を構成単位中に含有する有機化合物とオキサミドとの混合物を主体としているので、安定した充放電反応を有し、サイクル特性が良好な電極活物質を得ることができる。
 しかも、ルベアン酸構造中には電気化学的に活性でLi等のカチオンとの反応性に富んだ共役ジチオンを含有しているので、充放電効率が良好で高容量密度化が可能となる。その結果、充放電時の安定性が向上したエネルギー密度の大きな電極活物質を得ることができる。
 また、本発明の電極活物質の製造方法によれば、ルベアン酸構造を構成単位中に含有する有機化合物を熱処理してオキサミドを生成し、前記有機化合物と前記オキサミドとの混合物を含有した電極活物質を作製するので、オキサミドを別途調達して前記有機化合物に添加しなくても、安定した充放電反応を有するサイクル特性の良好な電極活物質を低コストで容易に得ることが可能となる。
 また、本発明の電極によれば、上記いずれかに記載の電極活物質と導電性物質とを含有しているので、充放電効率が良好であって短時間で充電ができ、かつ高出力化が可能な電極を得ることができる。
 さらに、本発明の二次電池によれば、上記いずれかに記載の電極活物質が、電池電極反応の少なくとも放電反応における反応出発物、生成物及び中間生成物のうちのいずれかに含まれるので、エネルギー密度が大きく、迅速に充電でき、高出力での放電が可能で充放電を繰り返しても容量低下の少ないサイクル特性が良好で電池特性の安定した長寿命の二次電池を得ることが可能となる。
 しかも、電極活物質が上述した有機化合物を主体としているため、環境負荷も低く安全性にも配慮した二次電池を得ることができる。
本発明に係る二次電池としてのコイン型電池の一実施の形態を示す断面図である。
 次に、本発明の実施の形態を詳説する。
 本発明の電極活物質は、ルベアン酸構造を構成単位中に含有する有機化合物とオキサミドとの混合物を主体としている。そしてこれにより充放電反応が安定し、良好なサイクル特性を有する電極活物質を得ることができる。
 ルベアン酸を構成単位中に有する有機化合物は、下記一般式(1)で表すことができる。
Figure JPOXMLDOC01-appb-C000003
 ここで、nは1~20の整数を示している。また、R~Rは、水素原子、ハロゲン原子、水酸基、炭素数が1~3の置換若しくは無置換のアルキル基、置換若しくは無置換のアミノ基、置換若しくは無置換のフェニル基、置換若しくは無置換のシクロヘキシル基、及び置換若しくは無置換のスルホ基のうちから選択された少なくともいずれか1種を示し、R~Rは同一の場合を含み、互いに連結して飽和若しくは不飽和の環を形成する場合を含んでいる。
 そして、本電極活物質は、上記一般式(1)で表される有機化合物と下記化学式(2)で表されるオキサミドとの混合物を主体としている。
Figure JPOXMLDOC01-appb-C000004
 このようにルベアン酸構造を構成単位中に含有する有機化合物に加え、オキサミドを電極活物質中に含有させることにより、充放電反応の安定性を向上させることが可能となる。これはオキサミドが、ルベアン酸構造を含有する有機化合物の反応中間体と相互作用して充放電反応が安定化するものと考えられる。
 そして、ルベアン酸構造中には電気化学的に活性でLi等のカチオンとの反応性に富んだ共役ジチオンを含有しているので、充放電効率が良好で高容量密度化が可能となる。その結果、充放電時の安定性が向上したエネルギー密度の大きな電極活物質を得ることができる。
 尚、電極活物質中のオキサミドの含有量は、特に限定されるものではないが、 0.1質量%未満の場合は、オキサミドの含有量が少な過ぎるため、充放電反応の十分な安定化をなし得ないおそれがある。したがって、充放電時の十分な所望の安定性を効果的に発揮するためには少なくとも0.1質量%以上であるのが好ましい。
 ただし、オキサミドの含有量が、10質量%を超えると、オキサミドの含有量が過剰となり、このため電極活物質としての所望の効果を発現するルベアン酸構造部分の分子量が相対的に少なくなり、電極活物質の容量密度が低下するおそれがある。したがって、オキサミドの含有量は10質量%以下が好ましい。
 電極活物質中にオキサミドを含有させる方法としては、特に限定されるものではなく、例えば、別途オキサミドを調達し、前記有機化合物に直接添加してもよいが、生産性等を考慮すると、ルベアン酸構造を構成単位中に含有する前記有機化合物を熱処理し、前記有機化合物を分解反応させてオキサミドを生成するのが好ましい。
 すなわち、前記有機化合物を熱処理させるだけで所望量のオキサミドを生成することにより、前記有機化合物とオキサミドとの混合物からなる電極活物質を得ることができ、低コストで充放電の安定性に優れたサイクル特性の良好な電極活物質を得ることが可能となる。
 この場合、前記有機化合物を熱処理する熱処理温度は、特に限定されるものではないが、高温で熱処理する程、オキサミドの生成速度が大きいことから、所望量のオキサミドを得るためには、60~90℃程度の熱処理理温度で行うのが好ましい。
 尚、ルベアン酸構造を構成単位中に含有する前記有機化合物を熱処理してオキサミドを電極活物質中に含有させる場合であっても、熱処理後の混合物、すなわち電極活物質や該電極活物質を含有した電極をガスクロマトグラフ質量分析装置で質量分析することにより、前記電極活物質中のオキサミドの含有量を容易に把握することができる。したがって、熱処理条件を調整することにより、オキサミドの含有量を所望量に制御することが可能となる。
 そして、電極活物質は、電池電極反応に伴って錯塩を生成すると考えられる。下記化学反応式(A)は、上記一般式(1)に示す有機化合物を電極活物質に使用し、Liを電解質塩のカチオンに使用した場合に予想される充放電反応の一例を示している。
Figure JPOXMLDOC01-appb-C000005
 すなわち、本発明の電極活物質は、充放電時に2電子が反応に関与し、ルベアン酸構造に含有される共役ジチオン部分が還元時にLiと結合し、酸化時にLiを放出する。
 また、一般式(1)の範疇に属する有機化合物としては、例えば、下記化学式(1a)~(1r)に示す有機化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 上記電極活物質を構成する有機化合物の分子量は、特に限定されないが、分子量が過度に小さくなると、電解質に容易に溶解するおそれがあることから、一定以上の分子量であることが好ましい。一方、本発明が所望する効果の出現は、ルベアン酸構造の共役ジチオン部分に依存していることから、共役ジチオン以外の部分が大きくなると単位質量あたりに蓄電できる容量、すなわち容量密度が小さくなる。したがって、各置換基R~Rの分子量としては、総計で150程度までの範囲が好ましい。
 尚、上述した有機化合物の重合体として利用する場合には分子量や分子量分布は特に限定されない。
 次に、上記電極活物質を使用した二次電池について詳述する。
 図1は、本発明に係る二次電池の一実施の形態としてのコイン型二次電池を示す断面図であって、本実施の形態では、本発明の電極活物質を正極活物質に使用している。
 電池缶1は、正極ケース2と負極ケース3とを有し、該正極ケース2及び負極ケース3は、いずれも円盤状の薄板形状に形成されている。正極集電体を構成する正極ケース2の底部中央には、正極活物質(電極活物質)及び導電性補助剤(導電性物質)を含有した混合物をシート状に成形した正極4が配されている。そして、正極4上には微多孔膜、織布、不織布などの多孔性のシートまたはフィルムで形成されたセパレータ5が積層され、さらにセパレータ5には負極6が積層されている。負極6としては、例えば、ステンレス箔や銅箔にリチウムの金属箔を重ね合わせたものや、黒鉛やハードカーボン等のリチウム吸蔵材料を銅箔に塗布したものを使用することができる。負極6には金属からなる負極集電体7が積層されるとともに、該負極集電体7には金属製ばね8が載置されている。そして、電解質9が内部空間に充填されると共に、負極ケース3は金属製ばね8の付勢力に抗して正極ケース2に固着され、ガスケット10を介して封止されている。
 次に、上記二次電池の製造方法の一例を詳述する。
 まず、電極活物質を電極形状に形成する。例えば、電極活物質を導電補助剤、及び結着剤と共に混合し、溶媒を加えてスラリーとし、該スラリーを正極集電体上に任意の塗工方法で塗工し、乾燥することにより正極を形成する。
 ここで、導電補助剤としては、特に限定されるものでなく、例えば、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子、気相成長炭素繊維、カーボンナノチューブ、カーボンナノホーン等の炭素繊維、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン等の導電性高分子などを使用することができる。また、導電補助剤を2種類以上混合して用いることもできる。尚、導電補助剤の正極4中の含有率は10~80質量%が望ましい。
 また、結着剤も特に限定されるものではなく、ポリエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリテトラフルオロエチレン、ポリエチレンオキサイド、カルボキシメチルセルロース等の各種樹脂を使用することができる。
 さらに、溶媒についても、特に限定されるものではなく、例えば、ジメチルスルホキシド、ジメチルホルムアミド、1-メチル-2-ピロリドン、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、γ-ブチロラクトン等の塩基性溶媒、アセトニトリル、テトラヒドロフラン、ニトロベンゼン、アセトン等の非水溶媒、メタノール、エタノール等のプロトン性溶媒、さらには水等を使用することができる。
 また、溶媒の種類、有機化合物と溶媒との配合比、添加剤の種類とその添加量等は、二次電池の要求特性や生産性等を考慮し、任意に設定することができる。
 次いで、この正極4を電解質9に含浸させて該正極4に前記電解質9を染み込ませ、その後、正極集電体を構成する正極ケース2の底部中央の正極4を載置する。次いで、前記電解質9を含浸させたセパレータ5を正極4上に積層し、さらに負極6及び負極集電体7を順次積層し、その後内部空間に電解質9を注入する。そして、負極集電体7上に金属製ばね8を載置すると共に、ガスケット10を周縁に配し、かしめ機等で負極ケース3を正極ケース2に固着して外装封止し、これによりコイン型二次電池が作製される。
 尚、上記電解質9は、正極4と該正極4の対向電極である負極6との間に介在して両電極間の荷電担体輸送を行うが、このような電解質9としては、室温で10-5~10-1S/cmのイオン伝導度を有するものを使用することができ、例えば、電解質塩を有機溶剤に溶解させた電解液を使用することができる。
 ここで、電解質塩としては、例えば、LiPF、LiClO、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO、LiC(CSO等を使用することができる。
 また、有機溶剤としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ-ブチロラクトン、テトラヒドロフラン、ジオキソラン、スルホラン、ジメチルホルムアミド、ジメチルアセトアミド、1-メチル-2-ピロリドン等を使用することができる。
 また、電解質9には、固体電解質やカチオンとアニオンを組み合わせたイオン性液体、グライム類などの対称グリコールジエーテル、鎖状スルホン等を使用することができる。
 固体電解質に用いられる高分子化合物としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-エチレン共重合体、フッ化ビニリデン-モノフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン三元共重合体等のフッ化ビニリデン系重合体、アクリロニトリル-メチルメタクリレート共重合体、アクリロニトリル-メチルアクリレート共重合体、アクリロニトリル-エチルメタクリレート共重合体、アクリロニトリル-エチルアタリレート共重合体、アクリロニトリル-メタクリル酸共重合体、アクリロニトリル-アクリル酸共重合体、アクリロニトリル-ビニルアセテート共重合体等のアクリルニトリル系重合体、更にはポリエチレンオキサイド、エチレンオキサイド-プロピレンオキサイド共重合体、及びこれらのアクリレート体やメタクリレート体の重合体等を挙げることができる。また、これらの高分子化合物に電解液を含ませてゲル状にしたものを電解質9として使用したり、又は電解質塩を含有させた高分子化合物のみをそのまま電解質9に使用することもできる。
 また、イオン性液体としては、カチオンが2-エチルイミダゾリウム、3-プロピルイミダゾリウム、1-エチル-3-メチルイミダゾリウム、1-ブチル-3-メチルイミダゾリウム、1,3-ジメチルイミダゾリウム等のイミダゾリウム、ジエチルメチルアンモニウム、テトラブチルアンモニウム、シクロヘキシルトリメチルアンモニウム、メチルトリ-n-オクチルアンモニウム、トリエチル(2-メトキシエトキシメチル)アンモニウム、ベンジルジメチルテトラデシルアンモニウム、ベンジルトリメチルアンモニウム等のアンモニウム、その他アルキルピリジニウム、ジアルキルピロリジニウム、テトラアルキルフォスフォニウム、トリアルキルスルフォニウム等を使用することができ、アニオンがCl、Br、Iなどのハロゲン化物アニオン、BF 、B(CN) 、B(C 等のホウ素化物アニオン、(CN)、[N(CF、[N(SOCF等のアミドアニオン又はイミドアニオン、RSO (Rは脂肪族炭化水素基又は芳香族炭化水素基を示す。以下同様)、RSO 、RSO (Rは含フッ素ハロゲン化炭化水素基を示す。以下同様)、RSO 等のスルフェートアニオン又はスルフォネートアニオン、R P(O)O、PF 、R PF 等のリン酸アニオン;SbF等のアンチモンアニオン、その他ラクテート、硝酸イオン、トリフルオロアセテート等を使用することができる。
 また、グライム類としては、メチルトリグライム、エチルトリグライム、ブチルトリグライム、メチルテトラグライム、エチルテトラグライム、ブチルテトラグライムなどが使用できる。
 さらに、鎖状スルホンとしては、2-(エチルスルホニル)プロパン、2-(エチルスルホニル)ブタンなどを使用することができる。
 このように本発明の電極は、上述した電極活物質と導電性物質とを含有しているので、充放電効率が良好であって短時間で充電ができ、かつ高出力化が可能となる。
 また、二次電池の電極活物質は、充放電により可逆的に酸化又は還元されるため、充電状態、放電状態、あるいはその途中の状態で異なる構造、状態を有するが、本実施の形態では、前記電極活物質は、少なくとも放電反応における反応出発物(電池電極反応で化学反応を起こす物質)、生成物(化学反応の結果生じる物質)、及び中間生成物のうちのいずれかに含まれている。そしてその結果、エネルギー密度が大きく、迅速に充電でき、高出力での放電が可能で充放電を繰り返しても容量低下の少ないサイクル特性が良好で電池特性の安定した長寿命の二次電池を実現することが可能となる。
 そして、本実施の形態では、上記電極活物質を使用して二次電池を構成しているので、エネルギー密度が大きく、安定性に優れた二次電池を得ることができる。
 しかも、電極活物質が有機化合物を主体としているため、環境負荷も低く安全性にも配慮した二次電池を得ることができる。
 尚、本発明は上記実施の形態に限定されるものではなく、要旨を逸脱しない範囲において種々の変形が可能である。例えば、電極活物質の主体となる有機化合物についても、上記列挙した化学式(1a)~(1r)はその一例であって、これらに限定されるものではない。すなわち、一般式(1)で示すようなルベアン構造を構成単位中に含有する有機化合物であれば、上記化学反応式(A)と同様の電池電極反応が進行することから、前記有機化合物に加え、オキサミドを電極活物質中に含有させることにより、エネルギー密度が大きく、充放電反応の安定性が向上したサイクル特性の良好な所望の二次電池を得ることが可能となる。
 また、本実施の形態では、コイン型二次電池について説明したが、電池形状は特に限定されるものでないのはいうまでもなく、円筒型、角型、シート型等にも適用できる。また、外装方法も特に限定されず、金属ケースや、モールド樹脂、アルミラミネートフィルム等を使用してもよい。
 また、本実施の形態では、電極活物質を正極活物質に使用したが、負極活物質に使用するのも有用である。
 次に、本発明の実施例を具体的に説明する。
 尚、以下に示す実施例は一例であり、本発明は下記の実施例に限定されるものではない。
[二次電池の作製]
 化学式(1a)で表わされるルベアン酸を用意した。
Figure JPOXMLDOC01-appb-C000008
 そして、このルベアン酸:100mgとオキサミド:0.2mgとを混合し、活物質用混合物を作製した(オキサミドの含有量:0.2質量%)。
 次いで、導電補助剤としてのグラファイト粉末:800mg、結着剤としてのポリテトラフルオロエチレン:200mgをそれぞれ秤量し、この秤量物と前記活物質用混合物(100.2mg)とを均一に混合しながら混練し、その後加圧成形し、厚さ約150μmのシート状部材を得た。この後、このシート状部材を真空中70℃で1時間乾燥した後、直径12mmの円形に打ち抜き、活物質用混合物を含有した正極を作製した。次に、正極を電解液に含浸させ、正極中の空隙に電解液を染み込ませた。ここで、電解液としては、メチルテトラグライム(電解質)とLiN(CFSO(電解質塩)を等モル量ずつ含有した混合溶液を使用した。
 次に、この正極を、正極集電体上に載置し、さらに前記電解液を含浸させたポリプロピレン多孔質フィルムからなる厚さ20μmのセパレータを前記正極上に積層し、さらにステンレス製集電板の両面にリチウムを貼付した負極をセパレータ上に積層した。そして、集電体上に金属製ばねを載置すると共に、周縁にガスケットを配した状態で負極ケースを正極ケースに接合し、かしめ機によって外装封止して、正極活物質として前記活物質用混合物、負極活物質として金属リチウムを有する密閉型のコイン型電池を作製した。
[二次電池の動作確認]
 以上のように作製したコイン型電池を、0.1mAの定電流で電圧が4.2Vになるまで充電し、その後、0.1mAの定電流で1.5Vになるまで放電を行った。その結果、この電池は、充放電電圧2.1Vに電圧平坦部を有する放電容量0.33mAhの二次電池であることが確認された。
 そして、放電容量から計算した活物質の質量当たりの容量密度は440 Ah/kgとなり、この化合物が高エネルギー密度電池に適した高容量密度の電極活物質であることがわかった。
 その後、1.5~4.2Vの範囲で充放電を100サイクル繰り返した。その結果、100サイクル繰り返した後の放電容量は0.31mAh(初期容量:0.33mAhの94%)であり、安定性に優れていることがわかった。
[二次電池の作製]
 実施例1で使用したルベアン酸を、80℃の恒温槽で30分間熱処理を行い、熱処理物を作製した。
 この熱処理物をガスクロマトグラフ質量分析装置で分析したところ、熱処理物中には、0.7質量%のオキサミドが含有されていることが分かった。
 次に、このルベアン酸とオキサミド(ルベアン酸:99.3質量%、オキサミド:0.7質量%)との混合物を活物質用混合物とし、実施例1と同様の方法で、密閉型のコイン型電池を作製した。
[二次電池の動作確認]
 以上のように作製したコイン型電池を、0.1mAの定電流で電圧が4.2Vになるまで充電し、その後、0.1mAの定電流で1.5Vになるまで放電を行った。その結果、この電池は、充放電電圧2.1Vに電圧平坦部を有する放電容量0.32mAhの二次電池であることが確認された。
 そして、放電容量から計算した活物質の質量当たりの容量密度は420 Ah/kgとなり、この化合物が高エネルギー密度電池に適した高容量密度の電極活物質であることがわかった。
 その後、1.5~4.2Vの範囲で充放電を100サイクル繰り返した。その結果、100サイクル繰り返した後の放電容量は初期容量の80%以上であり、サイクル特性が良好で安定性に優れていることがわかった。
 電解液として、メチルテトラグライムとLiN(CFSOとの混合溶液に代えて、電解質として1-エチル-3-メチルイミダゾリウムビス(トリフルオロスルホニル)イミドからなるイオン性液体を使用し、モル濃度が1MのLiN(CFS〇(電解質塩)を含有した電解液を使用した以外は実施例1と同様の方法でコイン型電池を作製した。
 [二次電池の動作確認]
 上記コイン型電池を、0.1mAの定電流で電圧が4.2Vになるまで充電し、その後、0.1mAの定電流で1.5Vまで放電を行った。その結果、この電池は充放電電圧2.1Vに電圧平坦部を有する放電容量0.46mAhの二次電池であることが確認された。
 放電容量から計算した活物質の質量当たりの容量密度は620 Ah/kgとなり、この化合物が高エネルギー密度電池に適した高容量密度の電極活物質であることが確認された。
 その後、1.5~4.2Vの範囲で充放電を100サイクル繰り返した。その結果、100サイクル繰り返した後の放電容量は初期容量の80%以上であり、安定性に優れていることが確認された。
[二次電池の作製]
 化学式(1b)で表わされるN,N’-ジメチルジチオオキサミドを用意した。
Figure JPOXMLDOC01-appb-C000009
 そして、実施例1のルベアン酸に代えて、N,N’-ジメチルジチオオキサミドを使用した以外は、実施例1と同様の方法でコイン型電池を作製した。
[二次電池の動作確認]
 上記コイン型電池を、0.1mAの定電流で電圧が4.2Vになるまで充電し、その後、0.1mAの定電流で1.5Vまで放電を行った。その結果、この電池は充放電電圧2.2Vに電圧平坦部を有する放電容量0.30mAhの二次電池であることが確認された。
 放電容量から計算した活物質の質量当たりの容量密度は380Ah/kgとなり、この化合物が高エネルギー密度電池に適した高容量密度の電極活物質であることが分った。
 その後、1.5~4.2Vの範囲で充放電を100サイクル繰り返した。その結果、100サイクル繰り返した後の放電容量は初期容量の80%以上であり、安定性に優れていることが確認された。
[二次電池の作製]
 化学式(1m)で表わされるN,N’-(2-ヒドロキシエチル)ジチオオキサミドを用意した。
Figure JPOXMLDOC01-appb-C000010
 そして、実施例1のルベアン酸に代えて、N,N’-(2-ヒドロキシエチル)ジチオオキサミドを使用した以外は、実施例1と同様の方法でコイン型電池を作製した。
[二次電池の動作確認]
 上記コイン型電池を、0.1mAの定電流で電圧が4.2Vになるまで充電し、その後、0.1mAの定電流で1.5Vまで放電を行った。その結果、この電池は充放電電圧2.2Vに電圧平坦部を有する放電容量0.23mAhの二次電池であることが確認された。
 放電容量から計算した活物質の質量当たりの容量密度は290Ah/kgとなり、この化合物が高エネルギー密度電池に適した高容量密度の電極活物質であることが確認された。
 その後、1.5~4.2Vの範囲で充放電を100サイクル繰り返した。その結果、100サイクル繰り返した後の放電容量は初期容量の80%以上であり、安定性に優れていることが確認された。
[二次電池の作製]
 化学式(1p)で表わされる(2-ピペリジニル)-2-チオキソエタンチオアミドを用意した。
Figure JPOXMLDOC01-appb-C000011
 そして、実施例1のルベアン酸に代えて、(2-ピペリジニル)-2-チオキソエタンチオアミドを使用した以外は、実施例1と同様の方法でコイン型電池を作製した。
[二次電池の動作確認]
 上記コイン型電池を、0.1mAの定電流で電圧が4.2Vになるまで充電し、その後、0.1mAの定電流で1.5Vまで放電を行った。その結果、この電池は充放電電圧2.2Vに電圧平坦部を有する放電容量0.28mAhの二次電池であることが確認された。
 放電容量から計算した活物質の質量当たりの容量密度は320Ah/kgとなり、この化合物が高エネルギー密度電池に適した高容量密度の電極活物質であることが確認された。
 その後、1.5~4.2Vの範囲で充放電を100サイクル繰り返した。その結果、100サイクル繰り返した後の放電容量は初期容量の80%以上であり、安定性に優れていることが確認された。
比較例
[二次電池の作製]
 実施例1でオキサミドを含有させずにルベアン酸単独で正極活物質を構成した以外は、実施例1と同様の方法でコイン型電池を作製した。
[二次電池の動作確認]
 上記コイン型電池を、0.1mAの定電流で電圧が4.2Vになるまで充電し、その後、0.1mAの定電流で1.5Vまで放電を行った。その結果、この電池は充放電電圧2.1Vに電圧平坦部を有する放電容量0.33mAhの二次電池であることが確認された。
 放電容量から計算した活物質の質量当たりの容量密度は440Ah/kgとなり、この化合物が高エネルギー密度電池に適した高容量密度の電極活物質であることが確認された。
 しかしながら、その後1.5~4.2Vの範囲で充放電を100サイクル繰り返したところ、100サイクル繰り返した後の放電容量は初期容量の80%未満となり、実施例1~5の各二次電池に比べ、安定性に劣ることが分った。
 充放電反応を繰り返しても容量低下が少なく、安定性に優れた良好なサイクル特性を有し、エネルギー密度が大きく高出力の二次電池を実現できる。
4 正極
6 負極
9 電解質

Claims (7)

  1.  電池電極反応によって充放電を繰り返す二次電池の活物質として使用される電極活物質であって、
     ルベアン酸構造を構成単位中に含有する有機化合物とオキサミドとの混合物を主体としていることを特徴とする電極活物質。
  2.  前記有機化合物は、一般式
    Figure JPOXMLDOC01-appb-C000001
     [ただし、式中、nは1~20の整数を示し、R~Rは、水素原子、ハロゲン原子、水酸基、炭素数が1~3の置換若しくは無置換のアルキル基、置換若しくは無置換のアミノ基、置換若しくは無置換のフェニル基、置換若しくは無置換のシクロヘキシル基、及び置換若しくは無置換のスルホ基のうちから選択された少なくともいずれか1種を示し、R~Rは同一の場合を含み、互いに連結して飽和若しくは不飽和の環を形成する場合を含む。]
     で表わされることを特徴とする請求項1記載の電極活物質。
  3.  前記オキサミドは、前記混合物中の含有量が0.1質量%以上であることを特徴とする請求項1又は請求項2記載の電極活物質。
  4.  電池電極反応によって充放電を繰り返す二次電池の活物質として使用される電極活物質の製造方法であって、
     ルベアン酸構造を構成単位中に含有する有機化合物を熱処理してオキサミドを生成し、前記有機化合物と前記オキサミドとの混合物を含有した電極活物質を作製することを特徴とする電極活物質の製造方法。
  5.  請求項1乃至請求項3のいずれかに記載の電極活物質と導電性物質とを含有していることを特徴とする電極。
  6.  請求項1乃至請求項3のいずれかに記載の電極活物質が、電池電極反応の少なくとも放電反応における反応出発物、生成物及び中間生成物のうちのいずれかに含まれることを特徴とする二次電池。
  7.  正極、負極、及び電解質を有し、前記正極が、請求項1乃至請求項3のいずれかに記載の電極活物質を含有していることを特徴とする二次電池。
PCT/JP2012/078695 2011-11-16 2012-11-06 電極活物質、該電極活物質の製造方法、電極、及び二次電池 WO2013073414A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12849583.5A EP2782171B1 (en) 2011-11-16 2012-11-06 Electrode active material, production method for said electrode active material, electrode, and secondary battery
CN201280056254.4A CN103999273B (zh) 2011-11-16 2012-11-06 电极活性物质、该电极活性物质的制造方法、电极、以及二次电池
JP2013544221A JP5633949B2 (ja) 2011-11-16 2012-11-06 電極活物質、該電極活物質の製造方法、電極、及び二次電池
US14/279,720 US9601757B2 (en) 2011-11-16 2014-05-16 Electrode active material, production method for said electrode active material, electrode and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011250630 2011-11-16
JP2011-250630 2011-11-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/279,720 Continuation US9601757B2 (en) 2011-11-16 2014-05-16 Electrode active material, production method for said electrode active material, electrode and secondary battery

Publications (1)

Publication Number Publication Date
WO2013073414A1 true WO2013073414A1 (ja) 2013-05-23

Family

ID=48429478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078695 WO2013073414A1 (ja) 2011-11-16 2012-11-06 電極活物質、該電極活物質の製造方法、電極、及び二次電池

Country Status (5)

Country Link
US (1) US9601757B2 (ja)
EP (1) EP2782171B1 (ja)
JP (1) JP5633949B2 (ja)
CN (1) CN103999273B (ja)
WO (1) WO2013073414A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3029360B1 (fr) * 2014-12-01 2019-04-26 Blue Solutions Batterie lithium organique
JP7449568B2 (ja) 2020-11-19 2024-03-14 株式会社ユニオン 防火扉の係止装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833048A (en) 1988-03-31 1989-05-23 The United States Of America As Represented By The United States Department Of Energy Metal-sulfur type cell having improved positive electrode
JP2004207249A (ja) 2000-02-25 2004-07-22 Nec Corp 二次電池用活物質
JP2008147015A (ja) 2006-12-11 2008-06-26 Honda Motor Co Ltd 電池用電極、非水溶液系電池、および非水溶液系電池の製造方法
JP2008222559A (ja) 2007-03-08 2008-09-25 Matsushita Electric Ind Co Ltd フェナントレンキノン化合物、電極活物質および蓄電デバイス
JP2010212152A (ja) * 2009-03-11 2010-09-24 Murata Mfg Co Ltd 電極活物質及びそれを用いた二次電池
JP2011124017A (ja) * 2009-12-08 2011-06-23 Murata Mfg Co Ltd 電極活物質及びそれを用いた二次電池
WO2012046527A1 (ja) * 2010-10-04 2012-04-12 株式会社村田製作所 電源装置
WO2012105439A1 (ja) * 2011-02-01 2012-08-09 株式会社 村田製作所 電極活物質、電極、及び二次電池
JP2012164480A (ja) * 2011-02-04 2012-08-30 Honda Motor Co Ltd 電池
WO2012117941A1 (ja) * 2011-02-28 2012-09-07 株式会社 村田製作所 電極活物質、電極、及び二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687736B2 (ja) * 2000-02-25 2005-08-24 日本電気株式会社 二次電池
JP4687848B2 (ja) * 2001-04-03 2011-05-25 日本電気株式会社 蓄電デバイス
WO2012060445A1 (ja) * 2010-11-05 2012-05-10 株式会社 村田製作所 二次電池
CN102315451A (zh) * 2011-09-14 2012-01-11 耿世达 一种新型锂二次电池正极材料及使用此正极材料的锂二次电池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833048A (en) 1988-03-31 1989-05-23 The United States Of America As Represented By The United States Department Of Energy Metal-sulfur type cell having improved positive electrode
JP2004207249A (ja) 2000-02-25 2004-07-22 Nec Corp 二次電池用活物質
JP2008147015A (ja) 2006-12-11 2008-06-26 Honda Motor Co Ltd 電池用電極、非水溶液系電池、および非水溶液系電池の製造方法
JP2008222559A (ja) 2007-03-08 2008-09-25 Matsushita Electric Ind Co Ltd フェナントレンキノン化合物、電極活物質および蓄電デバイス
JP2010212152A (ja) * 2009-03-11 2010-09-24 Murata Mfg Co Ltd 電極活物質及びそれを用いた二次電池
JP2011124017A (ja) * 2009-12-08 2011-06-23 Murata Mfg Co Ltd 電極活物質及びそれを用いた二次電池
WO2012046527A1 (ja) * 2010-10-04 2012-04-12 株式会社村田製作所 電源装置
WO2012105439A1 (ja) * 2011-02-01 2012-08-09 株式会社 村田製作所 電極活物質、電極、及び二次電池
JP2012164480A (ja) * 2011-02-04 2012-08-30 Honda Motor Co Ltd 電池
WO2012117941A1 (ja) * 2011-02-28 2012-09-07 株式会社 村田製作所 電極活物質、電極、及び二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2782171A4 *

Also Published As

Publication number Publication date
EP2782171A1 (en) 2014-09-24
EP2782171B1 (en) 2016-11-02
JP5633949B2 (ja) 2014-12-03
CN103999273B (zh) 2015-08-12
JPWO2013073414A1 (ja) 2015-04-02
EP2782171A4 (en) 2015-07-29
US9601757B2 (en) 2017-03-21
US20140248536A1 (en) 2014-09-04
CN103999273A (zh) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5531424B2 (ja) 電極活物質及びそれを用いた二次電池
JP5483523B2 (ja) 電極活物質、及び二次電池
WO2012121145A1 (ja) 電極活物質、電極、及び二次電池
JP2010080343A (ja) 電極活物質、及び二次電池
JP5483521B2 (ja) 電極活物質、及び二次電池
WO2014013948A1 (ja) 二次電池
WO2012117941A1 (ja) 電極活物質、電極、及び二次電池
JP5645319B2 (ja) 二次電池
JP5633949B2 (ja) 電極活物質、該電極活物質の製造方法、電極、及び二次電池
WO2012105439A1 (ja) 電極活物質、電極、及び二次電池
WO2013157458A1 (ja) 電極と該電極の製造方法、及び二次電池
JP5633948B2 (ja) 電極活物質、電極、及び二次電池
WO2021187417A1 (ja) 電極活物質、電極及び二次電池
WO2012105438A1 (ja) 電極活物質、電極、及び二次電池
WO2013172323A1 (ja) 電極活物質、電極、及び二次電池
JP5536519B2 (ja) 電極活物質及び二次電池
JP5534589B2 (ja) 電極活物質及び二次電池
JP5716934B2 (ja) 電極活物質、電極、及び二次電池
JP2010113840A (ja) 電極活物質及び電池
WO2015041097A1 (ja) 二次電池、及び二次電池の製造方法
JP2005228640A (ja) 二次電池
WO2014073562A1 (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013544221

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012849583

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012849583

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE