WO2013073414A1 - 電極活物質、該電極活物質の製造方法、電極、及び二次電池 - Google Patents
電極活物質、該電極活物質の製造方法、電極、及び二次電池 Download PDFInfo
- Publication number
- WO2013073414A1 WO2013073414A1 PCT/JP2012/078695 JP2012078695W WO2013073414A1 WO 2013073414 A1 WO2013073414 A1 WO 2013073414A1 JP 2012078695 W JP2012078695 W JP 2012078695W WO 2013073414 A1 WO2013073414 A1 WO 2013073414A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- electrode active
- electrode
- secondary battery
- battery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
- H01M4/602—Polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/137—Electrodes based on electro-active polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an electrode active material, a method for producing the electrode active material, an electrode, and a secondary battery, and more specifically, an electrode active material that repeats charging and discharging using a battery electrode reaction, a method for producing the electrode active material,
- the present invention relates to an electrode using an electrode active material and a secondary battery.
- cordless power supplies for these electronic devices have a high energy density and high output, and long-life secondary batteries are expected.
- lithium ion secondary batteries using an alkali metal ion such as lithium ion as a charge carrier and utilizing an electrochemical reaction accompanying the charge transfer have been developed.
- lithium ion secondary batteries have a high energy density and are becoming widespread as in-vehicle batteries.
- the electrode active material is a substance that directly contributes to the battery electrode reaction such as the charge reaction and the discharge reaction, and has the central role of the secondary battery. That is, the battery electrode reaction is a reaction that occurs with the transfer of electrons by applying a voltage to an electrode active material that is electrically connected to an electrode disposed in the electrolyte, and proceeds during charging and discharging of the battery. To do. Therefore, as described above, the electrode active material has a central role of the secondary battery in terms of system.
- a lithium-containing transition metal oxide is used as a positive electrode active material
- a carbon material is used as a negative electrode active material
- an insertion reaction and a desorption reaction of lithium ions with respect to these electrode active materials are used. Charging / discharging.
- the lithium ion secondary battery has a problem in that the speed of charging and discharging is limited because the movement of lithium ions in the positive electrode is rate limiting. That is, in the above-described lithium ion secondary battery, the migration rate of lithium ions in the transition metal oxide of the positive electrode is slower than that of the electrolyte and the negative electrode, and therefore the battery reaction rate at the positive electrode becomes the rate-determining rate. As a result, there is a limit to increasing the output and shortening the charging time.
- Patent Document 1 is known as a prior art document using an organic radical compound as an electrode active material.
- Patent Document 1 discloses a secondary battery active material using a nitroxyl radical compound, an oxy radical compound, and a nitrogen radical compound having a radical on a nitrogen atom.
- the unpaired electrons that react are localized in the radical atoms, so that the concentration of the reaction site can be increased, and thus a high-capacity secondary battery can be realized. Further, since the reaction rate of radicals is high, it is considered that the charging time can be completed in a short time by performing charging / discharging utilizing a redox reaction of a stable radical.
- Example using a highly stable nitroxyl radical as a radical is described, for example, the electrode layer containing a nitronyl nitroxide compound is used as a positive electrode, and lithium bonding copper foil is used as a negative electrode.
- the electrode layer containing a nitronyl nitroxide compound is used as a positive electrode
- lithium bonding copper foil is used as a negative electrode.
- Patent Documents 2 and 3 are known as prior art documents using an organic sulfur compound as an electrode active material.
- Patent Document 2 discloses a novel organic sulfur compound, which is a positive electrode material, has an SS bond in a charged state, and the SS bond is cleaved during discharge of the positive electrode to form an organic sulfur metal salt having a metal ion.
- Metal-sulfur battery cells have been proposed.
- disulfide compound a disulfide organic compound represented by the general formula (1 ′) (hereinafter referred to as “disulfide compound”) is used as the organic sulfur compound.
- R represents an aliphatic organic group or an aromatic organic group, and each includes the same or different cases.
- the disulfide compound can undergo a two-electron reaction, and the S—S bond is cleaved in a reduced state (discharge state), thereby forming an organic thiolate (RS—).
- This organic thiolate forms an S—S bond in the oxidized state (charged state) and is restored to the disulfide compound represented by the general formula (1 ′).
- the disulfide compound forms an SS bond having a small binding energy, a reversible redox reaction occurs using the bond and cleavage by the reaction, and thus charge and discharge can be performed.
- Patent Document 3 discloses the following formula (2 ′): -(NH-CS-CS-NH) (2 ')
- a battery electrode comprising rubeanic acid or a rubeanic acid polymer that has a structural unit represented by the formula (II) and can be bonded to lithium ions has been proposed.
- the rubeanic acid or rubeanic acid polymer containing the dithione structure represented by the general formula (2 ′) binds to lithium ions during reduction, and releases the bound lithium ions during oxidation. Charging / discharging can be performed by utilizing such a reversible oxidation-reduction reaction of rubeanic acid or rubeanic acid polymer.
- Patent Document 3 when rubeanic acid is used as the positive electrode active material, a two-electron reaction is possible, and a secondary battery having a capacity density of 400 Ah / kg at room temperature is obtained.
- Patent Document 4 is known as a prior art document using a quinone compound as an electrode active material.
- Patent Document 4 proposes an electrode active material containing a specific phenanthrenequinone compound having two quinone groups in the ortho-positional relationship.
- the specific phenanthrenequinone compound described in Patent Document 4 can cause a two-electron reaction peculiar to the quinone compound between the mobile carrier and a reversible oxidation-reduction reaction. Furthermore, the specific phenanthrenequinone compound is oligomerized or polymerized to achieve insolubilization in an organic solvent without causing a decrease in the number of reaction electrons due to repulsion between electrons. Patent Document 4 shows that the phenanthrenequinone dimer exhibits two oxidation-reduction voltages (around 2.9 V and around 2.5 V), and the initial discharge capacity reaches 200 Ah / kg.
- JP 2004-207249 A paragraph numbers [0278] to [0282]
- US Pat. No. 4,833,048 (Claim 1, column 5, line 20 to column 28)
- JP 2008-147015 A (Claim 1, paragraph number [0011], FIG. 3, FIG. 5)
- JP 2008-222559 A (Claim 4, paragraph numbers [0027] and [0033], FIGS. 1 and 3)
- Patent Document 1 although an organic radical compound such as a nitroxyl radical compound is used as an electrode active material, the charge / discharge reaction is limited to a one-electron reaction involving only one electron. That is, in the case of an organic radical compound, when a multi-electron reaction involving two or more electrons is caused, the radical lacks stability and decomposes, and the radical disappears and the reversibility of the charge / discharge reaction is lost. . For this reason, the organic radical compound as in Patent Document 1 must be limited to a one-electron reaction, and it is difficult to realize a multi-electron reaction that can be expected to have a high capacity.
- an organic radical compound such as a nitroxyl radical compound
- Patent Document 2 a low-molecular disulfide compound in which two electrons are involved is used. However, since it repeatedly binds and cleaves with other molecules along with the charge / discharge reaction, it lacks stability, and charge / discharge reaction is not performed. If it is repeated, the capacity may decrease.
- Patent Document 3 a rubeanic acid compound containing a dithione structure is used to cause a two-electron reaction.
- a polymer compound such as a rubeanic acid polymer
- an intermolecular interaction in the rubeanic acid polymer is performed.
- a sufficient reaction rate could not be obtained.
- it took a long time to charge since the movement of ions is hindered as described above, the proportion of active materials that can be effectively used is reduced, and thus it has been difficult to realize a secondary battery having a desired high output.
- Patent Document 4 uses a phenanthrenequinone compound having two quinone groups in the ortho-positional position as an electrode active material, and thus is excellent in stability, but is synthesized because it is a condensed ring compound. Difficult and capacity density is small.
- the present invention has been made in view of such circumstances, and has a high energy density, a high output, and an electrode active material having good cycle characteristics with little decrease in capacity even after repeated charge and discharge, and a method for producing the electrode active material
- An object of the present invention is to provide an electrode and a secondary battery using the electrode active material.
- Conjugated dithione (-CS-CS-) in rubeanic acid has good reactivity with cations such as Li + .
- the present inventors conducted extensive research on an organic compound containing a rubeanic acid structure containing conjugated dithione in the structural unit. As a result, the organic compound having the rubeanic acid structure was filled with oxamide. The inventors have found that the discharge reaction is stable, whereby an electrode active material having good cycle characteristics can be obtained.
- the electrode active material according to the present invention is an electrode active material used as an active material of a secondary battery that repeats charge and discharge by a battery electrode reaction, It is characterized by comprising mainly a mixture of an organic compound containing a rubeanic acid structure in a structural unit and oxamide.
- the organic compound is preferably represented by the following general formula.
- n represents an integer of 1 to 20
- R 1 to R 4 represent a hydrogen atom, a halogen atom, a hydroxyl group, a substituted or unsubstituted alkyl group having 1 to 3 carbon atoms, a substituted or unsubstituted group.
- R 1 to R 4 are the same And a case where they are linked to each other to form a saturated or unsaturated ring.
- the content of the oxamide in the mixture is preferably 0.1% by mass or more.
- the oxamide can be easily generated by heat-treating an organic compound having a rubeanic acid structure in the structural unit.
- the method for producing an electrode active material according to the present invention is a method for producing an electrode active material used as an active material of a secondary battery that repeats charging and discharging by a battery electrode reaction, and has a rubeanic acid structure in a structural unit.
- the organic compound contained is heat-treated to produce oxamide, and an electrode active material containing a mixture of the organic compound and the oxamide is produced.
- the electrode according to the present invention is characterized by containing any of the electrode active materials described above and a conductive material.
- any one of the electrode active materials described above is included in at least one of a reaction starting material, a product, and an intermediate product in a discharge reaction of the battery electrode reaction. It is a feature.
- the secondary battery according to the present invention has a positive electrode, a negative electrode, and an electrolyte, and the positive electrode contains any one of the electrode active materials described above.
- an electrode active material used as an active material of a secondary battery that repeats charging and discharging by a battery electrode reaction, an organic compound containing a rubeanic acid structure in a structural unit, and oxamide Therefore, it is possible to obtain an electrode active material having a stable charge / discharge reaction and good cycle characteristics.
- the rubeanic acid structure contains conjugated dithione that is electrochemically active and highly reactive with cations such as Li +, so that charge / discharge efficiency is good and a high capacity density can be achieved.
- conjugated dithione that is electrochemically active and highly reactive with cations such as Li +
- an electrode compound containing a mixture of the organic compound and the oxamide is produced by heat-treating an organic compound containing a rubeanic acid structure in a structural unit. Since the material is prepared, an electrode active material having a stable charge / discharge reaction and good cycle characteristics can be easily obtained at low cost without separately procuring oxamide and adding it to the organic compound.
- the electrode of the present invention since it contains any of the electrode active materials and conductive materials described above, the charge / discharge efficiency is good, the battery can be charged in a short time, and the output is increased. Can be obtained.
- any one of the electrode active materials described above is included in at least one of reaction starting materials, products, and intermediate products in the discharge reaction of the battery electrode reaction.
- High energy density, quick charge, discharge at high output, rechargeable battery with good cycle characteristics with little capacity degradation even after repeated charge and discharge, and long battery life with stable battery characteristics It becomes.
- the electrode active material is mainly composed of the above-described organic compound, a secondary battery with low environmental burden and safety can be obtained.
- the electrode active material of the present invention is mainly composed of a mixture of an organic compound containing a rubeanic acid structure in a structural unit and oxamide. As a result, the charge / discharge reaction is stabilized, and an electrode active material having good cycle characteristics can be obtained.
- the organic compound having rubeanic acid in the structural unit can be represented by the following general formula (1).
- R 1 to R 4 are each a hydrogen atom, a halogen atom, a hydroxyl group, a substituted or unsubstituted alkyl group having 1 to 3 carbon atoms, a substituted or unsubstituted amino group, a substituted or unsubstituted phenyl group, substituted or unsubstituted 1 represents at least one selected from an unsubstituted cyclohexyl group and a substituted or unsubstituted sulfo group, and R 1 to R 4 include the same case and are connected to each other to form a saturated or unsaturated ring. Including the case of forming.
- this electrode active material is mainly composed of a mixture of an organic compound represented by the general formula (1) and an oxamide represented by the following chemical formula (2).
- the stability of the charge / discharge reaction can be improved by containing oxamide in the electrode active material. It is considered that this is because the oxamide interacts with a reaction intermediate of an organic compound containing a rubeanic acid structure to stabilize the charge / discharge reaction.
- the rubeanic acid structure contains conjugated dithione that is electrochemically active and rich in reactivity with cations such as Li + , the charge / discharge efficiency is good and the capacity density can be increased. As a result, it is possible to obtain an electrode active material having a large energy density and improved stability during charging and discharging.
- the content of oxamide in the electrode active material is not particularly limited. However, if it is less than 0.1% by mass, the content of oxamide is too small, so that the charge / discharge reaction is sufficiently stabilized. May not be possible. Therefore, in order to effectively exhibit sufficient desired stability during charge / discharge, it is preferably at least 0.1% by mass.
- the content of oxamide exceeds 10% by mass, the content of oxamide becomes excessive, so that the molecular weight of the rubeanic acid structure portion that expresses the desired effect as an electrode active material is relatively reduced, and the electrode The capacity density of the active material may be reduced. Therefore, the content of oxamide is preferably 10% by mass or less.
- the method for containing oxamide in the electrode active material is not particularly limited.
- oxamide may be procured separately and added directly to the organic compound. It is preferable to heat-treat the organic compound containing the structure in the structural unit and decompose the organic compound to produce oxamide.
- an electrode active material composed of a mixture of the organic compound and oxamide can be obtained, and the charge / discharge stability is excellent at low cost.
- An electrode active material having good cycle characteristics can be obtained.
- the heat treatment temperature for heat-treating the organic compound is not particularly limited, but the higher the temperature of the heat treatment, the higher the rate of oxamide formation. It is preferable to carry out at a heat treatment temperature of about ° C.
- the heat-treated mixture that is, the electrode active material or the electrode active material is contained.
- the content of oxamide in the electrode active material can be easily grasped. Therefore, it is possible to control the content of oxamide to a desired amount by adjusting the heat treatment conditions.
- the electrode active material is considered to generate a complex salt with the battery electrode reaction.
- the following chemical reaction formula (A) shows an example of a charge / discharge reaction expected when the organic compound represented by the general formula (1) is used as an electrode active material and Li is used as a cation of an electrolyte salt. .
- the conjugated dithione moiety contained in the rubeanic acid structure is combined with Li + during reduction, and Li + is released during oxidation.
- examples of the organic compound belonging to the category of the general formula (1) include organic compounds represented by the following chemical formulas (1a) to (1r).
- the molecular weight of the organic compound constituting the electrode active material is not particularly limited. However, if the molecular weight is excessively small, it may be easily dissolved in the electrolyte. On the other hand, since the appearance of the effect desired by the present invention depends on the conjugated dithione portion of the rubeanic acid structure, when the portion other than the conjugated dithione increases, the capacity that can be stored per unit mass, that is, the capacity density decreases. Therefore, the molecular weight of each substituent R 1 to R 4 is preferably in the range of up to about 150 in total.
- molecular weight and molecular weight distribution are not specifically limited.
- FIG. 1 is a cross-sectional view showing a coin-type secondary battery as an embodiment of a secondary battery according to the present invention.
- the electrode active material of the present invention is used as a positive electrode active material. ing.
- the battery can 1 has a positive electrode case 2 and a negative electrode case 3, and both the positive electrode case 2 and the negative electrode case 3 are formed in a disk-like thin plate shape.
- a positive electrode 4 in which a mixture containing a positive electrode active material (electrode active material) and a conductive auxiliary agent (conductive material) is formed into a sheet shape is disposed.
- the negative electrode 6 for example, a stainless steel foil or a copper foil overlaid with a lithium metal foil, or a lithium foil occlusion material such as graphite or hard carbon applied to a copper foil can be used.
- a negative electrode current collector 7 made of metal is laminated on the negative electrode 6, and a metal spring 8 is placed on the negative electrode current collector 7.
- the electrolyte 9 is filled in the internal space, and the negative electrode case 3 is fixed to the positive electrode case 2 against the urging force of the metal spring 8 and sealed with a gasket 10.
- an electrode active material is formed into an electrode shape.
- the electrode active material is mixed with a conductive auxiliary agent and a binder, and a solvent is added to form a slurry.
- the slurry is applied on the positive electrode current collector by an arbitrary coating method, and dried to obtain the positive electrode. Form.
- the conductive auxiliary agent is not particularly limited, for example, carbonaceous fine particles such as graphite, carbon black, and acetylene black, vapor grown carbon fibers, carbon nanotubes, carbon fibers such as carbon nanohorns, polyaniline, Conductive polymers such as polypyrrole, polythiophene, polyacetylene, and polyacene can be used. Further, two or more kinds of conductive assistants can be mixed and used.
- the content of the conductive auxiliary agent in the positive electrode 4 is desirably 10 to 80% by mass.
- the binder is not particularly limited, and various resins such as polyethylene, polyvinylidene fluoride, polyhexafluoropropylene, polytetrafluoroethylene, polyethylene oxide, carboxymethylcellulose, and the like can be used.
- the solvent is not particularly limited, and examples thereof include basic solvents such as dimethyl sulfoxide, dimethylformamide, 1-methyl-2-pyrrolidone, propylene carbonate, diethyl carbonate, dimethyl carbonate, and ⁇ -butyrolactone, acetonitrile, Nonaqueous solvents such as tetrahydrofuran, nitrobenzene, and acetone, protic solvents such as methanol and ethanol, water, and the like can be used.
- basic solvents such as dimethyl sulfoxide, dimethylformamide, 1-methyl-2-pyrrolidone, propylene carbonate, diethyl carbonate, dimethyl carbonate, and ⁇ -butyrolactone
- acetonitrile Nonaqueous solvents such as tetrahydrofuran, nitrobenzene, and acetone
- protic solvents such as methanol and ethanol, water, and the like can be used.
- the type of solvent, the compounding ratio between the organic compound and the solvent, the type of additive and the amount of the additive, etc. can be arbitrarily set in consideration of the required characteristics and productivity of the secondary battery.
- the positive electrode 4 is impregnated in the electrolyte 9 so that the positive electrode 4 is impregnated with the electrolyte 9, and then the positive electrode 4 at the center of the bottom of the positive electrode case 2 constituting the positive electrode current collector is placed.
- the separator 5 impregnated with the electrolyte 9 is laminated on the positive electrode 4, the negative electrode 6 and the negative electrode current collector 7 are sequentially laminated, and then the electrolyte 9 is injected into the internal space.
- a metal spring 8 is placed on the negative electrode current collector 7, and a gasket 10 is arranged on the periphery, and the negative electrode case 3 is fixed to the positive electrode case 2 with a caulking machine or the like, and the outer casing is sealed.
- a type secondary battery is produced.
- the electrolyte 9 interposed between the negative electrode 6, which is a counter electrode of the positive electrode 4 and the positive electrode 4 performs a charge carrier transport between the electrodes, but as such a electrolyte 9, at room temperature for 10 -
- Those having an ionic conductivity of 5 to 10 ⁇ 1 S / cm can be used.
- an electrolytic solution in which an electrolyte salt is dissolved in an organic solvent can be used.
- electrolyte salt for example, LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 or the like can be used.
- organic solvent ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ⁇ -butyrolactone, tetrahydrofuran, dioxolane, sulfolane, dimethylformamide, dimethylacetamide, 1-methyl-2-pyrrolidone, etc. are used. be able to.
- the electrolyte 9 can be a solid electrolyte, an ionic liquid in which a cation and an anion are combined, a symmetric glycol diether such as glymes, a chain sulfone, or the like.
- polymer compound used in the solid electrolyte examples include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-monofluoroethylene copolymer, and fluoride compound.
- Vinylidene fluoride polymers such as vinylidene-trifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, and acrylonitrile-methyl methacrylate copolymer Polymer, acrylonitrile-methyl acrylate copolymer, acrylonitrile-ethyl methacrylate copolymer, acrylonitrile-ethyl acrylate copolymer, acrylonitrile-methacrylic acid copolymer, acrylonitrile-a Acrylic nitrile polymers such as lauric acid copolymer and acrylonitrile-vinyl acetate copolymer, polyethylene oxide, ethylene oxide-propylene oxide copolymer, and polymers of these acrylates and methacrylates. Can do. Further, these polymer compounds containing an electrolytic solution in
- Examples of the ionic liquid include cations such as 2-ethylimidazolium, 3-propylimidazolium, 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1,3-dimethylimidazolium, and the like.
- Imidazolium diethylmethylammonium, tetrabutylammonium, cyclohexyltrimethylammonium, methyltri-n-octylammonium, triethyl (2-methoxyethoxymethyl) ammonium, benzyldimethyltetradecylammonium, benzyltrimethylammonium, and other alkylpyridiniums, Dialkylpyrrolidinium, tetraalkylphosphonium, trialkylsulfonium, and the like can be used, and the anion can be a Cl ⁇ , Br ⁇ , I ⁇ or the like.
- glymes methyltriglyme, ethyltriglyme, butyltriglyme, methyltetraglyme, ethyltetraglyme, butyltetraglyme and the like can be used.
- 2- (ethylsulfonyl) propane, 2- (ethylsulfonyl) butane, or the like can be used as the chain sulfone.
- the electrode of the present invention contains the electrode active material and the conductive material described above, the charge / discharge efficiency is good, the battery can be charged in a short time, and the output can be increased.
- the electrode active material of the secondary battery is reversibly oxidized or reduced by charge and discharge, it has a different structure and state in the charged state, the discharged state, or the state in the middle thereof.
- the electrode active material is contained in at least one of a reaction starting material in a discharge reaction (a material that causes a chemical reaction in a battery electrode reaction), a product (a material resulting from a chemical reaction), and an intermediate product. .
- a reaction starting material in a discharge reaction a material that causes a chemical reaction in a battery electrode reaction
- a product a material resulting from a chemical reaction
- an intermediate product a material that causes a chemical reaction in a battery electrode reaction
- it has a high energy density, can be charged quickly, can be discharged at high output, has a good cycle characteristic with little capacity decrease even after repeated charge and discharge, and realizes a long-life secondary battery with stable battery characteristics. It becomes possible to do.
- the secondary battery is comprised using the said electrode active material, the energy density is large and the secondary battery excellent in stability can be obtained.
- the electrode active material is mainly composed of organic compounds, it is possible to obtain a secondary battery with low environmental impact and safety.
- the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.
- the above-listed chemical formulas (1a) to (1r) are also examples of the organic compound that is the main component of the electrode active material, and the present invention is not limited thereto. That is, if the organic compound contains a rubean structure as shown in the general formula (1) in the structural unit, the same battery electrode reaction as in the chemical reaction formula (A) proceeds.
- oxamide in the electrode active material it becomes possible to obtain a desired secondary battery having a high energy density and good cycle characteristics with improved charge / discharge reaction stability.
- the coin-type secondary battery has been described.
- the battery shape is not particularly limited, and can be applied to a cylindrical type, a square type, a sheet type, and the like.
- the exterior method is not particularly limited, and a metal case, mold resin, aluminum laminate film, or the like may be used.
- the electrode active material is used as the positive electrode active material, but it is also useful to use it as the negative electrode active material.
- Example shown below is an example and this invention is not limited to the following Example.
- this positive electrode was placed on a positive electrode current collector, and a separator having a thickness of 20 ⁇ m made of a polypropylene porous film impregnated with the electrolytic solution was further laminated on the positive electrode, and further a stainless steel current collector plate The negative electrode which stuck lithium on both surfaces was laminated
- the capacity density per mass of the active material calculated from the discharge capacity was 440 hAh / kg, and it was found that this compound is a high capacity density electrode active material suitable for a high energy density battery.
- an ionic liquid composed of 1-ethyl-3-methylimidazolium bis (trifluorosulfonyl) imide is used as an electrolyte.
- a coin-type battery was produced in the same manner as in Example 1 except that an electrolytic solution containing LiN (CF 3 SO 2 ) 2 (electrolyte salt) having a molar concentration of 1M was used.
- the capacity density per mass of the active material calculated from the discharge capacity was 620 Ah / kg, and it was confirmed that this compound is a high capacity density electrode active material suitable for a high energy density battery.
- N, N′-dimethyldithiooxamide represented by the chemical formula (1b) was prepared.
- a coin-type battery was produced in the same manner as in Example 1 except that N, N′-dimethyldithiooxamide was used instead of rubeanic acid in Example 1.
- the capacity density per mass of the active material calculated from the discharge capacity was 380 Ah / kg, and it was found that this compound is a high capacity density electrode active material suitable for a high energy density battery.
- N N ′-(2-hydroxyethyl) dithiooxamide represented by the chemical formula (1m) was prepared.
- a coin-type battery was produced in the same manner as in Example 1 except that N, N ′-(2-hydroxyethyl) dithiooxamide was used instead of rubeanic acid in Example 1.
- the capacity density per mass of the active material calculated from the discharge capacity was 290 Ah / kg, and it was confirmed that this compound is a high capacity density electrode active material suitable for a high energy density battery.
- a coin-type battery was produced in the same manner as in Example 1 except that (2-piperidinyl) -2-thioxoethanethioamide was used instead of rubeanic acid in Example 1.
- the capacity density per mass of the active material calculated from the discharge capacity was 320 Ah / kg, and it was confirmed that this compound is a high capacity density electrode active material suitable for a high energy density battery.
- a coin-type battery was produced in the same manner as in Example 1 except that the positive electrode active material was composed of rubeanic acid alone without containing oxamide in Example 1.
- the capacity density per mass of the active material calculated from the discharge capacity was 440 Ah / kg, and it was confirmed that this compound is a high capacity density electrode active material suitable for a high energy density battery.
- Repetitive charge / discharge reactions can reduce secondary capacity, have excellent cycle characteristics with excellent stability, and can realize a secondary battery with high energy density and high output.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
ここで、Rは脂肪族有機基又は芳香族有機基を示し、各々は同一又は異なる場合を含んでいる。
-(NH-CS-CS-NH)…(2′)
で示される構造単位を有し、リチウムイオンと結合可能であるルベアン酸またはルベアン酸ポリマーを含む電池用電極が提案されている。
化学式(1a)で表わされるルベアン酸を用意した。
以上のように作製したコイン型電池を、0.1mAの定電流で電圧が4.2Vになるまで充電し、その後、0.1mAの定電流で1.5Vになるまで放電を行った。その結果、この電池は、充放電電圧2.1Vに電圧平坦部を有する放電容量0.33mAhの二次電池であることが確認された。
実施例1で使用したルベアン酸を、80℃の恒温槽で30分間熱処理を行い、熱処理物を作製した。
以上のように作製したコイン型電池を、0.1mAの定電流で電圧が4.2Vになるまで充電し、その後、0.1mAの定電流で1.5Vになるまで放電を行った。その結果、この電池は、充放電電圧2.1Vに電圧平坦部を有する放電容量0.32mAhの二次電池であることが確認された。
上記コイン型電池を、0.1mAの定電流で電圧が4.2Vになるまで充電し、その後、0.1mAの定電流で1.5Vまで放電を行った。その結果、この電池は充放電電圧2.1Vに電圧平坦部を有する放電容量0.46mAhの二次電池であることが確認された。
化学式(1b)で表わされるN,N’-ジメチルジチオオキサミドを用意した。
上記コイン型電池を、0.1mAの定電流で電圧が4.2Vになるまで充電し、その後、0.1mAの定電流で1.5Vまで放電を行った。その結果、この電池は充放電電圧2.2Vに電圧平坦部を有する放電容量0.30mAhの二次電池であることが確認された。
化学式(1m)で表わされるN,N’-(2-ヒドロキシエチル)ジチオオキサミドを用意した。
上記コイン型電池を、0.1mAの定電流で電圧が4.2Vになるまで充電し、その後、0.1mAの定電流で1.5Vまで放電を行った。その結果、この電池は充放電電圧2.2Vに電圧平坦部を有する放電容量0.23mAhの二次電池であることが確認された。
化学式(1p)で表わされる(2-ピペリジニル)-2-チオキソエタンチオアミドを用意した。
上記コイン型電池を、0.1mAの定電流で電圧が4.2Vになるまで充電し、その後、0.1mAの定電流で1.5Vまで放電を行った。その結果、この電池は充放電電圧2.2Vに電圧平坦部を有する放電容量0.28mAhの二次電池であることが確認された。
実施例1でオキサミドを含有させずにルベアン酸単独で正極活物質を構成した以外は、実施例1と同様の方法でコイン型電池を作製した。
上記コイン型電池を、0.1mAの定電流で電圧が4.2Vになるまで充電し、その後、0.1mAの定電流で1.5Vまで放電を行った。その結果、この電池は充放電電圧2.1Vに電圧平坦部を有する放電容量0.33mAhの二次電池であることが確認された。
6 負極
9 電解質
Claims (7)
- 電池電極反応によって充放電を繰り返す二次電池の活物質として使用される電極活物質であって、
ルベアン酸構造を構成単位中に含有する有機化合物とオキサミドとの混合物を主体としていることを特徴とする電極活物質。 - 前記オキサミドは、前記混合物中の含有量が0.1質量%以上であることを特徴とする請求項1又は請求項2記載の電極活物質。
- 電池電極反応によって充放電を繰り返す二次電池の活物質として使用される電極活物質の製造方法であって、
ルベアン酸構造を構成単位中に含有する有機化合物を熱処理してオキサミドを生成し、前記有機化合物と前記オキサミドとの混合物を含有した電極活物質を作製することを特徴とする電極活物質の製造方法。 - 請求項1乃至請求項3のいずれかに記載の電極活物質と導電性物質とを含有していることを特徴とする電極。
- 請求項1乃至請求項3のいずれかに記載の電極活物質が、電池電極反応の少なくとも放電反応における反応出発物、生成物及び中間生成物のうちのいずれかに含まれることを特徴とする二次電池。
- 正極、負極、及び電解質を有し、前記正極が、請求項1乃至請求項3のいずれかに記載の電極活物質を含有していることを特徴とする二次電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12849583.5A EP2782171B1 (en) | 2011-11-16 | 2012-11-06 | Electrode active material, production method for said electrode active material, electrode, and secondary battery |
CN201280056254.4A CN103999273B (zh) | 2011-11-16 | 2012-11-06 | 电极活性物质、该电极活性物质的制造方法、电极、以及二次电池 |
JP2013544221A JP5633949B2 (ja) | 2011-11-16 | 2012-11-06 | 電極活物質、該電極活物質の製造方法、電極、及び二次電池 |
US14/279,720 US9601757B2 (en) | 2011-11-16 | 2014-05-16 | Electrode active material, production method for said electrode active material, electrode and secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011250630 | 2011-11-16 | ||
JP2011-250630 | 2011-11-16 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/279,720 Continuation US9601757B2 (en) | 2011-11-16 | 2014-05-16 | Electrode active material, production method for said electrode active material, electrode and secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013073414A1 true WO2013073414A1 (ja) | 2013-05-23 |
Family
ID=48429478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/078695 WO2013073414A1 (ja) | 2011-11-16 | 2012-11-06 | 電極活物質、該電極活物質の製造方法、電極、及び二次電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9601757B2 (ja) |
EP (1) | EP2782171B1 (ja) |
JP (1) | JP5633949B2 (ja) |
CN (1) | CN103999273B (ja) |
WO (1) | WO2013073414A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3029360B1 (fr) * | 2014-12-01 | 2019-04-26 | Blue Solutions | Batterie lithium organique |
JP7449568B2 (ja) | 2020-11-19 | 2024-03-14 | 株式会社ユニオン | 防火扉の係止装置 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4833048A (en) | 1988-03-31 | 1989-05-23 | The United States Of America As Represented By The United States Department Of Energy | Metal-sulfur type cell having improved positive electrode |
JP2004207249A (ja) | 2000-02-25 | 2004-07-22 | Nec Corp | 二次電池用活物質 |
JP2008147015A (ja) | 2006-12-11 | 2008-06-26 | Honda Motor Co Ltd | 電池用電極、非水溶液系電池、および非水溶液系電池の製造方法 |
JP2008222559A (ja) | 2007-03-08 | 2008-09-25 | Matsushita Electric Ind Co Ltd | フェナントレンキノン化合物、電極活物質および蓄電デバイス |
JP2010212152A (ja) * | 2009-03-11 | 2010-09-24 | Murata Mfg Co Ltd | 電極活物質及びそれを用いた二次電池 |
JP2011124017A (ja) * | 2009-12-08 | 2011-06-23 | Murata Mfg Co Ltd | 電極活物質及びそれを用いた二次電池 |
WO2012046527A1 (ja) * | 2010-10-04 | 2012-04-12 | 株式会社村田製作所 | 電源装置 |
WO2012105439A1 (ja) * | 2011-02-01 | 2012-08-09 | 株式会社 村田製作所 | 電極活物質、電極、及び二次電池 |
JP2012164480A (ja) * | 2011-02-04 | 2012-08-30 | Honda Motor Co Ltd | 電池 |
WO2012117941A1 (ja) * | 2011-02-28 | 2012-09-07 | 株式会社 村田製作所 | 電極活物質、電極、及び二次電池 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3687736B2 (ja) * | 2000-02-25 | 2005-08-24 | 日本電気株式会社 | 二次電池 |
JP4687848B2 (ja) * | 2001-04-03 | 2011-05-25 | 日本電気株式会社 | 蓄電デバイス |
WO2012060445A1 (ja) * | 2010-11-05 | 2012-05-10 | 株式会社 村田製作所 | 二次電池 |
CN102315451A (zh) * | 2011-09-14 | 2012-01-11 | 耿世达 | 一种新型锂二次电池正极材料及使用此正极材料的锂二次电池 |
-
2012
- 2012-11-06 CN CN201280056254.4A patent/CN103999273B/zh active Active
- 2012-11-06 WO PCT/JP2012/078695 patent/WO2013073414A1/ja active Application Filing
- 2012-11-06 JP JP2013544221A patent/JP5633949B2/ja active Active
- 2012-11-06 EP EP12849583.5A patent/EP2782171B1/en active Active
-
2014
- 2014-05-16 US US14/279,720 patent/US9601757B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4833048A (en) | 1988-03-31 | 1989-05-23 | The United States Of America As Represented By The United States Department Of Energy | Metal-sulfur type cell having improved positive electrode |
JP2004207249A (ja) | 2000-02-25 | 2004-07-22 | Nec Corp | 二次電池用活物質 |
JP2008147015A (ja) | 2006-12-11 | 2008-06-26 | Honda Motor Co Ltd | 電池用電極、非水溶液系電池、および非水溶液系電池の製造方法 |
JP2008222559A (ja) | 2007-03-08 | 2008-09-25 | Matsushita Electric Ind Co Ltd | フェナントレンキノン化合物、電極活物質および蓄電デバイス |
JP2010212152A (ja) * | 2009-03-11 | 2010-09-24 | Murata Mfg Co Ltd | 電極活物質及びそれを用いた二次電池 |
JP2011124017A (ja) * | 2009-12-08 | 2011-06-23 | Murata Mfg Co Ltd | 電極活物質及びそれを用いた二次電池 |
WO2012046527A1 (ja) * | 2010-10-04 | 2012-04-12 | 株式会社村田製作所 | 電源装置 |
WO2012105439A1 (ja) * | 2011-02-01 | 2012-08-09 | 株式会社 村田製作所 | 電極活物質、電極、及び二次電池 |
JP2012164480A (ja) * | 2011-02-04 | 2012-08-30 | Honda Motor Co Ltd | 電池 |
WO2012117941A1 (ja) * | 2011-02-28 | 2012-09-07 | 株式会社 村田製作所 | 電極活物質、電極、及び二次電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2782171A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP2782171A1 (en) | 2014-09-24 |
EP2782171B1 (en) | 2016-11-02 |
JP5633949B2 (ja) | 2014-12-03 |
CN103999273B (zh) | 2015-08-12 |
JPWO2013073414A1 (ja) | 2015-04-02 |
EP2782171A4 (en) | 2015-07-29 |
US9601757B2 (en) | 2017-03-21 |
US20140248536A1 (en) | 2014-09-04 |
CN103999273A (zh) | 2014-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5531424B2 (ja) | 電極活物質及びそれを用いた二次電池 | |
JP5483523B2 (ja) | 電極活物質、及び二次電池 | |
WO2012121145A1 (ja) | 電極活物質、電極、及び二次電池 | |
JP2010080343A (ja) | 電極活物質、及び二次電池 | |
JP5483521B2 (ja) | 電極活物質、及び二次電池 | |
WO2014013948A1 (ja) | 二次電池 | |
WO2012117941A1 (ja) | 電極活物質、電極、及び二次電池 | |
JP5645319B2 (ja) | 二次電池 | |
JP5633949B2 (ja) | 電極活物質、該電極活物質の製造方法、電極、及び二次電池 | |
WO2012105439A1 (ja) | 電極活物質、電極、及び二次電池 | |
WO2013157458A1 (ja) | 電極と該電極の製造方法、及び二次電池 | |
JP5633948B2 (ja) | 電極活物質、電極、及び二次電池 | |
WO2021187417A1 (ja) | 電極活物質、電極及び二次電池 | |
WO2012105438A1 (ja) | 電極活物質、電極、及び二次電池 | |
WO2013172323A1 (ja) | 電極活物質、電極、及び二次電池 | |
JP5536519B2 (ja) | 電極活物質及び二次電池 | |
JP5534589B2 (ja) | 電極活物質及び二次電池 | |
JP5716934B2 (ja) | 電極活物質、電極、及び二次電池 | |
JP2010113840A (ja) | 電極活物質及び電池 | |
WO2015041097A1 (ja) | 二次電池、及び二次電池の製造方法 | |
JP2005228640A (ja) | 二次電池 | |
WO2014073562A1 (ja) | 二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12849583 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013544221 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2012849583 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012849583 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |