WO2013072976A1 - 走行環境予測装置および車両制御装置、並びにそれらの方法 - Google Patents

走行環境予測装置および車両制御装置、並びにそれらの方法 Download PDF

Info

Publication number
WO2013072976A1
WO2013072976A1 PCT/JP2011/006452 JP2011006452W WO2013072976A1 WO 2013072976 A1 WO2013072976 A1 WO 2013072976A1 JP 2011006452 W JP2011006452 W JP 2011006452W WO 2013072976 A1 WO2013072976 A1 WO 2013072976A1
Authority
WO
WIPO (PCT)
Prior art keywords
stop
stop time
time rate
soc
vehicle
Prior art date
Application number
PCT/JP2011/006452
Other languages
English (en)
French (fr)
Inventor
亨裕 宮下
伊藤 耕巳
伸和 植木
康平 栃木
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201180074860.4A priority Critical patent/CN103946068B/zh
Priority to EP11875960.4A priority patent/EP2781411B1/en
Priority to JP2013543995A priority patent/JP5729484B2/ja
Priority to US14/357,815 priority patent/US9827925B2/en
Priority to PCT/JP2011/006452 priority patent/WO2013072976A1/ja
Publication of WO2013072976A1 publication Critical patent/WO2013072976A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0231Circuits relating to the driving or the functioning of the vehicle
    • B60R16/0236Circuits relating to the driving or the functioning of the vehicle for economical driving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0833Vehicle conditions
    • F02N11/0837Environmental conditions thereof, e.g. traffic, weather or road conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • F02N2200/061Battery state of charge [SOC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/08Parameters used for control of starting apparatus said parameters being related to the vehicle or its components
    • F02N2200/0801Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/12Parameters used for control of starting apparatus said parameters being related to the vehicle exterior
    • F02N2200/125Information about other vehicles, traffic lights or traffic congestion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Definitions

  • the present invention relates to a technology for predicting a traveling environment of a vehicle that causes a stop and a technology for controlling the vehicle.
  • Patent Document 1 predicts a traffic jam as a traveling environment that causes the engine to stop by idling stop control. Furthermore, an apparatus that predicts that the vehicle is traveling in an urban area as a traveling environment that causes the vehicle to stop is proposed (Patent Document 2). In this apparatus, it is predicted that it is an urban area from the average vehicle speed and the number of stops in the past fixed time.
  • Patent Document 1 has a problem that it is necessary to use a car navigation system and the configuration is complicated.
  • the apparatus described in Patent Document 2 requires relatively long time observation. There was a problem with poor response.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to perform prediction of a driving environment with a simple configuration and high response.
  • the present invention can be realized as the following forms or application examples in order to solve at least a part of the above-described problems.
  • a travel environment prediction device for predicting a travel environment of a vehicle that causes a stop, A stop time rate calculation unit for calculating a ratio of stop time in a predetermined period; A travel environment prediction device comprising: a travel environment prediction unit that predicts the travel environment based on the ratio of the stop time.
  • the traveling environment is obtained based on the ratio of the stop time in a predetermined period. According to this configuration, the driving environment can be predicted with both responsiveness and accuracy while having a simple configuration.
  • the stop time rate calculation unit includes a first stop time rate calculation unit that calculates a stop time ratio in the first period as a first stop time rate; A second stop time rate calculation unit that calculates a stop time ratio in a second period longer than the first period as a second stop time rate, and the travel environment prediction unit includes the first stop time.
  • a travel environment prediction device that predicts the travel environment based on a rate and a second stop time rate.
  • the first stop time rate calculated in the first period, which is the shorter of the first and second periods, and the second period, which is the longer one, are calculated.
  • a traveling environment is determined based on the second stop time rate. Since the first stop time rate can be obtained in a short period, the driving environment can be determined with good responsiveness based on the first stop time rate. Since the second stop time rate is obtained over a long period of time, the traveling environment can be accurately determined based on the second stop time rate. Therefore, the driving environment can be predicted with both responsiveness and accuracy while having a simple configuration.
  • the travel environment determination unit further determines whether the second stop time rate is equal to or greater than a second threshold value that is smaller than the first threshold value.
  • a travel environment prediction device comprising: a second determination unit that determines; and a second determination unit that determines that the city is an urban area when the second determination unit determines that the second determination unit is equal to or greater than a second threshold. According to this traveling environment prediction device, the determination of the urban area is made when the first stop time rate is greater than or equal to the first threshold or when the second stop time rate is greater than or equal to the second threshold. Since an early determination is possible, prediction can be performed with good responsiveness.
  • the travel environment determination unit further determines whether the first stop time rate is less than a third threshold that is smaller than the first threshold.
  • a third determination unit that determines whether the second stop time rate is less than a fourth threshold value that is smaller than the second threshold value, and the third determination unit.
  • a third determination unit that determines that the vehicle is located in the suburb when it is determined by the fourth determination unit that it is less than the fourth threshold.
  • Environmental prediction device According to this traveling environment prediction apparatus, it is possible to prevent hunting of the prediction result by providing hysteresis in the determination of the urban area and the suburbs.
  • a vehicle control device mounted on a vehicle having an engine and a battery that can be charged by a power generation amount of a generator driven by power of the engine, An idling stop control unit for performing idling stop control; An SOC detector for detecting a state of charge (SOC) of the battery; When the vehicle is running, an idling stop capacity for setting an idling stop capacity that is expected to be used in a stop-and-start period from engine stop to restart by the idling stop control with respect to the usable SOC range of the battery.
  • SOC state of charge
  • a capacity setting section The amount of power generated by the generator so as to avoid that the remaining capacity in the usable SOC range corresponding to the SOC detected by the SOC detection unit during traveling of the vehicle is less than the idling stop capacity.
  • a remaining capacity control unit for controlling The idling stop capacity setting unit includes: A stop time rate calculation unit for calculating a ratio of stop time in a predetermined period; A vehicle control device comprising: a capacity setting unit that sets the idling stop capacity based on the ratio of the stop time.
  • this vehicle control device it is possible to appropriately determine the idling stop capacity in the SOC range where the battery can be used in consideration of the traveling environment of the vehicle that causes the vehicle to stop.
  • the stop time rate calculation unit includes a first stop time rate calculation unit that calculates a stop time ratio in a first period as a first stop time rate, A second stop time rate calculating unit that calculates a stop time ratio in a second period longer than the first period as a second stop time rate, wherein the capacity setting unit includes the first stop time rate and A vehicle control device that sets the idling stop capacity based on a second stop time rate.
  • the idling stop capacity can be more appropriately determined in the SOC range where the battery can be used.
  • the capacity setting unit includes a first determination unit that determines whether the first stop time rate is equal to or greater than a first threshold value, and the first determination unit.
  • a first determining unit that sets the idling stop capacity to a value larger than a capacity that is set when it is determined not to be equal to or greater than the first threshold when A vehicle control device comprising: According to this vehicle control device, when it is determined that the first stop time rate is equal to or greater than the first threshold value, the idling stop capacity can be increased. As a result, the idling stop capacity can be more appropriately increased. Can be determined.
  • the capacity setting unit further determines whether or not the second stop time rate is equal to or greater than a second threshold value that is smaller than the first threshold value.
  • the idling is set to a value larger than a capacity that is set when it is determined that the value is not equal to or greater than the second threshold.
  • a vehicle control device comprising: a second determination unit that sets a stop capacity. According to this vehicle control device, the idling stop capacity can be increased when it is determined that the second stopping time rate is equal to or greater than the second threshold value which is smaller than the first threshold value. The stop capacity can be determined more appropriately.
  • [Application Example 10] 10 The vehicle control device according to Application Example 8 or 9, wherein the idling stop capacity setting unit is further configured such that the first stop time rate is less than a third threshold value that is smaller than the first threshold value.
  • a third determination unit that determines whether or not, a fourth determination unit that determines whether or not the second stoppage time rate is less than a fourth threshold that is smaller than the second threshold, and the third determination A first value that reduces the idling stop capacity when the fourth determination unit determines that the idling stop capacity is less than the third threshold value.
  • a vehicle control device comprising: 3 determination unit.
  • the idling stop capacity can be decreased. As a result, it is possible to determine the idling stop capacity more appropriately and to prevent the control of the idling stop capacity from being hunted.
  • this traveling environment prediction method similarly to the traveling environment prediction device of Application Example 1, it is possible to perform prediction of the traveling environment while achieving both responsiveness and prediction accuracy.
  • a vehicle control method for controlling a vehicle having an engine and a battery that can be charged by a power generation amount of a generator driven by power of the engine (A) performing idling stop control; (B) detecting a state of charge (SOC) of the battery; (C) When the vehicle is running, an idling stop capacity that is expected to be used in a stop-and-start period from engine stop to restart by the idling stop control is set for the usable SOC range of the battery.
  • the generator is configured to avoid a remaining capacity in the usable SOC range corresponding to the SOC detected by the SOC detection unit during traveling of the vehicle from being less than the idling stop capacity.
  • a process for controlling the amount of power generation of The step (c) Calculate the ratio of stop time in a given period, A vehicle control method for setting the idling stop capacity based on a ratio of the stop time.
  • the idling stop capacity can be appropriately determined in the SOC range in which the battery can be used as in the vehicle control device of Application Example 5.
  • the present invention can be implemented in various forms in addition to the application example described above.
  • the present invention is a vehicle equipped with the travel environment prediction device according to any one of Application Examples 1 to 5, a vehicle equipped with the vehicle control device according to any one of Application Examples 6 to 10, and Application Examples 2 to 5.
  • a driving environment prediction method including a process corresponding to each part included in the traveling environment prediction device according to any one of the above, and a vehicle control method including a process corresponding to each part included in the vehicle control device according to any one of Application Examples 6 to 10.
  • a computer program for causing a computer to execute each step included in the traveling environment prediction method according to Application Example 11 and a computer program for causing a computer to execute each step included in the vehicle control method according to Application Example 12.
  • FIG. 4 is an explanatory diagram showing an example of a first storage stack ST1.
  • FIG. It is explanatory drawing which shows the change of the memory content of 1st memory
  • FIG. 1 is an explanatory diagram showing a configuration of an automobile 200 as an embodiment of the present invention.
  • the automobile 200 is a vehicle equipped with an idling stop function.
  • the automobile 200 includes an engine 10, an automatic transmission 15, a differential gear 20, drive wheels 25, a starter 30, an alternator 35, a battery 40, and an electronic control unit (ECU) 50. ing.
  • ECU electronice control unit
  • Engine 10 is an internal combustion engine that generates power by burning fuel such as gasoline or light oil.
  • the power of the engine 10 is transmitted to the automatic transmission 15 and is also transmitted to the alternator 35 via the drive mechanism 34.
  • the output of the engine 10 is changed by an engine control computer (not shown) according to the amount of depression of an accelerator pedal (not shown) operated by the driver.
  • the automatic transmission 15 automatically changes the gear ratio (so-called shift change).
  • the power (rotation speed / torque) of the engine 10 is shifted by the automatic transmission 15 and transmitted to the left and right drive wheels 25 through the differential gear 20 as a desired rotation speed / torque.
  • the power of the engine 10 is transmitted to the drive wheels 25 through the automatic transmission 15 while being changed according to the amount of depression of the accelerator pedal, and the vehicle (automobile 200) is accelerated or decelerated. .
  • the drive mechanism 34 that transmits the power of the engine 10 to the alternator 35 adopts a belt drive configuration.
  • the alternator 35 generates power using a part of the power of the engine 10.
  • the alternator 35 is a kind of generator.
  • the generated electric power is used for charging the battery 40 via an inverter (not shown).
  • power generation by the power of the engine 10 using the alternator 35 is referred to as “fuel power generation”.
  • the battery 40 is a lead storage battery as a DC power supply having a voltage of 14 V, and supplies power to peripheral devices provided in addition to the engine body.
  • peripheral devices provided in addition to the engine main body and operating using the power of the battery 40 are referred to as “auxiliary devices”.
  • a collection of auxiliary machines is called “auxiliary machines”.
  • the automobile 200 includes a headlight 72, an air conditioner (A / C) 74, and the like as auxiliary machines 70.
  • the starter 30 is a cell motor that starts the engine 10 with electric power supplied from the battery 40. Normally, when the driver operates an ignition switch (not shown) when starting the operation of the stopped vehicle, the starter 30 is started and the engine 10 is started. The starter 30 is also used when restarting the engine 10 from the idling stop state, as will be described below.
  • the “idling stop state” refers to a stop state by idling stop control.
  • the ECU 50 includes a CPU that executes a computer program, a ROM that stores a computer program, a RAM that temporarily stores data, an input / output port connected to various sensors, actuators, and the like.
  • Sensors connected to the ECU 50 include a wheel speed sensor 82 that detects the rotational speed of the drive wheel 25, a brake pedal sensor 84 that detects whether or not a brake pedal (not shown) is depressed, and an accelerator pedal (not shown).
  • An accelerator opening sensor 86 that detects the amount of depression as an accelerator opening
  • a battery current sensor 88 that detects a charging / discharging current of the battery 40
  • an alternator current sensor 89 that detects an output current of the alternator 35, and the like are provided.
  • the actuator corresponds to the starter 30, the alternator 35, or the like.
  • the ECU 50 is supplied with electric power from the battery 40.
  • the ECU 50 controls the engine stop and restart (idling stop control) by controlling the starter 30 and the alternator 35 based on signals from the various sensors and the engine control computer (not shown) and the battery. 40 SOCs are controlled.
  • FIG. 2 is an explanatory diagram functionally showing the configuration of the ECU 50.
  • the ECU 50 includes an idling stop control unit 90 and an SOC control unit 100.
  • the idling stop control unit 90 and the SOC control unit 100 actually show functions realized by the CPU provided in the ECU 50 executing a computer program stored in the ROM.
  • the idling stop control unit 90 acquires the wheel speed Vh detected by the wheel speed sensor 82 and the accelerator opening Tp detected by the accelerator opening sensor 86, and gives an instruction Ss to stop / start the engine 10 to the starter 30. Output. Specifically, the idling stop control unit 90 outputs an engine stop instruction Ss to the starter 30 assuming that the engine stop condition is satisfied when the wheel speed Vh decreases and becomes less than a predetermined speed (for example, 10 km / h). Thereafter, when it is detected that the accelerator pedal is depressed from the accelerator opening Tp, an engine restart instruction Ss is output to the starter 30 assuming that the engine restart condition is satisfied.
  • a predetermined speed for example, 10 km / h
  • the idling stop control unit 90 stops the engine 10 when the engine stop condition is satisfied, and restarts the engine 10 when the engine restart condition is satisfied after the stop.
  • the engine stop condition and the engine restart condition are not limited to those described above.
  • the engine stop condition can be that the wheel speed Vh is completely 0 km / h
  • the engine restart condition can be that the foot is off the brake pedal.
  • the SOC control unit 100 includes a target SOC estimation unit 110, a battery SOC calculation unit 120, and a feedback control unit 130.
  • the target SOC estimation unit 110 is a period from engine stop to restart by idling stop control when the vehicle is traveling (for example, when the wheel speed Vh> 0 km / h) (hereinafter referred to as “stop and start period”). 1 is estimated as a target SOC (hereinafter also referred to as “target SOC value”) C1, and a detailed configuration will be described in section C.
  • target SOC value is defined as a value obtained by dividing the amount of electricity remaining in the battery by the amount of electricity stored when the battery is fully charged.
  • the battery SOC calculation unit 120 is referred to as the current SOC of the battery 40 (hereinafter referred to as “current SOC value”) based on the charge / discharge current (referred to as “battery current”) Ab of the battery 40 detected by the battery current sensor 88. ) Calculate C2. Specifically, the current SOC value C2 is calculated by integrating the charging / discharging current Ab with the charging current of the battery 40 as a positive value and the discharging current of the battery 40 as a negative value.
  • the configurations of the battery current sensor 88 and the battery SOC calculation unit 120 correspond to the “SOC detection unit” described in the section “Means for Solving the Problems”.
  • the SOC detection unit need not be limited to the one calculated based on the battery current detected by the battery current sensor 88.
  • the SOC detection unit is obtained based on a battery electrolyte specific gravity sensor, a cell voltage sensor, a battery terminal voltage sensor, or the like. Also good.
  • the SOC detection unit need not be limited to a configuration that detects the amount of electricity remaining in the battery, and may be configured to detect the storage state using another parameter such as a chargeable amount.
  • the feedback control unit 130 obtains a difference value obtained by subtracting the current SOC value C2 from the target SOC value C1 during traveling of the vehicle, and obtains a voltage instruction value Sv that matches the difference value to the value 0 by feedback control.
  • the voltage instruction value Sv indicates the amount of power generated by the alternator 35 and is sent to the alternator 35.
  • the current SOC value C2 is controlled to the target SOC value C1 by fuel power generation.
  • the SOC control unit 100 is provided with a function called “battery control” and a function called “charge control” in addition to the above. Battery control will be described.
  • the usable SOC range (operating SOC range) of the battery is determined in advance from the request for a long life. For this reason, when the SOC of the battery 40 falls below the lower limit value (for example, 60%) of the SOC range, the power of the engine 10 is increased so that the SOC is within the SOC range, and the upper limit value (for example, 90%) of the SOC range is set.
  • the SOC exceeds, “battery control” is performed in which the SOC is consumed to be within the SOC range. Even when the engine is stopped by the idling stop control, if the SOC falls below the lower limit value, the engine is started and the SOC is set within the SOC range by fuel power generation.
  • Charge control is a control process in which fuel consumption is reduced by suppressing charging of the battery by fuel power generation during normal traveling, and the battery is charged by regenerative power generation during deceleration traveling. Since charging control is a well-known configuration, it will not be described in detail, but the following processing is generally performed.
  • charging control feedback control by the feedback control unit 130 during normal traveling is executed when the target SOC value C1 exceeds the current SOC value C2, and when the target SOC value C1 is equal to or lower than the current SOC value C2 during normal traveling.
  • the predetermined power generation cut voltage is set as a voltage instruction value Sv to the alternator 35. With this configuration, charging during normal driving can be suppressed and fuel consumption can be saved.
  • “normal traveling” is a state of the automobile 200 that does not correspond to either “stop” in which the vehicle speed is 0 km / h or “decelerated traveling” in which the regenerative power generation is performed.
  • the target SOC estimation unit 110 includes a travel environment prediction unit 112, a host vehicle state prediction unit 114, an SOC distribution request level calculation unit 116, and a target SOC calculation unit 118.
  • the traveling environment prediction unit 112 predicts the traveling environment of the vehicle.
  • “traveling environment” indicates a distinction between whether the future travel region of the vehicle (from now on) corresponds to an urban area or a suburb.
  • the travel environment prediction unit 112 determines whether the travel environment up to the present is an urban area or a suburb, and the determination result is determined in the future (from now on).
  • the city / suburb section P1 can take a value of 1 for an urban area and a value of 0 for a suburb. A detailed method for determining whether the area is an urban area or a suburb will be described in section D.
  • the own vehicle state prediction unit 114 predicts the state of the automobile 200 (own vehicle state).
  • the “own vehicle state” is a parameter indicating how much SOC the automobile 200 will consume in the future.
  • the host vehicle state prediction unit 114 calculates the amount of power consumed by the auxiliary machinery 70 based on the battery current Ab detected by the battery current sensor 88 and the alternator current Aa detected by the alternator current sensor 89. And the electric energy is output as the own vehicle state P2. Since the speed at which the SOC is consumed is high when the amount of power consumed by the auxiliary machinery 70 is large, in the present embodiment, the own vehicle state prediction unit 114 obtains the amount of power consumed by the auxiliary machinery 70 as the own vehicle state P2.
  • the own vehicle state P2 was calculated
  • the air conditioner information for example, the difference between the target temperature and the in-vehicle temperature
  • the engine warm-up status such as the difference between the engine water temperature and the ambient temperature are shown. It can be set as the structure calculated
  • required the present operation condition of auxiliary machinery by the sensor signal detected now, and considered the present operation condition as the future own vehicle state, but instead, It is good also as a structure which estimates the future own vehicle state by catching the sign that an operation condition changes from the present operation condition calculated
  • the driving environment prediction unit 112 and the own vehicle state prediction unit 114 having the above-described configuration always perform the prediction after the driving of the automobile 200 is started.
  • the units 122 to 124 are actually realized by the CPU provided in the ECU 50 executing a computer program stored in the ROM.
  • the urban / suburban section P1 calculated by the traveling environment prediction unit 112 and the host vehicle state P2 calculated by the host vehicle state prediction unit 114 are sent to the SOC distribution request level calculation unit 116.
  • the SOC distribution request level calculation unit 116 calculates the SOC distribution request level P3 based on the city / suburb section P1 and the own vehicle state P2, and the target SOC calculation unit 118 calculates the target SOC value C1 based on the SOC distribution request level P3. To do.
  • the contents of the SOC distribution request level calculation unit 116 and the target SOC calculation unit 118 will be described in detail below.
  • FIG. 3 is a flowchart showing a target SOC estimation routine.
  • This target SOC estimation routine is repeatedly executed every predetermined time (for example, 60 sec) when the vehicle is traveling. That is, the target SOC estimation routine is not executed when the engine 10 is stopped by the idling stop control.
  • the CPU of the ECU 50 acquires the city / suburb section P1 obtained by the traveling environment prediction unit 112 (FIG. 2) (step S100) and the own vehicle state prediction unit 114.
  • the own vehicle state P2 obtained by (FIG. 2) is acquired (step S200).
  • step S300 the CPU performs a process of calculating the SOC distribution request level based on the city / suburb section P1 and the own vehicle state P2 using the SOC distribution request level calculation map MP (step S300).
  • the usable SOC range is determined for each type of battery.
  • the available SOC range is allocated to idling stop and charge control, and the “SOC allocation request level” is a parameter for designating the allocation level.
  • FIG. 4 is an explanatory diagram showing the SOC allocation request level calculation map MP.
  • the SOC allocation required level calculation map MP has an urban area / suburb section P1 on the horizontal axis, a host vehicle state P2 on the vertical axis, and SOCs corresponding to the values on the horizontal axis and the values on the vertical axis.
  • This is map data in which the distribution request level P3 is mapped.
  • An SOC allocation request level calculation map MP has been created by previously determining the relationship among the urban / suburban division P1, the own vehicle state P2, and the SOC allocation request level P3 experimentally or by simulation, and is stored in the ROM. I remember it.
  • step S300 the SOC allocation request level calculation map MP is called from the ROM, and by referring to the map MP, the SOC corresponding to the urban / suburban division P1 obtained in step S100 and the own vehicle state P2 obtained in step S200.
  • the distribution request level P3 is acquired.
  • four values A, B, C, and D are prepared as the SOC distribution request level P3.
  • A, B, C, and D are higher in this order.
  • the SOC allocation request level P3 is higher when the city / suburb section P1 is a value 1 indicating a city area than when the value 0 is a city area. Further, the higher the host vehicle state P2, the higher the SOC distribution request level P3.
  • step S400 the CPU performs a process of calculating the target SOC value C1 based on the SOC distribution request level P3 using the target SOC calculation table TB (step S400).
  • FIG. 5 is an explanatory diagram showing the target SOC calculation table TB.
  • the target SOC calculation table TB has an SOC distribution request level P3 on the horizontal axis, a target SOC value C1 on the vertical axis, and a relationship between the SOC distribution request level P3 and the target SOC value C1 on a straight line L. Show.
  • the target SOC calculation table TB is created and stored in the ROM.
  • the target SOC calculation table TB is called from the ROM, and the target SOC value C1 corresponding to the SOC distribution request level P3 calculated in step S300 is acquired by referring to the table TB.
  • the target SOC value C1 indicated by the straight line L is a value set within the usable SOC range W of the battery 40, and the usable SOC range W is defined as a charge control capacity and an idling stop capacity.
  • the distribution rate when allocated to is shown.
  • the idling stop capacity area is set on the lower side
  • the charge control capacity area is set on the upper side
  • the boundary between both areas is the target SOC value. C1.
  • a level obtained by adding the idling stop capacity to the lower limit value of the usable SOC range W is set as the target SOC value C1.
  • the charge control capacity is a battery capacity required by suppressing the fuel power generation by the charge control described above.
  • the idling stop capacity is a capacity that is expected to be used in a future stop-and-start period. In this embodiment, the idling stop capacity is set to the maximum expected size.
  • the idling stop capacity increases as the SOC distribution request level P3 becomes higher.
  • the target SOC value C1 indicated by the straight line L indicates the SOC that can completely perform the idling stop control in the future and that can minimize the power generation amount for storing the SOC.
  • the target SOC value C1 increases linearly as the SOC distribution request level P3 increases as indicated by the straight line L, but the present invention is not limited to this.
  • the target SOC value C1 is set to increase linearly as the SOC distribution request level P3 increases when the SOC distribution request level P3 is equal to or less than a predetermined value, and to maintain a constant value when the SOC distribution request level P3 exceeds a predetermined value.
  • a predetermined configuration may be adopted. This configuration is effective for a battery having a relatively small usable SOC range.
  • it can also be set as the structure shown with a curve instead of the structure which shows the change of the target SOC value C1 with a straight line.
  • step S400 after executing step S400, the CPU outputs the target SOC value C1 calculated in step S400 to the feedback control unit 130 (step S500), and then temporarily ends the target SOC estimation routine.
  • the feedback control unit 130 (FIG. 2), the current SOC value C2 is controlled to the calculated target SOC value C1.
  • the current SOC value C2 indicates the remaining capacity of the battery 40 in the usable SOC range.
  • the remaining capacity can be prevented from falling below the idling stop capacity during vehicle travel. That is, in FIG. 5, when the current SOC value is located in the charge control capacity region, that is, when the remaining capacity exceeds the idling stop capacity, charge control is performed and the battery 40 is charged by fuel power generation. It is suppressed.
  • the SOC is controlled to the target SOC value C1 indicated by the straight line L by the fuel power generation, so that the idling stop capacity is attempted to fall below. It is avoided.
  • FIG. 6 is an explanatory diagram showing a time chart regarding the vehicle speed and the SOC of the battery 40 (current SOC value C2) while the automobile 200 is in operation.
  • the vertical axis represents vehicle speed and SOC
  • the horizontal axis represents time.
  • the vehicle stops at time t2.
  • regenerative power generation by deceleration is performed, and the SOC gradually increases as shown by the solid line.
  • a period from time t2 (strictly speaking, when the engine stop condition is satisfied) to time t3 when the vehicle speed rises is a stop-and-start period SST, and the engine 10 is stopped.
  • the stop-and-start period SST the SOC gradually decreases due to power consumption by auxiliary equipment.
  • the solid line when the SOC reaches the lower limit value SL during this stop (time tb), the engine 10 is restarted by battery control. After restarting, as indicated by the solid line, power is generated by the power of the engine 10 and the SOC increases.
  • the SOC when the SOC decreases during normal driving and the remaining capacity of the battery 40 in the usable SOC range falls below the idling stop capacity (time ta), the SOC is increased by fuel power generation. As indicated by the two-dot chain line in the figure, the SOC increases during the ta-t2 period. This increase takes into account the maximum battery capacity expected to be used in the future stop-and-start period. Therefore, even if the SOC decreases in the stop-and-start period t2-t3, the SOC reaches the lower limit SL. It wo n’t happen.
  • the “future stop-and-start period” is not limited to the illustrated stop-and-start period SST.
  • the entire stop-and-start period is the same. is there. Therefore, in this embodiment, unlike the conventional example, the SOC does not reach the lower limit value and the engine 10 is not restarted in the stop-and-start period t2-t3.
  • FIG. 7 is a flowchart showing a driving environment prediction routine.
  • the traveling environment prediction unit 112 By executing the traveling environment prediction routine by the CPU of the ECU 50, the traveling environment prediction unit 112 (FIG. 2) is realized.
  • the CPU of the ECU 50 first determines whether or not the key is started (step S610). “Key start” refers to starting the engine in response to an operation of an ignition key (not shown) by the driver. If it is determined in step S610 that the key is not started, the process of step S610 is repeated to wait for the key to be started.
  • the CPU executes an initialization process for clearing a storage stack and variables described later (step S620).
  • the CPU sets the wheel speed Vh detected by the wheel speed sensor 82 as the vehicle speed V, and determines whether the vehicle speed V exceeds a predetermined speed V0 (for example, 15 km / h) (step S630).
  • a predetermined speed V0 for example, 15 km / h
  • the CPU waits for the vehicle speed V to exceed V0, and proceeds to step S640.
  • the vehicle speed V may be a configuration using a detection value of a vehicle speed sensor (not shown) instead of a configuration using the detection value of the wheel speed sensor 82.
  • the CPU starts execution of a stop time acquisition routine and a stop time rate calculation routine described later.
  • FIG. 8 is an explanatory diagram of a time chart showing the relationship between the start time of the stop time acquisition routine and the stop time rate calculation routine and the vehicle speed V.
  • the horizontal axis of the time chart indicates time t, and the vertical axis indicates speed V.
  • the vehicle speed V rises.
  • execution of a stop time acquisition routine and a stop time rate calculation routine is started at the time t2 when the vehicle speed V reaches the predetermined speed V0. This is because the period (t1-t2) from when the key is started until the predetermined speed V0 is reached is not counted as the stop time acquired by the stop time acquisition routine.
  • step S640 the CPU determines whether or not a start limit time (TL described later) has elapsed since the vehicle speed V exceeded V0 (step S650), and sets the start limit time TL. Waiting for the elapse of time, the CPU executes a later-described urbanization / suburb determination routine (step S660). After execution of step S660, it is determined whether or not an operation for switching off the ignition key is performed by the driver (step S670), and the process of step S660 is repeatedly performed until the operation is performed. When the turning-off operation is performed, the CPU ends the traveling environment prediction routine.
  • FIG. 9 is a flowchart showing the stop time acquisition routine started in step S640.
  • the CPU repeatedly executes the next stop time acquisition process in the first cycle G1 (step S710).
  • This stop time acquisition process calculates the stop time in the period of the first cycle G1, and stores the calculated stop time in the first storage stack ST1.
  • the first period G1 is 60 [sec].
  • FIG. 10 is an explanatory diagram showing an example of the first storage stack ST1.
  • the first storage stack ST1 is composed of ten stack elements M (1), M (2),..., M (10).
  • the CPU obtains the stopping time for 60 seconds every 60 seconds, and sequentially stores the obtained results in the stack element M (n) provided in the first storage stack ST1.
  • n is a variable from 1 to 10
  • the stored stack element M (n) sequentially moves from M (1) to M (10).
  • the determination of whether the vehicle is stopped may be a configuration using a detection value of a vehicle speed sensor (not shown) instead of the configuration using the detection value of the wheel speed sensor 82.
  • step S710 the CPU sequentially obtains stop times in a period of 60 seconds in a cycle of 60 seconds, and stores the obtained stop times one by one from the stack elements M (1) to M (10).
  • the stop time of 20 seconds is stored in the stack element M (1) when 60 seconds have elapsed
  • the stop time of 0 seconds is stored in the stack element M (2) when 120 seconds have elapsed, and 180 seconds have elapsed.
  • the stop time of 60 seconds is stored in the stack element M (3). In this way, stop times are sequentially stored in a cycle of 60 seconds. As shown in FIG.
  • step S720 the CPU repeatedly executes the next stop time acquisition process in the second period G2 (step S720).
  • This stop time acquisition process calculates the stop time in the period of the second period G2, and stores the calculated stop time in the second storage stack ST2.
  • the second period G2 is 90 [sec].
  • step S720 is shown as a process following step S710 in the figure, but this is based on the convenience of the figure, and actually, the process of this stop time acquisition routine is started in the same manner as the process of step S710 described above. Later, it is executed immediately. That is, the process of step S710 and the process of step S720 are executed in parallel by time sharing.
  • FIG. 12 is an explanatory diagram showing an example of the second storage stack ST2.
  • the second storage stack ST2 is composed of ten stack elements N (1), N (2),..., N (10).
  • the CPU obtains the stop time for 90 seconds every 90 seconds, and the obtained results are sequentially stored in the stack element N (n) provided in the second storage stack ST2.
  • n is a variable from 1 to 10, and the stored stack element N (n) sequentially moves from N (1) to N (10).
  • the stop time is calculated by detecting the stop of the vehicle based on the wheel speed Vh detected by the wheel speed sensor 82, and calculating the stop time over the period of the second period G2. Obtained by measuring.
  • step S720 the CPU sequentially obtains stop times in the period of 90 seconds in a cycle of 90 seconds, and stores the obtained stop times one by one from the stack elements N (1) to N (10).
  • the stop time of 20 seconds is stored in the stack element N (1) when 90 seconds have elapsed
  • the stop time of 0 seconds is stored in the stack element N (2) when 180 seconds have elapsed, and 270 seconds have elapsed.
  • the stop time of 0 seconds is stored in the stack element N (3). In this way, the stop time is sequentially stored in a cycle of 90 seconds.
  • the stop time is filled up to the last stack element N (10), that is, when the total time of 15 minutes (900 seconds) has elapsed, it returns to the head and is updated one by one from the head. Going is the same as the first storage stack ST1.
  • FIG. 13 is a flowchart showing a stoppage time rate calculation routine started in step S640 (FIG. 7).
  • the CPU repeatedly calculates the short-term stoppage time rate RS with the first period G1 after 10 minutes have elapsed from the start of the process (step S810). Specifically, the total value of the values stored in the stack elements M (1) to M (10) of the first storage stack ST1 is obtained, and the time required to fill the first storage stack ST1 is 600 seconds. Divide the total value and use the quotient as the short-term stoppage time rate RS. Since the stack element M (n) is updated one by one every 60 seconds that is the first period G1, the first storage stack ST1 obtains the short-term stoppage time rate RS each time this update is made.
  • the ratio of the stop time in the latest past 600 seconds can be obtained as the short-term stop time rate RS by using the stored contents of the first storage stack ST1.
  • the ratio of the stop time is a ratio of the stop time to the entire time (here, 600 seconds).
  • step S820 the CPU repeatedly calculates the long-term stop time rate RL with the second period G2 after 15 minutes have elapsed from the start of the process (step S820).
  • the process of step S820 is shown as a process subsequent to step S810 in the figure, but this is based on the convenience of the figure.
  • Executed immediately the process of step S810 and the process of step S820 are executed in parallel by time sharing.
  • step S820 the total value of the values stored in the stack elements N (n) to N (10) of the second storage stack ST2 is obtained, and the time required to fill the second storage stack ST2 is obtained.
  • the total value is divided by a certain 900 seconds, and the quotient is set as the long-term stoppage time rate RL. Since the stack element N (n) is updated one by one every 90 seconds that is the second period G2, the second storage stack ST2 obtains a long-term stoppage time rate RL every time this update is made. . That is, according to the process of step S820, the ratio of the stopping time in the latest 900 seconds can be obtained as the long-term stopping time rate RL by using the stored contents of the second storage stack ST2. The ratio of the stop time is the ratio of the stop time to the entire time (900 seconds here).
  • the time required to fill the second storage stack ST2 is 900 seconds, which corresponds to the start limit period TL in step S650 described above.
  • the short-term stoppage time rate RS corresponds to the “first stoppage time rate” described in the column “Problems to be solved by the invention”, and the long-term stoppage time rate RL is [problem to be solved by the invention]. This corresponds to the “second stop time rate” described in the column.
  • the configuration of the ECU 50 and the stop time acquisition routine and the stop time rate calculation routine executed by the CPU of the ECU 50 includes a “first stop time rate calculation unit” described in the section “Problems to be solved by the invention” and This corresponds to a “second stoppage time rate calculation unit”.
  • the short-term stopping time rate RS is obtained after 10 minutes from the start of processing
  • the long-term stopping time rate RL is obtained after 15 minutes from the start of processing. This is to delay the time until the first value is determined using the first and second storage stacks ST1 and ST2.
  • the grace period may be configured to set a predetermined initial value requested from the system.
  • FIG. 14 is a flowchart showing the urbanization / suburb determination routine executed in step S660 (FIG. 7).
  • This urbanization / suburb determination routine determines whether the city is a suburb or a suburb based on the latest short-term stoppage time rate RS and long-term stoppage time rate RL obtained in the stoppage time rate calculation routine. That is, the ECU 50 and the configuration of the urbanization / suburb determination routine executed by the CPU of the ECU 50 correspond to the “running environment prediction unit” described in the section “Problems to be solved by the invention”.
  • step S910 when the process is started, the CPU indicates that the short-term stoppage time rate RS is greater than or equal to the first threshold value R1, and the long-term stoppage time rate RL is greater than or equal to the second threshold value R2. It is determined whether at least one of the conditions is satisfied (step S910). There is a relationship of R1> R2 between the first threshold value R1 and the second threshold value R2. For example, R1 is 48% and R2 is 44%. If it is determined in step S910 that at least one of the conditions is satisfied, it is determined as an urban area (step S920). That is, the value 1 is set in the urban area / suburb section P1. After the execution of step S920, the process returns to “RETURN” and the routine is temporarily terminated.
  • step S910 determines that the short-term stoppage time rate RS is less than the third threshold R3 and the long-term stoppage time rate RL. It is determined whether or not both are less than the fourth threshold value R4 (step S930).
  • R1> R3 between the third threshold R3 and the first threshold R1 described above.
  • R2> R4 between the fourth threshold value R4 and the second threshold value R2 described above.
  • R3 is 42% and R4 is 40%.
  • R3> R4 between the third threshold value R3 and the fourth threshold value R4. That is, in this embodiment, there is a relationship of R1> R2> R3> R4.
  • step S940 When it is determined in step S930 that both are satisfied, it is determined as a suburb (step S940). That is, the value 0 is set in the city / suburb section P1. After execution of step S940, the process returns to “RETURN”, and this routine is temporarily terminated. On the other hand, if a negative determination is made in step S930, that is, it is determined that at least one of the conditions is not satisfied, the routine immediately returns to “RETURN” and this routine is once ended. That is, when a negative determination is made in step S930, the value at the time of the previous processing of the urban area / suburb section P1 is maintained as it is, and this routine is finished.
  • the algorithm according to the city / suburb determination routine configured as described above determines whether the city is a suburb or suburb based on the short-term stop time rate RS and the long-term stop time rate RL. The reason why it is constructed for the following reasons will be described.
  • FIG. 15 is a graph showing the frequency distribution of the short-term stoppage time rate RS in each of the urban area and the suburbs.
  • FIG. 16 is a graph showing the frequency distribution of the long-term stoppage time ratio RL in the urban area and the suburbs. Both graphs are obtained by actually driving a car in an urban area and a suburb and obtaining a short-term stoppage time rate RS and a long-term stoppage time rate RL.
  • the suburbs and the urban areas are mixed between 35 to 53%.
  • the suburbs and the urban areas are separated by about 42%.
  • the determination when the determination is made based on the short-term stoppage time rate RS, the determination can be made with good responsiveness because it is a short period of 10 minutes, but the accuracy is poor.
  • the determination when the determination is made based on the long-term stoppage time ratio RL, the response time is poor because it is a long period of 15 minutes, but the determination can be made with high accuracy.
  • the short-term stoppage time rate RS is 48%, and a relatively higher value in the mixed range (35 to 53%) is used as a threshold value in step S910. It is possible to judge the approach to the city area with good responsiveness. On the other hand, it is possible to determine the approach to the suburbs with high accuracy by using the value for the long-term stoppage time RL of 40%, which is slightly lower than 42% that clearly separates the urban area from the suburbs, as a threshold value in step S930. Yes. The determination on the long-term stoppage time rate RL in step S910 and the determination on the short-term stoppage time rate RS in step S930 are added to increase the determination accuracy.
  • R2 is not the same value but a value having a width between them. For this reason, the hunting of the determination result can be prevented.
  • Example effect According to the automobile 200 configured as described above, based on the short-term stoppage time rate RS calculated in a short period of 10 minutes and the long-term stoppage time rate RL calculated in a long period of 15 minutes, It is determined whether the current traveling environment corresponds to an urban area or a suburb, and the traveling environment is predicted assuming that the determination result is for a future traveling area. As described above, this prediction can achieve both responsiveness and accuracy. In addition, since a complicated configuration as in the car navigation system is not required, the device configuration can be simplified.
  • the stop time rate is not calculated during the period from when the key is started until the predetermined speed V0 is reached, the obtained stop time rate is effectively used for the idling stop control system. be able to.
  • appropriate control can be performed by excluding the stop time rate calculation target.
  • the SOC does not reach the lower limit value and the engine 10 is not restarted in the stop-and-start period t2-t3.
  • the amount of fuel is required to be three to five times greater than when the power is increased and the SOC is increased during engine operation. That is, the fuel consumption effect per unit SOC (for example, SOC 1%) during engine operation is three to five times better than when the engine is restarted due to insufficient SOC during the stop-and-start period. Therefore, the automobile 200 of the present embodiment also has an effect that the fuel efficiency can be improved as compared with the conventional example.
  • the SOC allocation request level P3 is obtained by the city / suburb determination routine based on the city / suburb segment P1 obtained by achieving both responsiveness and accuracy (see FIG. 4).
  • the idling stop capacity is obtained based on P3 (see FIG. 5). Therefore, it is possible to appropriately determine the idling stop capacity in the SOC range W in which the battery 40 can be used.
  • the SOC allocation request level P3 increases, and the idling stop capacity is set to a value larger than the capacity set when the condition 1 is not satisfied (in the suburbs).
  • the long-term stoppage time rate RL is equal to or greater than the second threshold value R2 (condition 2), it is determined as an urban area, and in the urban area, the SOC allocation request level P3 becomes large, and the idling stop capacity is It is set to a value larger than the capacity set when 2 is not satisfied (in the suburbs). As a result, the idling stop capacity can be determined more appropriately.
  • the short-term stoppage time rate RS is less than the third threshold value R3 and the long-term stoppage time rate RL is less than the fourth threshold value R4 (condition 3), it is determined as a suburb.
  • the SOC allocation request level P3 becomes small, and the idling stop capacity is set to a value smaller than the capacity set when the condition 3 is not satisfied (in the urban area).
  • the short-term stoppage time rate RS is less than the third threshold value R3 and the long-term stoppage time rate RL is less than the fourth threshold value R4
  • the capacity that is set when this condition is not satisfied The charging control capacity is set to a larger value.
  • the charge control capacity is appropriately determined, and accordingly, the idling stop capacity is also appropriate.
  • the idling stop capacity can be appropriately determined, so that it is ensured that the SOC reaches the lower limit value and the engine 10 is restarted in the stop-and-start period t2-t3. Can be prevented. Therefore, the automobile 200 of this embodiment can further improve fuel efficiency.
  • the SOC allocation request level P3 is obtained once based on the city / suburb segment P1 and the own vehicle state P2, and the target SOC is calculated based on the SOC distribution request level P3.
  • the target SOC may be directly calculated based on the city / suburb section P1 and the host vehicle state P2.
  • a configuration may be used in which the distribution rate for allocating the battery usable SOC range for charge control and idling stop is directly calculated based on the city / suburb section P1 and the own vehicle state P2.
  • the SOC allocation request level is calculated based on both the city / suburb segment P1 and the own vehicle state P. Instead, the SOC allocation request level is calculated based only on the city / suburb segment P1. Also good.
  • the vehicle driving environment is determined to be a city area or a suburb, but the present invention is not limited to this. Instead of being divided into two values, urban or suburban, an index that can take a value of 3 or more as the degree of urbanization may be obtained. In this case, it is possible to cope by setting two or more thresholds for comparing the short-term stoppage time rate RS and the long-term stoppage time rate RL.
  • the first to fourth threshold values R1 to R4 are 48%, 44%, 42%, and 40%, but this is only an example, and other values may be used in the present invention. Further, the threshold values R1 to R4 do not have to be positions, and can be changed based on the remaining fuel amount or the remaining battery amount.
  • Modification 5 In the above-described embodiments and modified examples 1 to 4, the driving environment is predicted by comparing the short-term stoppage time rate RS and the long-term stoppage time rate RL with threshold values.
  • the present invention is not limited to this.
  • the traveling environment may be predicted based on a change in the short-term stoppage time rate RS or a change in the long-term stoppage time rate RL.
  • any configuration can be used as long as the traveling environment is predicted based on the short-term stoppage time rate RS and the long-term stoppage time rate RL.
  • the vehicle running environment is determined to be a city area or a suburb or a degree of urbanization.
  • the present invention is not limited thereto.
  • the degree of traffic congestion may be used, and any parameter can be used as long as the driving environment includes a factor that causes the vehicle to stop (stop).
  • Modification 7 In the above-described embodiments and modifications 1 to 6, the configuration is such that the traveling environment of the vehicle is predicted. However, the vehicle control device of the present invention does not necessarily have a configuration that predicts the traveling environment. For example, the idling stop capacity can be directly set based on the short-term stoppage time rate RS and the long-term stoppage time rate RL.
  • the short-term stoppage time rate RS being R1 or more and the long-term stoppage time rate RL being R2 or more is satisfied by the urbanization / suburb determination routine (FIG. 14).
  • the urbanization / suburb determination routine (FIG. 14)
  • the long-term stoppage time rate RL may be used for determining whether or not the vehicle is in the suburbs. That is, for example, in FIG. 14, step S910 may be replaced with determination of RS ⁇ R1, and step S930 may be replaced with determination of RL ⁇ R4.
  • the driving environment is predicted based on the short-term stoppage time rate RS and the long-term stoppage time rate RL.
  • one stoppage time rate that is, a predetermined stoppage rate
  • the battery was a lead acid battery, in this invention, it is not restricted to this.
  • the battery can be replaced with another type of battery such as a lithium ion storage battery or a rocking chair type power storage unit.
  • the vehicle was a motor vehicle, it may replace with this and may be vehicles other than motor vehicles, such as a train.
  • a part of the function realized by software may be realized by hardware (for example, an integrated circuit), or a part of the function realized by hardware may be realized by software. .
  • SYMBOLS 10 Engine 15 ... Automatic transmission 20 ... Differential gear 25 ... Drive wheel 30 ... Starter 34 ... Drive mechanism 35 ... Alternator 40 ... Battery 50 ... ECU DESCRIPTION OF SYMBOLS 70 ... Auxiliary machines 72 ... Headlight 74 ... Air conditioner 82 ... Wheel speed sensor 84 ... Brake pedal sensor 86 ... Accelerator opening sensor 88 ... Battery current sensor 89 ... Alternator current sensor 90 ... Idling stop control part 100 ... SOC control part DESCRIPTION OF SYMBOLS 110 ... Target SOC estimation part 112 ... Running environment prediction part 114 ... Own vehicle state prediction part 116 ... SOC distribution request

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Atmospheric Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 走行環境の予測を、簡易な構成で、かつ応答性よく行う。停車を引き起こす車両の走行環境を予測する走行環境予測装置である。走行環境予測装置は、第1の期間における停車時間の比率を、第1停車時間率(短期間停車時間率RS)として算出する第1停車時間率算出部と、前記第1の期間よりも長い第2の期間における停車時間の比率を、第2停車時間率(長期間停車時間率RL)として算出する第2停車時間率算出部と、短期間停車時間率RSおよび長期間停車時間率RLに基づいて、前記走行環境を予測する走行環境予測部とを備える。

Description

走行環境予測装置および車両制御装置、並びにそれらの方法
 本発明は、停車を引き起こす車両の走行環境を予測する技術と、車両を制御する技術とに関する。
 近年、燃費向上の要請に伴い、アイドリングストップ(アイドル・リダクションともいう)制御を行う自動車が注目を集めている。アイドリングストップ制御を行う自動車において、カーナビゲーションシステムによる渋滞予測情報から渋滞が予測された場合に、バッテリの充電量を高く設定する技術が提案されている(特許文献1参照)。渋滞でアイドリングストップ制御によるエンジンの停止が多くなると、バッテリの充電量の消費が多くなるためで、渋滞が予測された場合にバッテリの充電量を予め高めておく。
 特許文献1は、アイドリングストップ制御によってエンジンを停止させる停車を引き起こす走行環境として渋滞を予測しているといえる。さらに、停車を引き起こす走行環境として市街地走行であることを予測する装置も提案されている(特許文献2)。この装置では、過去の一定時間の平均車速や停車回数から市街地であることを予測している。
特開2010-269712号公報 特開2002-356112号公報
 しかしながら、特許文献1に記載された装置では、カーナビゲーションシステムを用いる必要があり、構成が複雑であるという問題があった。特許文献2に記載された装置では、比較的長い時間の観測が必要であり。応答性が劣ると問題があった。
 本発明は、上記課題を解決するためになされたものであり、走行環境の予測を、簡易な構成で、かつ応答性よく行うことを目的とする。
 本発明は、上述の課題の少なくとも一部を解決するために以下の形態または適用例として実現することが可能である。
[適用例1]
 停車を引き起こす車両の走行環境を予測する走行環境予測装置であって、
 所定の期間における停車時間の比率を算出する停車時間率算出部と、
 前記停車時間の比率に基づいて前記走行環境を予測する走行環境予測部と
 を備える走行環境予測装置。
 この走行環境予測装置によれば、所定の期間における停車時間の比率に基づいて、走行環境が求められる。この構成によれば、走行環境の予測を、簡易な構成でありながら、応答性と精度を両立させて行うことができる。
[適用例2]
 適用例1に記載の走行環境予測装置であって、前記停車時間率算出部は、第1の期間における停車時間の比率を、第1停車時間率として算出する第1停車時間率算出部と、前記第1の期間よりも長い第2の期間における停車時間の比率を、第2停車時間率として算出する第2停車時間率算出部とを備え、前記走行環境予測部は、前記第1停車時間率および第2停車時間率に基づいて、前記走行環境を予測する、走行環境予測装置。
 この走行環境予測装置によれば、第1および第2の期間のうちの短い方である第1の期間において算出された第1停止時間率と、長い方である第2の期間において算出された第2停止時間率とに基づいて、走行環境が求められる。第1停止時間率は短い期間で求めることができることから、第1停止時間率に基づくことで応答性よく走行環境を判定することができる。第2停止時間率は長い期間で求めるものであることから、第2停止時間率に基づくことで精度良く走行環境を判定することができる。したがって、走行環境の予測を、簡易な構成でありながら、応答性と精度を両立させて行うことができる。
[適用例3]
 適用例2に記載の走行環境予測装置であって、前記走行環境は、車両の走行地域が市街地か郊外かの区別であり、前記走行環境予測部は、前記第1停車時間率が第1の閾値以上であるか否かを判定する第1判定部と、前記第1判定部によって第1の閾値以上であると判定されたときに、前記市街地であると決定する第1決定部とを備える、走行環境予測装置。
 この走行環境予測装置によれば、第1停車時間率が第1の閾値以上であるか否かを判定することで、市街地の判定を応答性よく行うことができる。
[適用例4]
 適用例3に記載の走行環境予測装置であって、前記走行環境判定部は、さらに、前記第2停車時間率が、前記第1の閾値よりも小さい第2の閾値以上であるか否かを判定する第2判定部と、前記第2判定部によって第2の閾値以上であると判定されたときに、前記市街地であると決定する第2決定部とを備える、走行環境予測装置。
 この走行環境予測装置によれば、市街地の判定を、第1停車時間率が第1の閾値以上であるとき、または第2停車時間率が第2の閾値以上であるときとすることで、より早い判定が可能となることから、応答性よく予測を行うことができる。
[適用例5]
 適用例3または4に記載の走行環境予測装置であって、前記走行環境判定部は、さらに、前記第1停車時間率が、前記第1の閾値よりも小さい第3の閾値未満であるか否かを判定する第3判定部と、前記第2停車時間率が、前記第2の閾値よりも小さい第4の閾値未満であるか否かを判定する第4判定部と、前記第3判定部によって第3の閾値未満であると判定され、且つ、前記第4判定部によって前記第4の閾値未満であると判定されたときに、前記郊外であると決定する第3決定部とを備える走行環境予測装置。
 この走行環境予測装置によれば、市街地と郊外との判定にヒステリシスを持たせることで、予測結果のハンチングを防止することができる。
[適用例6]
 エンジンと、前記エンジンの動力によって駆動される発電機の発電量によって充電可能なバッテリと、を有する車両に搭載される車両制御装置であって、
 アイドリングストップ制御を行うアイドリングストップ制御部と、
 前記バッテリの蓄電状態(SOC)を検出するSOC検出部と、
 前記車両の走行時に、前記バッテリの使用可能なSOC範囲に対して、前記アイドリングストップ制御によるエンジン停止から再始動までのストップアンドスタート期間において使用すると予想されるアイドリングストップ用容量を設定するアイドリングストップ用容量設定部と、
 前記車両の走行時に、前記SOC検出部によって検出されたSOCに対応する、前記使用可能なSOC範囲における残存容量が、前記アイドリングストップ用容量を下回ることを回避するように、前記発電機の発電量を制御する残存容量制御部と
 を備え、
 前記アイドリングストップ用容量設定部は、
 所定の期間における停車時間の比率を算出する停車時間率算出部と、
 前記停車時間の比率に基づいて前記アイドリングストップ用容量を設定する容量設定部と
 を備える車両制御装置。
 この車両制御装置によれば、停車を引き起こす車両の走行環境を考慮して、バッテリの使用可能なSOC範囲においてアイドリングストップ用容量を適切に定めることができる。
[適用例7]
 適用例6に記載の車両制御装置であって、前記停車時間率算出部は、第1の期間における停車時間の比率を、第1停車時間率として算出する第1停車時間率算出部と、前記第1の期間よりも長い第2の期間における停車時間の比率を、第2停車時間率として算出する第2停車時間率算出部とを備え、前記容量設定部は、前記第1停車時間率および第2停車時間率に基づいて、前記アイドリングストップ用容量を設定する、車両制御装置。
 この車両制御装置によれば、バッテリの使用可能なSOC範囲において、アイドリングストップ用容量をより適切に定めることができる。
[適用例8]
 適用例7に記載の車両制御装置であって、前記容量設定部は、前記第1停車時間率が第1の閾値以上であるか否かを判定する第1判定部と、前記第1判定部によって第1の閾値以上であると判定されたときに、第1の閾値以上でないと判定されたときに設定される容量よりも大きな値に、前記アイドリングストップ用容量を設定する第1決定部とを備える車両制御装置。
 この車両制御装置によれば、第1停車時間率が第1の閾値以上であると判定されたときに、アイドリングストップ用容量を増大することができ、この結果、アイドリングストップ用容量をより適切に定めることができる。
[適用例9]
 適用例8に記載の車両制御装置であって、前記容量設定部は、さらに、前記第2停車時間率が、前記第1の閾値よりも小さい第2の閾値以上であるか否かを判定する第2判定部と、前記第2判定部によって第2の閾値以上であると判定されたときに、第2の閾値以上でないと判定されたときに設定される容量よりも大きな値に、前記アイドリングストップ用容量を設定する第2決定部とを備える、車両制御装置。
 この車両制御装置によれば、第2停車時間率が第1の閾値よりも小さい第2の閾値以上であると判定されたときに、アイドリングストップ用容量を増大することができ、この結果、アイドリングストップ用容量をより適切に定めることができる。
[適用例10]
 適用例8または9に記載の車両制御装置であって、前記アイドリングストップ用容量設定部は、さらに、前記第1停車時間率が、前記第1の閾値よりも小さい第3の閾値未満であるか否かを判定する第3判定部と、前記第2停車時間率が、前記第2の閾値よりも小さい第4の閾値未満であるか否かを判定する第4判定部と、前記第3判定部によって第3の閾値未満であると判定され、且つ、前記第4判定部によって前記第4の閾値未満であると判定されたときに、前記アイドリングストップ用容量を減らす側の値に設定する第3決定部とを備える、車両制御装置。
 この車両制御装置によれば、第1停車時間率が第1の閾値よりも小さい第3の閾値未満であると判定され、且つ、第2停車時間率が第2の閾値よりも小さい第4の閾値未満であると判定されたときに、アイドリングストップ用容量を減少することができる。この結果、アイドリングストップ用容量をより適切に定めることができるとともに、アイドリングストップ用容量の制御がハンチングされることを防止することができる。
[適用例11]
 停車を引き起こす車両の走行環境を予測する走行環境予測方法であって、
 所定の期間における停車時間の比率を算出し、
 前記停車時間の比率に基づいて前記走行環境を予測する、走行環境予測方法。
 この走行環境予測方法によれば、適用例1の走行環境予測装置と同様に、走行環境の予測を、応答性と予測精度を両立させて行うことができる。
[適用例12]
 エンジンと、前記エンジンの動力によって駆動される発電機の発電量によって充電可能なバッテリと、を有する車両を制御する車両制御方法であって、
(a)アイドリングストップ制御を行う工程と、
(b)前記バッテリの蓄電状態(SOC)を検出する工程と、
(c)前記車両の走行時に、前記バッテリの使用可能なSOC範囲に対して、前記アイドリングストップ制御によるエンジン停止から再始動までのストップアンドスタート期間において使用すると予想されるアイドリングストップ用容量を設定する工程と、
(d)前記車両の走行時に、前記SOC検出部によって検出されたSOCに対応する、前記使用可能なSOC範囲における残存容量が、前記アイドリングストップ用容量を下回ることを回避するように、前記発電機の発電量を制御する工程と
 を備え、
 前記工程(c)は、
 所定の期間における停車時間の比率を算出し、
 前記停車時間の比率に基づいて前記アイドリングストップ用容量を設定する、車両制御方法。
 この車両制御方法によれば、適用例5の車両制御装置と同様にバッテリの使用可能なSOC範囲においてアイドリングストップ用容量を適切に定めることができる。
 なお、本発明は、上記適用例のほか、種々の形態で実現することが可能である。例えば、本発明は、適用例1ないし5のいずれかに記載の走行環境予測装置を搭載した車両、適用例6ないし10のいずれかに記載の車両制御装置を搭載した車両、適用例2ないし5のいずれかに記載の走行環境予測装置の備える各部に対応した工程を備える走行環境予測方法、適用例6ないし10のいずれかに記載の車両制御装置の備える各部に対応した工程を備える車両制御方法、適用例11に記載の走行環境予測方法の備える各工程をコンピューターに実行させるためのコンピュータプログラム、適用例12に記載の車両制御方法の備える各工程をコンピューターに実行させるためのコンピュータプログラムとして実現される。
本発明の一実施例としての自動車200の構成を示す説明図である。 ECU50の構成を機能的に示す説明図である。 目標SOC推定ルーチンを示すフローチャートである。 SOC配分要求レベル算出用マップMPを示す説明図である。 目標SOC算出用テーブルTBを示す説明図である。 自動車の運転中における車速とSOCについてのタイムチャートを示す説明図である。 走行環境予測ルーチンを示すフローチャートである。 停車時間取得ルーチンおよび停車時間率算出ルーチンの実行開始時と車速Vとの関係を示すタイムチャートの説明図である。 停車時間取得ルーチンを示すフローチャートである。 第1の記憶スタックST1の一例を示す説明図である。 第1の記憶スタックST1の記憶内容の変化を示す説明図である。 第2の記憶スタックST2の一例を示す説明図である。 停車時間率算出ルーチンを示すフローチャートである。 市街化/郊外判定ルーチンを示すフローチャートである。 市街地、郊外それぞれでの短期間停車時間率RSの度数分布を示すグラフである。 市街地、郊外それぞれでの長期間停車時間率RLの度数分布を示すグラフである。 郊外から市街地への切り換えを判定する閾値(R1,R2)と、市街地から郊外への切り換えを判定する閾値(R3,R2)との関係を示す説明図である。
 次に、本発明の実施の形態を実施例に基づいて以下の順序で説明する。
A.全体構成:
B.ECUの構成:
C.目標SOC推定部の構成:
D.走行環境の予測方法:
E.実施例効果:
F.変形例:
A.全体構成:
 図1は、本発明の一実施例としての自動車200の構成を示す説明図である。自動車200は、アイドリングストップ機能を搭載した車両である。自動車200は、エンジン10と、自動変速機15と、ディファレンシャルギア20と、駆動輪25と、スタータ30と、オルタネータ35と、バッテリ40と、電子制御ユニット(ECU:Electrical Control Unit)50とを備えている。
 エンジン10は、ガソリンや軽油などの燃料を燃焼させることによって動力を発生させる内燃機関である。エンジン10の動力は、自動変速機15に伝達されるとともに、駆動機構34を介してオルタネータ35に伝達される。エンジン10の出力は、運転者により操作されるアクセルペダル(図示せず)の踏み込み量に応じて、エンジンコントロールコンピュータ(図示せず)により変更される。
 自動変速機15は、変速比の変更(いわゆるシフトチェンジ)を自動的に実行する。エンジン10の動力(回転数・トルク)は、自動変速機15によって変速され、所望の回転数・トルクとして、ディファレンシャルギア20を介して、左右の駆動輪25に伝達される。こうして、エンジン10の動力は、アクセルペダルの踏み込み量に応じて変更されつつ、自動変速機15を介して駆動輪25に伝達されて、車両(自動車200)の加速・減速が行なわれることになる。
 オルタネータ35にエンジン10の動力を伝達する駆動機構34は、本実施例では、ベルトドライブの構成を採用している。オルタネータ35は、エンジン10の動力の一部を用いて発電を行なう。オルタネータ35は、発電機の一種である。発電された電力は、インバータ(図示せず)を介してバッテリ40の充電に用いられる。本明細書では、オルタネータ35を用いたエンジン10の動力による発電を「燃料発電」と呼ぶ。
 バッテリ40は、電圧14Vの直流電源としての鉛蓄電池であり、エンジン本体以外に設けられた周辺機器に電力を供給する。本明細書では、エンジン本体以外に設けられた周辺機器であって、バッテリ40の電力を用いて動作する機器を、「補機」と呼ぶ。また、補機の集まりを、「補機類」と呼ぶ。自動車200は、補機類70として、ヘッドライト72、空調装置(A/C)74等を備える。
 スタータ30は、バッテリ40から供給される電力によってエンジン10を始動させるセルモータである。通常は、停止している自動車の運転を開始する際に、運転者がイグニッションスイッチ(図示せず)を操作すると、スタータ30が起動し、エンジン10が始動する。このスタータ30は、以下で説明するように、アイドリングストップ状態からエンジン10を再始動させる場合にも利用される。本明細書では、「アイドリングストップ状態」とは、アイドリングストップ制御による停止状態をいう。
 ECU50は、コンピュータプログラムを実行するCPU、コンピュータプログラム等を記憶するROM、一時的にデータを記憶するRAM、各種センサやアクチュエータ等に接続される入出力ポート等を備える。ECU50に接続されるセンサとしては、駆動輪25の回転速度を検出する車輪速センサ82、ブレーキペダル(図示せず)の踏み込みの有無を検出するブレーキペダルセンサ84、アクセルペダル(図示せず)の踏み込み量をアクセル開度として検出するアクセル開度センサ86、バッテリ40の充放電電流を検出するバッテリ電流センサ88、およびオルタネータ35の出力電流を検出するオルタネータ電流センサ89等が設けられている。アクチュエータとしては、スタータ30やオルタネータ35等が該当する。ECU50は、バッテリ40から電力の供給を受けている。
 ECU50は、前記各種のセンサやエンジンコントロールコンピュータ(図示せず)からの信号をもとに、スタータ30やオルタネータ35を制御することによって、エンジン停止と再始動を制御(アイドリングストップ制御)するとともにバッテリ40のSOCを制御する。
B.ECUの構成:
 図2は、ECU50の構成を機能的に示す説明図である。図示するように、ECU50は、アイドリングストップ制御部90と、SOC制御部100とを備える。アイドリングストップ制御部90およびSOC制御部100は、実際は、ECU50に備えられたCPUが、ROMに記憶されたコンピュータプログラムを実行することで実現する機能を示す。
 アイドリングストップ制御部90は、車輪速センサ82で検出された車輪速Vhとアクセル開度センサ86で検出されたアクセル開度Tpとを取得し、エンジン10を停止/始動させる指示Ssをスタータ30に出力する。詳しくは、アイドリングストップ制御部90は、車輪速Vhが低下して所定速度(例えば10km/h)未満となったときに、エンジン停止条件が成立したとしてエンジン停止の指示Ssをスタータ30に出力し、その後、アクセル開度Tpからアクセルペダルが踏み込まれたことが検出されたときに、エンジン再始動条件が成立したとしてエンジン再始動の指示Ssをスタータ30に出力する。
 すなわち、アイドリングストップ制御部90は、エンジン停止条件が成立したときにエンジン10を停止させ、前記停止後においてエンジン再始動条件が成立したときにエンジン10を再始動させる。前記エンジン停止条件およびエンジン再始動条件は、前述したものに限らない。例えば、車輪速Vhが完全に0km/hとなることをエンジン停止条件とすることもできるし、ブレーキペダルから足が離れたことをエンジン再始動条件とすることもできる。
 SOC制御部100は、目標SOC推定部110と、バッテリSOC算出部120と、フィードバック制御部130とを備える。目標SOC推定部110は、車両の走行時(例えば、車輪速Vh>0km/hの時)に、アイドリングストップ制御によるエンジン停止から再始動までの期間(以下、「ストップアンドスタート期間」と呼ぶ)において使用すると予想されるSOCを、目標SOC(以下、「目標SOC値」とも呼ぶ)C1として推定するもので、詳しい構成についてはC節で説明する。なお、「SOC」は、バッテリに残存している電気量を、バッテリを満充電したときに蓄えられる電気量で除した値として定義される。
 バッテリSOC算出部120は、バッテリ電流センサ88によって検出されたバッテリ40の充放電電流(「バッテリ電流」と呼ぶ)Abに基づいて、バッテリ40の現在のSOC(以下、「現在SOC値」と呼ぶ)C2を算出する。詳しくは、バッテリ40の充電電流をプラス値とし、バッテリ40の放電電流をマイナス値として充放電電流Abを積算することで、現在SOC値C2を算出する。バッテリ電流センサ88およびバッテリSOC算出部120の構成が、[課題を解決するための手段]の欄に記載した「SOC検出部」に相当する。なお、SOC検出部は、バッテリ電流センサ88によって検出されたバッテリ電流に基づいて算出するものに限る必要はなく、バッテリ電解液比重センサ、セル電圧センサ、バッテリ端子電圧センサ等に基づいて求める構成としてもよい。さらに、SOC検出部は、バッテリに残存している電気量を検出する構成に限る必要もなく、例えば充電可能量等の他のパラメータで蓄電状態を検出するものとすることもできる。
 フィードバック制御部130は、車両の走行時に、目標SOC値C1から現在SOC値C2を差し引いた差分値を求め、その差分値を値0にフィードバック制御で一致させる電圧指示値Svを求める。その電圧指示値Svはオルタネータ35の発電量を指示するもので、オルタネータ35に送られる。この結果、燃料発電によって現在SOC値C2が目標SOC値C1に制御される。
 SOC制御部100には、図示はしないが、上記以外に、「バッテリ制御」と呼ばれる機能と、「充電制御」と呼ばれる機能が設けられている。バッテリ制御について説明する。バッテリ、特に本実施例の鉛バッテリは、長寿命化の要請から、使用可能なSOC範囲(運用するSOC範囲)が予め定められている。このため、このSOC範囲の下限値(例えば60%)をバッテリ40のSOCが下回るときにエンジン10の動力を増大してSOCを前記SOC範囲内とし、SOC範囲の上限値(例えば90%)をSOCが上回るときにSOCを消費して前記SOC範囲内とする「バッテリ制御」が行われる。アイドリングストップ制御によるエンジンの停止時においてもSOCが下限値を下回ると、エンジンが始動して燃料発電によってSOCを前記SOC範囲内とする。
 「充電制御」は、通常走行中に燃料発電によるバッテリへの充電を抑えることで燃料消費量を節約し、減速走行中に回生発電によりバッテリへの充電を行なう制御処理である。充電制御については周知の構成であることから、詳しく説明しないが、概ね次の処理を行う。充電制御においては、通常走行時におけるフィードバック制御部130によるフィードバック制御を、目標SOC値C1が現在SOC値C2を上回るときに実行し、通常走行時に目標SOC値C1が現在SOC値C2以下であるときには、所定の発電カット電圧をオルタネータ35への電圧指示値Svとする。この構成により、通常走行時における充電を抑制し燃料消費量を節約することができる。なお、「通常走行」とは、車速が0km/hである「停車」、および前記回生発電が行われる「減速走行」のいずれにも該当しない自動車200の状態である。
C.目標SOC推定部の構成:
 目標SOC推定部110は、走行環境予測部112と、自車両状態予測部114と、SOC配分要求レベル算出部116と、目標SOC算出部118とを備える。
 走行環境予測部112は車両の走行環境を予測する。本実施例では、「走行環境」は、今後(現在以後)の車両の走行地域が市街地に該当するか郊外に該当するかの区別を示す。走行環境予測部112は、車輪速センサ82によって検出された車輪速Vhに基づいて、現在までの走行環境が市街地と郊外のいずれであるかを判定し、その判定結果を今後(現在以後)の走行地域の市街地/郊外区分P1として出力する。市街地/郊外区分P1は、市街地の場合に値1を、郊外の場合に値0を取り得る。市街地であるか郊外であるかの判定の詳しい方法については、D節で説明する。
 自車両状態予測部114は、自動車200の状態(自車両状態)を予測する。ここでいう「自車両状態」とは、自動車200が今後どの程度SOCを消費するかを表すパラメータである。詳しくは、自車両状態予測部114は、バッテリ電流センサ88によって検出されたバッテリ電流Abと、オルタネータ電流センサ89によって検出されたオルタネータ電流Aaとに基づいて、補機類70で費やす電力量を算出し、その電力量を自車両状態P2として出力する。補機類70で費やす電力量が大きいときにはSOCを消費する速度は早いことから、本実施例では、自車両状態予測部114は、補機類70で費やす電力量を自車両状態P2として求める。
 なお、自車両状態P2を、補機類70で費やす電力量に基づいて求めていたが、本発明ではこれに限られない。例えば、空調装置(A/C)の消費電力と対応関係がある空調情報(例えば、目標温度と車内温度との差)や、エンジン水温と周囲温度との差などのエンジンの暖機状況を示す情報等に基づいて求める構成とすることができる。なお、補機類70で費やす電力量や空調情報や暖機状況情報等の中から選択した1つのパラメータに基づいて自車両状態P2を求める構成に限る必要もなく、2つ以上のパラメータに基づいて自車両状態P2を求める構成としてもよい。2つ以上のパラメータを採用する場合、各パラメータに個別の重み付け指数を掛けて自車両状態P2を求める構成とすることが好ましい。
 さらに、前述した各例は、現在検出されるセンサ信号によって補機類の現在の動作状況を求め、その現在の動作状況を今後の自車両状態と見なすものであったが、これに替えて、上記のように求めた現在の動作状況から動作状況が変化する兆候を捕らえることで、今後の自車両状態を予測する構成としてもよい。
 前記構成の走行環境予測部112および自車両状態予測部114は、自動車200の運転が開始された以後、常にその予測を行っている。各部122~124は、実際は、ECU50に備えられたCPUが、ROMに記憶されたコンピュータプログラムを実行することで実現する。走行環境予測部112によって算出した市街地/郊外区分P1と、自車両状態予測部114によって算出した自車両状態P2とは、SOC配分要求レベル算出部116に送られる。
 SOC配分要求レベル算出部116は市街地/郊外区分P1および自車両状態P2に基づいてSOC配分要求レベルP3を算出し、目標SOC算出部118はSOC配分要求レベルP3に基づいて目標SOC値C1を算出する。以下、SOC配分要求レベル算出部116および目標SOC算出部118の内容を、以下に詳述する。
 図3は、目標SOC推定ルーチンを示すフローチャートである。この目標SOC推定ルーチンは、車両の走行時に所定時間(例えば、60sec)毎に繰り返し実行される。すなわち、目標SOC推定ルーチンは、アイドリングストップ制御によるエンジン10の停止時には実行されない。図示するように、処理が開始されると、ECU50のCPUは、走行環境予測部112(図2)によって求められた市街地/郊外区分P1を取得する(ステップS100)とともに、自車両状態予測部114(図2)によって求められた自車両状態P2を取得する(ステップS200)。
 ステップS200の実行後、CPUは、SOC配分要求レベル算出用マップMPを用いて、市街地/郊外区分P1と自車両状態P2に基づいてSOC配分要求レベルを算出する処理を行う(ステップS300)。バッテリには、先に説明したように、使用可能なSOC範囲がバッテリの種類毎に定められている。本実施例では、使用可能SOC範囲をアイドリングストップ用と充電制御用とに配分することを図っており、「SOC配分要求レベル」は前記配分のレベルを指定するパラメータである。
 図4は、SOC配分要求レベル算出用マップMPを示す説明図である。図示するように、SOC配分要求レベル算出用マップMPは、横軸に市街地/郊外区分P1をとり、縦軸に自車両状態P2をとり、横軸の値と縦軸の値とに対応するSOC配分要求レベルP3をマッピングしたマップデータである。市街地/郊外区分P1と、自車両状態P2と、SOC配分要求レベルP3との関係を、予め実験的にあるいはシミュレーションにより求めることで、SOC配分要求レベル算出用マップMPは作成されており、ROMに記憶している。ステップS300では、ROMからSOC配分要求レベル算出用マップMPを呼び出し、そのマップMPを参照して、ステップS100で求めた市街地/郊外区分P1とステップS200で求めた自車両状態P2とに対応するSOC配分要求レベルP3を取得する。図示の例では、SOC配分要求レベルP3としてA、B、C、Dの4つの値が用意されている。A、B、C、Dはこの順で高い値となっている。市街地/郊外区分P1が市街地を示す値1である方が、郊外を示す値0である場合に比べて、SOC配分要求レベルP3は高い値となる。また、自車両状態P2が高いほど、SOC配分要求レベルP3は高い値となる。
 図3に戻って、ステップS300の実行後、CPUは、目標SOC算出用テーブルTBを用いて、SOC配分要求レベルP3に基づいて目標SOC値C1を算出する処理を行う(ステップS400)。
 図5は、目標SOC算出用テーブルTBを示す説明図である。図示するように、目標SOC算出用テーブルTBは、横軸にSOC配分要求レベルP3をとり、縦軸に目標SOC値C1をとり、直線LでSOC配分要求レベルP3と目標SOC値C1の関係を示している。このSOC配分要求レベルP3と目標SOC値C1の関係を、予め実験的にあるいはシミュレーションにより求めることで、目標SOC算出用テーブルTBは作成されており、ROMに記憶している。ステップS400は、ROMから目標SOC算出用テーブルTBを呼び出し、そのテーブルTBを参照して、ステップS300で算出したSOC配分要求レベルP3に対応する目標SOC値C1を取得する。
 図示するように、直線Lで示される目標SOC値C1は、バッテリ40の使用可能SOC範囲W内に設定される値であり、その使用可能SOC範囲Wを充電制御用容量とアイドリングストップ用容量とに配分したときの配分率を示す。換言すれば、バッテリ40の使用可能SOC範囲Wに対して、アイドリングストップ用容量の領域が下側に、充電制御用容量の領域が上側にそれぞれ設定されており、両領域の境が目標SOC値C1となっている。また、使用可能SOC範囲Wの下限値にアイドリングストップ用容量を加えた水準が目標SOC値C1として設定されているとも言える。
 充電制御用容量は、前述した充電制御による燃料発電の抑制によって必要となる電池容量である。アイドリングストップ用容量は、今後のストップアンドスタート期間において使用されると予想される容量である。本実施例では、アイドリングストップ用容量は、予想される最大の大きさに定められている。SOC配分要求レベルP3が高い値になるほど、アイドリングストップ用容量は大きくなっている。直線Lよりも上側にSOCを制御したとき、そのSOCに対応する使用可能SOC範囲内の残存容量がアイドリングストップ用容量を上回ることからアイドリングストップ制御を完全に実施できるといえるが、その上回る分だけ余剰である。このため、直線Lで示される目標SOC値C1は、今後アイドリングストップ制御を完全に実施でき、かつSOC貯蔵のための発電量を最小にできるSOCを示しているといえる。
 目標SOC値C1は、直線Lに示すように、SOC配分要求レベルP3の上昇に従ってリニアに増大するものであったが、本発明ではこれに限られない。例えば、SOC配分要求レベルP3が所定値以下のときにはSOC配分要求レベルP3の上昇に従ってリニアに増大し、SOC配分要求レベルP3が所定値を上回るときには一定値を維持するように、目標SOC値C1を定めた構成としてもよい。この構成は、使用可能SOC範囲が比較的小さいバッテリの場合に有効である。さらに、目標SOC値C1の変化を直線で示す構成に換えて、曲線で示す構成とすることもできる。
 図3に戻って、ステップS400の実行後、CPUは、ステップS400で算出した目標SOC値C1をフィードバック制御部130に出力し(ステップS500)、その後、目標SOC推定ルーチンを一旦終了する。フィードバック制御部130(図2)では、現在SOC値C2が前記算出された目標SOC値C1に制御される。現在SOC値C2は、バッテリ40の使用可能SOC範囲における残存容量を指し示すが、上記制御の結果、車両走行中に、残存容量はアイドリングストップ用容量を下回ることを回避することができる。すなわち、図5において、現在SOC値が充電制御用容量の領域に位置するとき、すなわち、前記残存容量がアイドリングストップ用容量を上回るときに、充電制御がなされて燃料発電によるバッテリ40への充電が抑えられている。そして、SOCが低下してアイドリングストップ用容量を下回ろうとするとき、燃料発電によって、直線Lで示される目標SOC値C1にSOCは制御されることで、前記アイドリングストップ用容量を下回ろうとすることが回避される。
 図6は、自動車200の運転中における車速とバッテリ40のSOC(現在SOC値C2)についてのタイムチャートを示す説明図である。タイムチャートは、縦軸に車速とSOCをとり、横軸に時間をとったものである。自動車200の運転が開始され、時刻t0において自動車200が発進すると、車速は次第に増し、通常走行に至る。その後、時刻t1において、車両が減速状態に移行する。この時刻t0から時刻t1までのt0-t1期間においては、実線に示すように、SOCは徐々に低下する。この実線は従来例についてのもので、本実施例では2点鎖線のように変化する。これについては後述する。
 時刻t1の後、時刻t2において車両は停止する。t1-t2の期間では、減速による回生発電がなされ、実線に示すようにSOCは徐々に上昇する。時刻t2(厳密に言えばエンジン停止条件が成立したとき)から車速が立ち上がる時刻t3までの期間がストップアンドスタート期間SSTであり、エンジン10は停止されている。ストップアンドスタート期間SSTでは、補機類による電力消費によってSOCは徐々に下降する。従来例では、実線に示すように、この停止の最中にSOCが下限値SLに達すると(時刻tb)、バッテリ制御によってエンジン10は再始動することになる。再始動後、実線に示すように、エンジン10の動力により発電されSOCは増大する。
 本実施例では、通常走行時にSOCが低下して、バッテリ40の使用可能SOC範囲における残存容量がアイドリングストップ用容量を下回ったときに(時刻ta)、燃料発電によってSOCが増大される。図中2点鎖線に示すようにta-t2期間においてSOCは増大する。この増大は、今後のストップアンドスタート期間に使用すると予想される最大の電池容量を考慮したものであることから、ストップアンドスタート期間t2-t3においてSOCが低下しても、SOCは下限値SLに至ることがない。なお、「今後のストップアンドスタート期間」とは、図示の一つのストップアンドスタート期間SSTに限るものではなく、所定の期間において複数のストップアンドスタート期間があれば、それらストップアンドスタート期間の全部である。したがって、本実施例では、従来例のように、ストップアンドスタート期間t2-t3において、SOCが下限値に達してエンジン10が再始動されることがない。
D.走行環境の予測方法:
 図7は、走行環境予測ルーチンを示すフローチャートである。ECU50のCPUにより走行環境予測ルーチンを実行することで、走行環境予測部112(図2)が実現される。図示するように、処理が開始されると、ECU50のCPUは、まず、キー始動がなされたか否かの判定を行う(ステップS610)。「キー始動」とは、運転者によるイグニッションキー(図示せず)の操作を受けてエンジンを始動することである。ステップS610でキー始動がなされていないと判定されると、ステップS610の処理を繰り返し、キー始動がなされるのを待つ。キー始動がなされると、CPUは、後述する記憶スタックや変数をクリアする初期化処理を実行する(ステップS620)。
 その後、CPUは、車輪速センサ82によって検出された車輪速Vhを車速Vとし、その車速Vが所定速度V0(例えば、15km/h)を上回るか否かを判定する(ステップS630)。ここで、車速VがV0以下である場合に、CPUは、車速VがV0を上回るのを待って、ステップS640に処理を進める。なお、車速Vは、車輪速センサ82の検出値を用いる構成に換えて、車速センサ(図示せず)の検出値を用いる構成等とすることもできる。ステップS640では、CPUは、後述する停車時間取得ルーチンおよび停車時間率算出ルーチンの実行を開始する。
 図8は、停車時間取得ルーチンおよび停車時間率算出ルーチンの実行開始時と車速Vとの関係を示すタイムチャートの説明図である。タイムチャートの横軸は時間tを示し、縦軸は速度Vを示す。図示するように、時刻t1でキー始動があると、キー始動から所定の期間、触媒暖機等を理由に車速は0km/hである。その後、車速Vは立ち上がり、所定速度V0に達すると、その達した時刻t2に、停車時間取得ルーチンおよび停車時間率算出ルーチンの実行を開始する。このように構成したのは、キー始動時から所定速度V0に達するまでの期間(t1-t2)を、停車時間取得ルーチンによって取得する停止時間としてカウントしないためである。
 図7に戻って、ステップS640の実行後、CPUは、車速VがV0を上回ってから開始制限時間(後述するTL)を経過したか否かを判定し(ステップS650)、開始制限時間TLを経過するのを待って、CPUは、後述する市街化/郊外判定ルーチンを実行する(ステップS660)。ステップS660の実行後、運転者によってイグニッションキーをオフに切り換える操作がなされた否かを判定し(ステップS670)、そのオフ操作がなされるまで、ステップS660の処理を繰り返し実行する。オフ操作がなされると、CPUは、この走行環境予測ルーチンを終了する。
 図9は、ステップS640で実行が開始された停車時間取得ルーチンを示すフローチャートである。処理が開始されると、CPUは、第1の周期G1で、次の停車時間取得処理を繰り返し実行する(ステップS710)。この停車時間取得処理は、第1の周期G1の期間における停車時間を算出し、その算出した停車時間を第1の記憶スタックST1に格納するものである。第1の周期G1は60[sec]である。
 図10は、第1の記憶スタックST1の一例を示す説明図である。図示するように、第1の記憶スタックST1は、10個のスタック要素M(1)、M(2)、~、M(10)により構成される。ステップS710では、CPUは、60秒ごとに、その60秒間における停車時間を求め、その求めた結果を第1の記憶スタックST1に備えられたスタック要素M(n)に順次格納する。nは1~10までの変数で、格納されるスタック要素M(n)はM(1)からM(10)に向かって順次移動する。停車時間の算出は、車輪速センサ82によって検出された車輪速Vhに基づいて車両が停止(Vh=0km/h)しているかを判定し、その停止している時間を、前記第1の周期G1の期間にわたって計測することによって求める。なお、車両が停止しているかの判定は、車輪速センサ82の検出値を用いる構成に換えて、車速センサ(図示せず)の検出値を用いる構成等とすることもできる。
 すなわち、ステップS710では、CPUは、60秒の期間における停車時間を、60秒の周期で順次求め、その求めた停車時間をスタック要素M(1)からM(10)に向かって1つずつ格納する。図示の例で言えば、60秒経過時に20秒という停車時間がスタック要素M(1)に格納され、120秒経過時に0秒という停車時間がスタック要素M(2)に格納され、180秒経過時に60秒という停車時間がスタック要素M(3)に格納される。このように、60秒周期で、停車時間が順次格納される。なお、図11に示すように、最後のスタック要素M(10)まで停車時間が埋まった場合、すなわち合計で10分(600秒)間を経過した場合には、次の周期で求められた停車時間ptは、最初のスタック要素M(1)に格納される。この時、スタック要素M(2)~M(10)はそれまでに格納された値が保持される。次の周期で求められた停車時間(図示せず)は、2番目のスタック要素M(2)に格納される。このように、全てのスタック要素M(10)が詰まった場合には、先頭に戻って、先頭から一つずつ順に更新されていく。
 図9に戻って、CPUは、第2の周期G2で、次の停車時間取得処理を繰り返し実行する(ステップS720)。この停車時間取得処理は、第2の周期G2の期間における停車時間を算出し、その算出した停車時間を第2の記憶スタックST2に格納するものである。第2の周期G2は90[sec]である。なお、このステップS720の処理は、図示ではステップS710に続く処理として示したが、これは図示の都合に基づくもので実際は、前述したステップS710の処理と同様に、この停車時間取得ルーチンの処理開始後、ただちに実行される。すなわち、ステップS710の処理とステップS720の処理は、タイムシェアリングにより並列に実行される。
 図12は、第2の記憶スタックST2の一例を示す説明図である。図示するように、第2の記憶スタックST2は、10個のスタック要素N(1)、N(2)、~、N(10)により構成される。ステップS720では、CPUは、90秒ごとに、その90秒間における停車時間を求め、その求めた結果を第2の記憶スタックST2に備えられたスタック要素N(n)に順次格納される。nは1~10までの変数で、格納されるスタック要素N(n)はN(1)からN(10)に向かって順次移動する。停車時間の算出は、前述したように、車輪速センサ82によって検出された車輪速Vhに基づいて車両の停止を検知して、その停止している時間を、前記第2の周期G2の期間にわたって計測することによって求める。
 すなわち、ステップS720では、CPUは、90秒の期間における停車時間を、90秒の周期で順次求め、その求めた停車時間をスタック要素N(1)からN(10)に向かって1つずつ格納する。図示の例で言えば、90秒経過時に20秒という停車時間がスタック要素N(1)に格納され、180秒経過時に0秒という停車時間がスタック要素N(2)に格納され、270秒経過時に0秒という停車時間がスタック要素N(3)に格納される。このように、90秒周期で、停車時間が順次格納される。なお、最後のスタック要素N(10)まで停車時間が埋まった場合、すなわち合計時間である15分(900秒)間を経過した場合には、先頭に戻って先頭から一つずつ順に更新されていくことは、第1の記憶スタックST1と同様である。
 図13は、ステップS640(図7)で実行が開始された停車時間率算出ルーチンを示すフローチャートである。処理が開始されると、CPUは、処理開始時から10分間経過した以降に、短期間停車時間率RSを第1の周期G1で繰り返し算出する(ステップS810)。詳しくは、第1の記憶スタックST1のスタック要素M(1)~M(10)に格納されている各値の合計値を求め、第1の記憶スタックST1を埋めるに要する時間である600秒で前記合計値を割って、その商を短期間停車時間率RSとする。第1の記憶スタックST1は、第1の周期G1である60秒ごとにスタック要素M(n)が1つずつ更新されることから、この更新がなされる毎に短期間停車時間率RSを求める。すなわち、ステップS810の処理によれば、第1の記憶スタックST1の記憶内容を用いることで、直近の過去600秒における停車時間の比率を、短期間停車時間率RSとして求めることができる。停車時間の比率とは、全体の時間(ここでは600秒)に対する停車時間の比率である。
 また、CPUは、処理開始時から15分間経過した以降に、長期間停車時間率RLを第2の周期G2で繰り返し算出する(ステップS820)。このステップS820の処理は、図示ではステップS810に続く処理として示したが、これは図示の都合に基づくもので実際は、前述したステップS810の処理と同様に、この停車時間率算出ルーチンの処理開始後、ただちに実行される。すなわち、ステップS810の処理とステップS820の処理は、タイムシェアリングにより並列に実行される。
 ステップS820では、詳しくは、第2の記憶スタックST2のスタック要素N(n)~N(10)に格納されている各値の合計値を求め、第2の記憶スタックST2を埋めるに要する時間である900秒で前記合計値を割って、その商を長期間停車時間率RLとする。第2の記憶スタックST2は、第2の周期G2である90秒ごとにスタック要素N(n)が1つずつ更新されることから、この更新がなされる毎に長期間停車時間率RLを求める。すなわち、ステップS820の処理によれば、第2の記憶スタックST2の記憶内容を用いることで、直近の過去900秒における停車時間の比率を長期間停車時間率RLとして求めることができる。停車時間の比率とは、全体の時間(ここでは900秒)に対する停車時間の比率である。前記第2の記憶スタックST2を埋めるに要する時間である900秒が、前述したステップS650における開始制限期間TLに相当する。
 なお、短期間停車時間率RSが[発明が解決しようとする課題]の欄に記載の「第1停車時間率」に相当し、長期間停車時間率RLが[発明が解決しようとする課題]の欄に記載の「第2停車時間率」に相当する。ECU50と、このECU50のCPUで実行される停車時間取得ルーチンおよび停車時間率算出ルーチンの構成とが、[発明が解決しようとする課題]の欄に記載の「第1停車時間率算出部」および「第2停車時間率算出部」に相当する。
 前述したように、短期間停車時間率RSは処理開始時から10分間経過した以降に、長期間停車時間率RLは処理開始時から15分間経過した以降にそれぞれ求める構成としているが、これは第1および第2の記憶スタックST1、ST2を用いて最初の値が確定するまでの時間を猶予するためである。この猶予の期間は、システムから要求される予め定められた初期値を設定する構成とすればよい。
 図14は、ステップS660(図7)で実行される市街化/郊外判定ルーチンを示すフローチャートである。この市街化/郊外判定ルーチンは、停車時間率算出ルーチンで求められた最新の短期間停車時間率RSと長期間停車時間率RLに基づいて、市街地か郊外かを判定するものである。すなわち、ECU50と、このECU50のCPUで実行される市街化/郊外判定ルーチンの構成とが、[発明が解決しようとする課題]の欄に記載の「走行環境予測部」に相当する。
 図示するように、処理が開始されると、CPUは、短期間停車時間率RSが第1の閾値R1以上であることと、長期間停車時間率RLが第2の閾値R2以上であることの少なくとも一方が満たされたか否かを判定する(ステップS910)。第1の閾値R1と第2の閾値R2との間には、R1>R2との関係がある。例えば、R1は48%であり、R2は44%である。ステップS910で、少なくとも一方が満たされたと判定された場合に、市街地と決定する(ステップS920)。すなわち、市街地/郊外区分P1に値1をセットする。ステップS920の実行後、「リターン」に抜けて、このルーチンを一旦終了する。
 一方、ステップS910で、上記2つの条件のいずれも満たさないと判定された場合には、CPUは、短期間停車時間率RSが第3の閾値R3未満であることと、長期間停車時間率RLが第4の閾値R4未満であることの両方が満たされたか否かを判定する(ステップS930)。第3の閾値R3と前述した第1の閾値R1との間には、R1>R3との関係がある。第4の閾値R4と前述した第2の閾値R2との間には、R2>R4との関係がある。例えば、R3は42%であり、R4は40%である。なお、第3の閾値R3と第4の閾値R4との間にも、R3>R4との関係がある。すなわち、本実施例では、R1>R2>R3>R4の関係がある。
 ステップS930で、両方が満たされたと判定された場合に、郊外と決定する(ステップS940)。すなわち、市街地/郊外区分P1に値0をセットする。ステップS940の実行後、「リターン」に抜けて、このルーチンを一旦終了する。一方、ステップS930で、否定判定、すなわち条件の少なくとも一方が満たされないと判定されたときには、ただちに「リターン」に抜けて、このルーチンを一旦終了する。すなわち、ステップS930で否定判定されたときには、市街地/郊外区分P1の前回処理時の値をそのまま維持して、このルーチンを終える。
 以上のように構成された市街地/郊外判定ルーチンに従うアルゴリズムによって、短期間停車時間率RSと長期間停車時間率RLに基づいて市街地か郊外かの判定がなされることになるが、このアルゴリズムがどのような理由によって構築されているかを次に説明する。
 図15は、市街地、郊外それぞれでの短期間停車時間率RSの度数分布を示すグラフである。図16は、市街地、郊外それぞれでの長期間停車時間率RLの度数分布を示すグラフである。両グラフは、市街地、郊外において、実際に自動車を走らせてそのときの短期間停車時間率RSと長期間停車時間率RLを求めたものである。図15に示すように、短期間停車時間率RSの分布は、35~53%の間で郊外と市街地が混在している。これに対して、長期間停車時間率RLの分布は、ほぼ42%を境に郊外と市街地が分かれる。このことから、短期間停車時間率RSに基づいて判定を行なった場合、10分間という短期であるから応答性よく判定が可能であるが、精度の点で劣る。一方、長期間停車時間率RLに基づいて判定を行なった場合、15分間という長期であるから応答性は悪いが、精度よく判定が可能となる。
 前述した市街地/郊外判定ルーチンによれば、短期間停車時間率RSを、48%という、前記混在する範囲(35~53%)の中でも比較的高い側の値をステップS910で閾値として用いることで、応答性よく、市街地への進入を判断可能としている。一方、長期間停車時間率RLを、40%という、市街地と郊外をはっきりわける42%よりも少し低い側の値をステップS930で閾値として用いることで、精度良く、郊外への進入を判断可能としている。ステップS910での長期間停車時間率RLについての判断、ステップS930での短期間停車時間率RSについての判断については、判定精度を高めるために付加したものである。
 さらに、前述した市街地/郊外判定ルーチンによれば、図17に示すように、郊外から市街地への切り換えを判定する閾値(R1,R2)と、市街地から郊外への切り換えを判定する閾値(R3,R2)とは、同じ値でなく、両者の間に幅を持った値となっている。このため、判定結果のハンチングを防止することができる。
E.実施例効果:
 以上のように構成された自動車200によれば、10分間という短期間において算出された短期間停車時間率RSと、15分間という長期間において算出された長期間停車時間率RLとに基づいて、現在の走行環境が市街地と郊外のいずれに該当するかが判定され、その判定結果が今後の走行地域のものであるとみなして、走行環境が予測される。この予測は、前述したように、応答性と精度を両立させることができる。しかも、カーナビゲーションシステムのような複雑な構成を必要としないことから、装置構成が簡易で済む。
 また、本実施例では、キー始動時から所定速度V0に達するまでの期間は停車時間率を算出しない構成としていることから、求められた停車時間率は、アイドリングストップ制御のシステムに有効に利用することができる。アイドリングストップ制御では、始動開始当初は触媒暖機等を理由にアイドリングストップ状態とすることは不許可であることから、停車時間率の算出対象外にすることで適切な制御が可能となる。
 また、本実施例では、図6で説明したように、ストップアンドスタート期間t2-t3において、SOCが下限値に達してエンジン10が再始動されることがない。ストップアンドスタート期間の途中でSOC不足からエンジンを再始動する場合は、エンジンの運転時に動力増大してSOCを増加する場合に比べて、3倍から5倍近くの燃料量が必要である。すなわち、エンジンの運転時における単位SOC(例えばSOC1%)当たりの燃費効果は、ストップアンドスタート期間の途中でSOC不足からエンジンを再始動する場合に比べて、3倍から5倍優れている。したがって、本実施例の自動車200は、従来例に比べて燃費を向上させることができるという効果も奏する。
 さらに、本実施例では、市街地/郊外判定ルーチンによって、応答性と精度を両立させて求めた市街地/郊外区分P1に基づいてSOC配分要求レベルP3が求められ(図4参照)、SOC配分要求レベルP3に基づいてアイドリングストップ用容量が求められる(図5参照)。このために、バッテリ40の使用可能なSOC範囲Wにおいて、アイドリングストップ用容量を適切に定めることが可能となる。
 特に本実施例では、短期間停車時間率RSが第1の閾値R1以上であるとき(条件1)には、市街地と判定され、市街地のとき(すなわち、市街地/郊外区分P1=“1”のとき)にはSOC配分要求レベルP3は大きくなって、アイドリングストップ用容量は、条件1が満たされないとき(郊外のとき)に設定される容量よりも大きな値に設定される。また、長期間停車時間率RLが第2の閾値R2以上であるとき(条件2)にも、市街地と判定され、市街地のときにはSOC配分要求レベルP3は大きくなって、アイドリングストップ用容量は、条件2が満たされないとき(郊外のとき)に設定される容量よりも大きな値に設定される。これらの結果、アイドリングストップ用容量をより適切に定めることができる。
 さらに、短期間停車時間率RSが第3の閾値R3未満であり、且つ、長期間停車時間率RLが第4の閾値R4未満であるとき(条件3)には、郊外と判定され、郊外のときにはSOC配分要求レベルP3は小さくなって、アイドリングストップ用容量は、条件3が満たされないとき(市街地のとき)に設定される容量よりも小さな値に設定される。換言すれば、短期間停車時間率RSが第3の閾値R3未満であり、且つ、長期間停車時間率RLが第4の閾値R4未満であるときには、この条件が満たされないときに設定される容量よりも大きな値に充電制御用容量が設定される。この結果、充電制御用容量を適切に定め、これによりアイドリングストップ用容量も適切なものとなる。
 これらのことから、本実施例では、アイドリングストップ用容量を適切に定めることができることから、ストップアンドスタート期間t2-t3において、SOCが下限値に達してエンジン10が再始動されることを確実に防ぐことができる。したがって、本実施例の自動車200は、燃費をより向上させることができる。
F.変形例:
 なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
・変形例1:
 上記実施例では、市街地/郊外区分P1と自車両状態P2に基づいてSOC配分要求レベルP3を一旦求め、SOC配分要求レベルP3に基づいて目標SOCを算出する構成であったが、これに換えて、市街地/郊外区分P1と自車両状態P2に基づいて、目標SOCを直接、算出する構成としてもよい。すなわち、市街地/郊外区分P1と自車両状態P2に基づいて、バッテリの使用可能SOC範囲を充電制御用とアイドリングストップ用とを配分する配分率を直接算出する構成としてもよい。
・変形例2:
 上記実施例では、SOC配分要求レベルは、市街地/郊外区分P1と自車両状態Pの両方に基づいて算出していたが、これに換えて、市街地/郊外区分P1だけに基づいて算出する構成としてもよい。
・変形例3:
 上記実施例や変形例1~2では、車両の走行環境として市街地か郊外かの区分を求めていたが、本発明はこれに限られない。市街地か郊外かの2値に分けるのではなく、市街化度として3以上の値を取り得る指数を求める構成としてもよい。この場合には、短期間停車時間率RSや長期間停車時間率RLの比較する閾値を2つ以上とすることで対応が可能である。
・変形例4:
 前記実施例では、第1ないし第4の閾値R1~R4は48%、44%、42%、40%としたが、これはあくまでも一例であり、本発明では他の値に替えることもできる。さらに、各閾値R1~R4は言って位置である必要はなく、燃料残量や、バッテリ残量に基づいて変更する構成とすることもできる。
・変形例5:
 上記実施例や変形例1~4では、短期間停車時間率RSや長期間停車時間率RLを閾値と比較することで走行環境の予測を行っていたが、本発明では、これに限られない。例えば、短期間停車時間率RSの変化や、長期間停車時間率RLの変化に基づいて、走行環境の予測を行う構成としてもよい。要は、短期間停車時間率RSおよび長期間停車時間率RLに基づいて走行環境を予測する構成であれば、いずれの構成とすることもできる。
・変形例6:
 上記実施例や変形例1~5では、車両の走行環境として、市街地か郊外かの区分もしくは市街化度を求める構成としたが、本発明ではこれらに限られない。例えば渋滞度としてもよく、車両の停止(停車)を引き起こす要因を含む走行環境であればいずれのパラメータとすることもできる。
・変形例7:
 上記実施例や変形例1~6では、車両の走行環境を予測する構成であったが、本発明の車両制御装置では、必ずしも走行環境の予測を行う構成である必要はない。例えば、短期間停車時間率RSと長期間停車時間率RLに基づいて、直接、アイドリングストップ容量を設定する構成とすることもできる。
・変形例8:
 上記実施例では、市街化/郊外判定ルーチン(図14)によって、短期間停車時間率RSがR1以上であることと、長期間停車時間率RLがR2以上であることの少なくとも一方が満たされたときに、市街地であると判定していたが、本発明では、これに限られない。RSがR1以上であると判定されたときだけで、市街地であると判定する構成としてもよい。この場合に、長期間停車時間率RLは郊外であるか否かの判定に用いればよい。すなわち、例えば、図14において、ステップS910をRS≧R1の判定に替え、ステップS930をRL<R4の判定に替えた構成とすればよい。この構成によって、走行環境の予測を、簡易な構成でありながら、応答性と精度を両立させて行うことができる。
・変形例9:
 上記実施例では、短期間停車時間率RSと長期間停車時間率RLに基づいて、走行環境を予測していたが、本発明では、これに替えて、一つの停車時間率、すなわち、所定の期間における停車時間の比率に基づいて、走行環境を予測する構成としてもよい。
・変形例10:
 上記実施例では、バッテリは鉛蓄電池としたが、本発明ではこれに限られない。例えば、リチウムイオン蓄電池、ロッキングチェア型蓄電体等の他の種類のバッテリに替えることもできる。また、上記実施例では、車両は自動車であったが、これに換えて、電車等の自動車以外の車両としてもよい。
・変形例11:
 上記実施例においてソフトウェアで実現されている機能の一部をハードウェア(例えば集積回路)で実現してもよく、あるいは、ハードウェアで実現されている機能の一部をソフトウェアで実現してもよい。
・変形例12:
 なお、前述した実施例および各変形例における構成要素の中の、独立請求項で記載された要素以外の要素は、付加的な要素であり、適宜省略可能である。例えば、通常走行中はバッテリへの充電を抑えることで燃料消費量を節約し、減速走行中に回生発電によりバッテリへの充電を行なう充電制御についても省略することができる。
  10…エンジン
  15…自動変速機
  20…ディファレンシャルギア
  25…駆動輪
  30…スタータ
  34…駆動機構
  35…オルタネータ
  40…バッテリ
  50…ECU
  70…補機類
  72…ヘッドライト
  74…空調装置
  82…車輪速センサ
  84…ブレーキペダルセンサ
  86…アクセル開度センサ
  88…バッテリ電流センサ
  89…オルタネータ電流センサ
  90…アイドリングストップ制御部
 100…SOC制御部
 110…目標SOC推定部
 112…走行環境予測部
 114…自車両状態予測部
 116…SOC配分要求レベル算出部
 118…目標SOC算出部
 120…バッテリSOC算出部
 130…フィードバック制御部
 200…自動車

Claims (12)

  1.  停車を引き起こす車両の走行環境を予測する走行環境予測装置であって、
     所定の期間における停車時間の比率を算出する停車時間率算出部と、
     前記停車時間の比率に基づいて前記走行環境を予測する走行環境予測部と
     を備える走行環境予測装置。
  2.  請求項1に記載の走行環境予測装置であって、
     前記停車時間率算出部は、
     第1の期間における停車時間の比率を、第1停車時間率として算出する第1停車時間率算出部と、
     前記第1の期間よりも長い第2の期間における停車時間の比率を、第2停車時間率として算出する第2停車時間率算出部と
     を備え、
     前記走行環境予測部は、
     前記第1停車時間率および第2停車時間率に基づいて、前記走行環境を予測する、走行環境予測装置。
  3.  請求項2に記載の走行環境予測装置であって、
     前記走行環境は、車両の走行地域が市街地か郊外かの区別であり、
     前記走行環境予測部は、
     前記第1停車時間率が第1の閾値以上であるか否かを判定する第1判定部と、
     前記第1判定部によって第1の閾値以上であると判定されたときに、前記市街地であると決定する第1決定部と
     を備える、走行環境予測装置。
  4.  請求項3に記載の走行環境予測装置であって、
     前記走行環境判定部は、さらに、
     前記第2停車時間率が、前記第1の閾値よりも小さい第2の閾値以上であるか否かを判定する第2判定部と、
     前記第2判定部によって第2の閾値以上であると判定されたときに、前記市街地であると決定する第2決定部と
     を備える、走行環境予測装置。
  5.  請求項3または4に記載の走行環境予測装置であって、
     前記走行環境判定部は、さらに、
     前記第1停車時間率が、前記第1の閾値よりも小さい第3の閾値未満であるか否かを判定する第3判定部と、
     前記第2停車時間率が、前記第2の閾値よりも小さい第4の閾値未満であるか否かを判定する第4判定部と、
     前記第3判定部によって第3の閾値未満であると判定され、且つ、前記第4判定部によって前記第4の閾値未満であると判定されたときに、前記郊外であると決定する第3決定部と
     を備える走行環境予測装置。
  6.  エンジンと、前記エンジンの動力によって駆動される発電機の発電量によって充電可能なバッテリと、を有する車両に搭載される車両制御装置であって、
     アイドリングストップ制御を行うアイドリングストップ制御部と、
     前記バッテリの蓄電状態(SOC)を検出するSOC検出部と、
     前記車両の走行時に、前記バッテリの使用可能なSOC範囲に対して、前記アイドリングストップ制御によるエンジン停止から再始動までのストップアンドスタート期間において使用すると予想されるアイドリングストップ用容量を設定するアイドリングストップ用容量設定部と、
     前記車両の走行時に、前記SOC検出部によって検出されたSOCに対応する、前記使用可能なSOC範囲における残存容量が、前記アイドリングストップ用容量を下回ることを回避するように、前記発電機の発電量を制御する残存容量制御部と
     を備え、
     前記アイドリングストップ用容量設定部は、
     所定の期間における停車時間の比率を算出する停車時間率算出部と、
     前記停車時間の比率に基づいて前記アイドリングストップ用容量を設定する容量設定部と
     を備える車両制御装置。
  7.  請求項6に記載の車両制御装置であって、
     前記停車時間率算出部は、
     第1の期間における停車時間の比率を、第1停車時間率として算出する第1停車時間率算出部と、
     前記第1の期間よりも長い第2の期間における停車時間の比率を、第2停車時間率として算出する第2停車時間率算出部と
     を備え、
     前記容量設定部は、
     前記第1停車時間率および第2停車時間率に基づいて、前記アイドリングストップ用容量を設定する、車両制御装置。
  8.  請求項7に記載の車両制御装置であって、
     前記容量設定部は、
     前記第1停車時間率が第1の閾値以上であるか否かを判定する第1判定部と、
     前記第1判定部によって第1の閾値以上であると判定されたときに、第1の閾値以上でないと判定されたときに設定される容量よりも大きな値に、前記アイドリングストップ用容量を設定する第1決定部と
     を備える車両制御装置。
  9.  請求項8に記載の車両制御装置であって、
     前記容量設定部は、さらに、
     前記第2停車時間率が、前記第1の閾値よりも小さい第2の閾値以上であるか否かを判定する第2判定部と、
     前記第2判定部によって第2の閾値以上であると判定されたときに、第2の閾値以上でないと判定されたときに設定される容量よりも大きな値に、前記アイドリングストップ用容量を設定する第2決定部と
     を備える、車両制御装置。
  10.  請求項8または9に記載の車両制御装置であって、
     前記アイドリングストップ用容量設定部は、さらに、
     前記第1停車時間率が、前記第1の閾値よりも小さい第3の閾値未満であるか否かを判定する第3判定部と、
     前記第2停車時間率が、前記第2の閾値よりも小さい第4の閾値未満であるか否かを判定する第4判定部と、
     前記第3判定部によって第3の閾値未満であると判定され、且つ、前記第4判定部によって前記第4の閾値未満であると判定されたときに、前記アイドリングストップ用容量を減らす側の値に設定する第3決定部と
     を備える、車両制御装置。
  11.  停車を引き起こす車両の走行環境を予測する走行環境予測方法であって、
     所定の期間における停車時間の比率を算出し、
     前記停車時間の比率に基づいて前記走行環境を予測する、走行環境予測方法。
  12.  エンジンと、前記エンジンの動力によって駆動される発電機の発電量によって充電可能なバッテリと、を有する車両を制御する車両制御方法であって、
    (a)アイドリングストップ制御を行う工程と、
    (b)前記バッテリの蓄電状態(SOC)を検出する工程と、
    (c)前記車両の走行時に、前記バッテリの使用可能なSOC範囲に対して、前記アイドリングストップ制御によるエンジン停止から再始動までのストップアンドスタート期間において使用すると予想されるアイドリングストップ用容量を設定する工程と、
    (d)前記車両の走行時に、前記SOC検出部によって検出されたSOCに対応する、前記使用可能なSOC範囲における残存容量が、前記アイドリングストップ用容量を下回ることを回避するように、前記発電機の発電量を制御する工程と
     を備え、
     前記工程(c)は、
     所定の期間における停車時間の比率を算出し、
     前記停車時間の比率に基づいて前記アイドリングストップ用容量を設定する、車両制御方法。
PCT/JP2011/006452 2011-11-18 2011-11-18 走行環境予測装置および車両制御装置、並びにそれらの方法 WO2013072976A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180074860.4A CN103946068B (zh) 2011-11-18 2011-11-18 行驶环境预测装置以及车辆控制装置及其方法
EP11875960.4A EP2781411B1 (en) 2011-11-18 2011-11-18 Traveling environment prediction device, vehicle control device, and methods therefor
JP2013543995A JP5729484B2 (ja) 2011-11-18 2011-11-18 走行環境予測装置および車両制御装置、並びにそれらの方法
US14/357,815 US9827925B2 (en) 2011-11-18 2011-11-18 Driving environment prediction device, vehicle control device and methods thereof
PCT/JP2011/006452 WO2013072976A1 (ja) 2011-11-18 2011-11-18 走行環境予測装置および車両制御装置、並びにそれらの方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/006452 WO2013072976A1 (ja) 2011-11-18 2011-11-18 走行環境予測装置および車両制御装置、並びにそれらの方法

Publications (1)

Publication Number Publication Date
WO2013072976A1 true WO2013072976A1 (ja) 2013-05-23

Family

ID=48429092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006452 WO2013072976A1 (ja) 2011-11-18 2011-11-18 走行環境予測装置および車両制御装置、並びにそれらの方法

Country Status (5)

Country Link
US (1) US9827925B2 (ja)
EP (1) EP2781411B1 (ja)
JP (1) JP5729484B2 (ja)
CN (1) CN103946068B (ja)
WO (1) WO2013072976A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041740A1 (ja) * 2012-09-13 2014-03-20 トヨタ自動車株式会社 走行環境推定装置およびその方法
JP2015043130A (ja) * 2013-08-26 2015-03-05 トヨタ自動車株式会社 走行環境推定装置
CN105083260A (zh) * 2014-05-14 2015-11-25 丰田自动车株式会社 车辆控制装置、车辆以及车辆控制方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5796498B2 (ja) * 2012-01-05 2015-10-21 トヨタ自動車株式会社 車両の制御装置
JP5854155B2 (ja) * 2012-12-04 2016-02-09 トヨタ自動車株式会社 充電制御装置、充電制御方法、コンピュータプログラム、記録媒体
JP5744936B2 (ja) * 2013-02-28 2015-07-08 本田技研工業株式会社 車両の停止制御装置
AU2013385112A1 (en) * 2013-04-01 2015-10-22 Toyota Jidosha Kabushiki Kaisha Charge control device, vehicle control device, vehicle, charging control method, and vehicle control method
KR101500358B1 (ko) * 2013-07-08 2015-03-18 현대자동차 주식회사 차량의 배터리 충전 상태 제어 시스템 및 방법
JP6237708B2 (ja) * 2015-06-11 2017-11-29 トヨタ自動車株式会社 車両制御装置
KR102225748B1 (ko) * 2019-09-03 2021-03-11 한국과학기술원 교통 정체 상황을 고려한 지능형 isg 제어를 위한 전자 장치 및 그의 동작 방법
CN114228637B (zh) * 2021-12-02 2024-02-20 科大讯飞股份有限公司 一种车辆断电保护方法、装置、存储介质及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356112A (ja) 2001-03-26 2002-12-10 Denso Corp 車両用空調装置
JP2007019341A (ja) * 2005-07-08 2007-01-25 Toyota Motor Corp 発電装置
JP2010269712A (ja) 2009-05-22 2010-12-02 Nissan Motor Co Ltd 車両の制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3256405B2 (ja) * 1995-03-23 2002-02-12 株式会社小松製作所 ブルドーザの土工板制御装置およびその制御方法
US6688120B2 (en) * 2001-01-23 2004-02-10 Denso Corporation Vehicle air conditioner with cold storage and cold release
US6487477B1 (en) * 2001-05-09 2002-11-26 Ford Global Technologies, Inc. Strategy to use an on-board navigation system for electric and hybrid electric vehicle energy management
JP4581461B2 (ja) 2004-04-02 2010-11-17 日産自動車株式会社 内燃機関の発電制御装置
JP2007011558A (ja) * 2005-06-29 2007-01-18 Nissan Motor Co Ltd 渋滞予測装置および方法
WO2007074113A1 (de) * 2005-12-23 2007-07-05 Continental Teves Ag & Co. Ohg Verfahren und system zur unterstützung eines fahrers beim einparken oder rangieren eines kraftfahrzeugs
JP5094658B2 (ja) * 2008-09-19 2012-12-12 日立オートモティブシステムズ株式会社 走行環境認識装置
CN101357616B (zh) * 2008-09-27 2011-04-27 清华大学 智能环境友好型汽车结构
JP4894909B2 (ja) 2009-05-26 2012-03-14 株式会社デンソー ハイブリッド車両の駆動制御装置
JP4957752B2 (ja) * 2009-06-12 2012-06-20 トヨタ自動車株式会社 進路評価装置
JP2011063186A (ja) * 2009-09-18 2011-03-31 Denso Corp 車両駆動制御装置
CN101964941A (zh) * 2010-08-25 2011-02-02 吉林大学 基于动态信息的智能导航与位置服务系统及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356112A (ja) 2001-03-26 2002-12-10 Denso Corp 車両用空調装置
JP2007019341A (ja) * 2005-07-08 2007-01-25 Toyota Motor Corp 発電装置
JP2010269712A (ja) 2009-05-22 2010-12-02 Nissan Motor Co Ltd 車両の制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041740A1 (ja) * 2012-09-13 2014-03-20 トヨタ自動車株式会社 走行環境推定装置およびその方法
JP2015043130A (ja) * 2013-08-26 2015-03-05 トヨタ自動車株式会社 走行環境推定装置
CN105083260A (zh) * 2014-05-14 2015-11-25 丰田自动车株式会社 车辆控制装置、车辆以及车辆控制方法
EP2949919A1 (en) * 2014-05-14 2015-12-02 Toyota Jidosha Kabushiki Kaisha Electric power generation control of a vehicle based on the vehicle operating history
JP2015217690A (ja) * 2014-05-14 2015-12-07 トヨタ自動車株式会社 車両制御装置、車両および車両制御方法
US9567967B2 (en) 2014-05-14 2017-02-14 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus, vehicle, and vehicle control method

Also Published As

Publication number Publication date
EP2781411A4 (en) 2016-01-06
US20140316628A1 (en) 2014-10-23
CN103946068B (zh) 2016-11-23
US9827925B2 (en) 2017-11-28
EP2781411B1 (en) 2020-05-06
CN103946068A (zh) 2014-07-23
JP5729484B2 (ja) 2015-06-03
EP2781411A1 (en) 2014-09-24
JPWO2013072976A1 (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
JP5729484B2 (ja) 走行環境予測装置および車両制御装置、並びにそれらの方法
JP5842927B2 (ja) 車両制御装置、車両、および車両制御方法
JP5896081B2 (ja) 充電制御装置、車両制御装置、車両、充電制御方法、および車両制御方法
JP5783267B2 (ja) 車両制御装置、車両及び車両制御方法
JP5811192B2 (ja) 車両制御装置、車両、および車両制御方法
JP5854155B2 (ja) 充電制御装置、充電制御方法、コンピュータプログラム、記録媒体
JP5655831B2 (ja) 走行環境推定装置およびその方法
JP5929288B2 (ja) 車両制御装置、車両、車両制御方法、走行環境予測装置、及び走行環境予測方法
JP2019172102A (ja) 制御装置
JP6369389B2 (ja) 電源制御装置
JP6269540B2 (ja) 車両制御装置
JP5812117B2 (ja) 車両を制御する方法、車両制御装置
JP2013127225A (ja) 車両制御装置、車両、および車両制御方法
JP2016028198A (ja) 車両制御装置、車両、および車両制御方法
JP2014136535A (ja) 車両制御装置、車両、および車両制御方法
JP5831400B2 (ja) 車両制御装置、車両、および車両制御方法
JP2014097708A (ja) 走行環境推定装置およびその方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875960

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013543995

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14357815

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011875960

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE