WO2013071812A1 - 一种高精度薄壁陶瓷管的成型方法 - Google Patents

一种高精度薄壁陶瓷管的成型方法 Download PDF

Info

Publication number
WO2013071812A1
WO2013071812A1 PCT/CN2012/083400 CN2012083400W WO2013071812A1 WO 2013071812 A1 WO2013071812 A1 WO 2013071812A1 CN 2012083400 W CN2012083400 W CN 2012083400W WO 2013071812 A1 WO2013071812 A1 WO 2013071812A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin
ceramic tube
walled ceramic
mud
tube
Prior art date
Application number
PCT/CN2012/083400
Other languages
English (en)
French (fr)
Inventor
何剑明
何锡伶
Original Assignee
He Jianming
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by He Jianming filed Critical He Jianming
Publication of WO2013071812A1 publication Critical patent/WO2013071812A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B21/00Methods or machines specially adapted for the production of tubular articles
    • B28B21/02Methods or machines specially adapted for the production of tubular articles by casting into moulds
    • B28B21/10Methods or machines specially adapted for the production of tubular articles by casting into moulds using compacting means
    • B28B21/36Methods or machines specially adapted for the production of tubular articles by casting into moulds using compacting means applying fluid pressure or vacuum to the material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6028Shaping around a core which is removed later
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • C04B2235/9638Tolerance; Dimensional accuracy

Definitions

  • the invention relates to the technical field of thin wall ceramic tube forming, in particular to a method for forming a high precision thin wall ceramic tube. Background technique
  • a thin-walled ceramic tube is formed by isostatic pressing, and the process flow is - formulating raw material, adding water ball mill, spraying granulation, squeezing a pipe squeezing pipe, extruding a metal rod or a flexible rubber mold, drying a set of rubber outer mold
  • a high pressure vessel is medium static pressure, demolded, fired, processed, and processed.
  • Formulation materials (% by weight) Alumina 15 ⁇ 20%, corundum sand 30 ⁇ 40%, clay 30 ⁇ 40%.
  • the ceramic tube formed by the method has good density, high strength of the green body, small firing shrinkage, and the length of the tube can reach more than 4 meters.
  • this method has the following disadvantages:
  • the inner mold adopts a flexible rubber mold - the inner mold is made of a flexible material, so the ceramic tube after the equal pressure is easy to take off the inner mold, but since the inner mold adopts a flexible rubber mold, the geometrical dimensions of the inner wall of the formed ceramic tube are difficult to control. The accuracy is not high, and the straightness of the entire ceramic tube is poor.
  • the object of the present invention is to provide a method for forming a high-precision thin-walled ceramic tube, which can produce a high-precision thin-walled ceramic tube with high density, accurate geometrical dimensions inside and outside the tube, and a clean and mirror-like inner wall.
  • the technical solution proposed by the present invention is as follows: a method for forming a high-precision thin-walled ceramic tube, the method step of which is;
  • the raw material of the formula is 15 ⁇ 20% of alumina, 30 ⁇ 40% of corundum sand, 30 ⁇ 40% of clay; the raw material of the formula is added to the ball mill, and the water ball mill with the same weight as the raw material of the formula is added 2 After the hour, the obtained slurry is sieved, iron-removed, and pressure-filtered into a mud cake, and then the mud is obtained by vacuum to obtain a mud material, which is used for stale use;
  • the metal inner tube at the two ends of the thin-walled ceramic tube blank of the rubber outer mold and the flexible oil-resistant rubber outer mold are sealed with an oil-resistant rubber plug, and the central hole of the metal inner mold tube is exposed to form a thin-walled ceramic tube assembly;
  • the sealed thin-walled ceramic tube assembly is placed in a high-pressure container by two-way isostatic pressing, the pressurized medium is mineral oil, the molding pressure is between 50 and 200 MPa, the pressure is maintained for 15-20 seconds, and then the pressure is relieved. After the forming thin-walled ceramic tube assembly is taken out, the metal inner tube and the rubber outer mold are removed to form a high-precision thin-walled ceramic tube blank;
  • the high-precision thin-walled ceramic tube blank is hoisted and fired according to a conventional sintering method.
  • the present invention has the following remarkable effects:
  • the present invention is one of the key technologies of the present invention in the processing and processing of the formulated raw materials, which is to use a methyl cellulose powder added as a binder and a releasing agent to the billet, through uniformity, mixing and vacuum.
  • the mud After the mud, after stale, the mud has superior plasticity and fluidity, and is especially suitable for thin-walled ceramic tubes with the following specifications and round or square holes: the diameter is from ⁇ 10 to ⁇ 100 ⁇ , The wall thickness is l ⁇ 10mm, and the tube length is 100 ⁇ 5000mm.
  • the thin-walled ceramic tube blank is extruded by the vacuum tube extruding machine by the above method, and attached to the thin-walled metal inner tube, and subjected to two-way isostatic pressing after drying, due to The elastic action of methyl cellulose in the thin-walled ceramic tube blank, therefore, after equal pressure and pressure relief, the metal inner tube in the thin-walled ceramic tube assembly is easily taken out, so that the semi-finished product in the production process is less damaged, and the production is small. efficient.
  • the mud material treated by the above method is used as the extrusion blank of the vacuum tube extruding machine.
  • the thin-walled ceramic tube body required for extrusion is extruded, since the fluidity and plasticity of the mud material are very good, when thin
  • the wall ceramic tube blank is directly attached to the metal inner tube which is specially processed into a flatness and a smooth surface as a mirror, and there is no great resistance between the inner wall of the thin-walled ceramic tube and the metal inner tube. Therefore, the outer diameter of the thin-walled ceramic tube and the geometrical dimensions of the inner hole can be ensured accurately, so that no size head phenomenon occurs.
  • the thin-walled metal inner tube used in the present invention is formed by precision processing of a metal material having a wall thickness of 1 mm to 2 mm, and the shape thereof may be a circular or square shape, and the processed thin-walled metal inner tube is processed.
  • the flatness of the surface is good, and the surface of the tube is as clean as a mirror. Therefore, the thin-walled ceramic tube blank assembly combined with the metal inner tube is placed in a high-pressure container for isostatic pressing, because of the space inside the thin-walled metal inner tube. Similarly, the oil is pressed and is in the same high pressure state.
  • the outer wall and the inner wall of the thin-walled ceramic tube are simultaneously subjected to the same pressure to form a two-way isostatic pressing.
  • the use of a thin-walled metal inner tube is one of the key techniques of the present invention.
  • the thin-walled ceramic tube wall formed by the above method has a high density and a small firing shrinkage rate, so that a thin-walled ceramic tube having a high inner wall precision, a mirror-like shape, a small deformation, and a high density can be manufactured.
  • the high-precision thin-walled ceramic tube produced by the invention is widely used in heat-resistant ceramic production equipment.
  • Figure 1 is a schematic view showing the structure of a thin-walled ceramic tube assembly according to the first and second embodiments of the present invention.
  • FIG. 2 is a high-precision thin-walled ceramic tube blank obtained by biaxial isostatic pressing of the thin-walled ceramic tube body shown in FIG. Cutaway view.
  • Figure 3 is a cross-sectional view taken along line A - A of Figure 2;
  • Fig. 4 is a structural schematic view showing a thin-walled ceramic tube assembly according to a third embodiment of the present invention.
  • Fig. 5 is a longitudinal cross-sectional view showing the high-precision thin-walled ceramic tube body obtained by biaxial isostatic pressing of the thin-walled ceramic tube body shown in Fig. 4.
  • Figure 6 is a cross-sectional view taken along line B-B of Figure 5; detailed description
  • the present invention manufactures a high-precision thin-walled ceramic tube by bidirectional isostatic pressing.
  • the outer dimensions of the high-precision thin-walled ceramic tube blank 5 are: 5000 mm in length and ⁇ 50 mm in inner diameter.
  • the wall thickness is 5 mm; the outer diameter of the metal inner tube 1 is ⁇ 50 ⁇ , the wall thickness is 1 mm, and the length is 5500 mm.
  • the method steps for manufacturing the high precision thin wall ceramic tube are:
  • the sealed thin-walled ceramic tube assembly is placed in a high-pressure container and slowly pressurized by two-way isostatic pressing.
  • the pressurized medium is mineral oil
  • the molding pressure is 200 MPa
  • the pressure is maintained for 20 seconds, and then the pressure is slowly relieved.
  • the rubber outer mold 3 is removed, and the metal inner mold tube 1 is taken out, so that the straightness is good, the density is high, the inner hole geometry is accurate, and the inner wall of the hole is as clean as a mirror.
  • High-precision thin-walled ceramic tube blank 5
  • the high-precision thin-walled ceramic tube blank 5 is hoisted and fired according to a conventional sintering method.
  • the firing temperature is 1500 ° C and the temperature is kept for 5 hours.
  • the sling firing is to ensure the good straightness of the thin-walled ceramic tube.
  • the inner wall of the thin-walled ceramic tube of this example is circular.
  • the outer shape of the high-precision thin-walled ceramic tube blank 5 of the present embodiment is: a length of 3000 mm, a diameter of the inner hole of ⁇ 20 ⁇ , a wall thickness of 1 mm; and an outer metal mold tube 1
  • the diameter is ⁇ 20 ⁇ , and the wall thickness is 0.6mm, length is 3200mm.
  • the formula clay is the same as the embodiment.
  • the methyl cellulose powder is added in an amount of 2% by weight of the mud, the moisture content of the sludge after the staleing is 13%, the bi-directional isostatic pressing pressure is 50 MPa, and the pressure is maintained for 15 seconds.
  • the method steps are the same as in the first embodiment. After bidirectional isostatic pressing, the inner diameter of the thin-walled ceramic tube blank 5 is 20 mm, the wall thickness is 0.8 mm, and the inner wall 6 of the hole is smooth and smooth, and the light is as a mirror.
  • the outer shape of the high-precision thin-walled ceramic tube blank 15 of the present embodiment is: a square having a length of 2000 mm and a inner hole size of 25 mm X 25 mm, and a wall thickness of 1.5 mm;
  • the outer diameter of the tube 11 is 25 mm x 25 mm square, the wall thickness is 0.5 mm, and the length is 2200 mm.
  • the formula clay is the same as in the first embodiment.
  • the methyl cellulose powder is added in an amount of 3% by weight of the mud, the moisture content of the sludge after the stale is 14%, the two-way isostatic pressing pressure is 150 MPa, and the pressure is maintained for 18 seconds.
  • the process steps were the same as in Example 1.
  • the inner wall of the thin-walled ceramic tube 15 has a square shape of 25 mm ⁇ 25 mm, a wall thickness of 1.2 mm, and the inner wall 16 of the square hole is smooth and smooth, and the light is as a mirror.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

一种高精度薄壁陶瓷管的成型方法,步骤为:a、将配方原料加水球磨得到泥料;b、在泥料中加入1-3%甲基纤维素粉料,炼成泥段;c、将泥段挤成薄壁陶瓷管坯体(2)并直接依附在金属内模管(1)上干燥待压;d、在陶瓷管坯体外壁套上柔性耐油橡胶外模(3)并在陶瓷管坯体两端处的金山内模管与橡胶外套之间用耐油橡胶塞(4)密封;e、将该薄壁陶瓷管组件放入高压容器中双向等静压成型,脱去内、外模,得到高精度薄壁陶瓷管坯体;f、按常规烧结方法将薄壁管坯体吊装烧成。该成型方法制成的高精度薄壁陶瓷管致密度高,管内、外壁几何尺寸准确,内壁光洁。

Description

一种高精度薄壁陶瓷管的成型方法 技术领域
本发明涉及薄壁陶瓷管成型技术领域, 特别涉及一种高精度薄壁陶瓷管的成型方法。 背景技术
现有一种薄壁陶瓷管是采用等静压成型的, 其工艺流程为- 配方原料一加水球磨一喷雾造粒一挤管机挤管到金属棒或柔性橡胶模上干燥一套上 橡胶外模一高压容器中等静压一脱模一烧成一加工一产品。
配方原料: (重量百分比) 氧化铝 15〜20%, 刚玉砂 30〜40%, 粘土 30〜40%。 此方法成型的陶瓷管致密度好, 坯体强度高, 烧成收缩小, 管的长度可达 4米以上。 但此方法存在如下缺点:
①当内模是采用金属棒时-
( a)此方法需采用喷雾干燥法制成坯体原料, 因为这种原料的可塑性和流动性较差, 因此在制作陶瓷管到金属棒上时, 由于阻力大, 制作的陶瓷管容易出现大小头, 陶瓷管两 端直径偏差大。 同时等压成型后, 金属棒内模不容易拉出, 半成品破损大, 成品率低。
(b) 由于陶瓷管是外壁单向受压, 因而陶瓷管外壁致密度要比内壁高, 同时由于是 单向受压, 陶瓷管坯体外壁容易产生突出的等压线, 使陶瓷管的圆度会产生较大的公差。
②当内模采用柔性橡胶模时- 内模采用柔性材料, 因此等压后的陶瓷管虽然容易脱内模, 但由于内模采用柔性橡胶 模, 故成型后的陶瓷管内壁几何尺寸难控制, 精度不高, 整条陶瓷管的直线度较差。 发明内容
本发明目的在于提供一种高精度薄壁陶瓷管的成型方法, 采用这种方法能生产出致密 度高、 管内、 外壁几何尺寸准确、 内壁光洁如镜的高精度薄壁陶瓷管。
本发明所提出的技术解决方案是这样的: 一种高精度薄壁陶瓷管的成型方法, 其方法 步骤为;
( 1 ) 配方原料按重量百分比计为氧化铝 15〜20%, 刚玉砂 30〜40%, 粘土 30〜40 % ; 将该配方原料加入球磨机中, 加入与该配方原料重量等量的水球磨 2小时后, 得到的 浆料过筛、 除铁、 压滤成泥饼, 再通过真空练泥, 得到泥料, 陈腐待用;
(2) 当泥料含水量在 13〜14%时, 按泥料重量百分比加入 1〜3 %甲基纤维素粉料, 通过真空练泥机均匀地混合搅拌, 再练成泥段陈腐待用;
(3 )把泥段通过已经安装有薄壁陶瓷管成型模具的真空挤管机挤出薄壁陶瓷管坯体, 把薄壁陶瓷管坯体直接依附在金属内模管上, 并放置于干燥室洪干待压; (4) 当依附在金属内模管上的薄壁陶瓷管坯体含水量在 3〜5 %时, 在薄壁陶瓷管坯 体外壁套上柔性耐油橡胶外模, 在装有金属内模管和橡胶外模的薄壁陶瓷管坯体两端处的 金属内模管与柔性耐油橡胶外模之间用耐油橡胶塞密封, 金属内模管的中心孔外露, 组成 薄壁陶瓷管组件;
)把密封好的薄壁陶瓷管组件放置在高压容器中采用双向等静压成型, 加压介质为矿 物油, 成型压力在 50〜200MPa之间, 保压 15— 20秒, 然后卸压, 将成型后的薄壁陶瓷 管组件取出, 脱去金属内模管和橡胶外模, 制成高精度薄壁陶瓷管坯体;
( 6) 按常规烧结方法将高精度薄壁陶瓷管坯体吊装烧成。
与现有技术相比, 本发明具有如下显著效果:
( 1 ) 本发明在配方原料的加工处理工艺上, 作为本发明的关键技术之一是采用加入 作为粘结剂和脱模剂的甲基纤维素粉料到坯料中, 通过均匀、 混合及真空练泥, 陈腐后, 这种泥料具有优越的可塑性和流动性, 特别适用于挤成下列规格的、 内孔是圆形或方形的 薄壁陶瓷管: 管径从 Φ 10〜Φ 100 ηιηι, 管壁厚度在 l〜10mm, 管长在 100〜5000mm。
(2 ) 本发明由于采用以上方法处理后的泥料通过真空挤管机挤出薄壁陶瓷管坯体, 并依附在薄壁的金属内模管上, 待干燥后进行双向等静压, 由于薄壁陶瓷管坯体中甲基纤 维素的弹性作用, 因此, 经等压、 卸压后, 薄壁陶瓷管组件中的金属内模管很容易取出, 使生产过程中的半成品破损少, 生产效率高。
( 3 ) 本发明由于采用以上方法处理的泥料作为真空挤管机的挤出坯料, 当挤出所需 要的薄壁陶瓷管坯体时, 由于泥料流动性、 可塑性非常好, 因此当薄壁陶瓷管坯体直接依 附在经特殊加工成平直度好、 表面光洁如镜的金属内模管时, 薄壁陶瓷管坯体内壁与金属 内模管之间不会产生很大的阻力, 因而能保证薄壁陶瓷管外径和内孔的几何尺寸准确, 因 而不会产生大小头现象。
(4)本发明所采用的薄壁金属内模管是用壁厚为 lmm〜2mm的金属材料经精密加工 处理制成, 其形状可以是圆形或方形, 加工好的薄壁金属内模管表面平直度好, 管表面光 洁如镜, 因此用此金属内模管组合成的薄壁陶瓷管坯体组件, 放置在高压容器中进行等静 压成型时, 由于薄壁金属内模管内空间同样进油受压并处于相同的高压状态之中, 因此薄 壁陶瓷管在高压容器中, 其外壁和内壁均同时受相同压力而形成双向等静压。 采用薄壁金 属内模管是本发明的关键技术之一。
( 5 ) 经过以上方法成型后的薄壁陶瓷管管壁致密度高, 烧成收缩率小, 因而能制造 成一种内壁精度高具光洁如镜、 变形小、 致密度高的薄壁陶瓷管。
本发明所生产的高精度薄壁陶瓷管广泛应用于耐热陶瓷生产设备中。 附图说明
图 1是本发明第 1、 2个实施例的薄壁陶瓷管组件结构示意图。
图 2是图 1所示薄壁陶瓷管坯体经双向等静压成型后得到的高精度薄壁陶瓷管坯体纵 向剖视图。
图 3是图 2的 A— A剖视图。
图 4是本发明第 3个实施例的薄壁陶瓷管组件结构示意图。
图 5是图 4所示薄壁陶瓷管坯体经双向等静压成型后得到的高精度薄壁陶瓷管坯体纵 向剖视图。
图 6是图 5的 B— B剖视图。 具体实施方式
通过以下实施例对本发明作进一步详细阐述。
实施例 1
参见图 1一图 3所示, 本发明通过双向等静压成型制造高精度薄壁陶瓷管, 该高精度 薄壁陶瓷管坯体 5的外形尺寸为: 长度为 5000mm, 内孔直径为 Φ 50mm,壁厚为 5mm; 金 属内模管 1的外径为 Φ 50ηιηι, 壁厚为 lmm, 长度为 5500mm。
制造该高精度薄壁陶瓷管的方法步骤是:
( 1 )把配方原料(按重量百分比计算)氧化铝 15〜20 %,刚玉砂 30〜40 %,粘土 30〜 40 %放入球磨机中, 加入与该配方原料重量等量的水, 球磨 2小时, 得到的浆料除铁、 过 筛、 压滤成泥饼, 再通过真空练泥, 得到泥料陈腐待用;
(2) 当泥料含水量在 13〜14 %时, 按泥料重量百分比加入 1 %的甲基纤维素粉料, 通过真空练泥机均匀地混合搅拌, 再练成泥段陈腐待用;
( 3 )把泥段通过已经安装有薄壁陶瓷管成型模具的真空挤管机挤出薄壁陶瓷管坯体, 把薄壁陶瓷管坯体直接依附在金属内模管上, 并放置于干燥室洪干待压;
(4) 当依附在金属内模管 1上的薄壁陶瓷管坯体 2含水量在 3〜5 %时, 在薄壁陶瓷 管坯体 2外壁套上柔性耐油橡胶外模 3, 在装有金属内模管 1和橡胶外模 3的薄壁陶瓷管 坯体 2两端处的金属内模管 1与柔性耐油橡胶外模 3之间用耐油橡胶塞 4密封, 金属内模 管 1的中心孔 7外露, 构成薄壁陶瓷管组件;
( 5 ) 把密封好的薄壁陶瓷管组件放置在高压容器中采用双向等静压缓慢加压成型, 加压介质为矿物油, 成型压力为 200MPa, 保压 20秒, 然后缓慢卸压, 将加压成型后的薄 壁陶瓷管组件取出, 脱去橡胶外模 3, 取出金属内模管 1, 这样就制成了直线度好、 致密 度高、 内孔几何尺寸准确、 孔内壁光洁如镜的高精度薄壁陶瓷管坯体 5 ;
( 6) 按常规烧结方法, 把高精度薄壁陶瓷管坯体 5吊装烧成。 烧成温度 1500°C、 保 温 5小时, 采用吊装烧成是保证薄壁陶瓷管具有良好的直线度。 本例的薄壁陶瓷管的内孔 呈圆形。
实施例 2
参见图 1一图 3 所示, 本实施例的高精度薄壁陶瓷管坯体 5 的外形尺寸为: 长度为 3000mm, 内孔直径为 Φ 20ηιηι, 壁厚为 1mm; 金属内模管 1 的外径为 Φ20ηιηι, 壁厚为 0.6mm, 长度为 3200mm。 配方泥料与实施例相同, 甲基纤维素粉料加入量为泥料重量的 2 % , 陈腐后泥坯含水量为 13 %, 双向等静压成型压力为 50MPa, 保压 15秒, 其余工艺 方法步骤与实施例 1相同。经双向等静压成型后, 薄壁陶瓷管坯体 5内孔直径为 20mm, 壁厚为 0.8mm, 孔内壁 6平滑光洁, 光亮如镜。
实施例 3
参见图 4一图 6所示, 本实施例的高精度薄壁陶瓷管坯体 15 的外形尺寸为: 长度为 2000mm, 内孔尺寸为 25mm X 25mm的正方形, 壁厚为 1.5mm; 金属内模管 11的外形尺 寸为 25mmX 25mm的正方形, 壁厚为 0.5mm, 长度为 2200mm。 配方泥料与实施例 1相 同, 甲基纤维素粉料加入量为泥料重量的 3 %, 陈腐后泥坯含水量为 14 %, 双向等静压成 型压力为 150MPa, 保压 18秒, 其余工艺步骤与实施例 1相同。 经双向等静压成型后, 薄 壁陶瓷管坯体 15内孔尺寸为 25mmX 25mm的正方形, 壁厚为 1.2mm, 方孔内壁 16平滑 光洁, 光亮如镜。

Claims

权利要求
1、 一种高精度薄壁陶瓷管的成型方法, 其特征在于: 该方法步骤为:
( 1 ) 配方原料按重量百分比计为氧化铝 15〜20%, 刚玉砂 30〜40%; 粘土 30〜40 % ; 将该配方原料加入球磨机中, 加入与该配方原料重量等量的水, 球磨 2小时后, 得到 的浆料过筛、 除铁、 压滤成泥饼, 再通过真空练泥, 得到泥料, 陈腐待用;
(2)当泥料含水量在 13〜14%时,按泥料重量百分比加入 1〜3 %的甲基纤维素粉料, 通过真空练泥机均匀地混合搅拌, 再练成泥段陈腐待用;
(3 )把泥段通过经已安装有薄壁陶瓷管成型模具的真空挤管机挤出薄壁陶瓷管坯体, 把薄壁陶瓷管坯体直接依附在金属内模管上, 并放置于干燥室洪干待压;
(4) 当依附在金属内模管上的薄壁陶瓷管坯体含水量在 3〜5 %时, 在薄壁陶瓷管坯 体外壁套上柔性耐油橡胶外模,在装有金属内模管和橡胶外模的薄壁陶瓷管坯体两端处的 金属内模管与柔性耐油橡胶外模之间用耐油橡胶塞密封, 金属内模管的中心孔外露, 组成 薄壁陶瓷管组件;
(5 ) 把密封好的薄壁陶瓷管组件放置在高压容器中采用双向等静压成型, 加压介质 为矿物油, 成型压力在 50〜200MPa之间, 保压 15— 20秒, 然后卸压, 将成型后的薄壁 陶瓷管组件取出, 脱去金属内模管和橡胶外模, 制成高精度薄壁陶瓷管坯体;
(6) 按常规烧结方法将高精度薄壁陶瓷管坯体吊装烧成。
2、 根据权利要求 1所述的高精度薄壁陶瓷管的成型方法, 其特征在于: 所述薄壁陶 瓷管坯体内孔形状为圆形或方形。
PCT/CN2012/083400 2011-11-17 2012-10-24 一种高精度薄壁陶瓷管的成型方法 WO2013071812A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110365545.9 2011-11-17
CN2011103655459A CN102431086A (zh) 2011-11-17 2011-11-17 一种高精度薄壁陶瓷管的成型方法

Publications (1)

Publication Number Publication Date
WO2013071812A1 true WO2013071812A1 (zh) 2013-05-23

Family

ID=45979610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083400 WO2013071812A1 (zh) 2011-11-17 2012-10-24 一种高精度薄壁陶瓷管的成型方法

Country Status (2)

Country Link
CN (1) CN102431086A (zh)
WO (1) WO2013071812A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113858402A (zh) * 2021-08-19 2021-12-31 潘志斌 一种反应烧结碳化硅专用立柱制作装置及其制作方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102431086A (zh) * 2011-11-17 2012-05-02 何锡伶 一种高精度薄壁陶瓷管的成型方法
EP2679363B1 (en) 2012-06-27 2015-09-02 Industry Technologies S.A. A method for manufacturing of ceramic electro-insulating pipes
CN103112195B (zh) * 2013-01-31 2015-06-10 成都易态科技有限公司 等静压滤芯成型模具及其端密封元件
CN103288429B (zh) * 2013-05-30 2015-05-13 浦瑞斯仪表(上海)有限公司 陶瓷流体测量管的制作方法
CN104096486A (zh) * 2014-07-23 2014-10-15 杭州创享环境技术有限公司 一种带导流槽的薄壁多通道管式无机膜坯体成型的方法
CN104177093B (zh) * 2014-09-03 2015-11-04 无锡康伟工程陶瓷有限公司 圆环形瓷体的低收缩变形率烧结方法
CN106007711A (zh) * 2016-05-18 2016-10-12 济南大学 大长径比压电陶瓷管制备方法
CN107599151B (zh) * 2017-10-23 2022-12-30 浙江新光阳照明股份有限公司 一种用于陶瓷管的生产流水线
CN111941633B (zh) * 2020-08-06 2021-11-23 合肥陶陶新材料科技有限公司 一种陶瓷辊棒等静压成型方法及其成型模具
CN113248256B (zh) * 2021-05-08 2022-08-12 南通大学 一种用于陶瓷光纤挤出成型的强韧性膏料的配制方法
CN113894923A (zh) * 2021-09-30 2022-01-07 营口市瑞福来耐火材料有限公司 一种浸渍管整体成型生产方法以及整体成型浸渍管

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283672A (ja) * 1989-04-26 1990-11-21 Tokin Corp 窒化アルミニウム押出成形体の製造方法
CN1071157A (zh) * 1992-08-17 1993-04-21 佛山市陶瓷研究所 陶瓷辊棒等静压成型胚料组合物
CN1075678A (zh) * 1992-06-06 1993-09-01 佛山市陶瓷研究所 陶瓷辊棒等静压成型方法及其成型模
CN1080890A (zh) * 1993-04-21 1994-01-19 佛山市陶瓷研究所 陶瓷辊棒等静压成型模及其成型方法
CN2578077Y (zh) * 2002-10-26 2003-10-08 江苏省陶瓷研究所有限公司 陶瓷管壳的冷等静压成型模具
CN101089035A (zh) * 2006-06-15 2007-12-19 信越化学工业株式会社 挤压成型或注塑成型组合物和模制部件的制备方法
US20080085393A1 (en) * 2005-05-31 2008-04-10 Wusirika Raja R Low CTE cordierite body and methods of manufacturing same
CN101298171A (zh) * 2008-06-25 2008-11-05 何锡伶 一种细长陶瓷管及其定型方法
CN102431086A (zh) * 2011-11-17 2012-05-02 何锡伶 一种高精度薄壁陶瓷管的成型方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1024533C (zh) * 1992-08-17 1994-05-18 佛山市陶瓷研究所 一种陶瓷辊棒等静压成型方法
CN2853354Y (zh) * 2005-12-21 2007-01-03 上海材料研究所 一种用于制备陶瓷套管毛坯件的等静压成型模具
CN101708630A (zh) * 2009-12-04 2010-05-19 山东理工大学 多孔陶瓷管的内压等静压成型方法及成型模具

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283672A (ja) * 1989-04-26 1990-11-21 Tokin Corp 窒化アルミニウム押出成形体の製造方法
CN1075678A (zh) * 1992-06-06 1993-09-01 佛山市陶瓷研究所 陶瓷辊棒等静压成型方法及其成型模
CN1071157A (zh) * 1992-08-17 1993-04-21 佛山市陶瓷研究所 陶瓷辊棒等静压成型胚料组合物
CN1080890A (zh) * 1993-04-21 1994-01-19 佛山市陶瓷研究所 陶瓷辊棒等静压成型模及其成型方法
CN2578077Y (zh) * 2002-10-26 2003-10-08 江苏省陶瓷研究所有限公司 陶瓷管壳的冷等静压成型模具
US20080085393A1 (en) * 2005-05-31 2008-04-10 Wusirika Raja R Low CTE cordierite body and methods of manufacturing same
CN101089035A (zh) * 2006-06-15 2007-12-19 信越化学工业株式会社 挤压成型或注塑成型组合物和模制部件的制备方法
CN101298171A (zh) * 2008-06-25 2008-11-05 何锡伶 一种细长陶瓷管及其定型方法
CN102431086A (zh) * 2011-11-17 2012-05-02 何锡伶 一种高精度薄壁陶瓷管的成型方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113858402A (zh) * 2021-08-19 2021-12-31 潘志斌 一种反应烧结碳化硅专用立柱制作装置及其制作方法
CN113858402B (zh) * 2021-08-19 2022-11-08 山东圣诺实业有限公司 一种反应烧结碳化硅专用立柱制作装置及其制作方法

Also Published As

Publication number Publication date
CN102431086A (zh) 2012-05-02

Similar Documents

Publication Publication Date Title
WO2013071812A1 (zh) 一种高精度薄壁陶瓷管的成型方法
Leo et al. Near‐net‐shaping methods for ceramic elements of (body) armor systems
CN101186052A (zh) 陶瓷部件的压滤成型模具及压滤成型方法
CN107935608B (zh) 使用致密锆英石骨料制备锆英石砖的方法
CN103933872A (zh) 一种多通道型非对称不锈钢膜的制备方法
CN100579750C (zh) 一种细长陶瓷管的定型方法
CN106977133B (zh) 一种陶瓷型芯及其制备方法和应用
CN103691330A (zh) 一种多孔不锈钢膜的制备工艺
CN107602146A (zh) 一种陶瓷预制体的制备方法
CN108484108B (zh) 一种釉面光滑的复合瓷砖及制作方法
CN103537993B (zh) 一种大薄壁整环陶瓷砂轮的生产方法
CN106268334A (zh) 一种陶瓷分离膜元件及其制备方法
CN205519502U (zh) 一种锆刚玉无缩孔砖的发热冒口铸造砂模
CN104118047B (zh) 陶瓷辊棒外支撑等静压成型方法及专用模具
CN106431415A (zh) 制备高性能纯结晶碳化硅纳米平板陶瓷膜的方法
CN104760124B (zh) 一种脱硫喷嘴的制备方法及其成型装置
CN203752293U (zh) 一种耐磨陶瓷异型块成型工装
CN204525720U (zh) 一种用于脱硫喷嘴制备的成型装置
CN106313276A (zh) 一种凝胶注模成型制备大尺寸管状生坯用的模具
CN102371615A (zh) 一种定向增强抗冲击结构陶瓷素坯的成型方法
CN101642651B (zh) 洁净煤发电用飞灰过滤器过滤元件的制备方法
CN206123885U (zh) 一种陶瓷坯件成型模具
CN104162623A (zh) 一种陶瓷模具及其制作方法
TW201702038A (zh) 澆鑄成形體及其製造方法
CN204710124U (zh) 一种陶瓷分离膜元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DD 26/09/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12850072

Country of ref document: EP

Kind code of ref document: A1