CN106007711A - 大长径比压电陶瓷管制备方法 - Google Patents

大长径比压电陶瓷管制备方法 Download PDF

Info

Publication number
CN106007711A
CN106007711A CN201610330004.5A CN201610330004A CN106007711A CN 106007711 A CN106007711 A CN 106007711A CN 201610330004 A CN201610330004 A CN 201610330004A CN 106007711 A CN106007711 A CN 106007711A
Authority
CN
China
Prior art keywords
big
preparation
ratio
earthenware
piezoelectric ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610330004.5A
Other languages
English (en)
Inventor
黄世峰
渠娇
徐东宇
林秀娟
徐跃胜
程新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201610330004.5A priority Critical patent/CN106007711A/zh
Publication of CN106007711A publication Critical patent/CN106007711A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5144Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the metals of the iron group
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供一种工艺简单、易于操作的大长径比压电陶瓷管制备方法。其包括以下步骤:1)将陶瓷预烧粉、粘结剂和增塑剂,混合搅拌均匀并摔打成泥团,真空练泥,密封陈腐备用;其中,陶瓷固含量为83‑89%;2)将陈腐好的陶瓷泥团装入挤出成型设备中,制得符合要求的陶瓷管素坯;3)陶瓷管素坯在恒温下干燥、排胶、烧结;4)采用化学镀方法在陶瓷管表面镀覆一层导电电极;采用空气极化方法实现陶瓷管的极化即得大长径比压电陶瓷管。

Description

大长径比压电陶瓷管制备方法
技术领域
本发明涉及一种压电陶瓷管制备,具体涉及一种大长径比压电陶瓷管制备方法。
背景技术
自1946年研究人员在钛酸钡陶瓷中发现压电效应以来,有关于压电陶瓷材料制备及应用的研究迅速发展。目前,压电陶瓷材料已广泛应用于超声振子、换能器、滤波器、传感器、驱动器和蜂鸣器等压电元器件的制备。然而,传统的压电陶瓷材料,多为块状和片状,具有以下缺点:脆性大,不能承受大的冲击,不能应用于弯曲的平面;体积大,不易与基体结构集成,不适合大面积使用。因此,为适应现代工程应用技术的发展,满足不同的应用需要,压电陶瓷材料向着组成复杂化、结构多样化发展,大长径比压电陶瓷管(高平均半径比h/R0>100)应运而生。
与传统块状、片状压电陶瓷材料相比,大长径比压电陶瓷管除具有大的机电耦合系数和良好的灵敏度外,还具有以下优点:①具有良好的挠度和柔韧性,几何形状满足集成要求,便于与基体材料复合,且对材料结构强度和可靠性影响较小;②制备复合材料时,内电极从基质材料中隔离,使管固定在导电基质中,拓宽了基质材料的选择;③电极分别位于管内外壁,通过直接穿过管壁的电场获得活性,工作电压减少,同时,电场只穿过管壁而不用穿过基质材料,还可以减少电场损失。这一系列优点使得大长径比压电陶瓷管成为主动振动控制复合材料及压电储能复合材料的重要功能相,在功能复合材料的推广应用过程中起着至关重要的作用,大长径比压电陶瓷管的制备和优化已成为当前的研究热点。
目前,文献报道制备压电陶瓷管的成型方法多为电泳沉积法(electrophoreticdeposition, EPD)。Mineshige A等用电化学沉积法在氧化镍金属丝上沉积得到宏观纤维,再通过盐酸溶液的浸渍腐蚀作用除去氧化镍制得陶瓷管。张瑞芳用电泳沉积法从乙醇悬浮液中制备出壁厚约0.4mm,内径为0.8-2.4mm的PZT压电陶瓷管。Jianling Yue采用电泳沉积法制备出外径1mm,内径0.7mm,长30mm的0.9Pb(Zr0.52Ti0.48)O3-0.1Pb(Mg1/3Nb2/3)O3(0.9PZT-0.1PMN)压电陶瓷管,并成功用于微型超声马达的制备。但是采用上述方法制备出的陶瓷管长度和截面积尺寸不能满足储能复合材料的制备要求(高平均半径比h/R0>100)。所以,需要进一步探索大长径比压电陶瓷管的制备方法。
发明内容
本发明目的是提供一种工艺简单、易于操作的大长径比压电陶瓷管制备方法。
为实现上述目的,本发明采用以下技术方案:
一种大长径比压电陶瓷管制备方法,包括以下步骤:
1)将陶瓷预烧粉、粘结剂和增塑剂,混合搅拌均匀并摔打成泥团,真空练泥,密封陈腐备用;
其中,陶瓷固含量为83-89%;
2)将陈腐好的陶瓷泥团装入挤出成型设备中,制得符合要求的陶瓷管素坯;
3)陶瓷管素坯在恒温下干燥、排胶、烧结;
4)采用化学镀方法在陶瓷管表面镀覆一层导电电极;采用空气极化方法实现陶瓷管的极化即得大长径比压电陶瓷管。
上述大长径比压电陶瓷管制备方法,陶瓷预烧粉化学组成Pb(Zr0.53Ti0.47)O3-xwt%Nb2O5,xwt%是指Nb2O5 占Pb(Zr0.53Ti0.47)O3的质量百分比,x为0.4-0.9。
上述大长径比压电陶瓷管制备方法,陶瓷预烧粉化学组成Pb0.95Sr0.05(Zr0.54Ti0.46)O3-0.9wt %La2O3-0.9wt % Nb2O5
上述大长径比压电陶瓷管制备方法,陶瓷预烧粉制备方法如下:按陶瓷预烧粉化学组成所需的配比称量原料;然后,将称量好的原料采用湿法球磨混合均匀,球磨时球、料、水的重量比为2:1:0.4-0.6,球磨时间可为30-60min;再将混合好的粉料在80-100℃下进行烘干处理后装入模具压制成2-4cm的圆片状坯体;将坯体在800-900℃进行预烧处理;最后经粉碎造粒制得陶瓷预烧粉。
上述大长径比压电陶瓷管制备方法,粘结剂为重量百分比为10%的PVA水溶液或8%PVB乙醇溶液;增塑剂为丙三醇或邻苯二甲酸二丁酯。
上述大长径比压电陶瓷管制备方法,步骤2中挤出压力可为4-10MPa;陶瓷管素坯的外径为2-2.5mm,内径为0.8-1.4mm,长可为100-210mm。
上述大长径比压电陶瓷管制备方法,陶瓷管素坯放入氧化铝槽板然后恒温干燥箱中,干燥温度为80-100℃,干燥时间24h。
上述大长径比压电陶瓷管制备方法,排胶过程为以1℃/min的升温速率从室温升到400℃,然后以2℃/min的升温速率升到800℃,并保温2h;或者以1℃/min的升温速率从室温升到450℃,然后以2℃/min的升温速率升到650℃,并保温2h;烧结过程:烧结温度为1270-1290℃;保温时间为2-4h;埋烧粉为ZrO2和Pb3O4混合物、PbZrO3或PZT。
上述大长径比压电陶瓷管制备方法,化学镀方法为化学镀镍;空气极化法的极化电场为2.0-3.5kV/mm,极化温度可25-65℃,极化时间为5-20min。
上述大长径比压电陶瓷管制备方法,大长径比压电陶瓷管的外径为1.98-2.3mm,内径为0.6-1.2mm,长度为100-200mm。
本发明的工作原理:
先制得具有一定活性的陶瓷预烧粉;再将陶瓷预烧粉、粘结剂以及增塑剂混合搅拌,制得陶瓷混合泥料;再经真空练泥,得到均匀、高可塑性的陶瓷泥团;然后选择不同孔径的模具,通过液压装置,调节挤压工艺参数如挤出压力、挤出速度等,将陶瓷泥团加工成所需尺寸要求的陶瓷管素坯;经干燥、排胶、烧结,制得压电陶瓷管;最后经金属化、极化,制得优良压电性能的大长径比压电陶瓷管。
本发明的有益效果是:
采用本发明方法可制得表面平整、形状规整、长径比大(高平均半径比h/R0>100)、均匀致密、压电系数高的压电陶瓷管,满足主动振动控制压电复合材料及储能压电复合材料的制备要求。此外,本发明所述大长径比压电陶瓷管的制备方法,陶瓷管的尺寸由挤出口尺寸控制,能制备不同尺寸的陶瓷管,具有制备工艺简单、易于自动化操作,效率高,污染小,可连续生产等优点,广泛应用于多种压电材料体系陶瓷管的制备,如锆钛酸铅(PZT)、钛酸钡(BT)等。
附图说明
下面结合附图对本发明作进一步说明:
图1为大长径比压电陶瓷管的制备工艺流程图。
图2为采用槽板定形示意图。图中:1为陶瓷管素坯;2为Al2O3槽板。
图3为实施例1中锆钛酸铅PZT5陶瓷管素坯的排胶升温曲线。
图4为实施例1中锆钛酸铅PZT5大长径比压电陶瓷管在1290 ℃,2h烧成条件下烧结后的XRD图谱。
图5为实施例1中锆钛酸铅PZT5大长径比压电陶瓷管在1290 ℃,2h烧成条件下烧结后的放大60倍SEM图;
图6为实施例1中锆钛酸铅PZT5大长径比压电陶瓷管在1290 ℃,2h烧成条件下烧结后的放大8000倍SEM图。
图7为实施例1中锆钛酸铅PZT5大长径比压电陶瓷管在1290 ℃,2h烧成条件下烧结后的一阶谐振附近的阻抗-频率曲线。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下参照附图并举实施例,对本发明进一步详细说明。
实施例1
(1)陶瓷预烧粉的制备
按陶瓷预烧粉组成Pb(Zr0.53Ti0.47)O3-0.4wt % Nb2O5所需的配比称量红色氧化铅(Pb3O4)、二氧化锆(ZrO2)、二氧化钛(TiO2)主原料及五氧化二铌(Nb2O5)掺杂料进行配料;将称量好的原料采用湿法球磨30min,使原料混合均匀以利于预烧时各原料间充分进行反应,球磨时取球、料、水的重量比为2:1:0.6,装填系数约为0.5;将混合好的粉料在80℃下烘干24h后装入模具在粉末压片机上压成2cm的圆片状坯体;将将坯体放入电阻炉中进行预烧处理,先缓慢升温至650℃保温1-2小时,以生成PbTiO3,再缓慢升温到850℃保温2h,以生成锆钛酸铅压电陶瓷(PZT);最后,经粉碎造粒制得粒度1μm左右,比表面积为3.5m2·g-1左右的陶瓷预烧粉;
(2)陶瓷泥团的制备
采用平均聚合度为1750±50聚乙烯醇(Polyvinyl alcohol)配置成重量百分比为10%的PVA水溶液作为粘结剂,选用分析纯(AR)的丙三醇(Glycerin)作为增塑剂;按陶瓷预烧粉:PVA水溶液:丙三醇为26:3:1的比例混合,即陶瓷固含量为87%;将上述混合料搅拌均匀并摔打成泥团,真空练泥,使泥团具有高塑性;取出,密封陈腐24h后备用;
(3)陶瓷管素坯的挤制成型
将陈腐好的陶瓷泥团装入挤管机,通过液压装置调节挤出压力为6MPa,以获得适宜的挤出速度,制得外径为2mm,内径为1mm,长为152mm的陶瓷管素坯;
(4)干燥
将挤出的陶瓷管素坯放入氧化铝槽板中保证陶瓷管的平直度,同时放入恒温干燥箱中在80℃下干燥24h,使陶瓷管素坯中的水分尽可能蒸发,陶瓷管形状固定;
(5)胶烧结排
以1℃/min的升温速率从室温升到400℃,然后以2℃/min的升温速率升到800℃,并保温2h进行排胶处理;然后在1290℃,2h的烧成制度下进行烧结处理,同时采用重量比为20:6的ZrO2:Pb3O4混合物为埋烧粉;
(6)镀电极、极化
采用化学镀方法在陶瓷管内外壁镀覆一层镍,光亮、致密、满足极化要求的电极;再经空气极化法实现大长径比压电陶瓷管的有效极化,极化电场为2.0kV/mm,极化温度为25℃,极化时间为15min;最终制得大长径比压电陶瓷管的外径为1.98mm,内径为0.8mm,长为150mm;横向机电耦合系数 K 31为0.49,相对介电常数ε r 为1789,介电损耗tanδ 为0.026,机械品质因素Q m 为11,符合主动振动控制复合材料和压电储能复合材料的制备要求。
从图5可以看到,烧结所得陶瓷管由单一钙钛矿相组成,且相组成处于三方-四方相共存的准同型相界区间,无ZrO2、烧绿石或其他杂相;从图6可以看出,烧结所得陶瓷管表面形貌良好,且晶粒大小均匀,晶界清晰,结构致密;由图7可以看出,大长径比压电陶瓷管的谐振频率 f r 、反谐振频率f a 和最小阻抗Z min分别为1280 kHz,1324 kHz,5.3 Ω。
实施例2
(1)按陶瓷化学组成Pb(Zr0.53Ti0.47)O3-0.6wt % Nb2O5所需的配比称量红色氧化铅(Pb3O4)、二氧化锆(ZrO2)、二氧化钛(TiO2)主原料及五氧化二铌(Nb2O5)掺杂料进行配料;将称量好的原料采用湿法球磨50min,使原料混合均匀以利于预烧时各原料间充分进行反应,球磨时一般取球、料、水的重量比为2:1:0.6,装填系数约为0.6;将混合好的粉料在80℃下烘干24h后装入模具在粉末压片机上压成4cm的圆片状坯体;将的圆片状坯体放入电阻炉中进行预烧处理,升温到850℃保温2h以生成PZT;最后,经粉碎造粒制得粒度1μm左右,比表面积为3.5m2·g-1左右的陶瓷预烧粉;
(2)采用平均聚合度为1750±50聚乙烯醇(Polyvinyl alcohol)配置成重量百分比为10%的PVA水溶液作为粘结剂,选用分析纯(AR)的丙三醇(Glycerin)作为增塑剂;按PZT陶瓷预烧粉:PVA水溶液:丙三醇为29:3:1的比例混合,即陶瓷固含量为88%;将上述混合料搅拌均匀并摔打成泥团,真空练泥,使泥团具有高塑性;取出,密封陈腐24h后备用;
(3)将陈腐好的陶瓷泥团装入挤管机,通过液压装置调节挤出压力为8MPa,以获得适宜的挤出速度,制得外径为2.2mm,内径为1.4mm,长为170mm的陶瓷管素坯;
(4)将挤出的陶瓷管素坯放入氧化铝槽板中保证陶瓷管的平直度,同时放入恒温干燥箱中在90℃下干燥24h,使PZT5陶瓷管素坯中的水分尽可能蒸发,陶瓷管形状固定;
(5)以1℃/min的升温速率从室温升到400℃,然后以2℃/min的升温速率升到800℃,并保温2h进行排胶处理;然后在1290℃,2h的烧成制度下进行烧结处理,同时采用ZrO2及Pb3O4混合物为埋烧粉;
(6)采用化学镀方法在陶瓷管内外壁镀覆一层光亮、致密、满足极化要求的电极;再经空气极化法实现大长径比压电陶瓷管的有效极化,极化电场为2.0kV/mm,极化温度为25℃,极化时间为15min,最终制得大长径比压电陶瓷管的外径为2mm,内径为1.2mm,长为160mm。
实施例3
陶瓷预烧粉化学组成Pb0.95Sr0.05(Zr0.54Ti0.46)O3-0.9 wt %La2O3-0.9 wt % Nb2O5;烧结温度为1280℃,4h;极化电场为2.5kV/mm,极化温度为45℃,极化时间为10min;其余条件同实施例1。
实施例4
采用8%的聚乙烯醇缩丁醛(PVB)溶液作为粘结剂(乙醇为溶剂),邻苯二甲酸二丁酯(DBP)作为增塑剂,按陶瓷预烧粉:PVB溶液:DBP为87:10:3的比例混合,即陶瓷固含量为87%;以1℃/min的升温速率从室温升到450℃,然后以2℃/min的升温速率升到650℃,并保温2h进行排胶处理;其余条件同实施例1。
实施例5
在制备陶瓷泥团时,陶瓷固含量为83%,即陶瓷预烧粉:PVA水溶液:丙三醇为20:3:1;挤出压力为4MPa。其余条件同实施例1。
实施例6
在制备陶瓷管素坯时,挤制所得陶瓷管素坯的外径为2.4mm,内径为1.4mm,长为200mm。其余条件同实施例1。最终烧结所得陶瓷管外径为2.2mm,内径为1.2mm,长为200mm。
实施例7
同实施例1,所不同的是烧结温度为1280℃,保温4h,所得到的陶瓷为三方相钙钛矿结构。
实施例8
同实施例1,所不同的是采用PbZrO3作为埋烧粉。
实施例9
同实施例1,所不同的是采用PZT作为埋烧粉。
实施例10
同实施例1,所不同的是极化电场为3.0kV/mm,极化温度为65℃,极化时间为5min。
上述具体实施方式仅是本发明的具体个案,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施方式。但是凡是未脱离本发明技术原理的前提下,依据本发明的技术实质对以上实施方式所作的任何简单修改、等同变化与改型,皆应落入本发明的专利保护范围。

Claims (10)

1.一种大长径比压电陶瓷管制备方法,其特征在于包括以下步骤:
1)将陶瓷预烧粉、粘结剂和增塑剂,混合搅拌均匀并摔打成泥团,真空练泥,密封陈腐备用;
其中,陶瓷固含量为83-89%;
2)将陈腐好的陶瓷泥团装入挤出成型设备中,制得符合要求的陶瓷管素坯;
3)陶瓷管素坯在恒温下干燥、排胶、烧结;
4)采用化学镀方法在陶瓷管表面镀覆一层导电电极;采用空气极化方法实现陶瓷管的极化即得大长径比压电陶瓷管。
2.根据权利要求1所述大长径比压电陶瓷管制备方法,其特征在于:陶瓷预烧粉化学组成Pb(Zr0.53Ti0.47)O3-xwt%Nb2O5,xwt%是指Nb2O5 占Pb(Zr0.53Ti0.47)O3的质量百分比,x为0.4-0.9。
3.根据权利要求1所述大长径比压电陶瓷管制备方法,其特征在于:陶瓷预烧粉化学组成Pb0.95Sr0.05(Zr0.54Ti0.46)O3-0.9wt %La2O3-0.9wt % Nb2O5
4.根据权利要求1所述大长径比压电陶瓷管制备方法,其特征在于:陶瓷预烧粉制备方法如下:按陶瓷预烧粉化学组成所需的配比称量原料;然后,将称量好的原料采用湿法球磨混合均匀,球磨时球、料、水的重量比为2:1:0.4-0.6,球磨时间可为30-60min;再将混合好的粉料在80-100℃下进行烘干处理后装入模具压制成2-4cm的圆片状坯体;将坯体在800-900℃进行预烧处理;最后经粉碎造粒制得陶瓷预烧粉。
5.根据权利要求1所述大长径比压电陶瓷管制备方法,其特征在于:粘结剂为重量百分比为10%的PVA水溶液或8%PVB乙醇溶液;增塑剂为丙三醇或邻苯二甲酸二丁酯。
6.根据权利要求1所述大长径比压电陶瓷管制备方法,其特征在于:步骤2中挤出压力可为4-10MPa;陶瓷管素坯的外径为2-2.5mm,内径为0.8-1.4mm,长可为100-210mm。
7.根据权利要求1所述大长径比压电陶瓷管制备方法,其特征在于:陶瓷管素坯放入氧化铝槽板然后恒温干燥箱中,干燥温度为80-100℃,干燥时间24h。
8.据权利要求1所述大长径比压电陶瓷管制备方法,其特征在于:排胶过程为以1℃/min的升温速率从室温升到400℃,然后以2℃/min的升温速率升到800℃,并保温2h;或者以1℃/min的升温速率从室温升到450℃,然后以2℃/min的升温速率升到650℃,并保温2h;烧结过程:烧结温度为1270-1290℃;保温时间为2-4h;埋烧粉为ZrO2和Pb3O4混合物、PbZrO3或PZT。
9.权利要求1所述大长径比压电陶瓷管制备方法,其特征在于:化学镀方法为化学镀镍;空气极化法的极化电场为2.0-3.5kV/mm,极化温度可25-65℃,极化时间为5-20min。
10.权利要求1至9任一项所述大长径比压电陶瓷管制备方法,其特征在于:大长径比压电陶瓷管的外径为1.98-2.3mm,内径为0.6-1.2mm,长度为100-200mm。
CN201610330004.5A 2016-05-18 2016-05-18 大长径比压电陶瓷管制备方法 Pending CN106007711A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610330004.5A CN106007711A (zh) 2016-05-18 2016-05-18 大长径比压电陶瓷管制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610330004.5A CN106007711A (zh) 2016-05-18 2016-05-18 大长径比压电陶瓷管制备方法

Publications (1)

Publication Number Publication Date
CN106007711A true CN106007711A (zh) 2016-10-12

Family

ID=57097571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610330004.5A Pending CN106007711A (zh) 2016-05-18 2016-05-18 大长径比压电陶瓷管制备方法

Country Status (1)

Country Link
CN (1) CN106007711A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107117964A (zh) * 2017-05-15 2017-09-01 湖北大学 一种不同温度预烧料混合的pzt压电陶瓷及其制备方法
WO2020144578A1 (en) * 2019-01-07 2020-07-16 Sabic Global Technologies B.V. Piezoelectric compositions and uses thereof
CN112279642A (zh) * 2020-10-22 2021-01-29 江西欧迈斯微电子有限公司 压电纤维及其制备方法
CN114147996A (zh) * 2021-11-24 2022-03-08 航天特种材料及工艺技术研究所 一种含大长细比内部通道复合材料结构及其制备方法
CN115925413A (zh) * 2022-10-11 2023-04-07 广东奥迪威传感科技股份有限公司 压电陶瓷材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101941840A (zh) * 2010-10-09 2011-01-12 天津大学 制备铌镍-锆钛酸铅压电陶瓷的b位氧化物前驱体方法
CN102431086A (zh) * 2011-11-17 2012-05-02 何锡伶 一种高精度薄壁陶瓷管的成型方法
CN102515768A (zh) * 2011-12-26 2012-06-27 宁波伏尔肯机械密封件制造有限公司 一种碳化硅陶瓷管的制备方法
CN104183695A (zh) * 2014-09-02 2014-12-03 济南大学 大长径比压电陶瓷管的极化系统及其极化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101941840A (zh) * 2010-10-09 2011-01-12 天津大学 制备铌镍-锆钛酸铅压电陶瓷的b位氧化物前驱体方法
CN102431086A (zh) * 2011-11-17 2012-05-02 何锡伶 一种高精度薄壁陶瓷管的成型方法
CN102515768A (zh) * 2011-12-26 2012-06-27 宁波伏尔肯机械密封件制造有限公司 一种碳化硅陶瓷管的制备方法
CN104183695A (zh) * 2014-09-02 2014-12-03 济南大学 大长径比压电陶瓷管的极化系统及其极化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIAO QU等: ""Fabrication and properties of PZT piezoelectric ceramic tubes with large length-diameter ratio"", 《CERAMICS INTERNATIONAL》 *
KAZUYASU HIKITA等: "Piezoelectric properties of the porous PZT and the porous PZT composite with silicone rubber", 《FERROELECTRICS》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107117964A (zh) * 2017-05-15 2017-09-01 湖北大学 一种不同温度预烧料混合的pzt压电陶瓷及其制备方法
CN107117964B (zh) * 2017-05-15 2019-09-13 湖北大学 一种不同温度预烧料混合的pzt压电陶瓷及其制备方法
WO2020144578A1 (en) * 2019-01-07 2020-07-16 Sabic Global Technologies B.V. Piezoelectric compositions and uses thereof
CN113490709A (zh) * 2019-01-07 2021-10-08 沙特基础全球技术有限公司 压电组合物及其用途
CN112279642A (zh) * 2020-10-22 2021-01-29 江西欧迈斯微电子有限公司 压电纤维及其制备方法
CN112279642B (zh) * 2020-10-22 2022-08-05 江西欧迈斯微电子有限公司 压电纤维及其制备方法
CN114147996A (zh) * 2021-11-24 2022-03-08 航天特种材料及工艺技术研究所 一种含大长细比内部通道复合材料结构及其制备方法
CN114147996B (zh) * 2021-11-24 2024-01-09 航天特种材料及工艺技术研究所 一种含大长细比内部通道复合材料结构及其制备方法
CN115925413A (zh) * 2022-10-11 2023-04-07 广东奥迪威传感科技股份有限公司 压电陶瓷材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN106007711A (zh) 大长径比压电陶瓷管制备方法
CN102924082A (zh) 锰掺杂铌镍-锆钛酸铅压电陶瓷及其制备方法
JP2010103301A (ja) 圧電素子の製造方法及び圧電素子
JP4940389B2 (ja) 無鉛圧電磁器複合体及びこれを用いた圧電素子
JPH05254955A (ja) 多孔質pztセラミックスの製造方法
CN110981480A (zh) 一种高Tr-t和Tc的铅基<001>C织构压电陶瓷材料及其制备方法
CN103693960B (zh) 一种具有高电致应变的铌锌酸铅-锆钛酸铅基压电陶瓷材料及其制备方法和应用
CN105645957B (zh) 一种高机电耦合性能锆钛酸铅细晶压电陶瓷及其制备方法
JP5662197B2 (ja) 圧電/電歪焼結体、及び圧電/電歪素子
JP2000072539A (ja) 圧電体
JP5550401B2 (ja) 圧電磁器およびそれを用いた圧電素子
EP3766856A1 (en) Piezoelectric ceramic, ceramic electronic component, and production method for piezoelectric ceramic
JP2006265055A (ja) 圧電セラミックスの製造方法
JP3629285B2 (ja) 圧電セラミックの製法
KR102023888B1 (ko) 전계유기 변형특성이 우수한 저온소결 무연 압전 세라믹스의 제조방법
CN115819082B (zh) 一种压电陶瓷材料及其制备方法
JP5054149B2 (ja) 圧電/電歪膜型素子
KR100816039B1 (ko) Bnbt계 압전 세라믹 및 그 제조 방법
JP3993395B2 (ja) 圧電磁器およびその製造方法並びに圧電素子
JP3781317B2 (ja) 圧電磁器材料
JP6627440B2 (ja) 圧電セラミック、圧電セラミック電子部品、及び圧電セラミックの製造方法
JPH11100265A (ja) 圧電磁器組成物
JPH1117242A (ja) 焼成セラミック板の製造方法
JP3802611B2 (ja) 圧電磁器材料
KR102627416B1 (ko) 압전 특성이 향상된 삼성분계 압전 세라믹의 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161012