WO2013069822A1 - 電極材料及び点火プラグ用電極、並びに点火プラグ - Google Patents

電極材料及び点火プラグ用電極、並びに点火プラグ Download PDF

Info

Publication number
WO2013069822A1
WO2013069822A1 PCT/JP2012/083774 JP2012083774W WO2013069822A1 WO 2013069822 A1 WO2013069822 A1 WO 2013069822A1 JP 2012083774 W JP2012083774 W JP 2012083774W WO 2013069822 A1 WO2013069822 A1 WO 2013069822A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode material
oxide film
less
oxide layer
Prior art date
Application number
PCT/JP2012/083774
Other languages
English (en)
French (fr)
Inventor
肇 太田
西川 太一郎
正男 作田
和郎 山▲崎▼
健之 徳田
新 冨田
義幸 高木
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201280068685.2A priority Critical patent/CN104114723A/zh
Priority to US14/375,572 priority patent/US20140370258A1/en
Priority to DE112012002495.8T priority patent/DE112012002495T5/de
Publication of WO2013069822A1 publication Critical patent/WO2013069822A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick

Definitions

  • Al, Si, Cr makes it difficult to form compound grains and has an effect of suppressing sweating at high temperatures.
  • Corrosion resistance can be improved by containing Al, Si, and Cr and making the ratio of Si and Cr within a specific range.
  • Mn When Mn is further added, the effect of suppressing internal oxidation, the effect of suppressing sweating at high temperatures, and the effect of improving corrosion resistance are obtained.
  • the electrode material of the present invention composed of the nickel alloy having the specific composition described above has (1) Al, Si, Cr, and Y in a specific range, thereby providing an excellent oxidation suppression effect. By containing more than Al, it is superior in oxidation suppression effect. (3) Further, by containing Ti in a specific range, nitridation of Al can be suppressed, and expansion, cracking, peeling, etc. of oxide film can be prevented. (4) By containing Y in a specific range, the growth of crystal grains at high temperatures can be suppressed. From these points, the electrode material of the present invention is excellent in oxidation resistance even when used in a high temperature environment.
  • the electrode material of the present invention contains Al, Si, Cr, and Mn as appropriate, so that the nickel alloy itself is excellent in corrosion resistance and satisfies the Si / Cr ⁇ 1, so that the oxide film itself is also resistant. Excellent corrosivity.
  • the electrode material of the present invention there is a form containing more than 0.3% of Y by mass%.
  • the above form is more excellent in high temperature oxidation resistance by sufficiently containing Y.
  • a form containing B in an amount of more than 0% and 0.05% or less by mass% can be mentioned.
  • the above-mentioned form is excellent in hot workability by containing B, and the productivity of the electrode material can be improved.
  • the electrode material of the present invention there is an embodiment in which the electrode material has a specific resistance at room temperature of 25 ⁇ ⁇ cm or less.
  • the electrode material of the present invention having the above-described configuration can be suitably used as a material for an electrode for an ignition plug used in an internal combustion engine, particularly in a very high temperature environment of about 1000 ° C. or higher.
  • the spark plug electrode of the present invention is composed of the electrode material of the present invention.
  • the spark plug electrode of the present invention can construct a spark plug excellent in high-temperature oxidation resistance, spark wear resistance, sweat resistance, and corrosion resistance.
  • the electrode for a spark plug of the present invention there is a form constituted by the electrode material of the present invention and having no oxide film on the surface thereof.
  • Another embodiment of the spark plug electrode according to the present invention includes an electrode material according to the present invention, and at least a part of the surface of which includes an oxide film.
  • the oxide film has a two-layer structure of an internal oxide layer and a surface oxide layer, and satisfies at least one of the above (A) to (D).
  • the spark plug of the present invention includes the spark plug electrode of the present invention.
  • the spark plug of the present invention comprises the spark plug electrode of the present invention having excellent resistance to high-temperature oxidation, spark wear resistance, sweat resistance, and corrosion resistance, it can be used for frequent idling stop or EGR. Even when it is performed, it is expected that it can be used satisfactorily for a long time.
  • a spark plug electrode having a specific oxide film is provided, it is expected to be excellent in corrosion resistance from the initial use to a long term.
  • Al and Si are elements having a high effect of suppressing oxidation.
  • Ni contains both elements, an oxide containing Al or Si is intentionally or later formed on the surface of the electrode material (by forming an oxide film intentionally or later), and the electrode material ( Invasion of oxygen into the inside of the base material is reduced, and oxidation, particularly internal oxidation, is suppressed.
  • the internal oxide layer is not excessively thick, and a dense and excellent oxide film can be generated, and this oxide film can be maintained.
  • Ni contains Al and Si together with Cr and Mn described later, the generation of the above-described compound particles is suppressed, and the sweat resistance is excellent.
  • Ni contains both Al and Si, and the content thereof is relatively reduced, and instead contains Ti as an element having a high effect of suppressing internal oxidation.
  • Si has a higher oxidation suppressing effect than Al
  • Ni contains more Si than Al. contains.
  • Specific contents are Al: 0.005% to 0.2%, Si: 0.2% to 1.6%. More preferable contents include Al: 0.01% or more and 0.15% or less, Si: 0.5% or more and 1.5% or less, and further 1.3% or less.
  • (Y: Yttrium) Y mainly forms an intermetallic compound with Ni of the alloy mother phase and exists as an intermetallic compound, and a very small part thereof exists as a solid solution in Ni. Due to the so-called pinning effect of this intermetallic compound, the electrode material of the present invention can effectively suppress the growth of crystal grains even in a very high temperature environment such as 900 ° C. or higher, further 1000 ° C. or higher. Therefore, the spark plug electrode of the present invention composed of the electrode material of the present invention can maintain the crystal grains in a fine state over a long period of time even when the use environment temperature is very high as described above, and the intrusion of oxygen. And the internal oxidation can be effectively suppressed.
  • Y In order to have such excellent oxidation resistance, particularly high temperature oxidation resistance, it is preferable to contain 0.2% or more of Y.
  • the more Y the finer the crystal grains can be maintained and the higher the high temperature oxidation resistance tends to be.
  • Y content 1.0% or less the thermal deterioration of the electrode due to an increase in the specific resistance is suppressed, and the spark wear resistance is excellent. It is easy to process into an electrode and is excellent in electrode manufacturability.
  • Y is less likely to occlude hydrogen than other rare earth elements, even when heat treatment is performed in an atmosphere containing hydrogen in the manufacturing process, the electrode material of the present invention is unlikely to cause hydrogen embrittlement. .
  • a more preferable content of Y includes more than 0.3% and 0.75% or less.
  • the electrode material of the present invention a small amount of Al is added to Ni as described above, Cr is an essential element, and Mn is an optional additive element.
  • Cr is an essential element
  • Mn is an optional additive element.
  • the Cr content is 0.05% or more and 1.0% or less.
  • Mn is contained, the content of Mn is preferably 0.05% or more and 0.5% or less. More preferable contents include Cr: 0.1% or more, further 0.2% or more and 0.8% or less, and Mn: 0.05% or more and 0.3% or less.
  • the electrode material of the present invention is excellent in high-temperature oxidation resistance and maintains a structure with fine crystal grains even when exposed to a high temperature environment such as 900 ° C. or higher, and further 1000 ° C. or longer. Can do.
  • the electrode material of the present invention can satisfy an average crystal grain size of 300 ⁇ m or less after heating at 1000 ° C. for 100 hours.
  • the condition of “1000 ° C. ⁇ 100 hours” is very severe because it is a temperature condition equivalent to or higher than the maximum temperature achieved during use in a conventional general gasoline engine and a long heating time. It mimics the conditions.
  • the smaller the crystal grains constituting the electrode material the more oxygen can be prevented from entering the alloy base as described above, and the high temperature oxidation resistance is excellent. Can be evaluated. Therefore, in the present invention, “average crystal grain size after heating at 1000 ° C. ⁇ 100 hours” is adopted as an index for evaluating high-temperature oxidation resistance.
  • the average crystal grain size can be changed depending on the content of the additive element. For example, an electrode material satisfying 200 ⁇ m or less, 150 ⁇ m or less, 120 ⁇ m or less, or 100 ⁇ m or less can be obtained. As described above, the smaller the average crystal grain size, the longer the total length of the crystal grain boundaries and the easier it is to prevent oxygen from entering into the alloy base, and no lower limit is set. “Average crystal grain size after heating at 1000 ° C. ⁇ 100 hours” tends to be smaller as the Y content is particularly large.
  • the electrode material of the present invention has a small specific resistance, for example, a specific resistance at room temperature (typically about 20 ° C.) can satisfy 25 ⁇ ⁇ cm or less.
  • the specific resistance varies mainly depending on the content of the additive element. The smaller the content of the additive element, the smaller the specific resistance tends to be, for example, 20 ⁇ ⁇ cm or less, and further 15 ⁇ ⁇ cm or less. The smaller the specific resistance, the better the spark wear resistance, and no lower limit is set.
  • high Ni alloys with a high content of pure nickel and Ni typically, the total content of additive elements: 1% by mass or less
  • the present inventors have found that when the oxide film after high-temperature oxidation is in a specific state, it has excellent corrosion resistance. Specifically, after oxidation by heating at 900 ° C. for 24 hours, an oxide film having a two-layer structure of the above-described internal oxide layer and surface oxide layer is formed on the surface of the electrode material. Obtained at least one of the following (A) to (D), the corrosion resistance was excellent.
  • the state of the oxide film formed under the condition of 900 ° C. ⁇ 24 hours is the same as the condition used for the above-mentioned evaluation of the high temperature oxidation resistance: the state of the oxide film formed at 1000 ° C. ⁇ 100 hours.
  • this oxidation condition: 900 ° C. ⁇ 24 hours can be said to be a condition that more accurately simulates the actual use environment. Therefore, in the present invention, “state of oxide film after heating at 900 ° C. ⁇ 24 hours” is adopted as an index for evaluating corrosion resistance.
  • A Thickness ratio: more than 16% and less than 173%
  • B surface oxide layer thickness: more than 15 ⁇ m and less than 57 ⁇ m
  • C inner oxide layer thickness: more than 33 ⁇ m and less than 80 ⁇ m
  • D Total thickness of the surface oxide layer and the inner oxide layer: more than 48 ⁇ m and less than 90 ⁇ m.
  • any one of the forms satisfying any one, the form satisfying any two, the form satisfying any three, or the form satisfying all four may be used. A method for measuring the thickness and the like will be described later.
  • the inventors of the present invention manufactured from an electrode material comprising an oxide film composed of the above specific composition and satisfying at least one of the above (A) to (D).
  • An electrode having an oxide film satisfying at least one of (D) or an electrode substrate composed of the specific composition described above is subjected to an oxidation treatment, and at least one of the above (A) to (D)
  • an electrode including an oxide film satisfying the above condition is excellent in corrosion resistance even in the initial period of use and excellent in corrosion resistance from the initial period of use to a long period of time.
  • the electrode material or electrode composed of the above-mentioned specific composition does not substantially include a specific oxide film satisfying at least one of the above-mentioned (A) to (D) before using the spark plug.
  • the specific oxide film is formed at the time of use as described above, resulting in a state of excellent corrosion resistance.
  • a plating process or the like is required, leading to a decrease in productivity.
  • it has the said specific oxide film before use it can be made into the state which is excellent in corrosion resistance from the initial stage of use in addition to making a plating process etc. unnecessary.
  • an electrode material having an oxide film satisfying at least one of the above-mentioned (A) to (D) on at least a part of its surface is proposed.
  • an electrode including the specific oxide film By using the electrode material including the specific oxide film, an electrode including the specific oxide film on at least a part of the surface can be manufactured.
  • the electrode material of the present invention typically includes a wire formed by wire drawing.
  • the cross-sectional shape can be various shapes such as a rectangular shape and a circular shape.
  • a cross-sectional size and a wire diameter can also be selected suitably.
  • a rectangular wire with a rectangular cross section has a thickness of about 1 mm to 3 mm and a width of about 2 mm to 4 mm
  • a round wire with a circular cross section has a wire diameter of about 2 mm to 6 mm.
  • the electrode material of the present invention is typically obtained by a process of melting ⁇ casting ⁇ hot rolling ⁇ cold drawing and heat treatment ( ⁇ oxidation as appropriate).
  • ⁇ oxidation as appropriate.
  • the atmosphere during melting or casting is controlled so that, for example, the oxygen concentration is lower than that in the air atmosphere (for example, oxygen concentration: 10% by volume or less)
  • the oxidation of Y is suppressed and between the metals containing Y
  • the compound can be fully present in the electrode material.
  • the heating temperature in a non-oxidizing atmosphere for example, an atmosphere having a low oxygen concentration such as a hydrogen atmosphere, a nitrogen atmosphere, or an atmosphere substantially free of oxygen: It is preferably carried out at 700 ° C. to 1000 ° C., particularly about 800 ° C. to 950 ° C.
  • a softening treatment it is easy to process the electrode material into a predetermined electrode shape, or the processing strain introduced by the processing before the softening treatment is removed, and the specific resistance of the electrode material and the shape of the electrode after molding are removed. The specific resistance can be reduced.
  • rolling can be performed as appropriate.
  • the shape of the wire can be changed by this rolling (for example, changing from a circular cross section to a rectangular cross section).
  • the softening process can be performed after rolling.
  • a heat treatment (oxidation process) for forming an oxide film is performed after the cold wire drawing, the rolling, or the softening process.
  • the conditions for the oxidation treatment are adjusted so that the oxide film has a desired thickness ratio and thickness.
  • the heating temperature is 800 ° C. or higher and 1100 ° C. or lower, preferably 900 ° C. or higher and 1000 ° C. or lower.
  • the atmosphere is an atmosphere containing oxygen. In the case of an air atmosphere, the atmosphere is easily controlled, and since the oxygen concentration is relatively high, the formation time of the oxide film can be shortened and the productivity is excellent.
  • a low oxygen atmosphere having an oxygen concentration of 0.02% by volume to 20% by volume and a high oxygen atmosphere having an oxygen concentration of more than 20% by volume can also be used.
  • atmospheric gases other than oxygen include inert gases such as nitrogen, argon, and helium.
  • the holding time varies depending on the oxygen concentration. For example, in the case of an air atmosphere, the holding time is 1 hour to 100 hours, further 1 hour to 72 hours, particularly 2 hours to 24 hours.
  • examples include 2 hours to 200 hours, 3 hours or more, particularly 10 hours to 100 hours.
  • examples include 0.5 hours or more and 50 hours or less.
  • the oxidation treatment can be performed by continuous treatment in addition to the batch treatment described above.
  • the continuous treatment is performed using an energizing heating furnace such as induction heating or resistance heating, an atmospheric furnace, or the like.
  • an energizing heating furnace such as induction heating or resistance heating, an atmospheric furnace, or the like.
  • conditions are adjusted so that the oxide film has the above-described specific thickness ratio, thickness, and the like.
  • the wire speed, the size of the heating target (wire diameter), the current value, etc. in the atmospheric furnace, the wire speed, the size of the heating target (wire diameter), the size of the furnace (in the case of a pipe furnace, Adjust the diameter).
  • the region where the oxide film is present in the electrode material can be selected as appropriate.
  • the form which provides an oxide film in the whole outer peripheral surface is mentioned. This form does not require masking or the like, and can easily form a wire having an oxide film.
  • the electrode material of the present invention can be suitably used for any constituent material of the center electrode and the ground electrode provided in the spark plug.
  • the ground electrode is disposed closer to the center of the combustion chamber in an internal combustion engine such as an automobile engine than the center electrode. Since the electrode material of the present invention is excellent in characteristics at a high temperature as described above, even the constituent material of the ground electrode can be suitably used.
  • the spark plug electrode of the present invention can be produced by cutting the electrode material into an appropriate length, or by further shaping the cut material into a predetermined shape.
  • the electrode having the specific oxide film is a form having an oxide film on substantially the entire outer surface of the electrode, a part of the outer surface (e.g., the ground electrode is not facing the center electrode, the center electrode is And a portion having an oxide film only in a portion not facing the ground electrode).
  • An electrode having such an oxide film is manufactured using an electrode material having the above oxide film, or after forming an electrode material having no oxide film into a desired electrode shape, the above-described oxidation treatment is performed. It can be manufactured by going. When an electrode material having an oxide film is cut, the cut surface does not have an oxide film.
  • the oxide film is not necessarily formed on the entire outer surface of the electrode as long as the electrode has an oxide film at a desired location. There is no need to have.
  • an electrode having an oxide film on the entire outer surface of the electrode or an electrode having an oxide film only on a desired region of the outer surface can be easily obtained. Can be manufactured.
  • the spark plug electrode of the present invention (which may or may not include the specific oxide film) can be suitably used as a constituent member of a spark plug used for ignition in an internal combustion engine such as an automobile engine.
  • the spark plug of the present invention typically includes an insulator, a metal shell that holds the insulator, a center electrode that is held in the insulator and partially protrudes from the tip of the insulator, A grounding electrode having one end welded to the front end surface of the metal shell and the other end facing the end surface of the center electrode, and a terminal metal fitting provided at the rear end of the insulator Is mentioned.
  • the spark plug electrode of the present invention can be used.
  • a plurality of nickel alloy wires were prepared as materials for spark plug electrodes used for ignition of general automobile gasoline engines, and their characteristics were evaluated.
  • Each wire was prepared as follows. Using a normal vacuum melting furnace, a nickel alloy melt having the composition shown in Table 1 (unit: mass%, Si / Cr: mass ratio) was prepared. Commercially available pure Ni (99.0 mass% or more Ni) and grains of each additive element were used as the raw material for the molten metal. In addition, the molten metal was refined to reduce and remove impurities and inclusions. The refining conditions were adjusted so that any sample did not substantially contain C (C: 0.05% by mass or less). And it melt
  • the obtained ingot was reheated and forged to obtain a billet of about 150 mm square.
  • This billet was hot-rolled to obtain a rolled wire having a wire diameter of 5.5 mm ⁇ .
  • the rolled wire rod was subjected to a combination of cold wire drawing and heat treatment to obtain cold wire rods (both round wires) having a wire diameter of 2.5 mm ⁇ and a wire diameter of 4.2 mm ⁇ .
  • the cold-drawn wire with a wire diameter of 2.5 mm ⁇ was further rolled and deformed so as to have a rectangular cross section of 1.5 mm ⁇ 2.8 mm to obtain a rectangular wire.
  • compositions of each obtained sample electrode material (soft material) was examined using an inductively coupled plasma (ICP) emission spectroscopic analyzer, it was the same as the composition shown in Table 1, the additive elements shown in Table 1, The balance was composed of Ni and inevitable impurities. In addition, the Ni content of each sample was 90% by mass or more (samples No. 1 to No. 11 were Ni: 97% by mass or more).
  • the composition can be analyzed by ICP emission spectrometry or by atomic absorption spectrophotometry. In Table 1, “-(hyphen)” is less than the detection limit and indicates that it is not substantially contained.
  • each sample containing Y was observed with a scanning electron microscope (SEM) and subjected to elemental analysis by energy dispersive X-ray analysis (EDX), or examined using an electron beam microanalyzer (EPMA). It was confirmed that an intermetallic compound of Y and Ni was present.
  • SEM scanning electron microscope
  • EDX energy dispersive X-ray analysis
  • EPMA electron beam microanalyzer
  • Electrode material soft material
  • the results are shown in Table 2.
  • the specific resistance room temperature
  • ⁇ Oxidation resistance> Each of the prepared samples was examined for high temperature oxidation resistance.
  • an atmospheric furnace in which the above-described ground electrode using a 1.5 mm ⁇ 2.8 mm rectangular wire (soft material) and the center electrode using a round wire (soft material) with a wire diameter of 4.2 mm ⁇ are heated to 1000 ° C. After being heated for 1 hour, it was taken out of the above atmospheric furnace, air-cooled for 30 minutes, and heated again for 1 hour until a heating time of 100 hours in total was performed, and an oxide film was The thickness and the state of the oxide film were examined.
  • each electrode made of a nickel alloy produced in this test forms a two-layered oxide film as shown in FIG. Specifically, the oxide film of each electrode constitutes the outermost surface of the oxide film and the vicinity thereof, a surface oxide layer having a high content of additive elements and a low content of Ni, and an inside of the surface oxide layer. And an internal oxide layer that is rich in Ni.
  • the thickness of the internal oxide layer is the average thickness from the boundary between the base material region made of nickel alloy and the internal oxide layer to the boundary between the internal oxide layer and the surface oxide layer, the surface oxide layer Measured the average thickness from the boundary between the two oxide layers described above to the outermost surface of the oxide film.
  • the average thickness can be easily obtained by performing image processing or the like on the microscope observation image. It can be said that the smaller the degree of penetration of oxygen into the substrate constituting the electrode, the thinner the inner oxide layer and the less the internal oxidation. Since the center electrode had the same tendency as the ground electrode, the results are not shown.
  • the total thickness of the surface oxide layer and the internal oxide layer is less than 200 ⁇ m, it is excellent in high-temperature oxidation resistance, the total thickness is less than 170 ⁇ m, and the oxide film has almost no expansion or cracking. None are evaluated as ⁇ because they are particularly excellent in high-temperature oxidation resistance, and Table 2 also shows the evaluation results of high-temperature oxidation resistance. The fact that the oxide film was expanded, cracked or peeled off was described as such.
  • ⁇ Spark resistant consumption> Each sample prepared: The electrode material (soft material) was irradiated with an impulse, and the consumption state was examined. Here, using impulse test equipment, frequency: 10 / 350 ⁇ s long wave (time from rising to peak value in impulse waveform: 10 ⁇ s, 50% of peak value past rising and rising peak value) The sample was irradiated with an impulse of several kV, and this impulse was used as a simulation of the spark when the engine was ignited. Measure the maximum depth (consumption) of dents in each sample after impulse irradiation. The consumption of sample No.
  • the consumption of a comparative sample prepared separately using a flat wire made of commercially available Inconel 600 (Inconel: registered trademark) is C Inc
  • the consumption of the sample to be measured is C when the S, formula I: C S> met ⁇ (3 ⁇ C 101 + 1 ⁇ C Inc) / 4 ⁇ , and, as specific resistance (room temperature) is superior to the following 25 ⁇ ⁇ cm in spark wear resistance ⁇ , those not satisfying the above formula I or having a specific resistance (room temperature) of more than 25 ⁇ ⁇ cm were evaluated as “poor” as being inferior in spark wear resistance.
  • the evaluation results are shown in Table 2.
  • each sample By burning the engine oil by this holding, each sample is exposed to a combustion flame, and a product (compound) by combustion adheres to the sample surface.
  • the surface of each sample after heating was observed by SEM and EPMA, and the presence state of the product (compound) was examined.
  • Electrode material soft material
  • the corrosion resistance was examined.
  • the present inventors actually used a car (practical car) equipped with a gasoline engine, investigated the corrosion state of the electrode of the spark plug used as a sample, and the results of various examinations of reproduction tests of this corrosion state After the oxide film is formed by oxidation at high temperature, an acid aqueous solution (aqueous solution of nitric acid, phosphoric acid, sulfuric acid, etc.) is used as a corrosive liquid, and when immersed in this corrosive liquid, the corrosion state of the sample actually used in the above-mentioned automobile It was found that it would be very close to the state.
  • the sample was immersed in the state where the corrosive liquid was heated to 80 ° C. and held for a predetermined time. The retention time was selected from the range of 3 hours to 15 hours. After immersion for a predetermined holding time, the sample was washed with water, and then a cross section polisher (CP) cross section was taken to examine the degree of reduction in the cross sectional area.
  • CP cross section polisher
  • the amount of reduction in the cross-sectional area (%) ⁇ (cross-sectional area before the corrosion resistance test ⁇ cross-sectional area after the corrosion resistance test) / cross-sectional area before the corrosion resistance test) ⁇ ⁇ 100
  • a reduction amount of less than 5% is considered to be particularly excellent in corrosion resistance
  • a reduction amount of 5% or more and less than 10% is excellent in corrosion resistance
  • a reduction amount of 10% or more is corrosion resistance. It was evaluated as ⁇ for being inferior, and Table 2 shows the evaluation results.
  • Samples No. 1 to No. 11 composed of the specific composition described above are not easily corroded even when immersed in the corrosive liquid, and are excellent in resistance to the corrosive liquid: corrosion resistance.
  • samples No. 1 to No. 11 have an oxide film after high-temperature oxidation (here, 900 ° C. ⁇ 24 hours).
  • the corrosion resistance is excellent.
  • an electrode composed of such an electrode material is expected to have excellent corrosion resistance because an oxide film is formed on the surface thereof over time.
  • the high-temperature oxidation treatment in the above-mentioned corrosion resistance test is performed by (A) thickness ratio: more than 16% and less than 173%, (B) surface oxide layer thickness: more than 15 ⁇ m and less than 57 ⁇ m, (C) internal oxide.
  • A thickness ratio: more than 16% and less than 173%
  • B surface oxide layer thickness: more than 15 ⁇ m and less than 57 ⁇ m
  • C internal oxide.
  • the electrode material including the specific oxide film that has been subjected to the high-temperature oxidation treatment and satisfies at least one of the above-described (A) to (D) may be in contact with the corrosive liquid as shown in Table 3. It can be said that it is hard to corrode. From this, it can be said that an oxide material satisfying at least one of the above-mentioned (A) to (D) is formed in advance by oxidation treatment, and an electrode material and an electrode including this oxide film are excellent in corrosion resistance. Also, in this test, the oxidation treatment holding time is 24 hours, and the oxide film formation time is shorter than the conditions of the high-temperature oxidation resistance test described above. Therefore, it can be said that productivity is excellent even when the oxide film is formed in this way.
  • Samples No. 1 to No. 11 each have a small specific resistance of 25 ⁇ ⁇ cm or less.
  • One reason for this is considered to be that Al, Si, and Cr are not excessively contained.
  • samples No. 1 to No. 11 are considered to be excellent in spark erosion resistance due to their low specific resistance and therefore low consumption due to impulse.
  • all of the samples No. 1 to No. 11 hardly generate compound particles.
  • Al, Si, Cr, and Mn as appropriate could prevent the elements in the atmosphere and the alloy parent phase Ni from forming low-melting compounds. It is done.
  • samples No. 101 to No. 106 which do not have the above-mentioned specific composition, have an internal oxide layer that is too thick due to a small amount of additive elements, a large specific resistance due to a large amount of additive elements, It can be seen that the film expands, cracks, peels off, excessively generates compound particles, and is easily corroded by a corrosive liquid.
  • Sample No. 11 had slight expansion and cracks in the high-temperature oxidation test at 1000 ° C. ⁇ 100 H, but when an oxide film was formed in a state closer to the actual use state of an automobile, as described above. It has excellent corrosion resistance and is expected to be usable without problems.
  • an electrode material comprising an oxide film that is composed of a nickel alloy containing the above-mentioned specific element in a specific range and that satisfies the above-mentioned specific thickness ratio and thickness, and an ignition manufactured from this electrode material
  • the spark plug including the electrode for plug and the spark plug electrode including the oxide film hardly corrodes even when it can be immersed in the corrosive liquid from the initial use to the use over time due to the presence of the oxide film.
  • the spark plug electrode is made of the nickel alloy having the specific composition described above, it has excellent adhesion between the alloy base material constituting the electrode and the oxide film, and hardly peels from the alloy base material. For this reason as well, the spark plug electrode is excellent in corrosion resistance from the initial use for a long period of time.
  • the spark plug electrode and the spark plug may be used in an environment where the temperature is higher than before (for example, an ultra-high temperature environment of the conventional temperature + 100 ° C.), or an environment where EGR or idling stop is performed. Even so, it can be expected to be used successfully over a long period of time. Moreover, it is expected that the spark plug electrode including the oxide film and the spark plug including the electrode can be used satisfactorily from the initial stage of use for a long time even when a separate process such as plating is omitted.
  • the oxide film after performing high-temperature oxidation (preferably 900 ° C. ⁇ 24 hours) has a multilayer structure when evaluating the corrosion resistance by performing the above specific corrosion resistance test. By checking whether it is in a specific state, it can be judged whether the corrosion resistance is good or not, and further, by checking the corrosion state after immersion using the above-mentioned specific corrosive liquid, It is expected to be able to judge the quality of
  • the above-mentioned specific corrosion resistance test can change conditions as follows.
  • the heating temperature in the high temperature oxidation step may be 800 ° C. or higher and 1100 ° C. or lower.
  • the atmosphere of the high-temperature oxidation process is an air atmosphere as described above, the atmosphere can be easily controlled, and an oxide film can be formed in a short time because the oxygen concentration is relatively high. As a result, the test time can be shortened and the workability is excellent.
  • a low oxidizing atmosphere having an oxygen concentration lower than that of the atmosphere for example, an atmosphere having an oxygen concentration of 0.01% by volume to 20% by volume can be obtained.
  • the atmosphere of combustion gas or the like usually has a lower oxygen concentration than the atmosphere (20% by volume or less). Therefore, the low oxidizing atmosphere is considered to be a condition that simulates a state closer to the actual use environment.
  • atmospheric gases other than oxygen examples include inert gases such as nitrogen, argon, and helium.
  • the constituent gas of the low oxidizing atmosphere include a mixed gas obtained by mixing oxygen gas and the above inert gas, and a mixed gas obtained by mixing oxygen gas and the atmosphere.
  • the holding time of the heating temperature includes a time during which an oxide film can be sufficiently formed, for example, 1 hour or more.
  • the oxide film tends to be thicker as the heating temperature is higher or the holding time is longer. If the oxide film is too thick, there is a possibility that the penetration of the corrosive liquid is not sufficiently performed as described above. Therefore, the holding time is preferably 1 hour or more and 100 hours or less, more preferably 1 hour or more and 72 hours or less, and particularly preferably 2 hours or more and 24 hours or less in the atmosphere. The lower the oxygen concentration, the longer it takes to form the oxide film.
  • the retention time is preferably longer than that in the air atmosphere, and it is 2 hours to 200 hours.
  • the above-mentioned heating temperature, atmosphere (oxygen concentration), and holding time are adjusted in consideration of mutual conditions because they are related to each other.
  • an aqueous solution containing chloride ions (Cl ⁇ ), typically an aqueous sodium chloride (NaCl) solution is preferable as the corrosive solution used in the immersion step in the corrosive solution. If the concentration (mass ratio) of NaCl in the NaCl aqueous solution is 1% or more and 10% or less, it is considered that NaCl itself is unlikely to become a main factor of corrosion.
  • the corrosive liquid contains acid.
  • the immersion time can be appropriately selected according to the material of the immersion target (electrode material), the composition of the corrosive solution (acid concentration, NaCl concentration), temperature, and the like.
  • the immersion time is appropriately about 2 hours to 48 hours.
  • the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention.
  • the composition, shape, size, etc. of the electrode material can be changed as appropriate.
  • the composition can be made different between the ground electrode and the center electrode.
  • the electrode material of the present invention can be suitably used as a constituent material for electrodes for spark plugs of various internal combustion engines such as automobile (typically, four-wheeled and two-wheeled vehicles) engines.
  • the spark plug electrode of the present invention can be suitably used for the components of the spark plug.
  • the spark plug of the present invention can be suitably used as an ignition member for the internal combustion engine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Spark Plugs (AREA)

Abstract

質量%で、Al:0.005%~0.2%,Si:0.2%~1.6%,Cr:0.05%~1.0%,Ti:0.05%~0.5%,Y:0.2%~1.0%含有し、残部がNi及び不可避不純物から構成され、質量比でSi/Cr≧1を満たす電極材料であり、自動車の内燃機関などの点火プラグの電極の素材に利用される。Al,Si,Cr,Yを特定の範囲で含有し、かつ、Alに比較してSiが多いことで、酸化抑制効果に優れる。Tiを特定量含有するため、酸化膜の膨張、亀裂などを抑止でき、Yを特定量含有するため、高温でも微細組織を維持でき、耐高温酸化性に優れる。Si/Cr≧1を満たすことで酸化膜自体の耐腐食性を高められ、腐食液によっても腐食し難い。

Description

電極材料及び点火プラグ用電極、並びに点火プラグ
 本発明は、自動車などに具える内燃機関の点火プラグ用電極の素材に利用される電極材料、この電極材料から構成された点火プラグ用電極、及びこの電極を具える点火プラグに関するものである。特に、高温酸化し難く、水溶液によっても腐食し難くて耐腐食性に優れる点火プラグ用電極、及びこの電極の素材に適した電極材料に関するものである。
 従来、自動車のガソリンエンジンなどの内燃機関の点火には、点火プラグ(スパークプラグ)が用いられている。点火プラグは、代表的には、棒状の中心電極と、中心電極の端面に対向するように離間して配置された接地電極とを具える。上記中心電極と接地電極との間で火花放電を行い、この放電により両電極間に流入する燃料混合気体に点火する。
 上記電極材料として、特許文献1では、Al,Si,Cr,Mn,Yを含有するニッケル合金を開示している。
特許第4295501号公報
 点火プラグの電極に求められる特性として、酸化し難く(特に高温での耐酸化性に優れ)、火花により消耗し難く(耐火花消耗性に優れ)、電極表面にニッケルを含有する化合物粒(詳細は後述)が形成され難い(耐発汗性に優れる)ことが望まれる。特許文献1に記載される電極材料は、上述の元素を含有することでこれらの要求を満たす。
 近年、環境保全対策などのために自動車などの燃費を向上することが望まれている。例えば、内燃機関における燃焼温度を更に高めたり、排気再循環:EGR(Exhaust Gas Recirculation)を行ったりすることで、燃費を向上できる。燃焼温度を更に高めることで、点火プラグの電極は、従来よりも更に高温環境で使用されることになる。例えば、従来の一般的な自動車に具えるガソリンエンジンにおいて、使用時の最高到達温度は900℃~1000℃程度であることから、燃焼温度を高めると、この温度よりも+100℃程度といった高温環境になる。このように昨今の点火プラグの使用環境は、従来よりも非常に高温で酸化し易い環境になってきている。そのため、点火プラグの電極材料には、耐高温酸化性の更なる向上が望まれる。
 例えば、Alなどの添加元素の含有量を増大することで、酸化抑制効果を高められる。しかし、添加元素の増量は、比抵抗の増大を招き、その結果、火花によって消耗し易くなり、耐火花消耗性が低下する。従って、Alなどの添加元素の増量による特性の向上には限界がある。
 また、点火プラグの使用時に、雰囲気中の窒素とAlとが反応して窒化物(AlN)を形成し、この窒化物が酸化を進行させる恐れがある。ここで、ニッケル合金からなる電極を点火プラグに使用した場合、組成や使用条件などにもよるが、電極表面に酸化膜が事後的に形成され、この酸化膜によって、酸化膜よりも内部に存在するニッケル合金基材の酸化をある程度抑制できる場合がある。しかし、上記窒化物が形成されて酸化膜中に介在すると、エンジンのON/OFFに伴う冷熱サイクルなどに起因して酸化膜に亀裂が生じたり、酸化膜が剥離したりして、基材の酸化が進行し易くなる傾向にある。
 特に、昨今、環境保全対策として、アイドリングストップを行うようになってきており、エンジンのON/OFF回数が増加している。その結果、冷熱サイクルの回数が多くなってきており、上述の使用時に形成された酸化膜は、更に亀裂や剥離が生じ易い環境にある。
 更に、上述のような更なる高温環境では、電極を構成する結晶粒が成長して粗大になり易い。粗大化により結晶粒界の合計長が短くなると、酸素が、電極の外部から上記結晶粒界を伝って電極内部に侵入し易く、侵入度合い(深度)が深くなり、電極内部(基材内部)が酸化し易くなる。従って、更なる高温環境での使用では、粒成長の抑制による耐酸化性の向上も望まれる。
 加えて、点火プラグの使用時、電極の母相のニッケルと、ガソリンやエンジンオイル等に由来する雰囲気中の元素(アルカリ金属元素、アルカリ土類金属元素、リンなど)とが反応して、電極表面、特に、電極において火花放電が行われる部分(主として中心電極及び接地電極において互いに対向する面)の周囲に、ニッケルを含む粒状の化合物(以下、化合物粒と呼ぶ)が形成されたり、この化合物粒の付着箇所の融点が部分的に低下して母相が溶融し、化合物粒が更に大きくなったりするという現象が生じる。上記化合物粒が形成・成長され続けると、エンジンの点火状態が不安定になったり、最悪の場合、化合物粒が脱落してエンジンを破損させたりする恐れがある。更なる高温環境で点火プラグを使用すると、化合物粒が生成又は成長し易いことから、化合物粒の生成や成長の抑制も望まれる。
 更に、本発明者らは、上述のようにアイドリングストップを行うと、エンジンの停止によってエンジン部品の温度が低下して結露が生じ、エンジン部品が結露水に浸された状態になる、との知見を得た。また、この結露水は、エンジン部品の周囲からの元素(例えば、EGRに起因するNOx成分、エンジンオイル中の不純物と思われるリン(P)、ガソリン中の不純物と思われる硫黄(S)、エンジン部品の構成材料に基づく塩化物など)が混ざって酸を含む腐食液となり得る、との知見を得た。アイドリングストップによってON/OFF回数が多くなると、結露が繰り返し生じ、生成された結露水を利用して上述の腐食液が繰り返し生成されることになる。そして、アイドリングストップによってエンジンの停止時間が長くなると、エンジン部品は、逐次、生成された上記腐食液などに浸漬されることになる。従って、点火プラグの電極材料には、上述した高温での単純な酸化に対する耐性だけでなく、水溶液による腐食に対する耐性にも優れることが望まれる。
 そこで、本発明の目的の一つは、耐高温酸化性に優れる上に、耐腐食性にも優れる電極が得られる電極材料を提供することにある。また、本発明の他の目的は、上記電極材料から構成されて、耐高温酸化性及び耐腐食性に優れる点火プラグ用電極、及びこの点火プラグ用電極を具える点火プラグを提供することにある。
 本発明者らは、特に、高温環境に加えてアイドリングストップやEGRなどが行われる環境での使用に適した点火プラグ用電極の構成材料として、Niに加えるべき好ましい組成を種々検討した結果、以下の知見を得た。
 (1) Al,Si,Cr,Yは、高温での酸化抑制効果がある。
 (2) Siは酸化の抑制効果がAlよりも高い。
 (3) Tiは酸化(特に内部酸化)の抑制効果があり、Tiの含有によってAl及びSiの含有量を低減できる上に、Alの窒化を抑制できる。
 (4) Yは高温下での結晶粒の成長を効果的に抑制して、結晶粒が微細な状態を維持し易い。
 (5) Al,Si,Crは、化合物粒を生成し難くして、高温での発汗抑制効果がある。
 (6) Al,Si,Crを含有すると共に、SiとCrとの比率を特定の範囲とすることで、耐腐食性を向上できる。
 (7) Mnを更に添加すると、内部酸化の抑制効果、高温での発汗の抑制効果、及び耐腐食性の向上効果が得られる。
 (8) これらの添加元素の含有量を調整することで、比抵抗の増加を抑制し、火花による消耗を低減できる。
 上記知見から、点火プラグの電極材料として、Niに加える添加元素をAl,Si,Cr,Y,Tiとすると共に、その含有量を特定の範囲とし、かつSiとCrとの含有比率を規定する。
 本発明の電極材料は、質量%で、Alを0.005%以上0.2%以下、Siを0.2%以上1.6%以下、Crを0.05%以上1.0%以下、Tiを0.05%以上0.5%以下、Yを0.2%以上1.0%以下含有し、残部がNi及び不可避不純物からなる。そして、この電極材料は、質量比でSi/Cr≧1を満たす。
 上述の特定の組成のニッケル合金から構成される本発明の電極材料は、(1)Al,Si,Cr,Yを特定の範囲で含有することで、酸化抑制効果に優れる、(2)SiをAlよりも多く含有することで、酸化抑制効果により優れる、(3)更にTiを特定の範囲で含有することで、Alの窒化を抑制したり、酸化膜の膨張、亀裂、剥離などの発生を抑制したりできる、(4)Yを特定の範囲で含有することで、高温下での結晶粒の成長を抑制できる。これらの点から、本発明の電極材料は、高温環境で使用した場合にも耐酸化性に優れる。
 また、本発明の電極材料は、 (I) Niに加える添加元素を特定の元素及び特定の含有量とし、特に、Alが少なく、AlとSiとの合計含有量が比較的少なくなることから比抵抗が小さく、火花消耗し難い、(II)NiにAl,Si,Crを特定の範囲で含有することで、使用時に上述の化合物粒の形成や成長を効果的に抑制できる。これらの点から、本発明の電極材料は、耐発汗性及び耐火花消耗性にも優れる。
 かつ、本発明の電極材料は、Al,Si,Cr、適宜Mnを含有することで、ニッケル合金自体が耐腐食性に優れる上に、Si/Cr≧1を満たすことで、酸化膜自体も耐腐食性に優れる。
 ここで、組成や使用条件などにもよるが、点火プラグの使用時に点火プラグの電極が上述のような高温に曝されて合金表面に酸化膜が形成された場合、酸化膜が無い場合よりも、耐腐食性が向上する傾向にある。従って、点火プラグの電極は、使用時に酸化膜が形成されることが好ましい。しかし、この酸化膜が厚くても、ポーラスであったり、上述の冷熱サイクルなどで酸化膜に亀裂が生じたりすると、隙間腐食が生じて逆に腐食が進行し易くなる。従って、緻密で強固な酸化膜がある程度の厚さで生成されることが望まれる。後述するように本発明の電極材料などを構成するニッケル合金に生成される酸化膜は、ニッケル合金からなる基材寄りに形成された内部酸化物層と、酸化膜の表面側に形成された表面酸化物層との二層構造になる傾向にある。このうち、Niの含有量が多い内部酸化物層は、基材よりも腐食し易い傾向にある。そのため、内部酸化物層が厚くなり過ぎると優先的に腐食されて、耐腐食性に劣ることから、内部酸化物層はある程度薄い方が好ましいと考えられる。本発明の電極材料は、Si/Cr≧1を満たすことで、緻密で強固な酸化膜を生成し易い上に、内部酸化を抑制できることから内部酸化物層を比較的薄く生成でき、酸化膜の密着性にも優れる。このように本発明の電極材料は、基材を構成するニッケル合金だけでなく、使用時に事後的に生成される酸化膜自体の耐腐食性にも優れることで、点火プラグの電極に用いた場合、アイドリングストップやEGRなどを行うことで生成された腐食性の水溶液によっても腐食され難い。
 本発明の電極材料の別の形態として、上記ニッケル合金に更にMnを含む形態が挙げられる。具体的には、質量%で、Alを0.005%以上0.2%以下、Siを0.2%以上1.6%以下、Crを0.05%以上1.0%以下、Tiを0.05%以上0.5%以下、Yを0.2%以上1.0%以下、Mnを0.05%以上0.5%以下含有し、残部がNi及び不可避不純物からなり、質量比でSi/Cr≧1を満たす形態が挙げられる。
 MnもCrと同様に、Niに添加することで上述の化合物粒の発生を抑制する効果がある上に、内部酸化の抑制にも効果があり、内部酸化物層の過剰な生成を抑制できる。従って、Mnを更に含有する上記形態は、耐発汗性、耐高温酸化性、及び耐腐食性に優れる。また、上記形態は、Mnの含有量が上述の特定の範囲であることで、比抵抗の増大も招き難く、耐火花消耗性に優れる。
 本発明の電極材料の一形態として、質量%で、Yを0.3%超含有する形態が挙げられる。
 上記形態は、Yを十分に含むことで、耐高温酸化性により優れる。
 本発明の電極材料の一形態として、質量%で、Bを0%超0.05%以下含有する形態が挙げられる。
 上記形態は、Bを含有することで熱間加工性に優れ、電極材料の生産性を向上できる。
 本発明の電極材料の一形態として、上記電極材料の室温での比抵抗が25μΩ・cm以下である形態が挙げられる。
 上記形態は、比抵抗が小さく、耐火花消耗性に優れる。
 本発明の電極材料の一形態として、上記電極材料を1000℃×100時間加熱したとき、この加熱後の電極材料の平均結晶粒径が300μm以下である形態が挙げられる。
 上述の特定の組成から構成されることで、本発明の電極材料や本発明の電極材料から構成された本発明の点火プラグ用電極は、1000℃といった非常に高い温度環境で使用された場合でも結晶粒が成長し難く(粗大になり難く)、平均結晶粒径が小さい状態を維持できる。従って、上記形態は、長期に亘り、粒界の合計長が長い状態を維持でき、高温での耐酸化性に優れる。
 本発明の電極材料の一形態として、上記電極材料を900℃×24時間加熱したとき、この加熱後の電極材料の表面に酸化膜が形成されており、上記酸化膜が内部酸化物層と表面酸化物層との二層構造であり、かつ以下の(A)~(D)の少なくとも一つを満たす形態が挙げられる。
 (A) 上記内部酸化物層の厚さに対する上記表面酸化物層の厚さの比(以下、厚さ比率と呼ぶ)が16%超173%未満
 (B) 上記表面酸化物層の厚さが15μm超57μm未満
 (C) 上記内部酸化物層の厚さが33μm超80μm未満
 (D) 上記表面酸化物層と上記内部酸化物層との合計厚さが48μm超90μm未満
 上記形態は、高温に曝されて特定の厚さや厚さ比率を満たす酸化膜が形成されることで、後述する試験例に示すように腐食性の水溶液に接触しても腐食され難くて耐腐食性に優れる。上記形態の電極材料を点火プラグの電極に使用した場合、上述の特定の酸化膜が事後的に形成されることで、耐腐食性に優れる電極を構築することができる。
 本発明の電極材料の一形態として、上記電極材料の表面の少なくとも一部に酸化膜を具える形態が挙げられる。上記酸化膜は、内部酸化物層と表面酸化物層との二層構造であり、かつ上述の(A)~(D)の少なくとも一つを満たす。
 上記形態は、耐腐食性に優れる酸化膜を予め具えるため、後述する試験例に示すように、腐食性の水溶液に接触しても腐食され難くて耐腐食性に優れる。従って、上記形態の電極材料を点火プラグの電極に使用した場合、使用時に経時的に酸化膜が形成されることを待つまでも無く、使用初期から耐腐食性に優れる。そのため、上記形態の電極材料は、使用初期から長期に亘り、優れた耐腐食性を有すると期待される。また、上記形態の電極材料を点火プラグの電極に用いることで、使用初期の耐腐食性を高めるためなどの目的で行うめっき処理などを省略できると期待される。
 上述の構成を具える本発明の電極材料は、内燃機関、特に1000℃程度、更にそれ以上といった非常に高温な環境で使用される点火プラグ用電極の素材に好適に利用することができる。本発明の点火プラグ用電極は、本発明の電極材料から構成されている。
 本発明の点火プラグ用電極は、耐高温酸化性、耐火花消耗性、耐発汗性、及び耐腐食性に優れる点火プラグを構築することができる。
 本発明の点火プラグ用電極の具体的な形態として、本発明の電極材料から構成されたものであり、その表面に酸化膜を具えていない形態が挙げられる。また、本発明の点火プラグ用電極の別の形態として、本発明の電極材料から構成されたものであり、その表面の少なくとも一部に酸化膜を具える形態が挙げられる。上記酸化膜は、内部酸化物層と表面酸化物層との二層構造であり、かつ上述の(A)~(D)の少なくとも一つを満たす。
 本発明の点火プラグ用電極であって、耐腐食性に優れる上記酸化膜を予め具える形態は、後述する試験例に示すように、腐食性の水溶液に接触しても腐食され難くて耐腐食性に優れる。従って、上記酸化膜を有する形態は、使用時に経時的に酸化膜が形成されることを待つまでも無く、使用初期から耐腐食性に優れ、使用初期から長期に亘り、優れた耐腐食性を有すると期待される。また、上記酸化膜を有する形態は、使用初期の耐腐食性を高めるためなどの目的で行うめっき処理などを省略でき、生産性の向上も図ることができると期待される。
本発明の点火プラグは、本発明の点火プラグ用電極を具える。
 本発明の点火プラグは、耐高温酸化性、耐火花消耗性、耐発汗性、及び耐腐食性に優れる本発明の点火プラグ用電極を具えることから、アイドリングストップを頻繁に行う場合やEGRを行う場合などでも、長期に亘り、良好に使用できると期待される。特定の酸化膜を具える点火プラグ用電極を具える場合には、使用初期から長期に亘り、耐腐食性に優れると期待される。
 本発明の点火プラグ用電極、及びこの点火プラグ用電極を具える本発明の点火プラグは、耐高温酸化性及び耐腐食性に優れる。本発明の電極材料は、耐高温酸化性及び耐腐食性に優れる点火プラグ用電極を製造することができる。
電極材料の酸化状態を説明するための光学顕微鏡写真である。
 以下、本発明をより詳しく説明する。なお、元素の含有量は、断りが無い限り質量%とする。
 [電極材料]
 <組成>
 本発明の電極材料は、Al,Si,Cr,Y及びTi、適宜Mnを添加元素とし、残部がNi及び不可避不純物であるニッケル合金から構成される。Niを主成分(95質量%以上、好ましくは97質量%以上)とすることで、塑性加工性に優れる上に、比抵抗が小さく(導電率が高く)、点火プラグの電極に用いられた場合に火花による消耗を低減できる。添加元素の含有量が少なくNiの含有量が多いほど(例えば、Ni:98質量%以上)、比抵抗を低減できる。添加元素の含有量が多いほど、耐高温酸化性や耐腐食性を高められる。
 (Al:アルミニウム,Si:珪素)
 Al及びSiは酸化抑制の効果が高い元素である。Niが両元素を含有することで、電極材料の表面にAlやSiを含む酸化物を意図的又は事後的に形成して(酸化膜を意図的又は事後的に生成して)、電極材料(基材)の内部に酸素が侵入することを低減し、酸化、特に内部酸化の抑制を図る。内部酸化の抑制によって、内部酸化物層が過剰に厚くならず、緻密で密着性に優れる酸化膜を生成でき、更にこの酸化膜を維持できる。また、NiがAlやSiを後述するCrやMnと同時に含有することで、上述の化合物粒の発生を抑制して、耐発汗性に優れる。AlやSiが多いほど、電極材料の表面に酸化物が形成され易く、内部酸化の抑制や化合物粒の発生・成長の抑制を図れるが、多過ぎると、電極材料の表面に形成される酸化膜がポーラスになったり、膨張して亀裂が入ったり破裂したり、剥離したりする。酸化膜の亀裂や剥離により、経時的に酸化が進行する上に、上述の腐食液が生じ得る使用環境では、水溶液による腐食も進行し得る。更に、AlやSiが多いほど、比抵抗が大きくなり易く、耐火花消耗性の低下を招く。そこで、本発明の電極材料では、NiがAl及びSiの双方を含有すると共に、その含有量を比較的少なくし、代わって内部酸化の抑制効果が高い元素として、Tiを含有する。かつ、本発明者らが調べた結果、AlよりもSiの方が酸化抑制効果が高い、との知見を得たことから、本発明の電極材料では、NiがAlに比較してSiを多く含有する。具体的な含有量は、Al:0.005%以上0.2%以下、Si:0.2%以上1.6%以下とする。より好ましい含有量として、Al:0.01%以上0.15%以下、Si:0.5%以上1.5%以下、更に1.3%以下が挙げられる。
 (Y:イットリウム)
 Yは、主として合金母相のNiと金属間化合物を形成して金属間化合物として存在し、極一部がNiに固溶して存在する。この金属間化合物の所謂ピン止め効果によって、本発明の電極材料は、900℃以上、更には1000℃以上といった非常に高温環境でも結晶粒の粒成長を効果的に抑制できる。そのため、本発明の電極材料から構成された本発明の点火プラグ用電極は、使用環境温度が上述のような非常に高温でも、長期に亘り、結晶粒を微細な状態に維持でき、酸素の侵入を低減できて内部酸化を効果的に抑制できる。このように優れた耐酸化性、特に耐高温酸化性を有するには、Yを0.2%以上含有することが好ましい。Yが多いほど、結晶粒を微細に維持でき、耐高温酸化性に優れる傾向にある。また、Yの含有量を1.0%以下とすることで、比抵抗の増大による電極の熱劣化を抑制して耐火花消耗性に優れる上に、塑性加工性の低下を抑制して所定の形状の電極に加工し易く、電極の製造性に優れる。更に、Yは、他の希土類元素と比較して水素を吸蔵し難いことから、製造工程で水素を含有する雰囲気で熱処理を行った場合でも、本発明の電極材料は、水素脆化が生じ難い。Yのより好ましい含有量として、0.3%超0.75%以下が挙げられる。
 (Cr:クロム,Mn:マンガン)
 上述のようにAlやSiと共にCr、適宜Mnを含有することで、上述した化合物粒が生じ難い。この理由は、AlやSiと共にCrやMnがガソリンやエンジンオイル中に含まれるPなどといった雰囲気中の元素と反応することで、合金母相のNiとPなどとの反応を抑制し、NiとPなどとの化合物が電極に付着することを低減できるため、と考えられる。また、CrやMnも内部酸化の抑制に効果がある。更に、Crは、点火プラグの使用時に生じ得る腐食液に対する耐性にも優れる上に、Mnよりも化合物粒の発生を抑制する効果が高い傾向にあり、Alよりも比抵抗を増大させ難い。そこで、本発明の電極材料では、Niに上述のようにAlを少なめに添加すると共に、Crを必須元素とし、Mnを任意の添加元素とする。Crは、含有量が多いほど、上記化合物粒の発生・成長や内部酸化を抑制し易く、耐腐食性にも優れるが、多過ぎると、比抵抗が大きくなり過ぎる。Mnは、含有量が多いほど、上記化合物粒の発生・成長や内部酸化を抑制し易いが、多過ぎると、比抵抗の増大や耐腐食性の低下を招く。従って、Crの含有量は、0.05%以上1.0%以下とする。Mnを含有する場合、Mnの含有量は、0.05%以上0.5%以下が好ましい。より好ましい含有量として、Cr:0.1%以上、更に0.2%以上0.8%以下、Mn:0.05%以上0.3%以下が挙げられる。
 (Ti:チタン)
 Tiは、上述のように内部酸化を効果的に抑制できる。この効果は、Tiの含有量が多いほど顕著であるが、Tiが多過ぎると、比抵抗の増大を招く。また、Tiは、上述のようにAlの窒化物(AlN)の生成を抑制し、Alの窒化物の形成による熱膨張によって酸化膜に亀裂が生じるなどして酸化が進行することを効果的に抑制できる。上記効果を十分に得るために、Tiの含有量を0.05%以上0.5%以下とする。Tiのより好ましい含有量として、0.1%以上0.3%以下が挙げられる。
 (Si/Cr≧1)
 そして、本発明の電極材料では、Si,Crの含有量が上述の範囲を満たすと共に、Si/Cr≧1、つまりSi=Cr又はSi>Crを満たすことを特徴の一つとする。この条件を満たすことで、Si及びCrの双方の含有による酸化抑制、特に内部酸化を効果的に抑制して、緻密で密着性に優れ、比較的薄い内部酸化物層を具える酸化膜を生成できる。この酸化膜を具える結果、耐高温酸化性に優れるだけでなく、使用時の周囲環境から生成され得る腐食液によっても腐食され難く、耐腐食性にも優れる電極材料や電極とすることができる。Si/Crが大きいほど、耐腐食性に優れる傾向にあり、1<Si/Cr、特に、1.3≦Si/Cr≦35、とりわけ1.3≦Si/Cr≦6が好ましい。
 (B:硼素)
 更にBを0%超0.05%以下の範囲、より好ましくは0.001%以上0.02%以下含有すると、熱間加工性に優れ、本発明の電極材料や本発明の点火プラグ用電極の生産性を高められる。
 上述の添加元素の含有量は、電極材料の原料に添加する元素の量を調整することで、上述の特定の範囲にすることができる。上述の添加元素の他、高温強度が望まれる場合、Cを微量に含有することを許容する。但し、Cが多過ぎると、加工性が低下する傾向にあるため、Cの含有量は0.05質量%以下が好ましい。
 <耐酸化性>
 本発明の電極材料は、900℃以上、更に1000℃以上といった高温環境下に長時間曝した場合であっても、耐高温酸化性に優れており、結晶粒が微細である組織を維持することができる。例えば、本発明の電極材料は、1000℃×100時間の加熱した後における平均結晶粒径が300μm以下を満たすことができる。「1000℃×100時間」との条件は、従来の一般的な自動車のガソリンエンジンにおける使用時の最高到達温度と同等程度又はそれ以上の温度条件であり、かつ加熱時間が長いため、非常に厳しい条件を模したものである。このような厳しい条件の加熱を行った場合でも、電極材料を構成する結晶粒が小さいほど、上述のように合金基材の内部への酸素の侵入を抑制でき、耐高温酸化性に優れる、と評価することができる。そこで、本発明では、耐高温酸化性の評価の指標として、「1000℃×100時間加熱後の平均結晶粒径」を採用する。この平均結晶粒径は、上記添加元素の含有量により変化させることができ、例えば、200μm以下、150μm以下、120μm以下、更に100μm以下を満たす電極材料とすることができる。上述のように平均結晶粒径が小さいほど、結晶粒界の合計長が長くなって合金基材内部への酸素の侵入を防止し易く、下限は特に設けない。「1000℃×100時間加熱後の平均結晶粒径」は、特にYの含有量が多いほど小さくなる傾向にある。
 <比抵抗>
 本発明の電極材料は、比抵抗が小さく、例えば、室温(代表的には20℃程度)での比抵抗が25μΩ・cm以下を満たすことができる。比抵抗は、主として添加元素の含有量により変化する。添加元素の含有量が少ないほど、比抵抗が小さくなる傾向にあり、例えば、20μΩ・cm以下、更に15μΩ・cm以下を満たすことができる。比抵抗が小さいほど耐火花消耗性に優れる傾向にあり、特に下限を設けない。なお、純ニッケルやNiの含有量が多い高Ni合金(代表的には、添加元素の合計含有量:1質量%以下)では、上述のように比抵抗が小さいが、耐高温酸化性や耐腐食性に劣り、例えば、上述の平均結晶粒径が300μm超となる。
 <耐腐食性>
 本発明者らは、後述するように高温酸化後における酸化膜が特定の状態になっている場合、耐腐食性に優れる、との知見を得た。具体的には、900℃×24時間加熱して酸化した後、電極材料の表面に上述の内部酸化物層と表面酸化物層との二層構造の酸化膜が形成されており、この酸化膜が以下の(A)~(D)の少なくとも一つを満たすと耐腐食性に優れる、との知見を得た。また、900℃×24時間の条件で形成した酸化膜の状態は、上述の耐高温酸化性の評価に用いる条件:1000℃×100時間で形成した酸化膜の状態に比較して、実際に自動車で使用された点火プラグの酸化膜の状態に近い、との知見を得た。つまり、この酸化条件:900℃×24時間は、実際の使用環境をより的確に模擬した条件といえる。そこで、本発明では、耐腐食性の評価の指標として、「900℃×24時間加熱後の酸化膜の状態」を採用する。
(A) 厚さの比率:16%超173%未満、(B) 表面酸化物層の厚さ:15μm超57μm未満、(C) 内部酸化物層の厚さ:33μm超80μm未満、(D) 表面酸化物層と内部酸化物層との合計厚さ:48μm超90μm未満。
 上記(A)~(D)の少なくとも一つを満たす形態は、使用時においても、薄過ぎず厚過ぎず適切な厚さを有する酸化膜が事後的に形成される、と期待される。また、この酸化膜は、上述のように緻密で密着性に優れる。そのため、上記形態は、耐腐食性に優れると考えられる。上記(A)~(D)のうち、いずれか1つを満たす形態、いずれか2つを満たす形態、いずれか3つを満たす形態、4つ全てを満たす形態のいずれでもよい。厚さなどの測定方法は後述する。
 更に、本発明者らは、上述の特定の組成から構成され、かつ上述の(A)~(D)の少なくとも一つを満たす酸化膜を具える電極材料から製造して、上述の(A)~(D)の少なくとも一つを満たす酸化膜を具える電極や、上述の特定の組成から構成された電極基材に酸化処理を施して、上述の(A)~(D)の少なくとも一つを満たす酸化膜を具える電極は、使用初期においても耐腐食性に優れ、使用初期から長期に亘り、耐腐食性に優れるとの知見を得た。ここで、上述の特定の組成から構成される電極材料や電極は、点火プラグの使用前に上述の(A)~(D)の少なくとも一つを満たす特定の酸化膜を実質的に具えていなくても、組成や使用条件などにもよるが上述のように使用時に上記特定の酸化膜が形成されて、耐腐食性に優れる状態となる。しかし、この特定の酸化膜が形成されるまでの間、耐腐食性を十分に有するためには、例えば、めっき層などを別途具えることが望まれる。すると、めっき処理などが必要となり、生産性の低下を招く。一方、使用前に上記特定の酸化膜を有していれば、めっき処理などを不要にできる上に、使用初期から耐腐食性に優れる状態とすることができる。また、使用初期から耐腐食性に優れる酸化膜を有することで、経時的な酸化も進行し難く、酸化(特に内部酸化)を抑制し易いと期待される。そこで、本発明の電極材料の一形態として、その表面の少なくとも一部に、上述の(A)~(D)の少なくとも一つを満たす酸化膜を具えるものを提案する。この特定の酸化膜を具える電極材料を利用することで、表面の少なくとも一部に上記特定の酸化膜を具える電極を製造できる。
 <形状>
 本発明の電極材料は、代表的には、伸線加工により形成された線材が挙げられる。断面形状は、矩形状、円形状など、種々の形状とすることができる。また、断面サイズや線径も適宜選択することができる。例えば、断面矩形状の平角線では、厚さ:1mm~3mm程度、幅:2mm~4mm程度、断面円形状の丸線では、線径:2mm~6mm程度が挙げられる。
 [製造方法]
 本発明の電極材料は、代表的には、溶解→鋳造→熱間圧延→冷間伸線及び熱処理(→適宜酸化)という工程により得られる。上記溶解時や鋳造時の雰囲気を例えば、酸素濃度が大気雰囲気よりも低くなるように制御すると(例えば、酸素濃度:10体積%以下)、Yの酸化を抑制して、Yを含有する金属間化合物を電極材料中に十分に存在させることができる。
 冷間伸線後、最終熱処理(軟化処理)を行う場合、非酸化性雰囲気(例えば、水素雰囲気、窒素雰囲気などの酸素濃度が低い雰囲気、又は酸素を実質的に含有しない雰囲気)で加熱温度:700℃~1000℃、特に、800℃~950℃程度で行うことが好ましい。このような軟化処理を行うことで、電極材料を所定の電極形状に加工し易かったり、軟化処理以前の加工によって導入された加工歪みを除去して、電極材料の比抵抗や成形後の電極の比抵抗を小さくすることができる。冷間伸線後、適宜圧延を行うことができる。この圧延によって線材の形状を変化させられる(例えば、断面円形状から断面矩形状に変更する、など)。圧延後、上記軟化処理を行うことができる。
 上記特定の酸化膜を具える電極材料を製造する場合には、上述の冷間伸線後、又は圧延後、又は軟化処理後に酸化膜を形成する熱処理(酸化処理)を行う。酸化処理の条件は、酸化膜が所望の厚さ比率や厚さなどとなるように調整する。例えば、バッチ処理の場合、加熱温度は、800℃以上1100℃以下、好ましくは900℃以上1000℃以下が挙げられる。雰囲気は、酸素を含む雰囲気とする。大気雰囲気とすると、雰囲気の制御が容易である上に、酸素濃度が比較的高いことで酸化膜の形成時間を短くでき、生産性に優れる。酸素濃度が0.02体積%以上20体積%以下の低酸素雰囲気、酸素濃度が20体積%超の高酸素雰囲気とすることもできる。酸素以外の雰囲気ガスは、窒素やアルゴン、ヘリウムなどの不活性ガスが挙げられる。保持時間は、酸素の濃度によって異なる。例えば、大気雰囲気とする場合、保持時間は、1時間以上100時間以下、更に1時間以上72時間以下、特に2時間以上24時間以下が挙げられる。低酸素雰囲気とする場合、2時間以上200時間以下、更に3時間以上、特に10時間以上100時間以下が挙げられる。高酸素雰囲気とする場合、0.5時間以上50時間以下が挙げられる。
 上記酸化処理は、上述のバッチ処理の他、連続処理でも行うことができる。連続処理は、誘導加熱や抵抗加熱などによる通電方式の加熱炉や、雰囲気炉などを用いて行う。連続処理も、酸化膜が上述の特定の厚さの比率や厚さなどとなるように条件を調整する。例えば、通電方式では、線速、加熱対象の大きさ(線径)、電流値など、雰囲気炉では、線速、加熱対象の大きさ(線径)、炉の大きさ(パイプ炉の場合、直径)などを調整する。
 電極材料における酸化膜の存在領域は、適宜選択することができる。代表的には線材の場合、その外周面全体に酸化膜を具える形態が挙げられる。この形態は、マスキング処理などが不要であり、酸化膜を有する線材を容易に形成できる。
 [点火プラグ用電極]
 本発明の電極材料は、点火プラグに具える中心電極及び接地電極のいずれの構成材料にも好適に利用できる。上記接地電極は、中心電極と比較して、自動車のエンジンなどの内燃機関において、燃焼室の中心に近い位置に配置されることが多い。本発明の電極材料は、上述のように高温での特性に優れることから、上記接地電極の構成材料であっても好適に利用できる。本発明の点火プラグ用電極は、上記電極材料を適宜な長さに切断したり、切断した材料を更に所定の形状に成形したりすることで製造できる。
 上記特定の酸化膜を具える電極は、電極の外表面の実質的に全てに酸化膜を有する形態、外表面の一部(例えば、接地電極では、中心電極に向かい合っていない箇所、中心電極では、接地電極に向かい合っていない箇所など)にのみ酸化膜を有する形態が挙げられる。このような酸化膜を具える電極は、上述の酸化膜を具える電極材料を用いて製造したり、酸化膜を有さない電極材料を所望の電極形状に成形した後、上述の酸化処理を行ったりすることで製造できる。酸化膜を有する電極材料を切断すると、その切断面は酸化膜を有さない。このような酸化膜を有さない箇所を一部に具える素材を用いて電極を製造した場合でも、所望の箇所に酸化膜を有していれば、必ずしも電極の外表面全体に酸化膜を有する必要はない。所望の電極形状に成形した電極基材に上述の酸化処理を行う場合、電極の外表面の全域に酸化膜を具える電極や、外表面の所望の領域にのみ酸化膜を具える電極を容易に製造できる。
 [点火プラグ]
 本発明の点火プラグ用電極(上記特定の酸化膜を具えるものでも具えていないものでもよい)は、自動車のエンジンといった内燃機関において、点火に利用する点火プラグの構成部材として好適に利用できる。本発明の点火プラグは、代表的には、絶縁碍子と、この絶縁碍子を保持する主体金具と、上記絶縁碍子内に保持され、上記絶縁碍子の先端から一部が突出された中心電極と、上記主体金具の先端側の面に一端を溶接され、他端が中心電極の端面に対向するように設けられた接地電極と、上記絶縁碍子の後端に設けられた端子金具とを具えるものが挙げられる。公知の点火プラグの電極に代えて、本発明の点火プラグ用電極を利用できる。
 [試験例]
 一般的な自動車のガソリンエンジンの点火に利用される点火プラグ用電極の材料として、ニッケル合金からなる線材(電極材料)を複数作製し、その特性を評価した。
 各線材は、以下のように作製した。通常の真空溶解炉を用いて、表1に示す組成(単位は質量%。Si/Crは質量比)のニッケル合金の溶湯を作製した。溶湯の原料には、市販の純Ni(99.0質量%以上Ni)、各添加元素の粒を用いた。また、不純物や介在物などを低減、除去するために溶湯の精錬を行った。いずれの試料もCが実質的に含有されないように上記精錬具合を調整した(C:0.05質量%以下)。そして、酸素濃度が低くなるように雰囲気を管理して溶解を行い、溶湯温度を適宜調整して真空鋳造を行い、鋳塊(2ton)を得た。
Figure JPOXMLDOC01-appb-T000001
 得られた鋳塊を再加熱して鍛造加工を施し、約150mm角のビレットを得た。このビレットに熱間圧延を施し、線径5.5mmφの圧延線材を得た。この圧延線材に冷間伸線及び熱処理を組み合わせて施し、線径2.5mmφと線径4.2mmφの各冷間伸線材(いずれも丸線)を得た。線径2.5mmφの冷間伸線材には、更に圧延加工を施して、1.5mm×2.8mmの断面矩形状となるように変形し、平角線を得た。得られた平角線、及び線径4.2mmφの丸線に最終熱処理(軟化処理、温度:800℃~1000℃、非酸化性雰囲気(窒素雰囲気又は水素雰囲気)、連続軟化炉使用)を施して、軟材を得た。この軟材を試料:電極材料とする。また、得られた各軟材を適宜な長さに切断した後、所定の形状に適宜成形して、一般的な普通乗用車に用いられている点火プラグ用接地電極(1.5mm×2.8mmの平角線を使用)、点火プラグ用中心電極(線径4.2mmφの丸線を使用)を作製し、試料:電極とする。
 <組成>
 得られた各試料:電極材料(軟材)の組成を誘導結合プラズマ(ICP)発光分光分析装置を用いて調べたところ、表1に示す組成と同様であり、表1に示す添加元素と、残部がNi及び不可避不純物によって構成されていた。また、いずれの試料もNiの含有量が90質量%以上であった(試料No.1~No.11はNi:97質量%以上)。組成の分析は、ICP発光分光分析法による他、原子吸光光度法などでも行える。表1において「-(ハイフン)」は、検出限界未満であり、実質的に含有されていないことを示す。更に、Yを含む各試料を走査型電子顕微鏡(SEM)で観察してエネルギー分散型X線分析(EDX)による元素分析を行って、又は電子線マイクロアナライザ(EPMA)を用いて調べたところ、YとNiとの金属間化合物が存在していることが確認できた。
 <比抵抗>
 作製した各試料:電極材料(軟材)の比抵抗を測定した。その結果を表2に示す。比抵抗(室温)は、電気抵抗測定装置を用いて、直流四端子法により測定した(標点距離GL=100mm)。
 <耐酸化性>
 作製した各試料について耐高温酸化性を調べた。ここでは、上述した1.5mm×2.8mmの平角線(軟材)を用いた接地電極と、線径4.2mmφの丸線(軟材)を用いた中心電極とを1000℃に昇温した大気炉に挿入し、1時間加熱した後、上記大気炉の外に取り出して30分間空冷し、再度1時間加熱するという操作を加熱時間が合計100時間となるまで繰り返す高温酸化試験を行って、酸化膜の厚さ及び酸化膜の状態を調べた。
 上記高温酸化試験後、接地電極の断面を光学顕微鏡で観察し(倍率:50倍~200倍)、この顕微鏡観察像(写真)を用いて上記接地電極の表面に形成された酸化膜の厚さを測定した。
その結果を表2に示す。この試験で作製したニッケル合金からなる各電極はいずれも、図1に示すような二層構造の酸化膜が形成される。具体的には、各電極の酸化膜は、酸化膜の最表面及びその近傍を構成し、添加元素の含有量が多く、Niの含有が少ない表面酸化物層と、表面酸化物層の内部に位置し、Niの含有が多い内部酸化物層とを具える。なお、図1に示す電極は、従来のニッケル合金からなる電極であり、900℃×100時間の条件で上記高温酸化試験を行った説明用サンプルである。この試験では、内部酸化物層及び表面酸化物層のそれぞれの厚さを測定した。内部酸化物層の厚さは、ニッケル合金から構成される基材領域と内部酸化物層との境界から、内部酸化物層と表面酸化物層との境界までの平均厚さ、表面酸化物層は、上述の両酸化物層の境界から酸化膜の最表面までの平均厚さを測定した。平均厚さは、上記顕微鏡観察像に画像処理などを施すことで容易に求められる。電極を構成する基材内部への酸素の侵入度合いが少ないほど、内部酸化物層が薄く、内部酸化し難いと言える。なお、中心電極については接地電極と同様の傾向であったため、結果を記載していない。
 ここでは、上記表面酸化物層及び内部酸化物層の合計厚さが200μm未満であるものを耐高温酸化性に優れるとして○、上記合計厚さが170μm未満で、酸化膜に膨張や亀裂がほとんど無いものを耐高温酸化性に特に優れるとして◎と評価し、表2に耐高温酸化性の評価結果も示す。酸化膜に膨張や亀裂、剥離があったものはその旨を記載した。
 <平均結晶粒径>
 上述の高温酸化試験後の各試料:電極について、平均結晶粒径を調べた。その結果を表2に示す。ここでは、接地電極の断面を光学顕微鏡(倍率:50倍~200倍)で観察し、この顕微鏡観察像(写真)に対して、交線法(ライン法)を利用して平均結晶粒径を算出した。
 <耐火花消耗性>
 作製した各試料:電極材料(軟材)にインパルスを照射して、消耗状態を調べた。ここでは、インパルス試験装置を利用して、周波数:10/350μsの長波(インパルス波形において、立ち上がりからピーク値となるまでの時間:10μs、立ち上がりからピーク値を過ぎて、ピーク値の50%の値に減衰するまでの時間:350μs)、出力:数kVのインパルスを試料に照射し、このインパルスをエンジンの着火時の火花の模擬とした。インパルスの照射後に各試料に生じた凹みの最大深さ(消費量)を測定する。そして、試料No.101の消費量をC101、市販のインコネル600(Inconel:登録商標)からなる平角線を用いて別途作製した比較試料の消費量をCInc、測定する試料の消費量をCSとするとき、式I:CS>{(3×C101+1×CInc)/4}を満たし、かつ、比抵抗(室温)が25μΩ・cm以下のものを耐火花消耗性に優れるとして○、上記式Iを満たさない又は比抵抗(室温)が25μΩ・cm超のものを耐火花消耗性に劣るとして×と評価した。評価結果を表2に示す。
 <耐発汗性>
 作製した各試料:電極材料(軟材)について耐発汗性を調べた。ここでは、上述した1.5mm×2.8mmの平角線(軟材)にエンジンオイルを塗布し、この平角線を雰囲気制御が行える環状の加熱炉にセットする。そして、一般的な自動車のガソリンエンジンにおける燃焼温度(900℃~1000℃程度)よりも100℃程度燃焼温度が高くなるように上記加熱炉を1100℃まで加熱し、試験用のガソリンエンジン(排気量2000cc、6気筒)から排出される排ガスを上記加熱炉内に流しながらエンジン内を模擬した雰囲気で試料を合計60時間保持する。この保持によってエンジンオイルを燃焼させることで、各試料は、燃焼炎に曝されて試料表面に燃焼による生成物(化合物)が付着される。この加熱後の各試料の表面をSEM観察、及びEPMA観察して、生成物(化合物)の存在状態を調べた。
 上記観察の結果、大きな化合物粒が存在して試料が大きく膨れていたり、全面的に化合物粒が発生したりしているものを耐発汗性に劣るとして×、化合物粒の発生が軽微であるものを耐発汗性に優れるとして○、化合物粒の発生がほとんど見られないものを耐発汗性に特に優れるとして◎と評価し、表2に評価結果を示す。
 <耐腐食性>
 作製した各試料:電極材料(軟材)について耐腐食性を調べた。ここで、本発明者らは、ガソリンエンジンを具える自動車(実用車)を実際に使用して、試料とした点火プラグの電極の腐食状態を調べ、この腐食状態の再現試験を種々検討した結果、高温で酸化して酸化膜を形成した後、酸水溶液(硝酸、リン酸、硫酸などの水溶液)を腐食液とし、この腐食液に浸漬すると、上述の自動車に実際に使用した試料の腐食状態に非常に近い状態になる、との知見を得た。また、塩化ナトリウム(NaCl)を含む酸水溶液を腐食液に利用すると、腐食を促進できて腐食試験の時間の短縮を図ることができる。そこで、高温酸化⇒NaCl+酸水溶液への浸漬、という工程を具える試験方法を耐腐食性試験として採用する。具体的な条件は、高温酸化条件は、大気雰囲気、900℃×24時間とし(加熱炉として大気炉を使用)、腐食液は、硝酸及びリン酸を含むNaCl水溶液を用意した。ここでは、質量割合で、硝酸:リン酸:5質量%塩化ナトリウム水溶液=5:5:90となるように、硝酸、リン酸、NaCl水溶液を用意して混合し、腐食液を作製した。この腐食液を80℃に加熱した状態にして試料を浸漬し、所定時間保持した。保持時間は、3時間~15時間の範囲から選択した。所定の保持時間浸漬後、試料を水洗してからクロスセクションポリッシャ(CP)断面をとって、断面積の減少度合いを調べた。具体的には、断面積の減少量(%)={(耐腐食性試験前の断面積-耐腐食性試験後の断面積)/耐腐食性試験前の断面積)}×100を求め、減少量が5%未満のものを耐腐食性に特に優れるとして◎、減少量が5%以上10%未満のものを耐腐食性に優れるとして○、減少量が10%以上のものを耐腐食性に劣るとして△と評価し、表2に評価結果を示す。
 更に、上述の耐腐食性試験を行った後、耐腐食性に優れるとの結果が得られた試料を検討した結果、上述の高温酸化試験後の酸化膜の状態と耐腐食性との間に関連がある、と知見を得た。そこで、上述の耐腐食性試験における高温酸化工程後において、酸化膜の状態を調べた。その結果を表3に示す。ここでは、表面酸化物層の厚さ、内部酸化物層の厚さ、及び両酸化物層の合計厚さ(いずれもμm)、内部酸化物層の厚さに対する表面酸化物層の厚さの比:厚さ比率(%)を調べた。各厚さは、上述の高温酸化試験の場合と同様にして測定した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2に示すように、Al,Si,Cr,Y及びTiを特定の範囲で含有し、かつSi/Cr≧1を満たす特定の組成から構成された試料No.1~No.11は、1000℃、又はそれ以上といった高温であっても耐酸化性に優れることが分かる。具体的には、試料No.1~No.11はいずれも、内部酸化物層が十分に存在し、かつ過剰に厚くなく(ここでは1000℃×100時間後の厚さ:70μm以上140μm未満)、更に試料No.1~No.10は、酸化膜の膨張、亀裂、剥離が実質的に生じていない。この理由の一つは、NiにAl及びSiの双方を比較的少なめに含有すると共にCrやTiを適切に含有しているためである、と考えられる。また、試料No.1~No.11はいずれも、上述のような高温に長時間曝されても結晶粒が300μm以下と微細である。この試験では、平均結晶粒径が150μm以下の試料が多く、100μm以下の試料も存在する。この理由の一つは、Yを適量含有したためであると考えられる。
 かつ、上述の特定の組成から構成された試料No.1~No.11は、腐食液に浸漬されても腐食され難く、腐食液に対する耐性:耐腐食性にも優れることが分かる。また、表3に示すように試料No.1~No.11は、高温酸化(ここでは900℃×24時間)後における酸化膜が、(A)厚さ比率:16%超173%未満、(B)表面酸化物層の厚さ:15μm超57μm未満、(C)内部酸化物層の厚さ:33μm超80μm未満、及び(D)合計厚さ:48μm超90μm未満の少なくとも一つを満たすことが分かる。このことから、上記高温酸化後において酸化膜が上述の(A)~(D)の少なくとも一つを満たす場合、耐腐食性に優れるといえる。また、このような電極材料から構成された電極は、経時的使用によって、その表面に酸化膜が形成されて、耐腐食性に優れると期待される。
 更に、上述の耐腐食性試験における高温酸化処理を、(A)厚さ比率:16%超173%未満、(B)表面酸化物層の厚さ:15μm超57μm未満、(C)内部酸化物層の厚さ:33μm超80μm未満、及び(D)合計厚さ:48μm超90μm未満の少なくとも一つを満たす酸化膜を予め形成するための酸化処理と読み替えた場合を考える。この場合、上記高温酸化処理が施されて上述の(A)~(D)の少なくとも一つを満たす特定の酸化膜を具える電極材料は、表3に示すように腐食液に接触しても腐食し難いといえる。このことから、予め酸化処理によって、上述の(A)~(D)の少なくとも一つを満たす酸化膜を形成し、この酸化膜を具える電極材料や電極は、耐腐食性に優れるといえる。また、この試験では、酸化処理の保持時間が24時間であり、上述の耐高温酸化性試験の条件に比較して酸化膜の形成時間が短い。そのため、このように酸化膜を形成する場合でも生産性に優れるといえる。
 また、試料No.1~No.11はいずれも、比抵抗が25μΩ・cm以下と小さいことが分かる。
この理由の一つは、AlやSi、Crを過剰に含有していないためであると考えられる。特に、Crが少ないほど、比抵抗が小さくなる傾向にあることが分かる。更に、試料No.1~No.11は、比抵抗が小さいことからインパルスによる消耗も小さく、耐火花消耗性に優れると考えられる。加えて、試料No.1~No.11はいずれも、化合物粒が発生し難いことが分かる。
この理由の一つは、Al,Si及びCr、適宜Mnを含有することで、雰囲気中の元素と、合金母相のNiとが低融点の化合物を生成することを抑制できたためであると考えられる。
 一方、上述の特定の組成ではない試料No.101~No.106は、添加元素が少ないことで内部酸化物層が厚くなり過ぎたり、添加元素が多いことで比抵抗が大きかったり、その他、酸化膜に膨張・亀裂・剥離が生じたり、化合物粒が過度に発生したり、腐食液によって腐食し易かったりすることが分かる。なお、試料No.11は、1000℃×100Hの高温酸化試験において軽微な膨張や亀裂が存在したものの、実際の自動車の使用状態により近い状態で酸化膜が形成された場合には、上述のように耐腐食性に優れており、問題なく使用できると期待される。
 上記試験結果から、Al,Si,Cr,Y及びTi、適宜Mnを特定の範囲で含有し、かつSi/Cr≧1を満たす電極材料は、高温でも酸化し難く、比抵抗が小さく、化合物粒が発生し難い上に、腐食液に対する耐性にも優れることが確認された。従って、この電極材料から作製された点火プラグ用電極やこの電極を具える点火プラグは、酸化膜(特に、内部酸化物層)が事後的に適切に生成される上に、生成された酸化膜の膨張、亀裂、剥離が生じ難い場合が多く、密着性にも優れ、比抵抗も小さくて火花による消耗が少なく、上述の化合物粒が形成・成長され難く、かつ、使用時に生成された腐食液に浸漬され得る場合でも腐食し難い。また、上述の特定の元素を特定の範囲で含有するニッケル合金から構成され、かつ上述の特定の厚さ比率や厚さを満たす酸化膜を具える電極材料や、この電極材料から製造された点火プラグ用電極、上記酸化膜を具える点火プラグ用電極を具える点火プラグは、この酸化膜の存在によって使用初期から経時的使用に亘って、上記腐食液に浸漬され得る場合でも腐食し難い。更に、上記点火プラグ用電極は上述の特定の組成のニッケル合金から構成されることで、この電極を構成する合金基材と上記酸化膜との密着性に優れ、合金基材から剥離し難い。このことからも、上記点火プラグ用電極は、使用初期から長期に亘り、耐腐食性に優れる。
 そのため、上記点火プラグ用電極や点火プラグは、従来よりも更に温度が高い環境(例えば、従来温度+100℃程度の超高温環境)であったり、EGRやアイドリングストップなどが行われる使用環境であったりしても、長期に亘り、良好に使用できると期待される。また、酸化膜を具える点火プラグ用電極やこの電極を具える点火プラグは、めっき処理などの別工程を省略した場合でも、使用初期から長期に亘り、良好に使用できると期待される。
 また、上記試験結果から、上述の特定の耐腐食性試験を行って耐腐食性を評価するにあたり、高温酸化(好ましくは900℃×24時間)を行った後の酸化膜が多層構造であって特定の状態になっているかを確認することで、耐腐食性の良否を判断でき、更に、上述の特定の腐食液を用いて浸漬を行った後の腐食状態を確認することで、耐腐食性の良否をより的確に判断できると期待される。
 なお、上述の特定の耐腐食性試験は、以下のように条件を変更することができる。例えば、高温酸化工程における加熱温度は、800℃以上1100℃以下が挙げられる。加熱温度が高いほど、酸化膜が厚くなる傾向にあり、過剰な酸化膜は腐食液の浸透を阻害する恐れがあることから、900℃以上1000℃以下がより好ましい。
 高温酸化工程の雰囲気は、上述のように大気雰囲気とすると、雰囲気の制御が容易である上に、酸素濃度が比較的高いことで酸化膜を短時間で形成可能である。その結果、試験時間を短縮できて作業性に優れる。大気よりも酸素濃度が低い低酸化性雰囲気、例えば、酸素濃度が0.01体積%以上20体積%以下の雰囲気とすることができる。自動車のガソリンエンジンなどの内燃機関では、燃焼ガスなどの雰囲気は、通常、大気中よりも酸素濃度が低い(20体積%以下)。従って、上記低酸化性雰囲気は、実際の使用環境により近い状態を模擬した条件であると考えられる。酸素以外の雰囲気ガスは、窒素やアルゴン、ヘリウムなどの不活性ガスが挙げられる。低酸化性雰囲気の構成ガスは、酸素ガスと上記不活性ガスとを混合した混合ガス、酸素ガスと大気とを混合した混合ガスなどが挙げられる。
 上記加熱温度の保持時間は、酸化膜の形成が十分に可能な時間、例えば、1時間以上が挙げられる。雰囲気の酸素濃度が一定である場合、加熱温度が高いほど、又は保持時間が長いほど、酸化膜が厚くなる傾向にある。酸化膜が厚過ぎると、上述のように腐食液の浸透が十分に行われない恐れがある。従って、保持時間は、大気雰囲気とする場合、1時間以上100時間以下が好ましく、更に1時間以上72時間以下、特に2時間以上24時間以下がより好ましい。酸素濃度が低いほど、酸化膜の形成に時間がかかる傾向にあることから、上述の低酸化性雰囲気とする場合、大気雰囲気の場合よりも保持時間を長くすることが好ましく、2時間以上200時間以下、更に3時間以上、特に10時間以上100時間以下が好ましい。
上述の加熱温度、雰囲気(酸素濃度)、及び保持時間は、相互に関連することから相互の条件を考慮して調整する。
 腐食液への浸漬工程で利用する腐食液は、上述のように腐食を加速できるように塩化物イオン(Cl-)を含有する水溶液、代表的には塩化ナトリウム(NaCl)水溶液が好ましい。NaCl水溶液におけるNaClの濃度(質量割合)は、1%以上10%以下とすると、NaCl自体が腐食の主要因になり難いと考えられる。
 また、腐食液は、酸を含むものとする。具体的には、上述の硝酸、硫酸、リン酸、及び塩酸の少なくとも一種の酸を含むことが好ましい。単一の酸とすると、準備や濃度の調整が容易であり、複数種の酸を組み合せて用いると、実際の使用環境で生成され得る腐食液により近い条件になると期待される。
 上記酸の濃度は、例えば、腐食液の全体質量を100とするとき、NaCl水溶液の質量:酸の質量=50:50~99:1程度が挙げられる。この割合の範囲では、比較的短時間(2時間~48時間程度)の浸漬によって、十分に腐食できると期待される。また、腐食液の温度は、室温(20℃~25℃程度)でもよいが、50℃~80℃程度にすると、腐食をより促進でき、浸漬時間を更に短縮できる。
 浸漬時間は、浸漬対象(電極材料)の材質、腐食液の組成(酸濃度、NaCl濃度)、温度などに応じて適宜選択することができる。浸漬対象が本発明の電極材料のようにニッケル合金から構成される場合、浸漬時間は、2時間以上48時間以下程度が適切である。
 なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で、適宜変更することが可能である。例えば、電極材料の組成、形状、大きさなどを適宜変更することができる。また、接地電極と中心電極とで組成を異ならせることもできる。
 本発明の電極材料は、自動車(代表的には、四輪車、二輪車)のエンジンといった種々の内燃機関の点火プラグ用電極の構成材料に好適に利用することができる。本発明の点火プラグ用電極は、上記点火プラグの構成部品に好適に利用することができる。本発明の点火プラグは、上記内燃機関の点火用部材に好適に利用することができる。

Claims (10)

  1.  質量%で、
     Alを0.005%以上0.2%以下、
     Siを0.2%以上1.6%以下、
     Crを0.05%以上1.0%以下、
     Tiを0.05%以上0.5%以下、
     Yを0.2%以上1.0%以下含有し、残部がNi及び不可避不純物からなり、
     質量比でSi/Cr≧1を満たす電極材料。
  2.  更に、質量%で、Mnを0.05%以上0.5%以下含有する請求項1に記載の電極材料。
  3.  質量%で、Yを0.3%超含有する請求項1又は2に記載の電極材料。
  4.  更に、質量%で、Bを0%超0.05%以下含有する請求項1~3のいずれか1項に記載の電極材料。
  5.  前記電極材料の室温での比抵抗が25μΩ・cm以下である請求項1~4のいずれか1項に記載の電極材料。
  6.  前記電極材料を1000℃×100時間加熱したとき、この加熱後の電極材料の平均結晶粒径が300μm以下である請求項1~5のいずれか1項に記載の電極材料。
  7.  前記電極材料を900℃×24時間加熱したとき、この加熱後の電極材料の表面に酸化膜が形成されており、
     前記酸化膜は、内部酸化物層と表面酸化物層との二層構造であり、かつ以下の(A)~(D)の少なくとも一つを満たす請求項1~6のいずれか1項に記載の電極材料。
     (A) 前記内部酸化物層の厚さに対する前記表面酸化物層の厚さの比が16%超173%未満 (B) 前記表面酸化物層の厚さが15μm超57μm未満
     (C) 前記内部酸化物層の厚さが33μm超80μm未満
     (D) 前記表面酸化物層と前記内部酸化物層との合計厚さが48μm超90μm未満
  8.  前記電極材料の表面の少なくとも一部に酸化膜を具え、
     前記酸化膜は、内部酸化物層と表面酸化物層との二層構造であり、かつ以下の(A)~(D)の少なくとも一つを満たす請求項1~6のいずれか1項に記載の電極材料。
     (A) 前記内部酸化物層の厚さに対する前記表面酸化物層の厚さの比が16%超173%未満 (B) 前記表面酸化物層の厚さが15μm超57μm未満
     (C) 前記内部酸化物層の厚さが33μm超80μm未満
     (D) 前記表面酸化物層と前記内部酸化物層との合計厚さが48μm超90μm未満
  9.  請求項1~8のいずれか1項に記載の電極材料から構成された点火プラグ用電極。
  10.  請求項9に記載の点火プラグ用電極を具える点火プラグ。
PCT/JP2012/083774 2012-02-03 2012-12-27 電極材料及び点火プラグ用電極、並びに点火プラグ WO2013069822A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280068685.2A CN104114723A (zh) 2012-02-03 2012-12-27 电极材料、火花塞电极以及火花塞
US14/375,572 US20140370258A1 (en) 2012-02-03 2012-12-27 Electrode material, spark-plug electrode, and spark plug
DE112012002495.8T DE112012002495T5 (de) 2012-02-03 2012-12-27 Elektrodenmaterial , Zündkerzenelektrode und Zündkerze

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-022307 2012-02-03
JP2012022307 2012-02-03
JP2012-144429 2012-06-27
JP2012144429 2012-06-27
JP2012-192382 2012-08-31
JP2012192382A JP6155575B2 (ja) 2012-02-03 2012-08-31 電極材料及び点火プラグ用電極、並びに点火プラグ

Publications (1)

Publication Number Publication Date
WO2013069822A1 true WO2013069822A1 (ja) 2013-05-16

Family

ID=48290177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083774 WO2013069822A1 (ja) 2012-02-03 2012-12-27 電極材料及び点火プラグ用電極、並びに点火プラグ

Country Status (5)

Country Link
US (1) US20140370258A1 (ja)
JP (1) JP6155575B2 (ja)
CN (1) CN104114723A (ja)
DE (1) DE112012002495T5 (ja)
WO (1) WO2013069822A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760716A (zh) * 2019-10-22 2020-02-07 南京达迈科技实业有限公司 一种用于火花塞电极材料的镍钇合金丝及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6484160B2 (ja) 2015-11-02 2019-03-13 住友電気工業株式会社 電極材料及び点火プラグ用電極、並びに点火プラグ
JP7140112B2 (ja) * 2017-05-19 2022-09-21 住友電気工業株式会社 電極材料、点火プラグ用電極、及び点火プラグ
CN109215830A (zh) * 2018-09-12 2019-01-15 天津百世康科技发展有限公司 一种火花塞侧电极用注射成型料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02186579A (ja) * 1989-01-12 1990-07-20 Ngk Spark Plug Co Ltd 内燃機関用スパークプラグ
JP2006316344A (ja) * 2004-11-04 2006-11-24 Hitachi Metals Ltd 点火プラグ用電極材料
WO2008013159A1 (fr) * 2006-07-25 2008-01-31 Tanaka Kikinzoku Kogyo K.K. Alliage de métal noble pour bougie d'allumage et son procédé de fabrication et de traitement
WO2011077619A1 (ja) * 2009-12-24 2011-06-30 日本特殊陶業株式会社 スパークプラグ
WO2012056599A1 (ja) * 2010-10-26 2012-05-03 日本特殊陶業株式会社 スパークプラグ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173116A (ja) * 2005-12-22 2007-07-05 Ngk Spark Plug Co Ltd スパークプラグ
JP4413951B2 (ja) * 2007-07-06 2010-02-10 日本特殊陶業株式会社 スパークプラグ
DE102010024488B4 (de) * 2010-06-21 2012-04-26 Thyssenkrupp Vdm Gmbh Nickelbasislegierung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02186579A (ja) * 1989-01-12 1990-07-20 Ngk Spark Plug Co Ltd 内燃機関用スパークプラグ
JP2006316344A (ja) * 2004-11-04 2006-11-24 Hitachi Metals Ltd 点火プラグ用電極材料
WO2008013159A1 (fr) * 2006-07-25 2008-01-31 Tanaka Kikinzoku Kogyo K.K. Alliage de métal noble pour bougie d'allumage et son procédé de fabrication et de traitement
WO2011077619A1 (ja) * 2009-12-24 2011-06-30 日本特殊陶業株式会社 スパークプラグ
WO2012056599A1 (ja) * 2010-10-26 2012-05-03 日本特殊陶業株式会社 スパークプラグ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760716A (zh) * 2019-10-22 2020-02-07 南京达迈科技实业有限公司 一种用于火花塞电极材料的镍钇合金丝及其制备方法
CN110760716B (zh) * 2019-10-22 2021-08-24 南京达迈科技实业有限公司 一种用于火花塞电极材料的镍钇合金丝及其制备方法

Also Published As

Publication number Publication date
JP6155575B2 (ja) 2017-07-05
CN104114723A (zh) 2014-10-22
DE112012002495T5 (de) 2014-04-30
US20140370258A1 (en) 2014-12-18
JP2014029002A (ja) 2014-02-13

Similar Documents

Publication Publication Date Title
US9932656B2 (en) Nickel-based alloy with silicon, aluminum, and chromium
JP4769070B2 (ja) 内燃機関用スパークプラグ
JP4430119B2 (ja) スパークプラグ用の貴金属合金及びその製造加工方法
JP5650969B2 (ja) 電極材料、点火プラグ用電極、及び点火プラグ
US7279827B2 (en) Spark plug with electrode including precious metal
JP5619843B2 (ja) スパークプラグ
US8664842B2 (en) Spark plug
JP6155575B2 (ja) 電極材料及び点火プラグ用電極、並びに点火プラグ
WO2011077619A1 (ja) スパークプラグ
JP5897084B1 (ja) 耐微摺動摩耗性に優れる接続部品用導電材料
WO2018211752A1 (ja) 電極材料、点火プラグ用電極、及び点火プラグ
WO2018117135A1 (ja) 耐熱性Ir合金
JP6075707B2 (ja) 電極材料、点火プラグ用電極、及び点火プラグ
JP2009245640A (ja) スパークプラグ
JP6484160B2 (ja) 電極材料及び点火プラグ用電極、並びに点火プラグ
JP6419108B2 (ja) 点火プラグ
JP6719976B2 (ja) 電極材料、及び点火プラグ用電極
JP5912986B2 (ja) 電極材料、スパークプラグ用電極及びスパークプラグ
JP2002235137A (ja) 耐火花消耗性に優れた点火プラグ電極材
JP2011256436A (ja) スパークプラグの電極部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847520

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120120024958

Country of ref document: DE

Ref document number: 112012002495

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14375572

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12847520

Country of ref document: EP

Kind code of ref document: A1