WO2013069500A1 - 制御プログラム、制御方法及び制御装置 - Google Patents

制御プログラム、制御方法及び制御装置 Download PDF

Info

Publication number
WO2013069500A1
WO2013069500A1 PCT/JP2012/077960 JP2012077960W WO2013069500A1 WO 2013069500 A1 WO2013069500 A1 WO 2013069500A1 JP 2012077960 W JP2012077960 W JP 2012077960W WO 2013069500 A1 WO2013069500 A1 WO 2013069500A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
module
unit
waveform data
target
Prior art date
Application number
PCT/JP2012/077960
Other languages
English (en)
French (fr)
Inventor
繁 松本
博至 宮下
和義 田代
一宏 村内
Original Assignee
国際計測器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国際計測器株式会社 filed Critical 国際計測器株式会社
Priority to EP12848170.2A priority Critical patent/EP2778804B1/en
Priority to CN201280061313.7A priority patent/CN103999000A/zh
Priority to KR1020147015851A priority patent/KR102087121B1/ko
Priority to JP2013542934A priority patent/JP5759013B2/ja
Priority to CN201810305261.2A priority patent/CN108494294B/zh
Publication of WO2013069500A1 publication Critical patent/WO2013069500A1/ja
Priority to US14/274,879 priority patent/US10354048B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/025Test-benches with rotational drive means and loading means; Load or drive simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/022Vibration control arrangements, e.g. for generating random vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42163Simulator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50218Synchronize groups of axis, spindles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50229Synchronize axis by simulating several virtual axis to control real axis

Definitions

  • the present invention relates to a control program, a control method, and a control device for controlling driving of a servo motor type mechanical test device driven by a servo motor, for example.
  • servo motors With the practical application of low inertia type high output AC servo motors (hereinafter abbreviated as “servo motors”) capable of outputting high frequency fluctuation torque exceeding 100 Hz, the servo motor is used as the drive source instead of the conventional hydraulic actuator.
  • Servo motor type mechanical test devices for example, fatigue test devices and vibration test devices
  • servo motors are smaller and easier to operate and maintain than hydraulic devices, so there is an increasing need for mechanical testing devices that enable advanced testing using multiple servo motors. .
  • advanced control technology is required, and developing a dedicated control program requires a large amount of development cost and a long development period. there were.
  • Non-Patent Document 1 discloses a visual programming language called a mechanical mechanism program.
  • the mechanical mechanism program simulates on the software hardware synchronous control that mechanically controls the synchronous drive of multiple output shafts using mechanical elements such as gears and cams, and is associated with each output shaft (virtual axis). Synchronous control of multiple servo motors is performed on software.
  • Non-Patent Document 1 Even if a development environment such as that described in Non-Patent Document 1 is used, using a conventional general programming technique, in order to realize advanced control required for recent mechanical test equipment, Since the program configuration is complicated, a program configuration that can be developed more efficiently has been desired.
  • a control program for causing a computer to simulate the operation of a virtual mechanical mechanism, which is a virtual mechanism, and to synchronously control the driving of a plurality of servo motors based on the result of the simulation.
  • the virtual mechanical mechanism includes a first drive module, a first main shaft module connected to the first drive module, and a plurality of power transmissions connected to the first main shaft module and associated with a plurality of servo motors, respectively.
  • Each of the power transmission subsystems includes a second drive module, a differential gear module having a main input shaft, an auxiliary input shaft, and an output shaft, and an output module.
  • the shaft is connected to the first main shaft module, the auxiliary input shaft is connected to the second drive module, the output shaft is connected to the output module, and depending on the simulation result of the input to the output module, its power transmission subsystem Drive the associated servo motor.
  • main input shaft may be connected to the first main shaft module via the first clutch module.
  • the ON / OFF of the drive of each servo motor by the first drive module can be easily controlled by the ON / OFF of the first clutch module.
  • auxiliary input shaft may be connected to the second drive module via the second clutch module.
  • the servo motor drive phase may be controlled by setting the rotational position of the second drive module.
  • the rotation position of the servo motor defined by the first drive waveform is used as the center according to the vibration waveform. It is good also as a structure which vibrates rotation of a servomotor.
  • the drive waveform of the first drive module may be a ramp wave, and the center of rotational vibration of the servo motor may move at a constant angular velocity.
  • the offset of the drive waveform of the servo motor may be realized by driving the second drive module stepwise according to a square wave.
  • a control method for simulating the operation of a virtual mechanical mechanism that is a virtual mechanical mechanism on a computer and synchronously controlling the driving of a plurality of servo motors based on the result of the simulation.
  • the virtual mechanical mechanism includes a first drive module, a first main shaft module connected to the first drive module, and a plurality of power transmissions connected to the first main shaft module and associated with a plurality of servo motors, respectively.
  • Each of the power transmission subsystems includes a second drive module, a differential gear module having a main input shaft, an auxiliary input shaft, and an output shaft, and an output module.
  • the shaft is connected to the first main shaft module, the auxiliary input shaft is connected to the second drive module, the output shaft is connected to the output module, and the power transmission subsystem is connected to the output module according to the simulation result of the input to the output module.
  • a control device that simulates the operation of a virtual mechanical mechanism, which is a virtual mechanism, and synchronously controls the drive of a plurality of servo motors based on the simulation result.
  • a simulation unit that simulates the operation of the virtual mechanical mechanism, and a drive control unit that controls driving of a plurality of servo motors based on the simulation results.
  • the virtual mechanical mechanism includes a first drive module, a first drive module, and a first drive module.
  • the shaft is connected to the second drive module via the first clutch module, and the output shaft is connected to the output module.
  • the drive control unit according to the simulation result of the input to the output module outputs a control signal for controlling the drive of the servomotor associated with the power transmission subsystem.
  • the computer is driven based on the target waveform data and the target waveform data generating unit for generating the target waveform data representing the target waveform in order to drive the driving unit of the mechanical test apparatus according to the target waveform.
  • a control program configured to cause the target waveform data generation unit and the drive command unit to perform parallel processing is provided.
  • the target waveform data generation unit may be configured to read a waveform signal input from the outside and convert the waveform signal into target waveform data.
  • the target waveform data generation process and the drive command process are performed in parallel, for example, it is possible to easily perform control for determining the drive waveform of the drive unit in real time according to the test situation. It becomes possible. In addition, it is possible to easily cope with processing that is controlled in accordance with a waveform signal input from the outside.
  • the drive of a several drive part can be controlled based on a some waveform signal, and each of the several target waveform data generation part corresponding to each of a some waveform signal, and each of a several drive part It is good also as a structure provided with a some corresponding drive command part.
  • a control method for driving a drive unit of a mechanical test apparatus according to a target waveform the step of generating target waveform data representing the target waveform, and driving to the drive unit based on the target waveform data
  • a control method for processing in parallel the step of generating target waveform data and the step of instructing driving to the drive unit is provided.
  • a control program that functions as a drive command unit that commands the unit to drive.
  • the mechanical test apparatus can be continuously driven based on the basic waveform definition data having a small data capacity.
  • the mechanical test apparatus can be continuously driven based on the basic waveform definition data having a small data capacity.
  • the unit waveform data generation unit, the target waveform data generation unit, and the drive command unit may be configured to perform parallel processing.
  • This configuration makes it possible to easily perform real-time control of the machine test apparatus.
  • a computer for controlling the drive of a servo motor, a target value generation unit that generates a target value of a control amount, a correction unit that corrects the target value, and a servo based on the corrected target value
  • the correction unit is configured to function as a drive command unit that commands the motor to drive, a pulse signal acquisition unit that acquires a pulse signal from an encoder that detects rotation of the servo motor, and a rotation of the servo motor based on the pulse signal.
  • a control program comprising: a phase calculation unit that calculates a phase; and a correction value determination unit that determines a correction value based on the phase, and correcting the target value by adding the correction value to the target value.
  • a control device that drives the drive unit of the mechanical test device according to the target waveform.
  • the control device includes a target waveform data generation unit that generates target waveform data representing a target waveform, and a drive command unit that commands the drive unit to drive based on the target waveform data, and the target waveform data generation unit and the drive command unit Are configured to process in parallel.
  • a control method for controlling the drive of the servo motor includes a step of generating a target value of the control amount, a step of correcting the target value, and a step of instructing the servo motor to drive based on the corrected target value, and correcting the standard value.
  • the step includes a step of obtaining a pulse signal from an encoder that detects rotation of the servo motor, a step of calculating a rotation phase of the servo motor based on the pulse signal, and a step of generating a correction value based on the phase And correcting the target value by adding the correction value to the target value.
  • a control device for controlling the drive of the servo motor.
  • the control device includes a target value generation unit that generates a target value of the control amount, a correction unit that corrects the target value, and a drive command unit that commands the servo motor to drive based on the corrected target value.
  • the correction unit includes a pulse signal acquisition unit that acquires a pulse signal from an encoder that detects rotation of the servo motor, a phase calculation unit that calculates a rotation phase of the servo motor based on the pulse signal, and a phase calculation unit A correction value generation unit that generates a correction value, and is configured to correct the target value by adding the correction value to the target value.
  • a computer for controlling driving of a plurality of servo motors, a plurality of target waveform data generation units that generate target waveform data, and one or a plurality of target waveform data
  • the drive command unit commands the drive unit to drive based on a plurality of target waveform data
  • the drive command unit functions based on a waveform obtained by synthesizing the plurality of target waveform data.
  • a control program configured to support the drive in the drive unit is provided.
  • a control method for controlling driving of a plurality of servo motors includes a step of generating target waveform data, and a step of instructing the drive unit to drive based on one or a plurality of target waveform data.
  • a plurality of targets When instructing the drive unit to drive based on the waveform data, the drive unit is instructed to drive based on a waveform obtained by combining a plurality of target waveform data.
  • FIG. 3 is a flowchart illustrating an operation flow of the first embodiment. It is a figure explaining the drive of the servomotor in Example 2.
  • FIG. 6A, 6B, and 6C are graphs showing temporal changes in rotation angles of the first drive module, the second drive module, and the output module, respectively.
  • FIG. 6A, 6B, and 6C are graphs showing temporal changes in rotation angles of the first drive module, the second drive module, and the output module, respectively.
  • FIG. 6A, 6B, and 6C are graphs showing temporal changes in rotation angles of the first drive module, the second drive module, and the output module, respectively.
  • FIG. It is a figure which shows the example of the basic waveform definition data 27C.
  • 14 is a graph for explaining control amount correction according to the sixth embodiment. It is a block diagram which shows schematic structure of the control system of Example
  • FIG. 1 is a block diagram showing an outline of a hardware configuration of a mechanical test apparatus 1 according to an embodiment of the present invention.
  • the mechanical test apparatus 1 includes a test mechanism unit 10 having a plurality of servo motors 11, a plurality of servo amplifiers 11a corresponding to the plurality of servo motors 11, a motion controller 20, a measurement unit 30, a PC (Personal Computer) 40, and A function generator 50 is provided.
  • the test mechanism unit 10 includes a load sensor 14 (for example, a load cell or a torque meter) that detects a load applied to a specimen (not shown) and a displacement sensor 16 that detects a displacement of the specimen.
  • a load sensor 14 for example, a load cell or a torque meter
  • a displacement sensor 16 that detects a displacement of the specimen.
  • Other types of sensors for example, strain gauges, speed sensors, acceleration sensors, etc.
  • Each servo motor 11 includes a rotary encoder 12 that detects the number of rotations of the rotating shaft.
  • the servo amplifier 11a is connected to each servo motor 11 one by one and supplies a drive current to the corresponding servo motor 11 based on a command signal from the motion controller 20.
  • the servo amplifier 11a is connected to the motion controller 20 in a daisy chain by an optical fiber cable.
  • the motion controller 20 generates a drive control signal for controlling the drive of each servo motor 11 based on various setting parameters (described later) input from the PC 40, and outputs the drive control signal to the servo amplifier 11a.
  • the motion controller 20 is also configured to generate a drive control signal based on the AC voltage signal generated by the function generator 50. The detailed configuration of the motion controller 20 will be described later.
  • the measurement unit 30 converts detection signals of the load sensor 14 and the displacement sensor 16 into digital data and outputs the digital data to the PC 40.
  • the measurement unit 30 is connected to the motion controller 20, and a digital signal indicating the rotation speed of the servo motor 11 detected by the rotary encoder 12 is input to the measurement unit 30 via the servo amplifier 11 a and the motion controller 20. It is transmitted to the PC 40 together with the detection results of the load sensor 14 and the displacement sensor 16.
  • the PC 40 calculates target waveform data for driving the servo motor 11 based on the user input, generates various setting parameters that define the target waveform data, and outputs them to the motion controller 20. Further, the PC 40 calculates the test result in real time based on various measurement data output from the measurement unit 30, displays it on the display, and records the test result in a built-in memory (not shown). The PC 40 also has a function of correcting the target waveform data based on various measurement data from the measurement unit 30. These processes are performed using dedicated application software installed in the PC 40.
  • FIG. 2 is a block diagram showing a schematic configuration of the motion controller 20.
  • the motion controller 20 includes hardware 20a, an operation system 20b, and a user program 20c.
  • the operation system 20b has a hierarchical structure, a lower layer kernel 21 that directly manages the hardware 20a, and an upper layer motion control SFC language program 22 (hereinafter referred to as "SFC language program 22") that operates on the kernel 21. .), A mechanical mechanism language program 23 and an interface 24 are provided.
  • the SFC language program 22 interprets and executes a user program 20c (SFC user program 25) described in the SFC language for motion control developed for motion control.
  • the SFC language for motion control is a visual programming language that describes a motion control procedure in a flowchart format.
  • the mechanical mechanism language program 23 interprets and executes the user program 20c (mechanical mechanism user program 26) described in the mechanical mechanism language.
  • the mechanical mechanism user program 26 is used to describe the synchronous drive control of the plurality of servo motors 11, and is called and executed by the SFC language program 22.
  • the user program 20c includes setting data such as basic waveform data 27 used for executing the SFC user program 25 in addition to the above-described SFC user program 25 and mechanical mechanism user program 26.
  • the interface 24 manages input / output with an external device (for example, the PC 40 or the function generator 50 connected to the motion controller 20).
  • FIG. 3 shows a mechanism user program 26 executed in the first to third embodiments described below.
  • the first embodiment is a control example in which each servo motor 11 is synchronously rotated with a predetermined phase difference.
  • the mechanical mechanism user program 26 includes a first drive module 110 and a first main shaft 120 driven by the first drive module 110.
  • the first main shaft 120 is provided with the same number of gears as the number of servo motors 11 that are actually driven (only two gears 130A and 130B are shown in FIG. 3), and a plurality of gears are provided via the gears 130A and 130B. Are connected to the second main shafts 120A and 120B.
  • the second main shaft 120A is connected to a main input shaft 151A of a differential gear (differential gear device) 150A via a clutch 140A.
  • the auxiliary input shaft 152A of the differential gear 150A is connected to the second drive module 180A via the gear 160A and the clutch 170A.
  • An output module 190A is connected to the output shaft 153A of the differential gear 150A.
  • the differential gear 150A gives the output shaft 153A a rotation that is the difference between the rotation of the main input shaft 151A and the rotation of the auxiliary input shaft 152A.
  • Other second virtual main shafts (120B, etc.) connected to the first main shaft 120 also have the same configuration of virtual mechanisms (for example, the clutch 140B, the differential gear 150B, the gear 160B, the clutch 170B, the second drive module 180B, and the like).
  • the output module 190B is connected.
  • Each output module (190A, 190B,...) Is associated with each servo motor 11 on a one-to-one basis, and each servo motor 11 is controlled to rotate at the same phase as the corresponding output module.
  • the rotational drive of each servo motor 11 (output module) is associated with the virtual rotational drive of the first drive module 110 (that is, driven synchronously).
  • a common drive pulse is input to each second drive module (180A and 180B in FIG. 1), and each second drive module has the same phase by an angle corresponding to the drive pulse. It is set to rotate.
  • the first drive module 110 is set to be rotatable with various waveforms (for example, a sine wave, a triangular wave, a rectangular wave, a sawtooth wave, and an arbitrary composite wave) in accordance with an input command.
  • the first embodiment is a control example for rotating each servo motor 11 with a predetermined phase difference and the same waveform.
  • a phase difference is given to the rotational drive of the servo motor 11 corresponding to the output modules 190A and 190B will be described.
  • FIG. 4 is a flowchart illustrating the operation flow of the first embodiment.
  • initial setting is performed. Specifically, the clutches 140A, 140B, and 170A are connected, and the clutch 170B is set to a disengaged state.
  • the first drive module 110 is started (S2). At this time, the output modules 190A and 190B rotate in the same phase.
  • a drive pulse corresponding to a predetermined rotation angle ⁇ (for example, 180 degrees) is input to the second drive modules 180A and 180B (S3).
  • a predetermined rotation angle ⁇ for example, 180 degrees
  • a phase difference (rotational angle difference) is given.
  • the auxiliary input shaft 152B of the differential gear 150B rotates in the same phase as the first drive module 110. Since the main input shafts 151A and 151B of the differential gears 150A and 150B rotate with the same phase, the output shafts 153A and 153B of the differential gears 150A and 150B rotate with the same waveform as the first drive module 110 and with a phase difference ⁇ . Will do. That is, the servo motor 11 corresponding to the output modules 190A and 190B can always be rotated with a predetermined phase difference even if the rotation state of the first drive module 110 is changed by the control of the first embodiment.
  • the configuration of the first embodiment it is possible to independently control the drive waveform and the phase of each servo motor 11. That is, the driving waveform is controlled using the first driving module 110, and the phase difference can be controlled independently by the second driving modules 180A and 180B and 170A and 170B.
  • FIG. 5 is a diagram illustrating driving of the servo motor 11 in the second embodiment.
  • FIGS. 5A, 5 ⁇ / b> B, and 5 ⁇ / b> C are graphs showing temporal changes in the rotation angles of the first drive module 110, the second drive module 180 ⁇ / b> A, and the output module 190 ⁇ / b> A, respectively.
  • the clutches 140A and 170A are connected, and the rotation angle of the output module 190A is equal to the sum of the rotation angles of the first drive module 110 and the second drive module 180A.
  • a command for rotating at a constant rotation speed is input to the first drive module 110.
  • the second drive module 180A is input with a command such that the rotation angle varies according to the sine wave.
  • the rotation of the first drive module 110 and the second drive module 180A is superimposed by the differential gear 150A
  • the output module 190A is a diagram in which the waveform of FIG. 5A and the waveform of FIG. 5B are superimposed.
  • the rotation and vibration of the servo motor 11 can be easily controlled independently. That is, the first drive module 110 can be used to control the rotational movement (center angle of vibration), and the vibration can be controlled independently by the second drive module 180A.
  • the first drive module 110 is driven at a constant angular velocity and the second drive module 180A is sine-vibrated.
  • the first drive module 110 and the second drive module 180A have other waveforms. It may be driven by.
  • the first drive module 110 may be driven at an equal angular velocity
  • the second drive module 180A may be driven by a sawtooth wave.
  • This configuration can be applied to control of a so-called rotational torsion test in which a torsional load (or vibration force) is repeatedly applied to a specimen while rotating the specimen at a predetermined speed, for example.
  • FIG. 6A is a description will be given of a third embodiment in which control is performed to give an offset to the center angle of vibration while vibrating the servo motor 11.
  • the control of the output module 190A will be described as an example.
  • 6A, 6B, and 6C are graphs showing temporal changes in rotation angles of the first drive module 110, the second drive module 180A, and the output module 190A, respectively.
  • the clutches 140A and 170A are connected, and the rotation angle of the output module 190A is equal to the sum of the rotation angles of the first drive module 110 and the second drive module 180A.
  • the first drive module 110 is input with a command such that the rotation angle varies according to the sine wave.
  • the servo motor 11 associated with the output module 190A sine vibrates around the rotation angle ⁇ 1 from time 0 to t1, and the center angle is offset by ⁇ at time t1, and the rotation angle ⁇ 2 is centered after time t1. Is controlled so as to sine vibrate.
  • the configuration of the third embodiment it is possible to easily control the vibration waveform and offset of the servo motor 11 independently.
  • the drive waveform is controlled using the first drive module 110, and the offset amount can be controlled independently by the second drive module 180A.
  • the vibration waveform of the first drive module 110 is not limited to a sine wave, and can be set to various waveforms (for example, a sine wave, a triangular wave, a rectangular wave, a sawtooth wave, and an arbitrary combined wave).
  • the offset amount, the offset direction, and the timing can be freely controlled by driving the second drive module 180A.
  • the above is a description of the control of the output module 190A, for example, an offset can be given to the phase ⁇ of each output module while synchronously driving a plurality of output modules including the output module 190B.
  • a configuration may be adopted in which the same value offset is simultaneously given to the phase of each output module, or a different value offset may be given to each output module at different timings.
  • FIG. 7 is a block diagram illustrating a schematic configuration of the user program 20c according to the fourth embodiment.
  • the SFC user program 25 used in the fourth embodiment includes two types of programs (a waveform signal reading program 25A and a drive control program 25B) that are executed simultaneously in parallel.
  • the waveform signal reading program 25A performs a process of sequentially converting an analog waveform signal input to an analog signal input unit (not shown) of the motion controller 20 into target waveform data.
  • the drive control program 25B executes a process of driving the servo motor 11 based on the target waveform data generated by the waveform signal reading program 25A.
  • waveform signal reading programs 25A as the number of analog waveform signals used for controlling the mechanical testing apparatus 1 are provided, and parallel processing is performed.
  • the drive control program 25B is provided by the number of the servo motors 11 with which the mechanical test apparatus 1 is provided, and performs parallel processing.
  • a common drive control program 25B is used for the servo motors 11 that perform the same control.
  • the fourth embodiment is an example in which the drive control of the plurality of servo motors 11 is performed by using only the SFC user program 25 without using the mechanical mechanism user program 26.
  • the mechanical mechanism user program is executed by the drive control program 25B. It is also possible to call 26 and perform synchronous control with another servo motor 11.
  • FIG. 8 is a diagram illustrating a specific configuration of the user program 20c used for the control of the fifth embodiment.
  • basic waveform definition data 27C which is one of user setting data 27, and three SFC user programs 25 (unit waveform data generation program 25C, target waveform data generation program 25D, and Operation control of the machine test apparatus 1 is performed using the drive control program 25B).
  • the basic waveform definition data 27C is matrix data in which a basic waveform for one period is described according to a predetermined rule.
  • the memory (not shown) of the motion controller 20 stores basic waveform definition data 27C corresponding to a plurality of types of basic waveforms (for example, sine wave, triangular wave, rectangular wave, sawtooth wave, and arbitrary composite wave).
  • the basic waveform definition data 27C can also be created by a user using dedicated application software installed in the PC 40.
  • the basic waveform definition data 27C is data having a normalized amplitude and period.
  • the unit waveform data generation program 25C reads the basic waveform definition data 27C corresponding to the waveform used for the control of the mechanical test apparatus 1, and based on the basic waveform definition data 27C, the unit waveform data generation program 25C has a specified amplitude and period.
  • Unit waveform data 28C which is waveform data of The unit waveform data 28C is composed of data pairs of time t and rotation angle ⁇ , and includes a plurality of data pairs generated at set time intervals. Note that the intensity of the unit waveform data 28C generated by the maximum value / minimum value or the center value / single amplitude value of the rotation angle ⁇ can be designated instead of the amplitude.
  • the target waveform data generation program 25D generates target waveform data 29C, which is continuous waveform data, using one or more unit waveform data 28C.
  • the drive control program 25B sequentially reads the data pairs of the target waveform data 29C at time intervals corresponding to the designated waveform cycle, and synchronizes with the internal clock (in the case of performing synchronous control, via the mechanical mechanism user program 26).
  • the amplitude of the target waveform data 29C is output as a command signal C to the servo amplifier 11a.
  • the unit waveform data generation program 25C and the target waveform data generation program 25D are provided, but these may be integrated to generate the target waveform data 29C directly from the basic waveform definition data 27C. Good.
  • FIG. 11 is a block diagram illustrating an outline of control according to the sixth embodiment.
  • FIG. 10 is a graph illustrating correction of the control amount (rotation speed).
  • the target value of the phase speed ⁇ is corrected in accordance with the phase ⁇ of the servo motor 11, thereby eliminating the speed ripple and realizing uniform rotational driving.
  • Example 6 the fluctuation of the rotation speed N during the rotation cycle when the servo motor 11 is driven to rotate at a constant speed is measured in advance. Specifically, first, the timing (time t) at which a pulse is output from the rotary encoder 12 when the servo motor 11 is driven to rotate at a constant speed is measured. Since the phase ⁇ of the servo motor 11 at time t when each pulse is output is known, when each pulse (time t, phase ⁇ ) is plotted, the time of phase ⁇ as shown by plot P in FIG. A graph showing the change is obtained. The upper and lower vibrations of the plot P indicate the presence of periodic fluctuations in the rotational speed N (speed ripple). A straight line L shown in FIG.
  • the straight line L is the time change of the phase ⁇ when the ideal control without the speed ripple is performed (that is, the target value of the phase ⁇ ). Waveform).
  • a curve E in FIG. 10C is obtained by time-differentiating the curve D and further converting the horizontal axis into a phase.
  • the deviation E can be used as a correction value for the rotational speed N. That is, by controlling the rotation phase ⁇ of the servo motor 11 using a value obtained by adding the value of the curve E to the rotation speed target value N set and correcting the torque ripple, the uniform rotation speed can be controlled. It becomes possible. Note that the waveform of the curve E acquired in advance as described above is recorded in the built-in memory of the motion controller 20 as a lookup table (correction data 29E).
  • FIG. 11 is a block diagram illustrating a schematic configuration of a control system according to the sixth embodiment.
  • the pulse signal P from the rotary encoder 12 is input to the motion controller 20 (drive control program 25B).
  • the drive control program 25B calculates the phase ⁇ of the servomotor 11 based on the pulse signal P, and acquires the correction value E corresponding to the phase ⁇ with reference to the correction data 29E.
  • the drive control program 25B reads the target waveform data 29C generated by the above-described target waveform data generation program 25D, and adds the correction value E to the target value N ref of the rotation speed to the servo amplifier 11a as a command signal C. Output.
  • the servo amplifier 11 a generates a drive current according to the command signal C and drives the servo motor 11.
  • the rotary encoder 12 outputs a pulse signal P indicating the rotation speed of the servo motor 11 to the motion controller 20 and is input again to the drive control program 25B being executed.
  • the torque ripple and the speed ripple are functions of the phase ⁇ of the servo motor 11, but the phase ⁇ of the servo motor 11 is not necessarily synchronized with the internal clock of the motion controller 20 even when speed control is performed to keep the rotation speed N constant. Not done. Therefore, in the sixth embodiment, effective correction of torque ripple and speed ripple is realized by performing control synchronized with the output of the rotary encoder of the servo motor 11 as described above.
  • the sixth embodiment is an example in which speed control (rotational speed control) is performed.
  • the present invention is not limited to this configuration.
  • phase control using a phase ⁇ as a control amount phase control using a phase ⁇ as a control amount
  • torque control using a torque as a control amount or the like.
  • the present invention can also be applied to other control modes.
  • As the correction amount E a deviation of the control amount is used.
  • the waveform of the correction data 29E is experimentally acquired.
  • the torque ripple and the speed ripple are generally well approximated by the cosine of the phase ⁇ of the servo motor 11. Therefore, a cosine waveform that matches the amplitude, period, and phase of torque ripple and speed ripple may be used as the correction data 29E.
  • the above embodiment controls the rotation angle of the rotation shaft of the servo motor 11, but the configuration of the embodiment of the present invention is not limited to this, and depends on the rotation speed, torque, and servo motor of the servo motor.
  • a configuration in which the position, speed, driving force, and the like of the driven actuator are controlled as target values is also included in the technical scope of the present invention.
  • the motion controller 20 gives a digital value command signal to the servo amplifier 11a, but other types of command signals (for example, analog current signal, analog voltage signal, pulse signal) are supplied to the servo amplifier 11a. It can also be set as the structure given to.
  • the configuration of the embodiment of the present invention described above can be applied to a tension / compression tester, a torsion tester, a vibration tester, and other various mechanical test apparatuses.

Abstract

仮想メカ機構の動作のシミュレーションを行うシミュレーション部と、シミュレーションの結果に基づいて、複数のサーボモータの駆動を制御する駆動制御部と、を備え、仮想メカ機構は、第1駆動モジュールと、第1駆動モジュールに接続された第1メインシャフトモジュールと、第1メインシャフトモジュールに接続され、複数のサーボモータとそれぞれ対応づけられた、複数の動力伝達サブシステムと、を備え、動力伝達サブシステムの各々は、第2駆動モジュールと、主入力軸、補助入力軸、および出力軸を有する、差動歯車モジュールと、出力モジュールと、を備え、主入力軸は第1メインシャフトモジュールと接続され、補助入力軸は第1クラッチモジュールを介して第2駆動モジュールと接続され、出力軸は出力モジュールと接続される。

Description

制御プログラム、制御方法及び制御装置
 本発明は、例えばサーボモータによって駆動されるサーボモータ式機械試験装置等の駆動を制御するための制御プログラム、制御方法及び制御装置に関する。
 100Hzを超える高い周波数の変動トルクを出力可能な低慣性型の高出力ACサーボモータ(以下「サーボモータ」と略記する。)の実用化に伴い、従来の油圧アクチュエータに替えてサーボモータを駆動源として使用するサーボモータ式機械試験装置(例えば、疲労試験装置や振動試験装置)が普及しつつある。また、サーボモータは、油圧装置と比べて、小型であり、操作やメンテナンスが容易であることから、複数のサーボモータを使用して高度な試験を可能にする機械試験装置のニーズが高まっている。しかしながら、出力が高速で変動する複数のサーボモータを同期制御する為には高度な制御技術を必要とし、また専用の制御プログラムを開発するには多額の開発コストと長い開発期間を要するという問題があった。
 複数のサーボモータを同期制御する制御システムを効率的に構築するための開発環境が、サーボモータ・メーカーから提供されている(非特許文献1)。非特許文献1には、メカ機構プログラムというビジュアルプログラミング言語が開示されている。メカ機構プログラムは、ギアやカム等の機械要素を使用して複数の出力軸の同期駆動を機械的に制御するハードウェア同期制御をソフトウェア上でシミュレーションし、各出力軸(仮想軸)と関連付けられた複数のサーボモータの同期制御をソフトウェア上で行う。
Mitsubishi Integrated FA Software MELSOFT, effective May 2005, pages25-26. [online]. MITSUBISHI ELECTRIC. [retrieved on 2011-11-02]. Retrieved fromthe Internet: <URL: http://wwwf2.mitsubishielectric.co.jp/melfansweb/document/catalog/melsoft/l08008/l08008c.pdf>.
 しかしながら、非特許文献1に記載されるような開発環境を使用しても、従来の一般的なプログラミング手法を用いると、近年の機械試験装置に要求される高度な制御を実現するためには、プログラムの構成が複雑になるため、より効率的に開発できるプログラム構成が望まれていた。
 本発明の実施形態に従って、コンピュータに、仮想的な機構である仮想メカ機構の動作をシミュレーションさせ、該シミュレーションの結果に基づいて複数のサーボモータの駆動を同期制御させる制御プログラムが提供される。仮想メカ機構は、第1駆動モジュールと、第1駆動モジュールに接続された第1メインシャフトモジュールと、第1メインシャフトモジュールに接続され、複数のサーボモータとそれぞれ対応づけられた、複数の動力伝達サブシステムと、を備え、動力伝達サブシステムの各々は、第2駆動モジュールと、主入力軸、補助入力軸、および出力軸を有する、差動歯車モジュールと、出力モジュールと、を備え、主入力軸は第1メインシャフトモジュールと接続され、補助入力軸は第2駆動モジュールと接続され、出力軸は出力モジュールと接続され、出力モジュールへの入力のシミュレーション結果に応じて、その動力伝達サブシステムと対応づけられたサーボモータを駆動する。
 この構成によれば、仮想機構モジュールを用いて、第1駆動モジュールと第2駆動モジュールそれぞれの出力の差動歯車モジュールによる合成を仮想的に実現することで、サーボモータの複雑な駆動制御を容易に行うことができる。
 また、主入力軸が、第1クラッチモジュールを介して第1メインシャフトモジュールに接続された構成としてもよい。
 この構成によれば、第1クラッチモジュールのON/OFFにより、第1駆動モジュールによる各サーボモータの駆動のON/OFFを容易に制御することができる。
 また、補助入力軸は、第2クラッチモジュールを介して第2駆動モジュールと接続された構成としてもよい。
 この構成によれば、第2駆動モジュールから差動歯車モジュールへの入力を第2クラッチモジュールによってON/OFF制御できるため、各サーボモータの出力を個別に且つ容易に制御することができる。
 また、第2駆動モジュールの回転位置の設定によって、サーボモータの駆動の位相が制御される構成としてもよい。
 この構成によれば、第2駆動モジュールによる位相制御の為の出力を、第2クラッチモジュールによって所望のサーボモータに与えることができるので、各サーボモータの位相を独立に設定することができ、サーボモータ駆動制御プログラムの開発や改変が容易である。
 また、第1駆動モジュールを第1の駆動波形に従って駆動させ、第2駆動モジュールを振動波形に従って駆動させることで、第1の駆動波形によって規定されるサーボモータの回転位置を中心に、振動波形に従ってサーボモータの回転を振動させる構成としてもよい。
 第1駆動モジュールの駆動波形がランプ波であり、サーボモータの回転振動の中心が等角速度運動する構成としてもよい。
 第2駆動モジュールを方形波に従って階段状に駆動させることにより、サーボモータの駆動波形のオフセットを実現する構成としてもよい。
 また、本発明の実施形態に従って、コンピュータ上で仮想的なメカ機構である仮想メカ機構の動作をシミュレーションし、シミュレーションの結果に基づいて複数のサーボモータの駆動を同期制御する制御方法が提供される。仮想メカ機構は、第1駆動モジュールと、第1駆動モジュールに接続された第1メインシャフトモジュールと、第1メインシャフトモジュールに接続され、複数のサーボモータとそれぞれ対応づけられた、複数の動力伝達サブシステムと、を備え、動力伝達サブシステムの各々は、第2駆動モジュールと、主入力軸、補助入力軸、および出力軸を有する、差動歯車モジュールと、出力モジュールと、を備え、主入力軸は第1メインシャフトモジュールと接続され、補助入力軸は第2駆動モジュールと接続され、出力軸は出力モジュールと接続され、出力モジュールへの入力のシミュレーション結果に応じて、該動力伝達サブシステムと対応づけられたサーボモータを駆動する。
 また、本発明の実施形態に従って、仮想的な機構である仮想メカ機構の動作をシミュレーションし、シミュレーションの結果に基づいて複数のサーボモータの駆動を同期制御する制御装置が提供される。仮想メカ機構の動作のシミュレーションを行うシミュレーション部と、シミュレーションの結果に基づいて、複数のサーボモータの駆動を制御する駆動制御部と、を備え、仮想メカ機構は、第1駆動モジュールと、第1駆動モジュールに接続された第1メインシャフトモジュールと、第1メインシャフトモジュールに接続され、複数のサーボモータとそれぞれ対応づけられた、複数の動力伝達サブシステムと、を備え、動力伝達サブシステムの各々は、第2駆動モジュールと、主入力軸、補助入力軸、および出力軸を有する、差動歯車モジュールと、出力モジュールと、を備え、主入力軸は第1メインシャフトモジュールと接続され、補助入力軸は第1クラッチモジュールを介して第2駆動モジュールと接続され、出力軸は出力モジュールと接続され、駆動制御部は、出力モジュールへの入力のシミュレーション結果に応じて、該動力伝達サブシステムと対応づけられたサーボモータの駆動を制御する制御信号を出力する。
 また、本発明の実施形態に従って、機械試験装置の駆動部を目標波形に従って駆動させるためにコンピュータを、目標波形を表す目標波形データを生成する目標波形データ生成部、及び目標波形データに基づいて駆動部に駆動を指令する駆動指令部として機能させ、目標波形データ生成部と駆動指令部とが並列処理するように構成された制御プログラムが提供される。また、目標波形データ生成部が、外部から入力される波形信号を読み取り、波形信号を目標波形データに変換するように構成されてもよい。
 この構成によれば、目標波形データの生成処理と、駆動指令処理とが並列して処理をするため、例えば駆動部の駆動波形を試験状況に応じてリアルタイムで決定する制御を容易に行うことが可能となる。また、外部から入力される波形信号に従って制御する処理にも容易に対応することができる。
 また、複数の波形信号に基づいて、複数の駆動部の駆動を制御可能に構成されており、複数の波形信号のそれぞれに対応する複数の目標波形データ生成部と、複数の駆動部のそれぞれに対応する複数の駆動指令部とを備える構成としてもよい。
 この構成によれば、複数の波形信号に基づいて複数の駆動部を制御する複雑な駆動制御を簡単なプログラム構成で実現することができる。
 また、本発明の実施形態に従って、機械試験装置の駆動部を目標波形に従って駆動させる制御方法であって、目標波形を表す目標波形データを生成するステップと、目標波形データに基づいて駆動部に駆動を指令するステップと、を含み、目標波形データを生成するステップと駆動部に駆動を指令するステップを並列処理する制御方法が提供される。
 本発明の実施形態に従って、機械試験装置の駆動部を目標波形に従って駆動させるためにコンピュータを、1周期分の基本波形を定義する基本波形定義データに基づいて、1周期分の波形を表す単位波形データを生成する単位波形データ生成部、1つ以上の単位波形データに基づいて、目標波形を表す連続波形データである目標波形データを生成する目標波形データ生成部、及び目標波形データに基づいて駆動部に駆動を指令する駆動指令部として機能させる制御プログラムが提供される。
 この構成によれば、データ容量の小さい基本波形定義データに基づいて機械試験装置の連続的な駆動が可能になる。また、比較的に少ない種類の基本波形定義データに基づいて、複雑かつ多様な目標波形データの生成が可能となり、機械試験装置の自由度の高い駆動制御が可能になる。
 単位波形データ生成部、目標波形データ生成部と駆動指令部とが並列処理するように構成されていてもよい。
 この構成によれば、機械試験装置のリアルタイム制御を容易に行うことが可能になる。
 本発明の実施形態に従って、サーボモータの駆動を制御するためにコンピュータを、制御量の目標値を生成する目標値生成部、目標値を補正する補正部、及び補正された目標値に基づいてサーボモータに駆動を指令する駆動指令部、として機能させ、補正部は、サーボモータの回転を検出するエンコーダからのパルス信号を取得するパルス信号取得部と、パルス信号に基づいて、サーボモータの回転の位相を計算する位相計算部と、位相に基づいて補正値を決定する補正値決定部と、を備え、目標値に補正値を加えることによって目標値を補正する、ことを特徴とする制御プログラムが提供される。
 この構成によれば、実際のサーボモータの駆動状態(実位相)に同期してサーボモータの駆動制御が行われるため、実位相と制御信号との位相差を排除することができ、トルクリップルの無いスムーズな駆動制御が可能になる。
 また、本発明の実施形態に従って、機械試験装置の駆動部を目標波形に従って駆動させる制御装置が提供される。制御装置は、目標波形を表す目標波形データを生成する目標波形データ生成部と、目標波形データに基づいて駆動部に駆動を指令する駆動指令部とを備え、目標波形データ生成部と駆動指令部が並列処理するように構成される。
 また、本発明の実施形態に従って、サーボモータの駆動を制御する制御方法が提供される。この制御方法は、制御量の目標値を生成するステップと、目標値を補正するステップと、補正された目標値に基づいてサーボモータに駆動を指令するステップと、を含み、標値を補正するステップは、サーボモータの回転を検出するエンコーダからのパルス信号を取得するステップと、パルス信号に基づいて、サーボモータの回転の位相を計算するステップと、位相に基づいて補正値を生成するステップと、目標値に補正値を加えることによって目標値を補正するステップと、を含む。
 また、本発明の実施形態に従って、サーボモータの駆動を制御する制御装置が提供される。この制御装置は、制御量の目標値を生成する目標値生成部と、目標値を補正する補正部と、補正された目標値に基づいてサーボモータに駆動を指令する駆動指令部と、を備え、補正部は、サーボモータの回転を検出するエンコーダからのパルス信号を取得するパルス信号取得部と、パルス信号に基づいて、サーボモータの回転の位相を計算する位相計算部と、位相に基づいて補正値を生成する補正値生成部と、を備え、目標値に補正値を加えることによって目標値を補正するように構成される。
 また、本発明の実施形態に従って、複数のサーボモータの駆動を制御するためにコンピュータを、目標波形データを生成する、複数の目標波形データ生成部、及び、一または複数の目標波形データに基づいて駆動部に駆動を指令する駆動指令部として機能させ、駆動指令部は、複数の目標波形データに基づいて駆動部に駆動を指令する場合には、複数の目標波形データを合成した波形に基づいて駆動部に駆動を支持するように構成された制御プログラムが提供される。
 また、本発明の実施形態に従って、複数のサーボモータの駆動を制御する制御方法が提供される。この制御方法は、目標波形データを生成するステップと、一または複数の目標波形データに基づいて駆動部に駆動を指令するステップと、を含み、駆動部に駆動を指令するステップにおいて、複数の目標波形データに基づいて駆動部に駆動を指令する場合には、複数の目標波形データを合成した波形に基づいて駆動部に駆動を指令する。
 本発明の実施形態の構成によれば、開発・改変が容易でありながら、機械試験装置等の複雑な駆動制御が可能な制御プログラム及び制御装置が提供される。
本発明の実施形態に係る機械試験装置のハードウェア構成の概略を示すブロック図である モーションコントローラの概略構成を示すブロック図である。 実施例1において実行されるメカ機構ユーザプログラムを示す図である。 実施例1の動作フローを示すフローチャートである。 実施例2におけるサーボモータの駆動を説明する図である。 図6(a)、(b)及び(c)は、それぞれ第1駆動モジュール、第2駆動モジュール及び出力モジュールの回転角の時間変化を示すグラフである。 実施例4のユーザプログラムの概略構成を示すブロック図である。 実施例5の制御に使用されるユーザプログラムの構成を示す図である。 基本波形定義データ27Cの例を示す図である。 実施例6の制御量の補正を説明するグラフである。 実施例6の制御システムの概略構成を示すブロック図である。
 以下、本発明の実施形態について図面を参照しながら説明する。
 図1は、本発明の実施形態に係る機械試験装置1のハードウェア構成の概略を示すブロック図である。機械試験装置1は、複数のサーボモータ11を備えた試験機構部10、複数のサーボモータ11にそれぞれ対応する複数のサーボアンプ11a、モーションコントローラ20、計測ユニット30、PC(Personal Computer)40、及びファンクションジェネレータ50を備えている。
 試験機構部10は、供試体(不図示)に加えられる荷重を検出する荷重センサ14(例えば、ロードセルやトルクメータ)及び供試体の変位を検出する変位センサ16を備えている。なお、変位センサ16に代えて供試体の応答を検出する他の種類のセンサ(例えば、ひずみゲージ、速度センサ、加速度センサ等)を試験機構部10に設けてもよい。また、各サーボモータ11は、回転軸の回転数を検出するロータリーエンコーダ12を備える。
 サーボアンプ11aは、各サーボモータ11に1台ずつ接続されており、モーションコントローラ20からの指令信号に基づいて、対応するサーボモータ11に駆動電流を供給する。サーボアンプ11aは、光ファイバーケーブルによりモーションコントローラ20にデイジー・チェーンで接続されている。
 モーションコントローラ20は、PC40から入力される各種設定パラメータ(後述)に基づいて、各サーボモータ11の駆動を制御するための駆動制御信号を生成して、サーボアンプ11aに出力する。また、モーションコントローラ20は、ファンクションジェネレータ50が生成した交流電圧信号に基づいて駆動制御信号を生成することもできるように構成されている。モーションコントローラ20の詳細な構成については後述する。
 計測ユニット30は、荷重センサ14及び変位センサ16の検出信号をデジタルデータに変換して、PC40に出力する。また、計測ユニット30はモーションコントローラ20に接続されており、ロータリーエンコーダ12が検出したサーボモータ11の回転数を示すデジタル信号が、サーボアンプ11a及びモーションコントローラ20を介して計測ユニット30に入力され、荷重センサ14及び変位センサ16の検出結果と共にPC40に送信される。
 PC40は、ユーザ入力に基づいてサーボモータ11を駆動するための目標波形データを計算し、目標波形データを定義する各種設定パラメータを生成して、モーションコントローラ20に出力する。また、PC40は、計測ユニット30が出力する各種計測データに基づいてリアルタイムで試験結果を計算して、ディスプレイ表示すると共に、内蔵するメモリ(不図示)に試験結果を記録する。また、PC40は、計測ユニット30からの各種計測データに基づいて、目標波形データを修正する機能も備えている。これらの処理は、PC40にインストールされた専用アプリケーションソフトウェアを使用して行われる。
 図2は、モーションコントローラ20の概略構成を示すブロック図である。モーションコントローラ20は、ハードウェア20a、オペレーションシステム20b及びユーザプログラム20cから構成される。オペレーションシステム20bは、階層構造を有し、ハードウェア20aを直接管理する下位レイヤーのカーネル21と、カーネル21上で動作する上位レイヤーのモーション制御用SFC言語プログラム22(以下「SFC言語プログラム22」という。)、メカ機構言語プログラム23及びインターフェース24を備える。SFC言語プログラム22は、モーション制御のために開発されたモーション制御用SFC言語によって記述されたユーザプログラム20c(SFCユーザプログラム25)を解釈して実行する。モーション制御用SFC言語は、モーション制御の手順をフローチャート形式で記述するビジュアルプログラミング言語である。また、メカ機構言語プログラム23は、メカ機構言語によって記述されたユーザプログラム20c(メカ機構ユーザプログラム26)を解釈して実行する。メカ機構ユーザプログラム26は、複数のサーボモータ11の同期駆動制御の記述に使用され、SFC言語プログラム22により呼び出されて実行される。ユーザプログラム20cには、上述のSFCユーザプログラム25及びメカ機構ユーザプログラム26に加えて、SFCユーザプログラム25の実行に使用される基本波形データ27等の設定データが含まれる。また、インターフェース24は、外部装置(例えば、モーションコントローラ20に接続されたPC40やファンクションジェネレータ50)との入出力を管理する。
 次に、機械試験装置1を使用した具体的な制御の実施例を説明する。図3は、以下に説明する実施例1~3において実行されるメカ機構ユーザプログラム26を示す。実施例1は、各サーボモータ11を所定の位相差で同期回転させる制御例である。メカ機構ユーザプログラム26は、第1駆動モジュール110と、これに駆動される第1メインシャフト120を有している。第1メインシャフト120には、実際に駆動するサーボモータ11の数と同数のギア(図3には2系統のギア130A、130Bのみを示す。)が設けられ、ギア130A、130Bを介して複数の第2メインシャフト120A、120Bに接続されている。第2メインシャフト120Aは、クラッチ140Aを介してディファレンシャルギア(差動歯車装置)150Aの主入力軸151Aに接続されている。また、ディファレンシャルギア150Aの補助入力軸152Aは、ギア160A及びクラッチ170Aを介して第2駆動モジュール180Aに接続されている。また、ディファレンシャルギア150Aの出力軸153Aには出力モジュール190Aが接続されている。ディファレンシャルギア150Aは、主入力軸151Aの回転と補助入力軸152Aの回転との差分の回転を出力軸153Aに与える。第1メインシャフト120に接続された他の第2仮想メインシャフト(120B等)にも、同じ構成の仮想機構(例えば、クラッチ140B、ディファレンシャルギア150B、ギア160B、クラッチ170B、第2駆動モジュール180B及び出力モジュール190B)が接続されている。また、各出力モジュール(190A、190B、・・・)は各サーボモータ11と一対一で関連付けられており、各サーボモータ11は対応する出力モジュールと同じ位相で回転するように制御される。上記のメカ機構により、各サーボモータ11(出力モジュール)の回転駆動は、第1駆動モジュール110の仮想的な回転駆動と関連付けられる(すなわち同期して駆動する)。また、実施例1においては、各第2駆動モジュール(図1では180Aと180B)には、共通の駆動パルスが入力され、各第2駆動モジュールは、駆動パルスに応じた角度だけ、同位相で回転するように設定されている。実施例1においては、第1駆動モジュール110は、入力される指令に従って、様々な波形(例えば、正弦波、三角波、矩形波、鋸波及び任意の合成波)で回転可能に設定されている。
 次に、実施例1におけるサーボモータの動作を説明する。上述のように、実施例1は、各サーボモータ11を所定の位相差で、かつ同じ波形で回転させる為の制御例である。ここでは、出力モジュール190A、190Bに対応するサーボモータ11の回転駆動に位相差を与える場合について説明する。図4は、実施例1の動作フローを示すフローチャートである。
 先ず、処理S1において、初期設定が行われる。具体的には、クラッチ140A、140B及び170Aをつなぎ、クラッチ170Bを切った状態に設定する。次に、第1駆動モジュール110を始動する(S2)。このとき、出力モジュール190Aと190Bは、同位相で回転する。次に、第2駆動モジュール180A及び180Bに、所定の回転角Δθ(例えば180度)に相当する駆動パルスを入力する(S3)。このとき、クラッチ170Aがつながれている為、ディファレンシャルギア150Aの補助入力軸152Aは第2駆動モジュール180Aにより回転角Δθだけ回転し、ディファレンシャルギア150Aの出力軸153Aは主入力軸151Aに対してΔθだけ位相差(回転角度差)が与えられる。一方、この時、クラッチ170Bはつながれていない為、ディファレンシャルギア150Bの補助入力軸152Bは第1駆動モジュール110と同位相で回転する。ディファレンシャルギア150A、150Bの主入力軸151A、151Bは同位相で回転するため、ディファレンシャルギア150A、150Bの出力軸153A、153Bは、それぞれ第1駆動モジュール110と同じ波形で、かつ位相差Δθで回転することになる。すなわち、実施例1の制御により、第1駆動モジュール110の回転状態を変動させても、出力モジュール190Aと190Bに対応するサーボモータ11を、常に所定の位相差で回転させることができる。また、実施例1の構成によれば、各サーボモータ11の駆動波形と位相とを独立に制御することが可能となる。すなわち、第1駆動モジュール110を使用して駆動波形を制御し、これと独立して、第2駆動モジュール180A、180B及び170A、170Bにより位相差を制御することができる。
 次に、サーボモータの回転を振動させながら、所定方向に一定の平均速度で回転させる制御を行う実施例2について説明する。ここでは、出力モジュール190Aの制御を例に挙げて説明する。図5は、実施例2におけるサーボモータ11の駆動を説明する図である。具体的には、図5(a)、(b)及び(c)は、それぞれ第1駆動モジュール110、第2駆動モジュール180A及び出力モジュール190Aの回転角の時間変化を示すグラフである。実施例2においては、クラッチ140A及び170Aがつなげられ、出力モジュール190Aの回転角は、第1駆動モジュール110及び第2駆動モジュール180Aの回転角の和に等しくなる。実施例2では、図5(a)に示されるように、第1駆動モジュール110には、一定の回転速度で回転させるような指令を入力する。また、図5(b)に示されるように、第2駆動モジュール180Aには、正弦波に従って回転角が変動するような指令を入力する。これにより、第1駆動モジュール110と第2駆動モジュール180Aの回転は、ディファレンシャルギア150Aによって重畳され、出力モジュール190Aは図5(a)の波形と図5(b)の波形を重ね合わせた図5(c)の波形に従って回転する。実施例2の構成によれば、サーボモータ11の回転と振動とを独立に制御することが容易に可能となる。すなわち、第1駆動モジュール110を使用して回転運動(振動の中心角度)を制御し、これと独立して、第2駆動モジュール180Aにより振動を制御することができる。なお、実施例2では、第1駆動モジュール110を等角速度駆動し、第2駆動モジュール180Aを正弦振動させる構成を例に説明したが、第1駆動モジュール110及び第2駆動モジュール180Aを他の波形で駆動させてもよい。例えば、第1駆動モジュール110を等角速度駆動させ、第2駆動モジュール180Aを鋸波で駆動する構成としてもよい。この構成は、例えば供試体を所定速度で回転させながら、供試体に繰り返しねじり荷重(又は加振力)を加える、いわゆる回転ねじり試験の制御に適用することができる。
 次に、サーボモータ11を振動させながら、振動の中心角度にオフセットを与える制御を行う実施例3について説明する。ここでは、出力モジュール190Aの制御を例に挙げて説明する。図6(a)、(b)及び(c)は、それぞれ第1駆動モジュール110、第2駆動モジュール180A及び出力モジュール190Aの回転角の時間変化を示すグラフである。実施例3においても、クラッチ140A及び170Aがつなげられ、出力モジュール190Aの回転角は、第1駆動モジュール110及び第2駆動モジュール180Aの回転角の和に等しくなる。また、実施例3では、図6(a)に示されるように、第1駆動モジュール110には、正弦波に従って回転角が変動するような指令が入力される。また、図6(b)に示されるように、第2駆動モジュール180Aの回転角は、制御開始時(t=0)において、位相θ1に設定される。時刻0~t1においては、第2駆動モジュール180Aには駆動パルスは与えられず、回転角θ1にて静止する。また、サーボモータ11の振動の中心角にオフセットを与えるタイミング(t=t1)において、第2駆動モジュール180Aに駆動パルスが入力され、第2駆動モジュール180Aは回転角Δθだけ回転する。その後は、第2駆動モジュール180Aには駆動パルスは与えられず、回転角θ2にて静止する。その結果、出力モジュール190Aに関連付けられたサーボモータ11は、時刻0~t1において回転角θ1を中心に正弦振動し、時刻t1において中心角がΔθだけオフセットされ、時刻t1以降は回転角θ2を中心に正弦振動するように駆動制御される。実施例3の構成によれば、サーボモータ11の振動波形とオフセットを独立に制御することが容易に可能となる。すなわち、第1駆動モジュール110を使用して駆動波形を制御し、これと独立して、第2駆動モジュール180Aによりオフセット量を制御することができる。第1駆動モジュール110の振動波形は、正弦波に限らず、様々な波形(例えば、正弦波、三角波、矩形波、鋸波及び任意の合成波)に設定することができる。また、第2駆動モジュール180Aの駆動により、オフセット量やオフセットの方向、タイミングを自由に制御することができる。また、オフセット付与時における第2駆動モジュール180Aの駆動速度(駆動パルスのレート)により、オフセットの緩急を調節することもできる。なお、以上は出力モジュール190Aの制御の説明であるが、例えば出力モジュール190Bを含む複数の出力モジュールを同期駆動させながら、各出力モジュールの位相θにオフセットを与えることができる。各出力モジュールの位相に同じ値のオフセットを同時に与える構成としてもよいし、異なる値のオフセットを各出力モジュールに異なるタイミングで与える構成としてもよい。
 次に、ファンクションジェネレータ50が発生する交流電圧信号(アナログ波形信号)に基づいてサーボモータ11を駆動制御する実施例4について説明する。図7は、実施例4のユーザプログラム20cの概略構成を示すブロック図である。実施例4において使用されるSFCユーザプログラム25は、同時並列に実行される2種類のプログラム(波形信号読取プログラム25A及び駆動制御プログラム25B)から構成される。波形信号読取プログラム25Aは、モーションコントローラ20のアナログ信号入力部(不図示)に入力されたアナログ波形信号を逐次目標波形データに変換する処理を行う。また、駆動制御プログラム25Bは、波形信号読取プログラム25Aが生成した目標波形データに基づいてサーボモータ11を駆動する処理を実行する。波形信号読取プログラム25Aは、機械試験装置1の制御に使用されるアナログ波形信号の数だけ設けられ、並列処理を行う。また、駆動制御プログラム25Bは、機械試験装置1が備えるサーボモータ11の数だけ設けられ、並列処理を行う。なお、同一の制御を行うサーボモータ11については、共通の駆動制御プログラム25Bが使用される。このように、複数の波形信号読取プログラム25A及び/又は複数の駆動制御プログラム25Bにより並列処理を行う構成により、複数のアナログ波形信号を使用して、複数のサーボモータ11を動作させる複雑な制御を行うことが可能になる。実施例4は、メカ機構ユーザプログラム26を使用せずに、SFCユーザプログラム25のみを使用して複数のサーボモータ11の駆動制御を行う例であるが、例えば駆動制御プログラム25Bによりメカ機構ユーザプログラム26を呼び出して、別のサーボモータ11と同期制御させることも可能である。
 次に、予めモーションコントローラ20に保存された後述の基本波形定義データ27Cを使用して、機械試験装置1の動作を制御する実施例5について説明する。図8は、実施例5の制御に使用されるユーザプログラム20cの具体的構成を示す図である。図8に示すように、実施例5においては、ユーザ設定データ27の一つである基本波形定義データ27Cと、3つのSFCユーザプログラム25(単位波形データ生成プログラム25C、目標波形データ生成プログラム25D及び駆動制御プログラム25B)を使用して機械試験装置1の動作制御が行われる。
 基本波形定義データ27Cの例を図9に示す。基本波形定義データ27Cは、1周期分の基本波形が所定の規約に従って記述されたマトリックスデータである。モーションコントローラ20のメモリ(不図示)には、複数種類の基本波形(例えば、正弦波、三角波、矩形波、鋸波及び任意の合成波)に対応する基本波形定義データ27Cが記憶されている。また、基本波形定義データ27Cは、PC40にインストールされた専用アプリケーションソフトウェアを使用してユーザが作成することもできる。基本波形定義データ27Cは、後述する単位波形データ28Cとは異なり、正規化された振幅及び周期を有するデータである。単位波形データ生成プログラム25Cは、機械試験装置1の制御に使用される波形に対応した基本波形定義データ27Cを読み取り、基本波形定義データ27Cに基づいて、指定された振幅及び周期を有する1周期分の波形データである単位波形データ28Cを生成する。単位波形データ28Cは、時間tと回転角θのデータ対から構成され、設定された時間間隔で生成された複数のデータ対を含んでいる。なお、振幅の代わりに回転角θの最大値/最小値、又は中心値/片振幅値によって生成する単位波形データ28Cの強度を指定することもできる。目標波形データ生成プログラム25Dは、一つ以上の単位波形データ28Cを使用して、連続波形データである目標波形データ29Cを生成する。駆動制御プログラム25Bは、指定された波形の周期に応じた時間間隔で目標波形データ29Cのデータ対を順次読み取って、内部クロックに同期して(同期制御を行う場合はメカ機構ユーザプログラム26を介して)、目標波形データ29Cの振幅を指令信号Cとしてサーボアンプ11aに出力する。なお、本実施例では、単位波形データ生成プログラム25Cと目標波形データ生成プログラム25Dが設けられているが、これらを一体化して、基本波形定義データ27Cから目標波形データ29Cを直接生成する構成としてもよい。
 次に、実施例6について説明する。図11は、実施例6の制御の概要を示すブロック図である。また、図10は、制御量(回転数)の補正を説明するグラフである。実施例6は、サーボモータ11の回転軸の回転数N(位相速度ω=2πN)を制御量とする回転数制御(速度制御)の一例であり、モーションコントローラ20の回転数制御モード下で実行される。サーボモータ11は、コギングトルク等の影響により、一定出力で駆動しても、1回転中に出力トルクが変動するトルクリップルが生じる。また、同じ理由により、回転数制御を行った場合でも、位相θに応じて位相速度ωが変動する速度リップルが生じる。実施例6は、サーボモータ11の位相θに応じて位相速度ωの目標値を補正することにより、速度リップルを解消して、均一な回転駆動を実現する。
 実施例6では、予め、サーボモータ11を定速回転駆動させたときの、回転周期中の回転数Nの変動が計測される。具体的には、まず、サーボモータ11を定速回転駆動させたときに、ロータリーエンコーダ12からパルスが出力されるタイミング(時刻t)が計測される。各パルスが出力された時刻tにおけるサーボモータ11の位相θは既知であるため、各パルス(時刻t、位相θ)をプロットすると、図10(a)のプロットPに示すような位相θの時間変化を示すグラフが得られる。プロットPの上下の振動は、周期的な回転数Nのゆらぎ(速度リップル)の存在を示している。また、図10(a)に示す直線Lは、最小二乗法によりプロットPを直線近似したものである。周期的な変動として現れる速度リップルの影響は直線近似によってキャンセルされるため、直線Lは、速度リップルが生じない理想的な制御が行われた場合の位相θの時間変化(すなわち位相θの目標値の波形)と考えることができる。
 図10(b)に示す曲線Dは、図10(a)における曲線P(プロットPのフィッティング曲線)と直線Lとの差分θ-θのグラフである。この差分は、サーボモータ11の速度リップルに起因する。従って、曲線Dの時間微分により、サーボモータ11の速度リップル、すなわち回転数N(=ω/2π)の偏差E(=Nref-Nmeas)が得られる(但し、Nref:回転数Nの目標値、Nmeas:回転数Nの計測値)。図10(c)の曲線Eは、曲線Dを時間微分し、更に横軸を位相に変換したものである。
 偏差Eは、回転数Nの補正値として使用することができる。すなわち、回転数の目標値Nsetに曲線Eの値を加えて補正したものを用いてサーボモータ11の回転の位相θを制御することにより、トルクリップルが打ち消され、均一な回転数の制御が可能になる。なお、上記のように予め取得された曲線Eの波形は、ルックアップテーブル(補正データ29E)としてモーションコントローラ20の内蔵メモリに記録されている。
 次に、上記の補正データEを使用したサーボモータ11の駆動制御の方法について説明する。図11は、実施例6の制御システムの概略構成を示すブロック図である。図11に示されるように、まず、モーションコントローラ20(駆動制御プログラム25B)にロータリーエンコーダ12からのパルス信号Pが入力される。駆動制御プログラム25Bは、パルス信号Pに基づいてサーボモータ11の位相θを計算し、補正データ29Eを参照して位相θに対応する補正値Eを取得する。また、駆動制御プログラム25Bは、上述の目標波形データ生成プログラム25Dが生成した目標波形データ29Cを読み取り、回転数の目標値Nrefに補正値Eを加えたものを指令信号Cとしてサーボアンプ11aに出力する。サーボアンプ11aは、指令信号Cに従って駆動電流を生成して、サーボモータ11を駆動させる。そして、ロータリーエンコーダ12は、サーボモータ11の回転数を示すパルス信号Pをモーションコントローラ20に出力し、再び実行中の駆動制御プログラム25Bに入力される。
 トルクリップルや速度リップルはサーボモータ11の位相θの関数となるが、回転数Nを一定にする速度制御を行った場合でも、サーボモータ11の位相θはモーションコントローラ20の内部クロックとは必ずしも同期していない。そのため、実施例6では、上述のようにサーボモータ11のロータリーエンコーダの出力に同期した制御を行うことで、トルクリップルや速度リップルの効果的な補正が実現している。
 また、上記の実施例6は、速度制御(回転数制御)を行う例であるが、この構成に限らず、例えば位相θを制御量とする位相制御や、トルクを制御量とするトルク制御などの別の制御モードにも本発明を適用することができる。なお、補正量Eには、制御量の偏差が使用される。
 また、上記の実施例6では、補正データ29Eの波形が実験的に取得されているが、トルクリップルや速度リップルは、一般にサーボモータ11の位相θの余弦により良好に近似される。そのため、トルクリップルや速度リップルの振幅、周期、位相に合わせた余弦の波形を補正データ29Eとして用いても良い。
 以上が本発明の例示的な実施形態の説明である。本発明の実施の形態は、上記に説明したものに限定されず、特許請求の範囲の記載により表現された技術的思想の範囲内で任意に変更することができる。
 例えば、上記の実施形態は、サーボモータ11の回転軸の回転角を制御するものであるが、本発明の実施形態の構成はこれに限定されず、サーボモータの回転数やトルク、サーボモータによって駆動されるアクチュエータの位置、速度、駆動力等を目標値にして制御する構成も本発明の技術的範囲に含まれる。
 また、上記の実施形態では、モーションコントローラ20は、デジタル値の指令信号をサーボアンプ11aに与えるが、他の形態の指令信号(例えば、アナログ電流信号、アナログ電圧信号、パルス信号)をサーボアンプ11aに与える構成とすることもできる。
 また、上記に説明した本発明の実施形態の構成は、引張り圧縮試験機、ねじり試験機、振動試験機、その他各種の機械試験装置に適用することができる。
  1 機械試験装置
 10 試験機構部
 11 サーボモータ
 20 モーションコントローラ
 25 SFCユーザプログラム
 26 メカ機構ユーザプログラム
 30 計測ユニット
 40 PC
 50 ファンクションジェネレータ

Claims (23)

  1.  コンピュータに、仮想的な機構である仮想メカ機構の動作をシミュレーションさせ、該シミュレーションの結果に基づいて複数のサーボモータの駆動を同期制御させる制御プログラムであって、
     前記仮想メカ機構は、
      第1駆動モジュールと、
      前記第1駆動モジュールに接続された第1メインシャフトモジュールと、
      前記第1メインシャフトモジュールに接続され、前記複数のサーボモータとそれぞれ対応づけられた、複数の動力伝達サブシステムと、
    を備え、
     前記動力伝達サブシステムの各々は、
      第2駆動モジュールと、
      主入力軸、補助入力軸、および出力軸を有する、差動歯車モジュールと、
      出力モジュールと、
    を備え、
     前記主入力軸は前記第1メインシャフトモジュールと接続され、
     前記補助入力軸は前記第2駆動モジュールと接続され、
     前記出力軸は前記出力モジュールと接続され、
     前記出力モジュールへの入力のシミュレーション結果に応じて、該動力伝達サブシステムと対応づけられたサーボモータを駆動することを特徴とする制御プログラム。
  2.  前記主入力軸が、第1クラッチモジュールを介して前記第1メインシャフトモジュールと接続されたことを特徴とする、請求項1に記載の制御プログラム。
  3.  前記補助入力軸は、第2のクラッチモジュールを介して前記第2駆動モジュールと接続されたことを特徴とする、請求項1又は請求項2に記載の制御プログラム。
  4.  前記第2駆動モジュールの回転位置の設定によって、前記サーボモータの駆動の位相が制御されることを特徴とする、請求項3に記載の制御プログラム。
  5.  前記第1駆動モジュールを第1の駆動波形に従って駆動させ、前記第2駆動モジュールを振動波形に従って駆動させることで、前記第1の駆動波形によって規定される前記サーボモータの回転位置を中心に、前記振動波形に従って前記サーボモータの回転を振動させることを特徴とする、請求項3に記載の制御プログラム。
  6.  前記第1の駆動波形がランプ波であり、前記サーボモータの回転振動の中心が等角速度運動することを特徴とする、請求項5に記載の制御プログラム。
  7.  前記第2駆動モジュールを方形波に従って階段状に駆動させることにより、前記サーボモータの駆動波形のオフセットを実現することを特徴とする、請求項3に記載の制御プログラム。
  8.  コンピュータ上で仮想的なメカ機構である仮想メカ機構の動作をシミュレーションし、該シミュレーションの結果に基づいて複数のサーボモータの駆動を同期制御する制御方法であって、
     前記仮想メカ機構は、
      第1駆動モジュールと、
      前記第1駆動モジュールに接続された第1メインシャフトモジュールと、
      前記第1メインシャフトモジュールに接続され、前記複数のサーボモータとそれぞれ対応づけられた、複数の動力伝達サブシステムと、
    を備え、
     前記動力伝達サブシステムの各々は、
      第2駆動モジュールと、
      主入力軸、補助入力軸、および出力軸を有する、差動歯車モジュールと、
      出力モジュールと、
    を備え、
     前記主入力軸は前記第1メインシャフトモジュールと接続され、
     前記補助入力軸は前記第2駆動モジュールと接続され、
     前記出力軸は前記出力モジュールと接続され、
     前記出力モジュールへの入力のシミュレーション結果に応じて、該動力伝達サブシステムと対応づけられたサーボモータを駆動することを特徴とする制御方法。
  9.  仮想的な機構である仮想メカ機構の動作をシミュレーションし、該シミュレーションの結果に基づいて複数のサーボモータの駆動を同期制御する制御装置であって、
     前記仮想メカ機構の動作のシミュレーションを行うシミュレーション部と、
     前記シミュレーションの結果に基づいて、前記複数のサーボモータの駆動を制御する駆動制御部と、
    を備え、
     前記仮想メカ機構は、
      第1駆動モジュールと、
      前記第1駆動モジュールに接続された第1メインシャフトモジュールと、
      前記第1メインシャフトモジュールに接続され、前記複数のサーボモータとそれぞれ対応づけられた、複数の動力伝達サブシステムと、
    を備え、
     前記動力伝達サブシステムの各々は、
      第2駆動モジュールと、
      主入力軸、補助入力軸、および出力軸を有する、差動歯車モジュールと、
      出力モジュールと、
    を備え、
     前記主入力軸は前記第1メインシャフトモジュールと接続され、
     前記補助入力軸は第1クラッチモジュールを介して前記第2駆動モジュールと接続され、
     前記出力軸は前記出力モジュールと接続され、
     前記駆動制御部は、前記出力モジュールへの入力のシミュレーション結果に応じて、該動力伝達サブシステムと対応づけられたサーボモータの駆動を制御する制御信号を出力することを特徴とする制御装置。
  10.  機械試験装置の駆動部を目標波形に従って駆動させるためにコンピュータを、
     前記目標波形を表す目標波形データを生成する目標波形データ生成部、及び
     前記目標波形データに基づいて前記駆動部に駆動を指令する駆動指令部
    として機能させ、
     前記目標波形データ生成部と前記駆動指令部が並列処理するように構成された制御プログラム。
  11.  前記目標波形データ生成部が、外部から入力される波形信号を読み取り、該波形信号を前記目標波形データに変換するように構成された、ことを特徴とする請求項10に記載の制御プログラム。
  12.  複数の前記波形信号に基づいて、複数の前記駆動部の駆動を制御可能に構成され、
     前記複数の波形信号のそれぞれに対応する複数の前記目標波形データ生成部と、前記複数の駆動部のそれぞれに対応する複数の前記駆動指令部とを備える、ことを特徴とする請求項11に記載の制御プログラム。
  13.  機械試験装置の駆動部を目標波形に従って駆動させる制御方法であって、
     前記目標波形を表す目標波形データを生成するステップと、
     前記目標波形データに基づいて前記駆動部に駆動を指令するステップと、
    を含み、
     前記目標波形データを生成するステップと前記駆動部に駆動を指令するステップを並列処理する制御方法。
  14.  機械試験装置の駆動部を目標波形に従って駆動させる制御装置であって、
     前記目標波形を表す目標波形データを生成する目標波形データ生成部と、
     前記目標波形データに基づいて前記駆動部に駆動を指令する駆動指令部と、
    を備え、
     前記目標波形データ生成部と前記駆動指令部が並列処理するように構成された制御装置。
  15.  機械試験装置の駆動部を目標波形に従って駆動させるためにコンピュータを、
     1周期分の基本波形を定義する基本波形定義データに基づいて、1周期分の波形を表す単位波形データを生成する単位波形データ生成部、
     1つ以上の前記単位波形データに基づいて、前記目標波形を表す連続波形データである目標波形データを生成する目標波形データ生成部、及び
     前記目標波形データに基づいて前記駆動部に駆動を指令する駆動指令部、
    として機能させる制御プログラム。
  16.  前記単位波形データ生成部、前記目標波形データ生成部及び前記駆動指令部が並列処理するように構成されたことを特徴とする、請求項15に記載の制御プログラム。
  17.  機械試験装置の駆動部を目標波形に従って駆動させる制御方法であって、
     1周期分の基本波形を定義する基本波形定義データに基づいて、1周期分の波形を表す単位波形データを生成するステップと、
     1つ以上の前記単位波形データに基づいて、前記目標波形を表す連続波形データである目標波形データを生成するステップと、
     前記目標波形データに基づいて前記駆動部に駆動を指令するステップと、
    を含む制御方法。
  18.  サーボモータの駆動を制御するためにコンピュータを、
     制御量の目標値を生成する目標値生成部、
     前記目標値を補正する補正部、及び
     前記補正された目標値に基づいて前記サーボモータに駆動を指令する駆動指令部、
    として機能させ、
     前記補正部は、
      前記サーボモータの回転を検出するエンコーダからのパルス信号を取得する前記パルス信号取得部と、
      前記パルス信号に基づいて、前記サーボモータの回転の位相を計算する位相計算部と、
      前記位相に基づいて補正値を決定する補正値決定部と、を備え、
      前記目標値に前記補正値を加えることによって前記目標値を補正する、
    ことを特徴とする制御プログラム。
  19.  前記補正値決定部は、前記サーボモータの回転の位相と前記補正値とが対応づけられたルックアップテーブルを参照して補正値を決定する、
    ことを特徴とする請求項18に記載の制御プログラム。
  20.  サーボモータの駆動を制御する制御方法であって、
     制御量の目標値を生成するステップと、
     前記目標値を補正するステップと、
     前記補正された目標値に基づいて前記サーボモータに駆動を指令するステップと、
    を含み、
     前記標値を補正するステップは、
      前記サーボモータの回転を検出するエンコーダからのパルス信号を取得するステップと、
      前記パルス信号に基づいて、前記サーボモータの回転の位相を計算するステップと、
      前記位相に基づいて補正値を生成するステップと、
      前記目標値に前記補正値を加えることによって前記目標値を補正するステップと、
    を含む、ことを特徴とする制御方法。
  21.  サーボモータの駆動を制御する制御装置であって、
     制御量の目標値を生成する目標値生成部と、
     前記目標値を補正する補正部と、
     前記補正された目標値に基づいて前記サーボモータに駆動を指令する駆動指令部と、
    を備え、
     前記補正部は、
      前記サーボモータの回転を検出するエンコーダからのパルス信号を取得する前記パルス信号取得部と、
      前記パルス信号に基づいて、前記サーボモータの回転の位相を計算する位相計算部と、
      前記位相に基づいて補正値を生成する補正値生成部と、を備え、
      前記目標値に前記補正値を加えることによって前記目標値を補正する、
    ことを特徴とする制御装置。
  22.  複数のサーボモータの駆動を制御するためにコンピュータを、
     目標波形データを生成する、複数の目標波形データ生成部、及び
     一または複数の前記目標波形データに基づいて前記駆動部に駆動を指令する駆動指令部として機能させ、
     前記駆動指令部は、複数の前記目標波形データに基づいて前記駆動部に駆動を指令する場合には、複数の前記目標波形データを合成した波形に基づいて前記駆動部に駆動を支持するように構成された制御プログラム。
  23.  複数のサーボモータの駆動を制御する制御方法であって、
     目標波形データを生成するステップと、
     一または複数の前記目標波形データに基づいて前記駆動部に駆動を指令するステップと、を含み、
     前記駆動部に駆動を指令するステップにおいて、複数の前記目標波形データに基づいて前記駆動部に駆動を指令する場合には、複数の前記目標波形データを合成した波形に基づいて前記駆動部に駆動を指令することを特徴とする制御方法。
PCT/JP2012/077960 2011-11-12 2012-10-30 制御プログラム、制御方法及び制御装置 WO2013069500A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12848170.2A EP2778804B1 (en) 2011-11-12 2012-10-30 Control program, control method, and control device
CN201280061313.7A CN103999000A (zh) 2011-11-12 2012-10-30 控制程序、控制方法及控制装置
KR1020147015851A KR102087121B1 (ko) 2011-11-12 2012-10-30 제어 프로그램, 제어 방법 및 제어 장치
JP2013542934A JP5759013B2 (ja) 2011-11-12 2012-10-30 制御プログラム、制御方法及び制御装置
CN201810305261.2A CN108494294B (zh) 2011-11-12 2012-10-30 控制方法及控制装置
US14/274,879 US10354048B2 (en) 2011-11-12 2014-06-02 Control program, control method, and control device for driving a mechanical testing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011248124 2011-11-12
JP2011-248124 2011-11-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/274,879 Continuation-In-Part US10354048B2 (en) 2011-11-12 2014-06-02 Control program, control method, and control device for driving a mechanical testing device

Publications (1)

Publication Number Publication Date
WO2013069500A1 true WO2013069500A1 (ja) 2013-05-16

Family

ID=48289878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077960 WO2013069500A1 (ja) 2011-11-12 2012-10-30 制御プログラム、制御方法及び制御装置

Country Status (7)

Country Link
US (1) US10354048B2 (ja)
EP (1) EP2778804B1 (ja)
JP (1) JP5759013B2 (ja)
KR (1) KR102087121B1 (ja)
CN (2) CN108494294B (ja)
TW (1) TWI570398B (ja)
WO (1) WO2013069500A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107900296A (zh) * 2017-11-23 2018-04-13 燕山大学 伺服电机驱动的连铸结晶器非正弦振动集散控制系统
JP2020068646A (ja) * 2018-10-22 2020-04-30 威盛能源科技股▲ふん▼有限公司Grand Power Energy Technology Co.,Ltd. 発電システム
JP7226753B2 (ja) 2017-02-28 2023-02-21 国際計測器株式会社 試験装置
US11609152B2 (en) 2017-02-28 2023-03-21 Kokusai Keisokuki Kabushiki Kaisha Collision simulation test apparatus and impact test apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101921173B1 (ko) * 2011-04-12 2018-11-22 고쿠사이 게이소쿠키 가부시키가이샤 회전 비틀림 시험기
CN104570741A (zh) * 2015-01-22 2015-04-29 华南理工大学 一种柔性机械臂横向振动pd边界控制模拟方法
CN105628377A (zh) * 2015-12-25 2016-06-01 鼎奇(天津)主轴科技有限公司 一种主轴轴向静刚度测试方法及控制系统
CN105388011A (zh) * 2015-12-25 2016-03-09 鼎奇(天津)主轴科技有限公司 一种主轴轴向静刚度测试装置及其使用方法
CN106647640A (zh) * 2016-12-30 2017-05-10 东莞市极酷机电科技有限公司 一种全息3d技术切割计算机控制系统以及方法
JP6460138B2 (ja) * 2017-03-13 2019-01-30 オムロン株式会社 処理装置、制御パラメータ決定方法、及び制御パラメータ決定プログラム
CN110057341A (zh) * 2019-03-05 2019-07-26 西安工业大学 一种双目立体视觉测量位姿参考平台

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231981A (ja) * 1992-02-24 1993-09-07 Shimadzu Corp 組合わせ波形作成装置
JPH10127100A (ja) * 1996-09-30 1998-05-15 Taiihaa Yan 共生型回転速度及び回転トルク差の検測装置による比例制御の複合動力装置
JP2003083840A (ja) * 2001-09-17 2003-03-19 Hitachi Ltd 振動試験装置ならびに振動応答評価方法
JP2009077541A (ja) * 2007-09-20 2009-04-09 Yokogawa Electric Corp 平面モータ
JP2010159969A (ja) * 2008-12-09 2010-07-22 Kokusai Keisokki Kk 振動試験装置
JP2011176950A (ja) * 2010-02-25 2011-09-08 Meidensha Corp モータのトルク制御装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930007598B1 (ko) * 1990-02-15 1993-08-13 주식회사 승우양행 무브러쉬 직류모터용 f/v 변환기
JP2697399B2 (ja) * 1991-09-13 1998-01-14 三菱電機株式会社 位置決め装置及びそのプログラム表示方法
JP3074358B2 (ja) 1991-12-05 2000-08-07 株式会社日立製作所 構造物の振動試験装置及び振動試験方法並びに振動応答解析方法
KR0153456B1 (ko) * 1992-08-17 1998-12-15 강진구 단상유도 전동기의 제어방법
JP3649312B2 (ja) * 1997-09-13 2005-05-18 本田技研工業株式会社 ハイブリッド車の駆動力伝達装置
DE19934044A1 (de) * 1999-07-16 2001-01-25 Mannesmann Ag Arbeitstaktsynchrones Ein- und Auskuppeln von Servoachsengruppen mittels elektronisch simulierter Kurvenscheiben
US6286104B1 (en) * 1999-08-04 2001-09-04 Oracle Corporation Authentication and authorization in a multi-tier relational database management system
JP4654493B2 (ja) 2000-08-08 2011-03-23 株式会社安川電機 電動機制御装置
JP2002176791A (ja) * 2000-09-26 2002-06-21 Yaskawa Electric Corp 電動機制御装置
JP4092878B2 (ja) 2001-02-01 2008-05-28 株式会社日立プラントテクノロジー 振動台及びその制御装置並びに制御方法
JP3825737B2 (ja) * 2002-10-24 2006-09-27 住友重機械工業株式会社 精密位置決め装置及びこれを用いた加工機
JP2005085177A (ja) 2003-09-10 2005-03-31 Ricoh Co Ltd 機構制御プログラム設計支援装置、機構制御プログラム設計支援システム、機構制御プログラム設計支援プログラム及び記憶媒体
CN100447688C (zh) * 2004-11-17 2008-12-31 欧姆龙株式会社 电子凸轮的控制方法及伺服电机控制系统
CN2831199Y (zh) * 2005-09-23 2006-10-25 天津鼎成高新技术产业有限公司 摇晃轴试验台架控制装置
US8108191B1 (en) * 2005-12-08 2012-01-31 Advanced Testing Technologies, Inc. Electric motor simulator and method for testing motor driver devices
CN101168348B (zh) * 2006-10-27 2010-08-11 通用汽车公司 具有相等的前进和倒档输入分流模态特性的双模电可变传动装置
WO2008120304A1 (ja) 2007-03-28 2008-10-09 Fujitsu Limited 仮想機構シミュレータおよび仮想機構シミュレートプログラム
US8007401B2 (en) 2007-05-02 2011-08-30 Nissan Motor Co., Ltd. Hybrid vehicle drive control apparatus and method
JP5456263B2 (ja) * 2007-05-02 2014-03-26 日産自動車株式会社 ハイブリッド車両の駆動制御装置
JP4466882B2 (ja) * 2007-08-03 2010-05-26 本田技研工業株式会社 電動機の制御装置
US9264534B2 (en) * 2011-10-18 2016-02-16 Avaya Inc. Methods, systems, and computer-readable media for self-maintaining interactive communications privileges governing interactive communications with entities outside a domain
CN104067187B (zh) * 2012-01-27 2016-04-20 三菱电机株式会社 对多轴同步控制装置进行驱动控制的同步控制程序的显示方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231981A (ja) * 1992-02-24 1993-09-07 Shimadzu Corp 組合わせ波形作成装置
JPH10127100A (ja) * 1996-09-30 1998-05-15 Taiihaa Yan 共生型回転速度及び回転トルク差の検測装置による比例制御の複合動力装置
JP2003083840A (ja) * 2001-09-17 2003-03-19 Hitachi Ltd 振動試験装置ならびに振動応答評価方法
JP2009077541A (ja) * 2007-09-20 2009-04-09 Yokogawa Electric Corp 平面モータ
JP2010159969A (ja) * 2008-12-09 2010-07-22 Kokusai Keisokki Kk 振動試験装置
JP2011176950A (ja) * 2010-02-25 2011-09-08 Meidensha Corp モータのトルク制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MITSUBISHI INTEGRATED FA SOFTWARE MELSOFT, May 2005 (2005-05-01), pages 25 - 26

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7226753B2 (ja) 2017-02-28 2023-02-21 国際計測器株式会社 試験装置
US11609152B2 (en) 2017-02-28 2023-03-21 Kokusai Keisokuki Kabushiki Kaisha Collision simulation test apparatus and impact test apparatus
US11892371B2 (en) 2017-02-28 2024-02-06 Kokusai Keisokuki Kabushiki Kaisha Collision simulation test apparatus and impact test apparatus
CN107900296A (zh) * 2017-11-23 2018-04-13 燕山大学 伺服电机驱动的连铸结晶器非正弦振动集散控制系统
JP2020068646A (ja) * 2018-10-22 2020-04-30 威盛能源科技股▲ふん▼有限公司Grand Power Energy Technology Co.,Ltd. 発電システム
US10848040B2 (en) 2018-10-22 2020-11-24 Grand Power Energy Technology Co., Ltd. Electrical power generating system

Also Published As

Publication number Publication date
EP2778804A4 (en) 2016-02-10
JP5759013B2 (ja) 2015-08-05
US10354048B2 (en) 2019-07-16
EP2778804B1 (en) 2018-10-24
KR102087121B1 (ko) 2020-03-10
US20140257781A1 (en) 2014-09-11
TWI570398B (zh) 2017-02-11
TW201333440A (zh) 2013-08-16
CN108494294A (zh) 2018-09-04
JPWO2013069500A1 (ja) 2015-04-02
KR20140088222A (ko) 2014-07-09
CN108494294B (zh) 2022-07-22
CN103999000A (zh) 2014-08-20
EP2778804A1 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5759013B2 (ja) 制御プログラム、制御方法及び制御装置
US10946517B2 (en) Robot control device and robot system
US20180281185A1 (en) Control device and robot system
US10864634B2 (en) Control device and robot system
JP2020078247A (ja) 駆動装置、アクチュエータユニット、ロボット装置、駆動装置の制御方法、アクチュエータユニットの制御方法、ロボット装置の制御方法
JP2018171665A5 (ja) ロボット制御装置、ロボットおよびロボットシステム
US9796087B2 (en) Control system for power unit
US10836037B2 (en) Control device and robot system
JP2009122779A (ja) 制御システムおよび制御支援装置
US10836036B2 (en) Control device, control system, robot, and robot system
WO2018029910A1 (ja) パラレルリンク機構の制御装置
JP2021160031A (ja) 故障予測方法および故障予測装置
WO2021106467A1 (ja) 制御システム、制御装置および制御方法
JPWO2008065836A1 (ja) 電動機制御装置と出力フィルタ調整方法および出力フィルタ調整装置
JP2015093360A (ja) 駆動装置、ロボット装置、駆動装置の制御方法、プログラム及び記録媒体
JP2009192837A (ja) ガルバノスキャナ制御装置
WO2015162772A1 (ja) アクティブ制振装置および設計方法
US20230133592A1 (en) Method for adjusting a piezoelectric torque sensor
KR20170050191A (ko) 다축 다이나모미터 시스템 및 그 제어 방법
CN107389051B (zh) 一种扫描镜运动高精度动态测角方法
JPWO2018179185A1 (ja) モーション制御装置及び外部表示装置
JP2022117610A (ja) 減速機の角度伝達誤差補正方法およびロボットシステム
KR20160097401A (ko) 교육용 회전 이송장치의 정밀위치 제어장치
JP2005083848A (ja) パワートレインの台上試験装置
CN111903052A (zh) 电动机驱动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848170

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013542934

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147015851

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012848170

Country of ref document: EP