WO2013069483A1 - 集積型半導体レーザ素子 - Google Patents

集積型半導体レーザ素子 Download PDF

Info

Publication number
WO2013069483A1
WO2013069483A1 PCT/JP2012/077777 JP2012077777W WO2013069483A1 WO 2013069483 A1 WO2013069483 A1 WO 2013069483A1 JP 2012077777 W JP2012077777 W JP 2012077777W WO 2013069483 A1 WO2013069483 A1 WO 2013069483A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
output
laser
semiconductor
line width
Prior art date
Application number
PCT/JP2012/077777
Other languages
English (en)
French (fr)
Inventor
木本 竜也
小林 剛
向原 智一
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Publication of WO2013069483A1 publication Critical patent/WO2013069483A1/ja
Priority to US13/960,429 priority Critical patent/US8787420B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1039Details on the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers

Definitions

  • the present invention relates to an integrated semiconductor laser element in which a plurality of semiconductor lasers are integrated.
  • an integrated semiconductor laser element in which a plurality of semiconductor lasers having different laser oscillation wavelengths are integrated is disclosed (for example, see Patent Document 1).
  • This type of integrated semiconductor laser device functions as a wavelength tunable laser by switching the semiconductor laser to be operated and changing the wavelength of the laser beam to be output.
  • An optical combiner and a semiconductor optical amplifier (SOA) are sequentially connected to the plurality of semiconductor lasers. The laser light from the semiconductor laser to be operated passes through the optical combiner, is optically amplified by the SOA, and is output from the output terminal of the element.
  • the integrated semiconductor laser element as described above is used by being incorporated in a laser module with a pigtail fiber, for example.
  • a laser module is used as a signal light source in combination with an external modulator for long-distance optical transmission in, for example, a DWDM optical communication network system.
  • a wavelength tunable laser capable of outputting a high-intensity and narrow linewidth laser beam is required.
  • the optical output intensity from the pigtail fiber of the laser module is 40 mW or more, and the spectral line width is 500 kHz.
  • the light output intensity from the pigtail fiber of the laser module is 40 mW or more and the spectral line width is 100 kHz or less.
  • the semiconductor laser in order to realize narrow line width characteristics, the semiconductor laser is generally narrowed.
  • a distributed feedback laser distributed Feedback Laser Diode: DFB-LD
  • DFB-LD distributed Feedback Laser Diode
  • the values of the coupling coefficient ⁇ of the diffraction grating in the laser element and the resonator length of the DFB laser (Ldfb) are increased.
  • SMSR side mode suppression ratio
  • ⁇ Ldfb which is the product of ⁇ and Ldfb
  • the preferable line width reduction of the DFB laser can be realized by increasing Ldfb while keeping ⁇ Ldfb at about 1.5.
  • increasing the value of Ldfb decreases the current-light conversion efficiency.
  • a means for increasing the driving current of the DFB laser first means or amplification of the semiconductor optical amplifier
  • the spectral line width becomes wide because a phenomenon called spatial hole burning occurs in the laser resonator by increasing the drive current.
  • the spectral line width of the laser light output from the semiconductor laser may be widened when amplified by the semiconductor amplifier.
  • the spectral line width of the laser light output from the integrated semiconductor laser element is wider than a desired line width.
  • the present invention has been made in view of the above, and an object thereof is to provide an integrated semiconductor laser element capable of outputting laser light having a desired spectral line width and desired light intensity.
  • an integrated semiconductor laser element includes a plurality of distributed feedback semiconductor lasers that oscillate in a single mode at different oscillation wavelengths, and the plurality of semiconductor lasers.
  • Output light from each of the optical combiners that have the same number of input ports as the semiconductor laser and can output the combined output light, and amplify the output light from the optical combiner
  • the number of the semiconductor lasers is N
  • the cavity length of each of the semiconductor lasers and the spectral line width of the output laser light are Ldfb and ⁇ 0, respectively
  • the amplifier length of the semiconductor optical amplifier , Amplification factor, and spectral line width of the amplified laser beam to be output are Lsoa, A, and ⁇ , respectively, and ⁇ / ⁇ 0 is R, the following equation (1) holds: It is a sign.
  • the integrated semiconductor laser element according to the present invention is the above-described semiconductor laser according to the above invention, wherein each semiconductor laser is diffracted by each semiconductor laser so that a spectral line width of the output light from each semiconductor laser is 250 kHz or less.
  • the product of the coupling coefficient of the grating and the resonator length is set, and R is 2.
  • the integrated semiconductor laser device according to the present invention is characterized in that, in the above invention, the cavity length of each semiconductor laser is 1200 ⁇ m or more.
  • the integrated semiconductor laser device is characterized in that, in the above invention, a product of a coupling coefficient of a diffraction grating and a resonator length in each semiconductor laser is approximately 1.5.
  • the integrated semiconductor laser device is characterized in that, in the above invention, the intensity of the output light from the semiconductor optical amplifier is 50 mW or more.
  • FIG. 1 is a schematic plan view of an integrated semiconductor laser device according to an embodiment.
  • FIG. 2 is a view showing a part of a cross section taken along line AA of the integrated semiconductor laser device shown in FIG. 3 is a cross-sectional view of the integrated semiconductor laser device shown in FIG. 1 taken along line BB.
  • FIG. 4 is a diagram showing an example of the relationship between the resonator length Ldfb of the DFB laser and the spectral line width ⁇ 0 of the DFB laser alone.
  • FIG. 6 is a diagram showing the relationship between the light output intensity from the SOA and the spectral line width ⁇ of the light output from the SOA.
  • FIG. 7 is a diagram showing the relationship between Lsoa / Ldfb and ⁇ / ⁇ 0 in the case shown in FIG.
  • FIG. 8 is a diagram showing the relationship between ⁇ Ldfb and SMSR in the DFB laser.
  • FIG. 9 is a diagram showing the relationship between ⁇ Ldfb in the DFB laser and the spectral line width ⁇ 0 of the DFB laser alone.
  • FIG. 1 is a schematic plan view of an integrated semiconductor laser device according to an embodiment.
  • an integrated semiconductor laser device 100 includes N DFB lasers 11-1 to 11-N (N is an integer of 2 or more) each having a mesa structure, N optical waveguides 12-1 to 12 -N, an optical combiner 13, and a semiconductor optical amplifier (SOA) 14 are integrated on one semiconductor substrate and embedded in an embedded portion 15.
  • N is an integer of 2 or more
  • SOA semiconductor optical amplifier
  • the DFB lasers 11-1 to 11-N are edge-emitting lasers each having a stripe-shaped buried structure with a width of 1.5 ⁇ m to 3 ⁇ m. At one end of the integrated semiconductor laser device 100, for example, at a pitch of 25 ⁇ m in the width direction. Is formed.
  • the output light becomes single-mode laser light by making the intervals of the diffraction gratings provided in the respective DFB lasers different from each other, and the laser oscillation wavelength is about 1530 nm to 1570 nm. It is comprised so that it may mutually differ in the range.
  • the oscillation wavelengths of the DFB lasers 11-1 to 11-N can be finely adjusted by changing the set temperature of the integrated semiconductor laser element 100. That is, the integrated semiconductor laser device 100 realizes a wide wavelength tunable range by switching the driving DFB laser and controlling the temperature.
  • the range of fine adjustment of the laser oscillation wavelengths of the DFB lasers 11-1 to 11-N by temperature adjustment is preferably about 3 nm or less. Therefore, in order to cover the wavelength range of about 1530 nm to 1570 nm, the number of DFB lasers 11-1 to 11-N is preferably 12 or more, for example, 16. However, the value of N is not particularly limited.
  • the range of the oscillation wavelength of the DFB lasers 11-1 to 11-N may be, for example, about 1570 nm to 1610 nm.
  • the length L1 indicates the resonator length Ldfb of the DFB lasers 11-1 to 11-N.
  • the resonator length will be described in detail later.
  • FIG. 2 is a view showing a part of a cross section taken along line AA of the integrated semiconductor laser device 100 shown in FIG.
  • the DFB laser 11-2 includes an n-type InP buffer layer 22 also serving as a lower cladding, which is sequentially stacked on an n-type InP substrate 21, and a lower InGaAsP-SCH whose composition is continuously changed.
  • a diffraction grating is formed on the grating layer 27.
  • the layers from the p-type InP layer 28 to a part of the n-type InP buffer layer 22 have a striped mesa structure.
  • This mesa structure is buried with a p-type InP buried layer 32 and an n-type InP current blocking layer 33.
  • a p-type InP cladding layer 34 and an InGaAs contact layer 35 are sequentially stacked on the p-type InP layer 28 and the n-type InP current blocking layer 33.
  • the outer surface of each semiconductor layer is protected by the SiN protective film 38.
  • a part of the SiN protective film 38 is opened on the InGaAs contact layer 35.
  • a p-side electrode 39 is formed in the opening.
  • An n-side electrode 40 is formed on the back surface of the n-type InP substrate 21.
  • the active layer 24 has a plurality of well layers and barrier layers that are alternately stacked.
  • the well layer and the barrier layer are made of a GaInAsP-based semiconductor material or an AlGaInAs-based semiconductor material.
  • the composition of the active layer 24 is set so as to have a gain peak wavelength in the band corresponding to the oscillation wavelength of the DFB lasers 11-1 to 11-N, for example, near the center of 1530 nm to 1570 nm, that is, near 1550 nm. .
  • the wavelength of the gain peak of the semiconductor laser due to the setting of this composition is that at 10 ° C. to 50 ° C., which is the operating temperature of the integrated semiconductor laser device 100.
  • the width of the active layer 24 is, for example, 1.4 ⁇ m to 1.7 ⁇ m.
  • the other DFB lasers 11-1 and 11-3 to 11-N have substantially the same structure as the DFB laser 11-2, including the composition and thickness of the active layer.
  • the optical combiner 13 is an MMI (Multi-Mode Interferometer) type optical coupler having N input ports and one output port.
  • 3 is a cross-sectional view of the integrated semiconductor laser device shown in FIG. 1 taken along line BB.
  • the optical combiner 13 has a buried mesa structure similar to that of the DFB lasers 11-1 to 11-N, but has a laminated structure from the lower InGaAsP-SCH layer 23 to the p-type InP layer 28. It has a structure replaced with a laminated structure of an InGaAsP core layer 30 and an i-type InP layer 31.
  • the optical combiner 13 has a mesa width wider than that of the DFB lasers 11-1 to 11-N. In the optical combiner 13, the opening of the SiN protective film 38 and the p-side electrode 39 are not formed.
  • the optical combiner 13 is not limited to the MMI type optical coupler, and may be another N ⁇ 1 optical coupler such as a Fresnel coupler.
  • the optical waveguides 12-1 to 12-N are formed between the DFB lasers 11-1 to 11-N and the optical combiner 13, and have an embedded mesa structure similar to that of the optical combiner 13.
  • the DFB lasers 11-1 to 11-N and the N input ports of the optical combiner 13 are optically connected.
  • the SOA 14 is connected to one output port 13 a of the optical combiner 13.
  • the SOA 14 has a buried mesa structure similar to the DFB lasers 11-1 to 11-N. However, the SOA 14 does not have the grating layer 27 unlike the DFB lasers 11-1 to 11-N, and a p-type InP layer is formed instead. Also in the SOA 14, the width of the active layer is, for example, 1.4 ⁇ m to 1.7 ⁇ m, but is particularly limited as long as the laser light output from the DFB lasers 11-1 to 11-N can be guided in a single mode. Not done.
  • the length L2 indicates the SOA 14 length (amplifier length) Lsoa.
  • the amplifier length will be described in detail later.
  • one DFB laser selected from the DFB lasers 11-1 to 11-N is driven to output a single mode laser beam having a desired wavelength. Since the trench grooves 16-1 to 16-M electrically isolate the DFB lasers 11-1 to 11-N, the isolation resistance between the DFB lasers is increased, and 1 of the DFB lasers 11-1 to 11-N One can be selected and driven easily.
  • the optical waveguide optically connected to the driving DFB laser guides the laser light from the driving DFB laser in a single mode.
  • the optical combiner 13 passes the laser light guided through the optical waveguide and outputs it from the output port 13a.
  • the SOA 14 amplifies the laser beam output from the output port 13 a and outputs the amplified laser beam from the output end 14 a to the outside of the integrated semiconductor laser device 100.
  • the SOA 14 is used to compensate for the loss of light by the optical combiner 13 of the laser light from the driving DFB laser and to obtain a light output with a desired intensity from the output end 14a.
  • the optical combiner 13 has N input ports and one output port, the intensity of the laser light from the driving DFB laser is attenuated to about 1 / N by the optical combiner 13.
  • the spectral line width of the laser beam output from the driving DFB laser changes depending on the resonator length Ldfb of the DFB laser and the coupling coefficient ⁇ of the diffraction grating. Specifically, the spectral line width can be narrowed by increasing Ldfb or increasing ⁇ .
  • FIG. 4 is a diagram showing an example of the relationship between the resonator length Ldfb of the DFB laser and the spectral line width ⁇ 0 of the DFB laser alone.
  • FIG. 4 shows a case where the drive current is set so that the intensity of the output laser beam is 20 mW in the DFB laser having the structure of FIG.
  • Lsoa and Ldfb are set so as to satisfy the following expression (1).
  • N is the number of DFB lasers 11-1 to 11-N or the number of input ports of the optical combiner 13.
  • A is the amplification factor of SOA14.
  • ⁇ 0 is the spectral line width of the laser light output from the DFB lasers 11-1 to 11-N
  • is the spectral line width of the amplified laser light output from the output end 14a of the SOA 14
  • R is ⁇ / ⁇ 0. It is.
  • the DFB lasers 11-1 to 11-N A ratio ⁇ / ⁇ 0 between the spectral line width ⁇ 0 of the output laser light and the spectral line width ⁇ of the amplified laser light output from the output end 14a of the SOA 14 becomes a desired value or less.
  • R is not particularly limited as long as it is a value larger than 1, but is preferably 4 or less, for example, 2 for narrow line width.
  • the inventors first set ⁇ so that the spectral line width ⁇ 0 is 250 kHz when the resonator length of the DFB laser is 600 ⁇ m, 900 ⁇ m, 1200 ⁇ m, or 1500 ⁇ m and the intensity of the output laser light is 20 mW.
  • integrated semiconductor laser devices having different numbers of DFB lasers and different SOA amplifier lengths Lsoa were fabricated.
  • the spectral line width ⁇ of the amplified laser beam output from the output terminal of the SOA during the operation of the integrated semiconductor laser device was examined while changing the amplification factor A by changing the SOA drive current.
  • FIG. 5 shows a case where N is 12 or 16.
  • Diamond symbols indicate data when N is 12.
  • Square symbols indicate data when N is 16.
  • the spectral line width ⁇ of the amplified laser beam output from the output terminal of the SOA can be set to 500 kHz or less.
  • the resonator length Ldfb of the DFB laser is 600 ⁇ m, 900 ⁇ m, 1200 ⁇ m, or 1500 ⁇ m, and the intensity of the output laser light is 20 mW
  • is set so that the spectral line width ⁇ 0 is 250 kHz
  • the DFB laser The characteristics of the integrated semiconductor laser device in which the number of semiconductor lasers is set to 12 and the SOA amplifier length Lsoa is set to 1400 ⁇ m will be described.
  • FIG. 6 is a diagram showing the relationship between the light output intensity from the SOA and the spectral line width ⁇ of the light output from the SOA.
  • the spectral line width ⁇ increases as the light output intensity from the SOA increases, that is, as the SOA amplification factor A increases.
  • the spread of the spectral line width ⁇ in the SOA is suppressed when the resonator length Ldfb of the DFB laser is long, although the spectral line width ⁇ 0 is set to the same 250 kHz.
  • FIG. 7 is a diagram showing the relationship between Lsoa / Ldfb and ⁇ / ⁇ 0 in the case shown in FIG.
  • the light output intensity from the SOA is 50 mW.
  • the light output intensity can be about 40 mW or more.
  • Lsoa / Ldfb is 2.33, 1.56, 1.17, and 0.93, respectively.
  • the condition of FIG. 7 is preferable because ⁇ / ⁇ 0 is 2 or less when Lsoa / Ldfb is about 1.4 or less.
  • the necessary SOA 14 is obtained in order to obtain the required output intensity of the laser beam.
  • An amplification factor A is determined.
  • the ratio ⁇ / ⁇ 0 becomes less than a desired value at the required output intensity, so that high intensity and narrow linewidth laser light is emitted.
  • a tunable laser capable of output can be realized.
  • the resonator length Ldfb of the DFB lasers 11-1 to 11-N is short, the probability of single mode oscillation decreases if ⁇ Ldfb is set large (that is, ⁇ is large) in order to obtain narrow linewidth characteristics. For this reason, the yield of the integrated semiconductor laser device 100 is lowered and the cost is increased. From such a viewpoint, it is preferable that Ldfb ⁇ 1200 ⁇ m. Further, when Ldfb is large, the spectral line width ⁇ 0 is hardly increased even if the amplification factor A of the SOA 14 is increased, which is preferable from this point. Further, as shown in FIG.
  • the current-light conversion efficiency decreases.
  • the drive current of the DFB lasers 11-1 to 11-N for obtaining a desired spectral line width increases, which may increase power consumption.
  • the current density of the current injected into the active layer 24 can be increased by narrowing the mesa width (or the width of the active layer 24) of the DFB lasers 11-1 to 11-N. This is preferable because a decrease in current-light conversion efficiency is suppressed.
  • the width of the active layer 24 is preferably 1.7 ⁇ m or less as described above, for example.
  • Narrowing the width of the active layer 24 is not only suitable for reducing the line width of the laser light, but can also improve the SMSR. However, if the active layer width is too narrow, the electrical resistance of the DFB laser element increases, and the element characteristics may deteriorate due to heat generation. In order to prevent this, the active layer width is preferably 1.4 ⁇ m or more.
  • ⁇ Ldfb is preferably about 1.5, but is preferably 1.3 to 1.65, for example.
  • FIG. 8 is a diagram showing the relationship between ⁇ Ldfb and SMSR in the DFB laser.
  • FIG. 8 shows a case where the drive current is set so that the intensity of the laser beam to be output is 20 mW in the DFB laser having the structure of FIG.
  • the SMSR is generally preferably 40 dB or more.
  • ⁇ Ldfb is larger than 1.65, a DFB laser in which the SMSR is lowered is generated, and the yield of single mode oscillation is lowered. Therefore, ⁇ Ldfb is preferably 1.65 or less.
  • FIG. 9 is a diagram showing the relationship between ⁇ Ldfb in the DFB laser and the spectral line width ⁇ 0 of the DFB laser alone.
  • FIG. 9 also shows a case where the drive current is set so that the intensity of the laser beam to be output is 20 mW in the DFB laser having the structure of FIG.
  • ⁇ Ldfb is preferably 1.3 or more. From the above, it is preferable that ⁇ Ldfb is 1.3 to 1.65 in order to achieve both good single mode oscillation characteristics and narrow linewidth characteristics.
  • the integrated semiconductor laser device according to the present invention is suitable for use in optical communication.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 互いに異なる発振波長で単一モード発振する複数の分布帰還型の半導体レーザと、前記複数の半導体レーザからの出力光がそれぞれ入力される、該半導体レーザと同じ数の入力ポートを有し、該出力光を合流させて出力させることができる光合流器と、前記光合流器からの出力光を増幅する半導体光増幅器と、が集積され、前記半導体レーザの個数をN、前記各半導体レーザの共振器長および出力されるレーザ光のスペクトル線幅をそれぞれLdfb、Δν0とし、前記半導体光増幅器の増幅器長、増幅率、および出力される増幅されたレーザ光のスペクトル線幅をそれぞれLsoa、A、Δνとし、Δν/Δν0をRとすると、所定の関係式が成り立つ。

Description

集積型半導体レーザ素子
 本発明は、複数の半導体レーザを集積した集積型半導体レーザ素子に関する。
 たとえばDWDM(Dense Wavelength Division Multiplexing)光通信用の波長可変光源として、互いにレーザ発振波長が異なる複数の半導体レーザを集積した集積型半導体レーザ素子が開示されている(たとえば特許文献1参照)。この種の集積型半導体レーザ素子では、動作させる半導体レーザを切り替えて、出力するレーザ光の波長を変化させることによって波長可変レーザとして機能する。複数の半導体レーザには、光合流器、半導体光増幅器(Semiconductor Optical Amplifier:SOA)が順次接続されている。動作させる半導体レーザからのレーザ光は、光合流器を通過した後、SOAによって光増幅されて素子の出力端から出力される。
 上記のような集積型半導体レーザ素子は、例えばピグテイルファイバ付きのレーザモジュールに組み込まれて使用される。このようなレーザモジュールは、例えばDWDM光通信ネットワークシステムにおける長距離光伝送のために、外部変調器と組み合わせて、信号光源として使用される。
 ここで、伝送速度が40、100、400Gbpsのデジタルコヒーレント伝送用途の信号光源または局発光源として、高強度かつ狭線幅なレーザ光を出力できる波長可変レーザが必要である。たとえば、一般的な例として、DP-QPSK(Dual Polarization Quadrature Phase Shift Keying)方式の100Gbps伝送で用いられる光源としては、レーザモジュールのピグテイルファイバからの光出力強度が40mW以上、スペクトル線幅が500kHz以下であることが要求される。また別の例として、DP-16QAM(Quadrature Amplitude Modulation)方式の400Gbps伝送では、レーザモジュールのピグテイルファイバからの光出力強度が40mW以上、スペクトル線幅が100kHz以下であることが要求される。
特開2005-317695号公報
 上記の集積型半導体レーザ素子において、狭線幅特性を実現するためには、一般的に半導体レーザの狭線幅化が行われる。このような半導体レーザとしては、単一モード発振の歩留まりの高い分布帰還型レーザ(Distributed Feedback Laser Diode:DFB-LD)が好適に用いられる。DFBレーザを狭線幅化するためには、レーザ素子内の回折格子の結合係数κおよびDFBレーザの共振器長(Ldfbとする)の値を大きくすることが行われている。しかしながら、κおよびLdfbの値を大きくすると、サイドモード抑圧比(Side-Mode Suppression Ratio:SMSR)が劣化し、単一モード発振確率が低下するという問題がある。そのため、κとLdfbとの積であるκLdfbを1.5程度以下に抑えることが好ましい。つまり好ましいDFBレーザの狭線幅化は、κLdfbを1.5程度に保ちつつ、Ldfbを大きくすることで実現できる。ただし、Ldfbの値を大きくすることで電流-光変換効率が低下してしまう。この電流-光変換効率の低下を補い、集積型半導体レーザ素子から所望の光出力強度を得るためには、DFBレーザの駆動電流を大きくする手段(第1の手段)、または半導体光増幅器の増幅率を大きくする手段(第2の手段)がある。
 第1の手段では、駆動電流を大きくすることによりレーザ共振器内で空間的なホールバーニングという現象が起こるため、スペクトル線幅が広くなることが知られている。
 一方、集積型半導体レーザ素子において、第2の手段では、半導体レーザから出力されたレーザ光のスペクトル線幅が、半導体増幅器によって増幅される際に広がる場合がある。この場合、集積型半導体レーザ素子から出力されるレーザ光のスペクトル線幅が所望の線幅よりも広くなるという問題があった。
 本発明は、上記に鑑みてなされたものであって、所望のスペクトル線幅および所望の光強度のレーザ光を出力できる集積型半導体レーザ素子を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る集積型半導体レーザ素子は、互いに異なる発振波長で単一モード発振する複数の分布帰還型の半導体レーザと、前記複数の半導体レーザからの出力光がそれぞれ入力される、該半導体レーザと同じ数の入力ポートを有し、該出力光を合流させて出力させることができる光合流器と、前記光合流器からの出力光を増幅する半導体光増幅器と、が集積され、前記半導体レーザの個数をN、前記各半導体レーザの共振器長および出力されるレーザ光のスペクトル線幅をそれぞれLdfb、Δν0とし、前記半導体光増幅器の増幅器長、増幅率、および出力される増幅されたレーザ光のスペクトル線幅をそれぞれLsoa、A、Δνとし、Δν/Δν0をRとすると、以下の式(1)が成り立つことを特徴とする。
Figure JPOXMLDOC01-appb-M000002
 また、本発明に係る集積型半導体レーザ素子は、上記発明において、前記各半導体レーザは、当該各半導体レーザからの前記出力光のスペクトル線幅が250kHz以下になるように、当該各半導体レーザにおける回折格子の結合係数と共振器長との積の値が設定されており、かつRは2であることを特徴とする。
 また、本発明に係る集積型半導体レーザ素子は、上記発明において、前記各半導体レーザの共振器長が1200μm以上であることを特徴とする。
 また、本発明に係る集積型半導体レーザ素子は、上記発明において、前記各半導体レーザにおける回折格子の結合係数と共振器長との積が略1.5であることを特徴とする。
 また、本発明に係る集積型半導体レーザ素子は、上記発明において、前記半導体光増幅器からの出力光の強度が50mW以上であることを特徴とする。
 本発明によれば、所望のスペクトル線幅および所望の光強度のレーザ光を出力できる集積型半導体レーザ素子を実現できるという効果を奏する。
図1は、実施の形態に係る集積型半導体レーザ素子の模式的な平面図である。 図2は、図1に示す集積型半導体レーザ素子のA-A線断面の一部を示す図である。 図3は、図1に示す集積型半導体レーザ素子のB-B線断面図である。 図4は、DFBレーザの共振器長Ldfbと、DFBレーザ単体のスペクトル線幅Δν0と、の関係の例を示す図である。 図5は、SOAの増幅率Aと、R=Δν/Δν0=2となるときのLsoa/Ldfbと、の関係を示す図である。 図6は、SOAからの光出力強度と、SOAからの光出力のスペクト線幅Δνと、の関係を示す図である。 図7は、図6に示す場合における、Lsoa/LdfbとΔν/Δν0との関係を示す図である。 図8は、DFBレーザにおけるκLdfbとSMSRとの関係を示す図である。 図9は、DFBレーザにおけるκLdfbとDFBレーザ単体のスペクトル線幅Δν0との関係を示す図である。
 以下に、図面を参照して本発明に係る集積型半導体レーザ素子の実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、各図面において、同一または対応する要素には適宜同一の符号を付している。さらに、図面は模式的なものであり、各層の厚みと幅との関係、各層の比率などは、現実のものとは異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
(実施の形態)
 図1は、実施の形態に係る集積型半導体レーザ素子の模式的な平面図である。図1に示すように、本実施の形態に係る集積型半導体レーザ素子100は、それぞれがメサ構造を有する、N個のDFBレーザ11-1~11-N(Nは2以上の整数)と、N個の光導波路12-1~12-Nと、光合流器13と、半導体光増幅器(SOA)14とを1つの半導体基板上に集積し、埋め込み部15により埋め込んだ構造を有する。DFBレーザ11-1~11-N間の埋め込み部15には、トレンチ溝16-1~16-M(M=N―1)を設けている。
 DFBレーザ11-1~11-Nは、各々が幅1.5μm~3μmのストライプ状の埋め込み構造を有する端面発光型レーザであり、集積型半導体レーザ素子100の一端において幅方向にたとえば25μmピッチで形成されている。DFBレーザ11-1~11-Nは、各DFBレーザに備えられた回折格子の間隔を互いに異ならせることにより、出力光が単一モード発振のレーザ光となり、そのレーザ発振波長が約1530nm~1570nmの範囲で互いに相違するように構成されている。また、DFBレーザ11-1~11-Nの各発振波長は、集積型半導体レーザ素子100の設定温度を変化させることにより微調整することができる。すなわち、集積型半導体レーザ素子100は、駆動するDFBレーザの切り替えと温度制御とにより、広い波長可変範囲を実現している。
 なお、温度調整によるDFBレーザ11-1~11-Nのそれぞれのレーザ発振波長の微調整の範囲は、3nm程度以下とすることが好ましい。したがって、約1530nm~1570nmの波長範囲をカバーするためには、DFBレーザ11-1~11-Nの個数は12以上が好ましく、たとえば16である。ただし、Nの値は特に限定されない。また、DFBレーザ11-1~11-Nの発振波長の範囲は、たとえば約1570nm~1610nmとしてもよい。
 図1において、長さL1はDFBレーザ11-1~11-Nの共振器長Ldfbを示している。共振器長については後に詳述する。
 図2は、図1に示す集積型半導体レーザ素子100のA-A線断面の一部を示す図である。図2に示すように、たとえばDFBレーザ11-2は、n型InP基板21上に、順次積層した、下部クラッドを兼ねるn型InPバッファ層22、組成を連続的に変化させた下部InGaAsP-SCH(Separate Confinement Heterostructure)層23、MQW(Multi-Quantum Well)構造の活性層24、上部InGaAsP-SCH層25、InPスペーサ層26、InGaAsPまたはAlGaInAsからなるグレーティング層27、およびp型InP層28を備えている。グレーティング層27には回折格子が形成されている。
 p型InP層28からn型InPバッファ層22の一部に到るまでの層はストライプ状のメサ構造を有している。このメサ構造は、p型InP埋め込み層32とn型InP電流ブロッキング層33により埋め込まれている。また、p型InP層28とn型InP電流ブロッキング層33との上には、p型InPクラッド層34、InGaAsコンタクト層35が順次積層している。また、各半導体層の外側表面はSiN保護膜38により保護されている。さらに、SiN保護膜38はInGaAsコンタクト層35上でその一部が開口している。この開口部にはp側電極39が形成されている。また、n型InP基板21上の裏面にはn側電極40が形成されている。
 活性層24は、交互に積層した複数の井戸層と障壁層とを有している。井戸層および障壁層は、GaInAsP系半導体材料、またはAlGaInAs系半導体材料からなる。活性層24の組成は、DFBレーザ11-1~11-Nの発振波長に対応する帯域である、たとえば1530nm~1570nmの中央近傍、すなわち1550nm近傍に利得ピークの波長を有するように設定されている。この組成の設定による半導体レーザの利得ピークの波長は、集積型半導体レーザ素子100の動作温度である10℃~50℃におけるものである。また、活性層24の幅は、例えば1.4μm~1.7μmである。他のDFBレーザ11-1、11-3~11-Nについては、活性層の組成や厚さを含めて、DFBレーザ11-2と略同一の構造を有する。
 光合流器13は、N個の入力ポートと1つの出力ポートとを有するMMI(Multi-Mode Interferometer)型光カプラである。図3は、図1に示す集積型半導体レーザ素子のB-B線断面図である。図3に示すように、光合流器13は、DFBレーザ11-1~11-Nと同様の埋め込みメサ構造を有するが、下部InGaAsP-SCH層23からp型InP層28までの積層構造を、InGaAsPコア層30とi型InP層31との積層構造に置き換えた構造を有している。また、光合流器13は、メサ幅がDFBレーザ11-1~11-Nよりも幅広く形成されている。また、光合流器13においては、SiN保護膜38の開口部とp側電極39とは形成されていない。
 なお、光合流器13は、MMI型光カプラに限定されず、たとえばフレネルカプラのような他のN×1光カプラでもよい。
 光導波路12-1~12-Nは、DFBレーザ11-1~11-Nと光合流器13との間に形成されており、光合流器13と同様の埋め込みメサ構造を有しており、DFBレーザ11-1~11-Nと光合流器13のN個の入力ポートとを光学的に接続している。
 SOA14は、光合流器13の1つの出力ポート13aに接続している。SOA14は、DFBレーザ11-1~11-Nと同様の埋め込みメサ構造を有する。ただし、SOA14はDFBレーザ11-1~11-Nとは異なりグレーティング層27を有さず、その代わりにp型InP層が形成されている。SOA14においても、活性層の幅は、例えば1.4μm~1.7μmであるが、DFBレーザ11-1~11-Nが出力するレーザ光を単一モードで導波できる幅であれば特に限定はされない。
 なお、図1において、長さL2はSOA14の長さ(増幅器長)Lsoaを示している。増幅器長については後に詳述する。
 つぎに、この集積型半導体レーザ素子100の動作を説明する。まず、DFBレーザ11-1~11-Nの中から選択した1つのDFBレーザを駆動し、所望の波長の単一モードレーザ光を出力させる。トレンチ溝16-1~16-MはDFBレーザ11-1~11-N間を電気的に分離するのでDFBレーザ間の分離抵抗が大きくなり、DFBレーザ11-1~11-Nの中の1つを選択して駆動することが容易にできる。
 つぎに、複数の光導波路12-1~12-Nのうち、駆動するDFBレーザと光学的に接続している光導波路は、駆動するDFBレーザからのレーザ光を単一モードで導波する。光合流器13は、光導波路を導波したレーザ光を通過させて出力ポート13aから出力する。SOA14は、出力ポート13aから出力したレーザ光を増幅して、出力端14aから集積型半導体レーザ素子100の外部に出力する。SOA14は、駆動するDFBレーザからのレーザ光の光合流器13による光の損失を補うとともに、出力端14aから所望の強度の光出力を得るために用いられる。なお、光合流器13がN個の入力ポートと1個の出力ポートを有する場合、駆動するDFBレーザからのレーザ光の強度は、光合流器13によって約1/Nに減衰される。
 ここで、駆動するDFBレーザが出力するレーザ光のスペクトル線幅は、DFBレーザの共振器長Ldfbと、回折格子の結合係数κとに依存して変化する。具体的には、Ldfbを長くしたり、κを大きくしたりするとスペクトル線幅を狭くすることができる。
 図4は、DFBレーザの共振器長Ldfbと、DFBレーザ単体のスペクトル線幅Δν0と、の関係の例を示す図である。図4は、図2の構造を有するDFBレーザにおいて、出力するレーザ光の強度を20mWになるように駆動電流を設定した場合を示している。
 図4に示すように、出力するレーザ光の強度が同じであっても、Ldfbが長いほどスペクトル線幅Δν0は狭くなる。また、κLdfbが大きいほどスペクトル線幅Δν0は狭くなる。したがって、さまざまなLdfbの値に対して適切にκを調整することによって、所望のスペクトル線幅Δν0を得ることができる。ただし、κLdfbが大きいとDFBレーザが多モード発振する場合があるので、κLdfbは1.5程度にすることが好ましい。
 つぎに、SOA14の増幅器長LsoaとDFBレーザ11-1~11-Nの共振器Ldfbとの関係について説明する。本実施の形態に係る集積型半導体レーザ素子100では、LsoaとLdfbとが、つぎの式(1)を満たすように設定されている。
Figure JPOXMLDOC01-appb-M000003
 ここで、NはDFBレーザ11-1~11-Nの個数、または光合流器13の入力ポートの個数である。AはSOA14の増幅率である。また、Δν0はDFBレーザ11-1~11-Nから出力されるレーザ光のスペクトル線幅、ΔνはSOA14の出力端14aから出力される増幅されたレーザ光のスペクトル線幅、RはΔν/Δν0である。
 本発明者が、集積型半導体レーザ素子100のスペクトル線幅の特性について精査したところによれば、LsoaとLdfbとが式(1)を満たしていれば、DFBレーザ11-1~11-Nから出力されるレーザ光のスペクトル線幅Δν0と、SOA14の出力端14aから出力される増幅されたレーザ光のスペクトル線幅Δνとの比Δν/Δν0が、所望の値以下となる。このとき、SOA14によるレーザ光のスペクトル線幅の広がりが、もともとのスペクトル線幅に対して所望値以下に抑制される。Rについては、1より大きい値であれば特に限定されないが、狭線幅のためには4以下が好ましく、たとえば2とすることが好ましい。
 以下、具体的に説明する。本発明者らは、はじめに、DFBレーザの共振器長を600μm、900μm、1200μm、または1500μmとし、出力するレーザ光の強度が20mWの場合にスペクトル線幅Δν0が250kHzとなるようにκを設定し、かつDFBレーザの個数およびSOAの増幅器長Lsoaが異なる集積型半導体レーザ素子を試作した。そして、SOAの駆動電流を変化させることによって増幅率Aを変化させながら、集積型半導体レーザ素子の動作時にSOAの出力端から出力される増幅されたレーザ光のスペクトル線幅Δνを調べた。
 図5は、SOAの増幅率Aと、R=Δν/Δν0=2となるときのLsoa/Ldfbと、の関係を示す図である。なお、図5では、Nが12または16の場合を示している。菱形の記号はNが12の場合のデータを示している。四角形の記号はNが16の場合のデータを示している。また、図5において、線L3、L4は、式(1)で等号が成り立つ場合においてそれぞれN=12、N=16とした場合を示す曲線である。
 図5に示すように、Nが12、16のいずれの場合も、Δν/Δν0=2となるときのLsoa/Ldfbと増幅率Aとの関係は、式(1)においてR=2とし、かつ等号が成り立つ場合で表されることが確認された。また、Rが1より大きくかつ2以外の値になる場合の、SOAの増幅率AとLsoa/Ldfbとの関係を調べたところ、いずれの場合も、Δν/Δν0=RとなるときのLsoa/Ldfbと増幅率Aとの関係は、式(1)において等号が成り立つ場合で表されることが確認された。したがって、式(1)にしたがってLsoa/Ldfbの関係を設定することによって、レーザ光のスペクトル線幅を所望の狭い値にすることが可能となる。
 なお、上記のように、DFBレーザが出力するレーザ光のスペクトル線幅Δν0が250kHz以下になるようにκLを設定すれば、式(1)でR=2としたときの関係を適用することによって、SOAの出力端から出力される増幅されたレーザ光のスペクトル線幅Δνを500kHz以下とすることができる。これによって、デジタルコヒーレント伝送用途の信号光源または、受信機で用いられる局発光源としての適用上好ましい集積型半導体レーザ素子を実現できる。
 つぎに、DFBレーザの共振器長Ldfbを600μm、900μm、1200μm、または1500μmとし、出力するレーザ光の強度が20mWの場合にスペクトル線幅Δν0が250kHzとなるようにκを設定し、かつDFBレーザの個数を12個に設定し、およびSOAの増幅器長Lsoaを1400μmに設定した集積型半導体レーザ素子についてその特性を説明する。
 図6は、SOAからの光出力強度と、SOAからの光出力のスペクト線幅Δνと、の関係を示す図である。図6に示すように、SOAからの光出力強度が高くなるにつれて、すなわちSOAの増幅率Aが大きくなるにつれて、スペクト線幅Δνが広がることがわかる。しかしながら、スペクトル線幅Δν0を同一の250kHzに設定したにも関わらず、DFBレーザの共振器長Ldfbが長い方が、SOAにおけるスペクト線幅Δνの広がりが抑制されることがわかる。
 図7は、図6に示す場合における、Lsoa/LdfbとΔν/Δν0との関係を示す図である。なお、SOAからの光出力強度は50mWとしている。SOAからの光出力強度が50mW以上の場合は、レーザモジュールを構成する際に、SOAからの光出力をピグテイルファイバに結合させるときの結合損失として1dB程度を想定しても、ピグテイルファイバからの光出力強度を約40mW以上とできる。これによって、デジタルコヒーレント伝送用途の信号光源としての適用上好ましい集積型半導体レーザ素子およびレーザモジュールを実現できる。
 Ldfbが600μm、900μm、1200μm、1500μmの場合、Lsoa/Ldfbはそれぞれ2.33、1.56、1.17、0.93である。図7の条件では、Ldfbが1200μmおよび1500μmの場合はR=2とした式(1)が満たされるので、図7に示すようにΔν/Δν0は2以下となり、Δν0は500kHz以下となる。一方、Ldfbが600μmおよび900μmの場合は、R=2とした式(1)が満たされないので、図7に示すようにΔν/Δν0は2より大きくなり、Δν0は500kHzよりも大きくなる。なお、データ点の近似直線が示すように、図7の条件では、Lsoa/Ldfbが約1.4以下の場合にΔν/Δν0が2以下となるので好ましい。
 以上説明したように、本実施の形態に係るN個のDFBレーザ11-1~11-Nを備える集積型半導体レーザ素子100では、必要なレーザ光の出力強度を得るために、必要なSOA14の増幅率Aが決定される。このとき、式(1)の関係を満たすようにLsoa/Ldfbを設定することによって、必要な出力強度において比Δν/Δν0が所望の値以下となるので、高強度かつ狭線幅なレーザ光を出力できる波長可変レーザを実現することができる。
 なお、DFBレーザ11-1~11-Nの共振器長Ldfbが短い場合、狭線幅特性を得るためにκLdfbを大きく(つまりκを大きく)設定すると、単一モード発振する確率が低くなる。このため、集積型半導体レーザ素子100の歩留まりが低下し、コスト高となる。このような観点から、Ldfb≧1200μmであることが好ましい。また、Ldfbが大きい場合は、SOA14の増幅率Aを大きくしてもスペクトル線幅Δν0が大きくなりにくいのでこの点からも好ましい。また、図4に示すように、単一モード性の高いκLdfb=1.5の場合において、Ldfb>1500μmとしても、スペクトル線幅Δν0の低減の効果が十分には得られない。このような観点から、Ldfb≦1500μmにすることにより、集積型半導体レーザ素子100の面積を必要以上に大きくすることなく所望のスペクトル線幅を得ることができる。これにより、一枚のウェハから獲得できる集積型半導体レーザ素子の数量を大きくでき、製造コストを低減することができる。
 さらに、DFBレーザ11-1~11-Nの共振器長が長くなると電流-光変換効率(W/A)が低下する。それによって所望のスペクトル線幅を得るためのDFBレーザ11-1~11-Nの駆動電流が上昇し、消費電力が大きくなる可能性がある。この場合、DFBレーザ11-1~11-Nのメサ幅(または活性層24の幅)を狭くすることによって、活性層24に注入される電流の電流密度を上げることができる。これによって、電流-光変換効率の低下が抑制されるので好ましい。活性層24の幅については、例えば上述したように1.7μm以下が好ましい。活性層24の幅を狭くすることによって、レーザ光の狭線幅化のために好適なだけでなく、SMSRを改善することもできる。ただし、活性層幅を狭くしすぎると、DFBレーザ素子の電気抵抗が増加するため、発熱により素子特性が劣化する場合がある。これを防止するためには、活性層幅は1.4μm以上が好ましい。
 また、上述したように、DFBレーザ11-1~11-NにおいてκLdfbは1.5程度にすることが好ましいが、たとえば1.3~1.65であることが好ましい。
 図8は、DFBレーザにおけるκLdfbとSMSRとの関係を示す図である。図8は、図2の構造を有するDFBレーザにおいて、出力するレーザ光の強度を20mWになるように駆動電流を設定した場合を示している。
 ここで、良好な単一モード発振特性のためには、SMSRについては、一般的に40dB以上であることが好ましい。図8に示すように、κLdfbが1.65より大きくなるとSMSRが低下するDFBレーザが発生し、単一モード発振の歩留まりが低下する。したがって、κLdfbは1.65以下が好ましい。
 図9は、DFBレーザにおけるκLdfbとDFBレーザ単体のスペクトル線幅Δν0との関係を示す図である。図9も、図2の構造を有するDFBレーザにおいて、出力するレーザ光の強度を20mWになるように駆動電流を設定した場合を示している。
 図9に示すように、Ldfbが1200μm、1500μmのいずれの場合も、κLdfbが1.3より小さくなるとΔν0が急激に広くなる。したがって、κLdfbは1.3以上が好ましい。以上より、κLdfbが1.3~1.65であれば、良好な単一モード発振特性と狭線幅特性とを両立する上で好ましい。
 なお、上記実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。
 以上のように、本発明に係る集積型半導体レーザ素子は、光通信の用途に利用して好適なものである。
 11-1~11-N DFBレーザ
 12-1~12-N 光導波路
 13 光合流器
 13a 出力ポート
 14 SOA
 14a 出力端
 15 埋め込み部
 16-1~16-M トレンチ溝
 21 n型InP基板
 22 n型InPバッファ層
 23 下部InGaAsP-SCH層
 24 活性層
 25 上部InGaAsP-SCH層
 26 InPスペーサ層
 27 グレーティング層
 28 p型InP層
 30 InGaAsPコア層
 31 i型InP層
 32 p型InP埋め込み層
 33 n型InP電流ブロッキング層
 34 p型InPクラッド層
 35 InGaAsコンタクト層
 38 SiN保護膜
 39 p側電極
 40 n側電極
 100 集積型半導体レーザ素子
 L1、L2 長さ
 L3、L4 線

Claims (5)

  1.  互いに異なる発振波長で単一モード発振する複数の分布帰還型の半導体レーザと、
     前記複数の半導体レーザからの出力光がそれぞれ入力される、該半導体レーザと同じ数の入力ポートを有し、該出力光を合流させて出力させることができる光合流器と、
     前記光合流器からの出力光を増幅する半導体光増幅器と、
     が集積され、前記半導体レーザの個数をN、前記各半導体レーザの共振器長および出力されるレーザ光のスペクトル線幅をそれぞれLdfb、Δν0とし、前記半導体光増幅器の増幅器長、増幅率、および出力される増幅されたレーザ光のスペクトル線幅をそれぞれLsoa、A、Δνとし、Δν/Δν0をRとすると、以下の式(1)が成り立つことを特徴とする集積型半導体レーザ素子。
    Figure JPOXMLDOC01-appb-M000001
  2.  前記各半導体レーザは、当該各半導体レーザからの前記出力光のスペクトル線幅が250kHz以下になるように、当該各半導体レーザにおける回折格子の結合係数と共振器長との積の値が設定されており、かつRは2であることを特徴とする請求項1に記載の集積型半導体レーザ素子。
  3.  前記各半導体レーザの共振器長が1200μm以上であることを特徴とする請求項1または2に記載の集積型半導体レーザ素子。
  4.  前記各半導体レーザにおける回折格子の結合係数と共振器長との積が略1.5であることを特徴とする1~3のいずれか一つに記載の集積型半導体レーザ素子。
  5.  前記半導体光増幅器からの出力光の強度が50mW以上であることを特徴とする請求項1~4のいずれか一つに記載の集積型半導体レーザ素子。
PCT/JP2012/077777 2011-11-07 2012-10-26 集積型半導体レーザ素子 WO2013069483A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/960,429 US8787420B2 (en) 2011-11-07 2013-08-06 Integrated semiconductor laser element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011243924A JP5100881B1 (ja) 2011-11-07 2011-11-07 集積型半導体レーザ素子
JP2011-243924 2011-11-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/960,429 Continuation US8787420B2 (en) 2011-11-07 2013-08-06 Integrated semiconductor laser element

Publications (1)

Publication Number Publication Date
WO2013069483A1 true WO2013069483A1 (ja) 2013-05-16

Family

ID=47528472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077777 WO2013069483A1 (ja) 2011-11-07 2012-10-26 集積型半導体レーザ素子

Country Status (3)

Country Link
US (1) US8787420B2 (ja)
JP (1) JP5100881B1 (ja)
WO (1) WO2013069483A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150357792A1 (en) * 2013-02-18 2015-12-10 Furukawa Electric Co., Ltd. Semiconductor laser element, integrated semiconductor laser element, and method for producing semiconductor laser element
EP4287018A1 (en) 2022-06-03 2023-12-06 Apple Inc. Application vocabulary integration with a digital assistant

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228363B2 (ja) * 2007-04-18 2013-07-03 ソニー株式会社 発光素子
WO2013180291A1 (ja) 2012-05-31 2013-12-05 古河電気工業株式会社 半導体レーザモジュール
JP6320192B2 (ja) * 2013-08-30 2018-05-09 三菱電機株式会社 波長可変光源および波長可変光源モジュール
JPWO2015099176A1 (ja) * 2013-12-26 2017-03-23 古河電気工業株式会社 半導体レーザアレイ、半導体レーザ素子、半導体レーザモジュール、および波長可変レーザアセンブリ
JPWO2015122367A1 (ja) * 2014-02-13 2017-03-30 古河電気工業株式会社 集積型半導体レーザ素子および半導体レーザモジュール
CN104158085B (zh) * 2014-08-30 2017-04-12 太原理工大学 无时延、频谱平坦、宽带光子集成混沌半导体激光器
JP6425631B2 (ja) * 2014-09-30 2018-11-21 三菱電機株式会社 半導体レーザおよびこれを備える光集積光源
JP6507912B2 (ja) * 2015-07-30 2019-05-08 三菱電機株式会社 半導体受光素子
DE112018004929T5 (de) 2017-09-08 2020-06-18 The Regents Of The University Of Michigan Elektromagnetischer energiewandler

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235600A (ja) * 2002-10-22 2004-08-19 Fujitsu Ltd 光半導体装置、その製造方法及びその駆動方法
JP2004349692A (ja) * 2003-04-28 2004-12-09 Furukawa Electric Co Ltd:The レーザ装置
JP2011035060A (ja) * 2009-07-30 2011-02-17 Furukawa Electric Co Ltd:The 集積型半導体レーザ素子および半導体レーザモジュールならびに光伝送システム
JP2011044581A (ja) * 2009-08-21 2011-03-03 Nippon Telegr & Teleph Corp <Ntt> 半導体レーザ及び光モジュール

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7079715B2 (en) * 2001-10-09 2006-07-18 Infinera Corporation Transmitter photonic integrated circuit (TxPIC) chip architectures and drive systems and wavelength stabilization for TxPICs
JP2005317695A (ja) * 2004-04-28 2005-11-10 Furukawa Electric Co Ltd:The レーザ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235600A (ja) * 2002-10-22 2004-08-19 Fujitsu Ltd 光半導体装置、その製造方法及びその駆動方法
JP2004349692A (ja) * 2003-04-28 2004-12-09 Furukawa Electric Co Ltd:The レーザ装置
JP2011035060A (ja) * 2009-07-30 2011-02-17 Furukawa Electric Co Ltd:The 集積型半導体レーザ素子および半導体レーザモジュールならびに光伝送システム
JP2011044581A (ja) * 2009-08-21 2011-03-03 Nippon Telegr & Teleph Corp <Ntt> 半導体レーザ及び光モジュール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150357792A1 (en) * 2013-02-18 2015-12-10 Furukawa Electric Co., Ltd. Semiconductor laser element, integrated semiconductor laser element, and method for producing semiconductor laser element
US9509121B2 (en) * 2013-02-18 2016-11-29 Furukawa Electric Co., Ltd. Semiconductor laser element, integrated semiconductor laser element, and method for producing semiconductor laser element
EP4287018A1 (en) 2022-06-03 2023-12-06 Apple Inc. Application vocabulary integration with a digital assistant

Also Published As

Publication number Publication date
US20130315273A1 (en) 2013-11-28
US8787420B2 (en) 2014-07-22
JP5100881B1 (ja) 2012-12-19
JP2013102003A (ja) 2013-05-23

Similar Documents

Publication Publication Date Title
JP5100881B1 (ja) 集積型半導体レーザ素子
JP4444368B1 (ja) 集積型半導体レーザ素子および半導体レーザモジュールならびに光伝送システム
US20040179569A1 (en) Wavelength tunable DBR laser diode
JP2001308451A (ja) 半導体発光素子
JP6510391B2 (ja) 半導体レーザ
JP6588859B2 (ja) 半導体レーザ
JP2007158057A (ja) 集積レーザ装置
JP2010232424A (ja) 半導体光増幅装置及び光モジュール
JP2019083351A (ja) 半導体光増幅器、半導体レーザモジュール、および波長可変レーザアセンブリ
JP2016072608A (ja) 半導体レーザおよびこれを備える光集積光源
US20160336719A1 (en) Integrated semiconductor laser device and semiconductor laser module
WO2013151145A1 (ja) 光半導体装置、半導体レーザモジュールおよび光ファイバ増幅器
US7949020B2 (en) Semiconductor laser and optical integrated semiconductor device
JP6483521B2 (ja) 半導体レーザ
JP2019008179A (ja) 半導体光素子
WO2019235235A1 (ja) 光送信機および多波長光送信機
US20030064537A1 (en) Semiconductor laser device and method for effectively reducing facet reflectivity
JP6588858B2 (ja) 半導体レーザ
JP2018098419A (ja) 半導体レーザ、光源ユニット、通信システム及び波長多重光通信システム
JP2006203100A (ja) 半導体レーザおよび光送信器モジュール
US20180331503A1 (en) Wavelength-variable laser
JP2014165377A (ja) 集積型半導体レーザ素子、および、半導体レーザ装置
JP2012002929A (ja) 半導体光素子の製造方法、レーザモジュール、光伝送装置
US7852897B2 (en) Semiconductor laser optical integrated semiconductor device
JP2014236161A (ja) 半導体光素子およびその製造方法ならびに集積型半導体光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12847392

Country of ref document: EP

Kind code of ref document: A1