WO2013069379A1 - 粒子線治療システムおよびそのビーム位置補正方法 - Google Patents

粒子線治療システムおよびそのビーム位置補正方法 Download PDF

Info

Publication number
WO2013069379A1
WO2013069379A1 PCT/JP2012/074222 JP2012074222W WO2013069379A1 WO 2013069379 A1 WO2013069379 A1 WO 2013069379A1 JP 2012074222 W JP2012074222 W JP 2012074222W WO 2013069379 A1 WO2013069379 A1 WO 2013069379A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam position
steering
steering electromagnet
electromagnet
monitor
Prior art date
Application number
PCT/JP2012/074222
Other languages
English (en)
French (fr)
Inventor
和之 花川
菅原 賢悟
周平 小田原
原田 久
昌広 池田
利宏 大谷
泰三 本田
克久 吉田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201280054629.3A priority Critical patent/CN103917274B/zh
Priority to US14/346,908 priority patent/US9387346B2/en
Priority to JP2013542890A priority patent/JP5762555B2/ja
Priority to EP12848652.9A priority patent/EP2777766A4/en
Priority to TW101141099A priority patent/TWI510267B/zh
Publication of WO2013069379A1 publication Critical patent/WO2013069379A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1043Scanning the radiation beam, e.g. spot scanning or raster scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • A61N5/1067Beam adjustment in real time, i.e. during treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • H05H2007/048Magnet systems, e.g. undulators, wigglers; Energisation thereof for modifying beam trajectory, e.g. gantry systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2277/00Applications of particle accelerators
    • H05H2277/10Medical devices
    • H05H2277/11Radiotherapy

Definitions

  • the present invention relates to a particle beam therapy system for irradiating an affected area such as cancer with a charged particle beam such as proton or carbon, and more particularly to correcting a beam position in a particle beam therapy system using a scanning irradiation (scanning) method. It is related.
  • the irradiation field formation method in the particle beam therapy system is broadly divided into a broad beam irradiation method that irradiates the entire affected area of a patient to be irradiated with a scatterer and irradiates all at once, and a thin beam is scanned with an electromagnet. Then, there is a scanning irradiation method (scanning method) in which the affected area is directly irradiated. In any case, the position and angle (inclination) of the charged particle beam emitted from the accelerator is not stable, and the beam made of various electromagnets in the irradiation device provided near the patient or in the beam transport path to the irradiation device.
  • Axis adjustment means is required, but in the broad beam irradiation method, due to the use of a scatterer, even if there is a slight deviation of the beam axis, the influence is relatively small, and highly accurate beam axis correction means is not required. However, in the scanning irradiation method, since the beam axis shift in the beam transport system directly affects the irradiation field to the affected area, more precise beam axis correction means is required.
  • a scanning electromagnet and a beam position detector are provided in the irradiation apparatus, and the beam position at the target irradiation position is calculated based on the signal from the beam position detector. Then, a method of correcting the scanning beam so as to irradiate the target irradiation position by controlling the scanning magnet has been proposed (see, for example, Patent Document 1).
  • the scanning electromagnet consists of two scanning electromagnets that are controlled independently in the x and y directions with respect to the beam traveling in the z direction, and an excitation current based on the signal from the beam position detector is passed through each of the electromagnets.
  • the magnetic field generated in each electromagnet is temporally changed to scan the beam in the x and y directions.
  • the beam transport means for transporting the charged particle beam emitted from the accelerator to the irradiation device is provided with two beam position detection means and two steering electromagnets, and based on detection signals output from the beam position detection means.
  • There has also been proposed a method of calculating a displacement amount and controlling each exciting current of the steering electromagnet based on the displacement amount see, for example, Patent Document 2).
  • JP 2009-347 A Japanese Patent Laid-Open No. 2003-282300
  • the present invention was made in order to eliminate the influence of these periodic fluctuation factors, and by observing the periodic fluctuation by a beam position detection device and generating an excitation pattern for correction in the steering electromagnet, It is an object of the present invention to provide a novel particle beam therapy system capable of correcting the influence of position fluctuation and angle fluctuation of the emitted beam by feedforward and a correction method thereof.
  • the particle beam therapy system of the present invention is a particle beam therapy system comprising an accelerator system for accelerating a charged particle beam and a beam transport system for transporting a high energy beam emitted from the accelerator system to an irradiation position.
  • the system includes at least one steering electromagnet and at least one beam position monitor corresponding to the steering electromagnet, and the beam position monitor supplies the steering electromagnet with an excitation current for correcting a periodically changing beam position. It is what.
  • the beam position correcting method of the particle beam therapy system according to the present invention is a beam position correcting method of a particle beam therapy system comprising at least one steering electromagnet and at least one beam position monitor corresponding to the beam transport system.
  • the particle beam therapy system according to the present invention improves the accuracy of the irradiation position of the charged particle beam more efficiently and reliably by correcting the periodically changing position fluctuation and angle fluctuation of the emitted beam by feedforward. Can be made.
  • FIG. 1 is a schematic configuration diagram of a particle beam therapy system according to a first embodiment of the present invention.
  • FIG. 5 is a schematic diagram for explaining a state of beam trajectory control in the beam transport system according to Embodiment 1 of the present invention; The figure explaining the time change of the beam current (amount) of the charged particle beam emitted to the beam transport system in the first embodiment.
  • a flowchart for explaining a beam correction procedure by the steering electromagnet power source in the first embodiment It is a basic conceptual diagram explaining the method of kick angle calculation in each steering electromagnet.
  • Functional block diagram showing a state of beam trajectory correction control including a correction current pattern due to a periodic variation factor and a correction current pattern accompanying a device arrangement error A characteristic diagram for explaining a state in which the effect of the beam trajectory correction control changes according to a correction procedure
  • Functional block diagram showing the state of beam trajectory correction control in respiratory synchronized irradiation Characteristic diagram explaining the case of correcting the beam position variation in consideration of the position variation due to the apparatus accompanying the respiratory synchronized irradiation, FIG.
  • FIG. 3 is a schematic configuration diagram of a particle beam therapy system according to a second embodiment of the present invention; Schematic diagram explaining the state of beam trajectory control according to the second embodiment, A flowchart for explaining a beam correction procedure by the steering electromagnet power source in the second embodiment, Schematic configuration diagram of monitor equipment that measures the beam position at the irradiation position,
  • FIG. 6 is a schematic diagram for explaining another method of beam trajectory control in the preparation stage of the particle beam therapy system according to Embodiment 4 of the present invention;
  • FIG. 6 is a schematic diagram for explaining still another method of beam trajectory control in the preparation stage of the particle beam therapy system according to Embodiment 4 of the present invention;
  • FIG. 5 is a schematic configuration diagram of a particle beam therapy system according to a fifth embodiment of the present invention.
  • FIG. 5 is a schematic diagram for explaining a state of beam trajectory control in a beam transport system according to Embodiment 5 of the present invention
  • a flowchart for explaining a beam correction procedure by the steering electromagnet power source in the fifth embodiment The schematic block diagram which showed the particle beam therapy system by Embodiment 6 of this invention in the state close
  • FIG. 6 is a diagram showing kick angles for exciting currents applied to the dynamic steering electromagnets 33a and 33b in the sixth embodiment. It is a figure which shows the momentum dispersion function obtained when the control by Embodiment 6 of this invention is performed.
  • FIG. 1 A schematic configuration of a particle beam therapy system 100 according to Embodiment 1 of the present invention will be described with reference to FIG.
  • the particle beam therapy system 100 includes an incident system 1 including an ion source (not shown), an injector 11 and the like, and a charged particle beam emitted from the injector 11 up to a necessary energy beam.
  • An accelerator system 2 such as a synchrotron that accelerates and a beam transport system 3 that transports an energy beam accelerated by the synchrotron 2 to an irradiation device T in the vicinity of the patient.
  • a charged particle beam generated by an injector 11 is incident on an accelerator system 2 such as a synchrotron, where it is accelerated to a required beam energy and emitted from a deflecting electromagnet 30 for emission to a beam transport system 3.
  • the beam trajectory is adjusted via various electromagnets to reach the irradiation position T, and the irradiation target is irradiated.
  • the beam transport system 3 includes a quadrupole electromagnet 32 that adjusts the beam size, steering electromagnets 33a and 33b for beam trajectory correction, a deflection electromagnet 31 that deflects the direction of the beam, and the like.
  • the steering electromagnets 33a and 33b are respectively provided.
  • the exciting current is controlled by the steering electromagnet power supplies 41 and 42 so that the energy beam reaches the irradiation target through a predetermined beam trajectory in the beam transport system.
  • two beam position monitors 34a and 34b are provided at predetermined positions on the beam axis.
  • a fluorescent screen monitor is used as the beam position monitors 34a and 34b, and the beam position monitors 34a and 34b are configured to be freely put into and out of the beam path.
  • Reference numerals 41 and 42 denote power sources for the steering electromagnets 33a and 33b, which calculate the value of the excitation current for correction of the steering electromagnets 33a and 33b according to the detected value of the beam position in the beam position monitors 34a and 34b. It includes a control device that stores data.
  • the steering electromagnets 33a and 33b may be at least one, but if necessary, two or more steering electromagnets may be provided. Further, the two steering electromagnets 33a and 33b described here respectively operate the x-axis and y-axis steerings separately acting in the x-direction and the y-direction, which are directions perpendicular to the beam traveling direction Z. Although it consists of electromagnets for use, each is shown as one in the figure.
  • the irradiation of the ion beam from the synchrotron 2 is performed intermittently at a predetermined time interval until at least the energy level necessary for the treatment is reached, and a high-frequency acceleration cavity provided in the orbit of the synchrotron (see FIG. ON / OFF control is performed by (not shown). This ON / OFF cycle is called an emission cycle, and the ON period of these is called a beam spill used for treatment.
  • FIG. 2 is a schematic diagram for explaining the state of beam trajectory control in the beam transport system 3 of the first embodiment shown in FIG. 1, and each electromagnet is shown corresponding to that in FIG.
  • FIG. 2A shows the beam trajectory before the beam trajectory correction according to the present invention
  • FIG. 2B shows the beam trajectory showing the beam trajectory correction result according to the present invention.
  • z represents an ideal beam axis that travels toward the irradiation position T
  • ST1 represents, for example, a beam trajectory at time t1
  • ST2 represents a beam trajectory at time t2 different from time t1. .
  • FIG. 3 illustrates the temporal change of the beam current (amount) of the charged particle beam emitted to the beam transport system 3.
  • a high energy beam is emitted from the synchrotron 2. It is emitted to the transport system 3 and then pauses for a predetermined time and repeats the next emission.
  • the length of the beam pill period varies depending on the patient's respiratory condition and other conditions, the synchrotron operating condition, etc.
  • the beam trajectory is adjusted by the deflection electromagnet 31, the quadrupole electromagnet 32, etc. according to the respective emission conditions. Then, the light is guided to the irradiation device, and finally, the irradiation target is irradiated on a predetermined beam axis line z.
  • the beam current (amount) is changed to the normal state M due to the periodic fluctuation.
  • L is superimposed, which is complicated by the position variation and the angle variation of the exit beam.
  • the beam trajectories ST1 and ST2 as shown in FIG.
  • the influence of the deviation due to the periodic fluctuation factor could not be completely corrected.
  • the beam center is bent by the second steering electromagnet 33b so as to pass the beam axis z using the first steering electromagnet 33a, Subsequently, the second steering electromagnet 33b is bent so that the inclination of the beam center becomes parallel to the beam axis z, and thereafter, the beam center advances along the beam axis z.
  • a first beam position monitor 34a is installed in front of the second steering electromagnet 33b, and further, a second beam is monitored behind the second steering electromagnet 33b.
  • a beam position monitor 34b is installed to adjust the second steering electromagnet 33b.
  • FIG. 4 is a flowchart showing a specific beam correction procedure
  • FIG. 5 is a basic conceptual diagram for explaining a method of calculating a kick angle in each steering electromagnet.
  • step S ⁇ b> 1 a detection signal X ⁇ b> 1 (t) indicating a beam position variation at each timing t is detected by the first beam position monitor 34 a located on the upstream side and input to the steering electromagnet power supply 41.
  • the timing t indicates a plurality of time points between the beam spill periods t1 to t2, and means that dynamic fluctuations in the beam position at each time point are detected.
  • FIG. 5A shows the beam position at the timing t (t1 to t2) on the x-axis and y-axis perpendicular to the z-axis, with the beam traveling direction Z being the direction perpendicular to the paper surface. It shows an example of fluctuations in the beam positions B1 to B5 when observed by the beam position monitor 34a. Due to the periodic fluctuation factors, the beam position behaves out of the beam axis z.
  • FIG. 5A shows only the x-axis component at the beam position, but it goes without saying that the y-axis component also exists.
  • step S3 a current pattern I1 (t) corresponding to the calculated kick angle is created and stored.
  • the current pattern for each kick angle is also prepared in the control device of the steering electromagnet power supply 41 in the form of a time table, and linear current is applied to the current pattern corresponding to the calculated kick angle, for example.
  • the pattern I1 (t) is output as an exciting current of the steering electromagnet 33a to correct the beam position.
  • step S4 the current pattern I1 (t) is used as the exciting current of the steering electromagnet 33a, and the beam center of the beam trajectory is operated so as to be bent so as to pass the beam axis z in the second steering electromagnet 33b.
  • the detection signal X2 (t) indicating the beam position variation at the timing t (t1 to t2) is detected by the second beam position monitor 34b located on the downstream side, and the second steering electromagnetic power source located on the downstream side is detected. 42.
  • FIG. 5B shows an example of fluctuations in the beam positions B1 to B7 when the beam position at the timing t (t1 to t2) on the x-axis and the y-axis is observed by the second beam position monitor 34b. It is. The beam position B still behaves off the beam axis z due to the periodic variation factor.
  • the calculation method in steps S4 and S5 is the same as that in steps S1 and S2.
  • a current pattern I2 (t) corresponding to the calculated kick angle is created and stored.
  • a current pattern for each kick angle is prepared in the control device of the steering electromagnet power source 42 in the form of a time table, and linear current is applied to the current pattern corresponding to the calculated kick angle, for example.
  • the pattern is I2 (t), which is output as an exciting current of the steering electromagnet 33b in step S7, and the beam position is finally corrected to be on the beam axis.
  • the above is a preparatory operation at the time of test irradiation.
  • each stored current pattern is passed through the upstream steering electromagnet and the downstream steering electromagnet in synchronization with the periodically operated synchrotron. Treatment is performed by irradiating the patient without changing the position and angle of the beam.
  • FIG. 6 shows a functional block diagram of the beam trajectory correction control including the correction current pattern due to the periodic variation factor and the correction current pattern accompanying the device arrangement error.
  • FIG. 6 shows an adder 10 that adds a correction current pattern signal L (t) that accompanies a fluctuation in the periodic error of the device to a correction current pattern signal M (t) that accompanies a device placement error and the like, and a current Is that is proportional to the addition signal.
  • the power source 20 can output (t) and another steering electromagnet 33 that can give a kick to the beam trajectory.
  • FIG. 7 is a characteristic diagram illustrating a state in which the effect of the correction control changes according to the correction procedure.
  • FIG. 7A shows the beam behavior when no correction by the steering electromagnet is performed.
  • the beam emitted from the accelerator is the upper stage
  • the steering electromagnet current Is (t) is the middle stage
  • the beam at the irradiation position is shown in the lower part, and the same applies to (B) and (C) of FIG.
  • the beam position (x (t), y (t)) (bottom stage) of the beam irradiation position emitted in accordance with the periodic operation of the synchrotron includes the irradiation position s and the device arrangement.
  • DC orbital movements such as errors and orbital fluctuations that include periodic orbital movements associated with periodic error fluctuations of the equipment are included, and this is observed by the beam position monitor.
  • a steering electromagnet current M (t) at which the average value of the fluctuation is zero is obtained from measurement and calculation, and is temporarily stored.
  • FIG. 7B is a diagram showing the beam behavior when correction by the steering electromagnet current M (t) is performed.
  • the average value of the fluctuations (x (t), y (t)) is zero.
  • (C) in FIG. 7 is a diagram showing the beam behavior when the correction of M (t) + L (t) is performed.
  • the Stelling electromagnet current L (t) obtained in the above process is expressed as M (t).
  • FIG. 8 is a block diagram showing a beam trajectory correction control function in respiratory synchronized irradiation.
  • FIG. 9 illustrates a case where the beam position fluctuation is corrected in consideration of the position fluctuation due to the apparatus accompanying the respiratory synchronous irradiation.
  • (A) in FIG. 9 shows a case where correction is performed with M (t) + L (t).
  • M (t) + L (t) When correction is performed with M (t) + L (t), if an irradiation function based on respiratory synchronization is used, Variations in the beam position (x (t), y (t)) due to synchronized emission occur (see the bottom row).
  • a respiratory gate signal is output at a delay of ⁇ t from the beam emission, the beam position variation is similarly observed by the beam position monitor under this condition, and a current value pattern N (t) that does not vary is obtained and stored from the result. .
  • (t) + N (t ⁇ t) is allowed to flow, and the fluctuation of the beam position (x (t), y (t)) can be set to 0 (refer to the lowermost stage).
  • FIG. 1 shows an upstream beam position monitor installed close to the upstream side of the downstream steering electromagnet.
  • the upstream beam position monitor ideally monitors the beam position at the downstream steering electromagnet position, but it cannot be installed in the downstream steering electromagnet, so it is close to the upstream side of the downstream steering electromagnet. It was installed.
  • two upstream beam position monitors are installed, and one beam is installed close to the upstream side of the downstream steering electromagnet and the other side is installed close to the downstream side of the downstream steering electromagnet.
  • the beam position in the downstream side steering electromagnet can also be obtained more accurately by calculation from the measured value of the position monitor, thereby improving the beam position correction accuracy.
  • FIG. A schematic configuration of a particle beam therapy system 100 according to Embodiment 2 of the present invention will be described with reference to FIG.
  • the particle beam therapy system of the present embodiment has the same system configuration as that described in the first embodiment, but in the first embodiment, two steering electromagnets and two corresponding magnets are used in the beam transport system 3.
  • the present embodiment is different in that one steering electromagnet 33 and one beam position monitor 34 corresponding thereto are used.
  • the single beam position monitor 34 is shown as being installed on the irradiation position T in the test irradiation (preparation stage).
  • FIG. 11 is a schematic diagram for explaining the state of beam trajectory control in the preparation stage, and each electromagnet is shown corresponding to that in FIG. FIG. 11A shows the beam trajectory before beam trajectory correction, and FIG. 11B shows the beam trajectory showing the beam trajectory correction result. That is, the steering electromagnet current is controlled according to time while being monitored by the beam position monitor 34, and as a result, the steering electromagnet current is detected and stored in a state where there is no fluctuation in the irradiation position. Subsequently, during actual irradiation (during treatment), the beam position monitor 34 is removed, and the kicking angle is controlled according to the time by flowing the steering electromagnetic current detected and stored earlier.
  • FIG. 12 is a flowchart showing a specific beam correction procedure.
  • the beam position monitor 34 on the irradiation position T is operated so that the beam center of the beam trajectory passes the irradiation position T, and the timing t A detection signal X (t) indicating a beam position variation at (t1 to t2) is detected and input to the steering electromagnet power supply 41.
  • a current pattern I (t) corresponding to the calculated kick angle is created and stored.
  • the current pattern for each kick angle is also prepared in the control device of the steering electromagnet power supply 41 in the form of a time table, and linear current is applied to the current pattern corresponding to the calculated kick angle, for example.
  • a pattern I (t) is set, and this is output as an exciting current of the steering electromagnet 33 in step S4, so that the beam position is finally corrected to be on the beam axis.
  • the above is a preparation operation at the time of test irradiation. Further, at the time of actual irradiation, the stored current pattern is caused to flow through the steering electromagnet 33 in synchronization with the synchrotron 2 that is periodically operated, so that the position of the beam and the angle of the beam.
  • the treatment is performed by irradiating the patient in a state that does not fluctuate. Thereby, the beam trajectory control can be performed more easily than in the case of the first embodiment.
  • FIG. 13 is a schematic configuration diagram of a monitor device that measures the beam position at the irradiation position, and an attachment in which the beam position monitor 34 and the fluorescent plate 52 are incorporated from the outside of the nozzle 4 with a fixture 51 made of, for example, bolts and nuts. 50 is configured to be detachable, and the beam position when the beam trajectory ST is on the irradiation position T can be imaged by the beam position monitor 34 (camera).
  • the beam position monitor 34 is installed on the irradiation position T during the above-described test irradiation (preparation stage), and during the actual irradiation (treatment).
  • the beam position monitor 34 is removed using the fixture 51.
  • FIG. 14 is a schematic diagram for explaining another method of beam trajectory control in the preparation stage of the particle beam therapy system according to Embodiment 3 of the present invention.
  • FIG. 14 (a) is an example of a beam trajectory when there is no disturbance.
  • FIG. 14B shows the beam trajectory when there is a disturbance.
  • FIG. 14C shows a correction method according to this embodiment.
  • the description of the same components as those in the first and second embodiments is omitted, the motion of the periodically accelerated and emitted beam of the synchrotron is observed by the beam position monitor 34 installed downstream of the last deflection electromagnet 31. Shall.
  • the beam trajectory of the beam transport system 3 is calculated from the observation result, and the beam position X0 (s) at the position s when there is no disturbance is equal to the beam position X1 (s) at the position s when there is a disturbance.
  • a current is passed through the steering electromagnet 33 in the test irradiation, a current pattern in which the beam position does not change is acquired and stored in the beam position monitor 34, and a current according to the current pattern is passed in the actual irradiation.
  • the beam position and beam angle can be prevented from changing.
  • FIG. 15 is a schematic diagram for explaining still another method of beam trajectory control in the preparation stage of the particle beam therapy system according to the fourth embodiment of the present invention
  • FIG. 15A is an example of a beam trajectory when there is no disturbance
  • FIG. 15B shows the beam trajectory when there is a disturbance. It is assumed that the motion of the periodically accelerated and emitted beam of the synchrotron is observed by a beam position monitor 34 installed downstream of the last stage deflection electromagnet 31 and after the last stage quadrupole electromagnet 32.
  • the beam trajectory of the beam transport system 3 is calculated from the observation result.
  • the beam position X0 (s) at the position s when there is no disturbance and the beam position X1 (s) at the position s when there is a disturbance are equal to each other and 0.
  • a current is passed through the steering electromagnet 33 in the test irradiation, the kick angle is controlled in accordance with the time, and a current pattern in which the beam position does not vary is acquired and stored by the beam position monitor 34. By passing a current according to the pattern, the beam position and the beam angle can be prevented from changing.
  • FIG. A schematic configuration of a particle beam therapy system according to a fifth embodiment of the present invention will be described with reference to FIG.
  • the particle beam therapy system 100 of the present embodiment has basically the same configuration as that of the first embodiment shown in FIG. 1, and the only difference is the insertion position of the steering electromagnets 33a and 33b and the beam position monitors 34a and 34b. It is. That is, in the first embodiment, the first steering electromagnet 33a, the first beam position monitor 34a, the second steering electromagnet 33b, and the second beam position monitor 34b are arranged in this order in the beam transport direction. On the other hand, in this embodiment, the first steering electromagnet 33a, the second steering electromagnet 33b, the first beam position monitor 34a, and the second beam position monitor 34b are arranged in this order.
  • FIG. 17 is a schematic diagram for explaining the state of beam trajectory control in the beam transport system 3 of the embodiment shown in FIG. 16, and each electromagnet is shown corresponding to that in FIG.
  • the method of calculating the kick angle in each steering electromagnet is the same as that described with reference to FIG. 17 (a) shows the beam trajectory when the control of the present invention is not performed, and FIG. 17 (b) shows the beam trajectory when the control of the present invention is performed.
  • z represents an ideal beam axis traveling toward the irradiation position T
  • ST1 represents a beam trajectory at time t1
  • ST2 represents a beam trajectory at time t2.
  • the principle of obtaining the kick amount (angle) of the steering electromagnet for correcting the influence of the periodically changing beam position variation and angle variation will be described.
  • a first beam position monitor 34a and a second beam position monitor 34b are installed behind (downstream) the first steering electromagnet 33a and the second steering electromagnet 33b.
  • the first steering electromagnet 33a and the second steering electromagnet 33b are used, and the tilt of the beam center is made parallel to the beam axis z by the second steering electromagnet 33b. Thereafter, the beam center advances along the beam axis z.
  • the reason why at least two steering electromagnets and beam position monitors are required is to enable correction to make both the position and tilt zero.
  • FIG. 18 is a flowchart showing a specific beam correction procedure.
  • the beam position detection signal X1 (t) at each timing t is detected by the first beam position monitor 34a, and at the same time, the beam position at each timing t is detected by the second beam position monitor 34b.
  • a detection signal X2 (t) is detected.
  • the kick angle at each time when both X1 and X2 can be set to 0 is calculated by solving simultaneous equations with a computer (not shown) as an adjustment support terminal or by applying an iterative method. .
  • step S3 current patterns I1 (t) and I2 (t) corresponding to the calculated kick angle are created.
  • a current pattern for each kick angle is prepared in the control device of the steering electromagnet power supplies 41 and 42 in the form of a time table. For example, a linear interpolation is performed on the current pattern corresponding to the calculated kick angle.
  • the current patterns I1 (t) and I2 (t) are output as excitation currents of the steering electromagnets 33a and 33b, and the beam position is finally corrected to be on the beam axis. Even in such an embodiment, the same effect as in the first embodiment can be obtained, and a constraint condition is generated in the device arrangement due to a constraint condition such as a building arrangement. Therefore, this embodiment may be more advantageous. is there.
  • Embodiment 6 In a particle beam therapy system, in general, a deflecting electromagnet or steering electromagnet that changes the traveling direction of a charged particle beam in a beam transport system, a quadrupole electromagnet that controls the beam width by converging and diverging a charged particle beam, etc. A plurality of each are installed. Therefore, the space for accommodating these devices becomes considerably large, and a sufficient building area for accommodating these devices is required. For example, a large deflection electromagnet alone has a height of 2.5 m and a deflection radius of 1.5 m, and it may be necessary to install a plurality of these deflection electromagnets depending on the purpose of use.
  • FIG. 19 shows a block diagram of a particle beam therapy system according to this embodiment in a beam transport system.
  • the same or corresponding parts as those in FIGS. 1 and 10 are denoted by the same reference numerals, and 5 indicates a gantry serving as a patient's treatment room.
  • the momentum dispersion function is a correlation function between the momentum and the position. Since the charged particle beam emitted from the accelerator system 2 has a correlation between the momentum and the position, the correlation is eliminated when transporting to the gantry entrance. Is important to ensure treatment quality.
  • the role of the beam transport system 3 is not only to carry the charged particle beam to the gantry 5 but also to transport it without the momentum dispersion function.
  • a combination of an x-direction deflecting magnet and a quadrupole electromagnet that cancels the dispersion in the x direction is necessary, and the momentum in the y direction is obtained by taking out from the accelerator.
  • a combination of a y-direction deflection electromagnet and a quadrupole electromagnet that cancels the dispersion in the y-direction is necessary.
  • the beam emitted from the synchrotron generally has a momentum dispersion function in both the x and y directions.
  • 20A and 20B show the momentum dispersion function (vertical axis) of the x-axis or y-axis with respect to the distance (m) of the axis s (horizontal axis) along the design trajectory, that is, the deviation x (mm from the design trajectory. ), Y (mm), and shows a state in which the momentum dispersion function changes greatly with time.
  • the axis s (m) along the design trajectory is an example in which the exit of the accelerator system 2 is 0 and the distance to the entrance of the gantry 5 is 15 m.
  • the large square shown in the lower part of the figure is the exit deflection electromagnet 30.
  • the small square in the upper half represents a converging quadrupole magnet, and the small square in the lower half represents a divergent quadrupole electromagnet.
  • the movement amount of the beam center of gravity becomes zero at the positions of the monitors 34a, 34b.
  • the current pattern of the dynamic steering electromagnet can be determined. For example, assuming that the dynamic steering electromagnets 33a and 33b are excited with a current pattern as shown in FIG. 21, a momentum dispersion function as shown in FIG. 22 is obtained.
  • the combination of a monitor and a dynamic steering electromagnet can eliminate the deflection electromagnet compared to the conventional combination of a deflection electromagnet and a quadrupole electromagnet, and a small and inexpensive device.
  • a transport route having a momentum dispersion function of 0 can be realized.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation-Therapy Devices (AREA)
  • Particle Accelerators (AREA)

Abstract

 本発明の粒子線治療システムは、荷電粒子ビームを加速する加速器系と、この加速器から出射された高エネルギービームを照射位置まで輸送するビーム輸送系とからなり、前記ビーム輸送系に少なくとも1個のステアリング電磁石とこれに対応する少なくとも1個のビーム位置モニタを備え、前記ビーム位置モニタは前記ステアリング電磁石に周期的に変動するビーム位置を補正する励磁電流を供給するようにしたものである。

Description

粒子線治療システムおよびそのビーム位置補正方法
 この発明は、陽子や炭素などの荷電粒子ビームを癌等の患部に照射して治療する粒子線治療システムに関し、特に、走査式照射(スキャニング)法を用いる粒子線治療システムにおけるビーム位置の補正に係わるものである。
 粒子線治療システムにおける照射野形成方法には、大きく分けて、照射対象である患者の患部全体に対して散乱体によってビームを拡大し一斉に照射するブロードビーム照射法と、細いビームを電磁石により走査して患部へ直接照射する走査式照射法(スキャニング法)とがある。いずれの場合も加速器から出射された荷電粒子ビームの位置および角度(傾き)は安定しておらず、患者の直近に設けられる照射装置内あるいは照射装置に至るビーム輸送経路に、各種電磁石からなるビーム軸調整手段を必要とするが、ブロードビーム照射法においては散乱体を用いる関係上、ビーム軸の若干のずれがあってもその影響は比較的少なく、高精度なビーム軸補正手段を必要としないが、走査式照射法にあっては、ビーム輸送系におけるビーム軸のずれがそのまま患部への照射野に影響するため、より精密なビーム軸補正手段が要求される。
 このため、走査式照射法におけるビーム軸補正方法として、従来、例えば照射装置内に走査電磁石とビーム位置検出器を備え、ビーム位置検出器からの信号に基づき、目標照射位置でのビーム位置を算出し、走査電磁石を制御して走査ビームを目標照射位置へ照射できるように補正する方法が提案されている(例えば特許文献1を参照)。上記走査電磁石はz方向に進むビームに対し、x方向とy方向に独立して制御する2個の走査電磁石からなり、それらの電磁石にそれぞれ上記ビーム位置検出器からの信号に基づく励磁電流を流し、それぞれの電磁石に発生する磁場を時間的に変化させ、ビームをx方向とy方向に走査するものである。
また、加速器から出射した荷電粒子ビームを照射装置まで輸送するビーム輸送手段に2台のビーム位置検出手段と2台のステアリング電磁石を備え、前記ビーム位置検出手段のそれぞれから出力される検出信号に基づいて変位量を算出し、この変位量に基づいて前記ステアリング電磁石のそれぞれの励磁電流を制御する方法も提案されている(例えば特許文献2を参照)。
 しかしながら、これらのいずれのものも、ビーム位置検出手段の検出信号に基づいて算出した信号を何らかの方法で電磁石の励磁電流としてフィードバックすることにより所定のビーム軌道を実現しようとするもので、フィードバックによる制御系の時間遅れのため補正の精度に影響が及ぶという構造的問題点があった。また、加速器から荷電粒子ビームを取り出すとき加速器中の電磁石の磁場や高周波電力に周期的変動が存在すると、それによる出射ビームの位置変動や角度変動に複雑な影響が生じ、従前のフィードバックによるビーム軌道の調整手段だけでは充分な精度で出射ビームの位置変動や角度変動を抑制することができなかった。
特開2009―347号公報 特開2003―282300号公報
 本発明は、これらの周期的変動要因の影響を解消するためになされたもので、ビーム位置検出装置により上記周期的変動を観測してステアリング電磁石に補正のための励磁パターンを発生させることにより、出射されたビームの位置変動や角度変動の影響をフィードフォワードにより補正することが可能となる新規な粒子線治療システムおよびその補正方法を提供することを目的とする。
 本発明の粒子線治療システムは、荷電粒子ビームを加速する加速器系と、この加速器系から出射された高エネルギービームを照射位置まで輸送するビーム輸送系とからなる粒子線治療システムにおいて、前記ビーム輸送系に少なくとも1個のステアリング電磁石とこれに対応する少なくとも1個のビーム位置モニタを備え、前記ビーム位置モニタは前記ステアリング電磁石に周期的に変動するビーム位置を補正する励磁電流を供給することを特徴とするものである。
また、本発明の粒子線治療システムのビーム位置補正方法は、ビーム輸送系に少なくとも1個のステアリング電磁石とこれに対応する少なくとも1個のビーム位置モニタを備えた粒子線治療システムのビーム位置補正方法において、試験照射時に前記ビーム位置モニタを照射位置に着脱自在に設置した状態でビーム照射することにより、ビーム位置の周期的変動を捉え、この変動を無くすように前記ステアリング電磁石の励磁電流値を位置変動の周期に合わせて供給し、その周期的励磁電流値を取得・保存し、実照射時に前記ビーム位置モニタを取り外した状態で前記周期的励磁電流を前記ステアリング電磁石に供給するようにしたことを特徴とするものである。
 この発明に係る粒子線治療システムは、出射されたビームの周期的に変化する位置変動や角度変動をフィードフォワードにより補正することにより荷電粒子ビームの照射位置の精度を、より効率的且つ確実に向上させることができる。
本発明の実施の形態1による粒子線治療システムの概略構成図、 本発明の実施の形態1によるビーム輸送系におけるビーム軌道制御の状態を説明する模式図、 上記実施の形態1におけるビーム輸送系に出射された荷電粒子ビームのビーム電流(量)の時間的変化を説明する図、 上記実施の形態1におけるステアリング電磁石電源によるビーム補正手順を説明するフローチャート、 各ステアリング電磁石におけるキック角算出の方法を説明する基本的概念図である。 周期的変動要因による補正電流パターンおよび機器配置誤差などに伴う補正電流パターンを含んだビーム軌道補正制御の状態を示す機能ブロック図、 上記ビーム軌道補正制御の効果が補正手順に応じて変化する状態を説明する特性図、 呼吸同期照射におけるビーム軌道補正制御の状態を示す機能ブロック図、 上記呼吸同期照射に伴う機器による位置変動をも考慮したビーム位置変動を補正する場合を説明する特性図、 本発明の実施の形態2による粒子線治療システムの概略構成図、 上記実施の形態2によるビーム軌道制御の状態を説明する模式図、 上記実施の形態2におけるステアリング電磁石電源によるビーム補正手順を説明するフローチャート、 照射位置でビーム位置を測定するモニタ機器の概略構成図、 本発明の実施の形態4による粒子線治療システムの準備段階におけるビーム軌道制御の他の方法を説明する模式図、 本発明の実施の形態4による粒子線治療システムの準備段階におけるビーム軌道制御の更に他の方法を説明する模式図、 本発明の実施の形態5による粒子線治療システムの概略構成図、 本発明の実施の形態5によるビーム輸送系におけるビーム軌道制御の状態を説明する模式図、 上記実施の形態5におけるステアリング電磁石電源によるビーム補正手順を説明するフローチャート、 本発明の実施の形態6による粒子線治療システムを実際に近い状態で示した概略構成図、 本発明の実施の形態6による粒子線治療システムにおいて、設計軌道に沿った軸sに対するx軸あるいはy軸の運動量分散関数を示す図、 上記実施の形態6において、動的ステアリング電磁石33a、33bに与えられる励磁電流のためのキック角を示す図、 本発明の実施の形態6による制御を行った場合に得られる運動量分散関数を示す図である。
実施の形態1.
 本発明の実施の形態1による粒子線治療システム100の概略構成を図1に基づいて説明する。本実施形態の粒子線治療システム100は、イオン源(図示せず)や入射器11等からなる入射系1と、入射器11から出射された荷電粒子ビームを周回させることにより必要なエネルギービームまで加速するシンクロトロン等の加速器系2と、このシンクロトロン2により加速されたエネルギービームを患者近傍の照射装置Tまで輸送するビーム輸送系3とからなっている。
図1において、入射器11で発生した荷電粒子ビームは、シンクロトロン等の加速器系2に入射され、ここで必要なビームエネルギーまで加速されて出射用偏向電磁石30からビーム輸送系3に出射され、各種電磁石を経由してビーム軌道が調整されて照射位置Tに至り、照射対象に照射される。ビーム輸送系3はビームサイズを調整する四極電磁石32、ビーム軌道補正用のステアリング電磁石33a、33b、ビームの方向を偏向する偏向電磁石31等が配置されており、上記ステアリング電磁石33a、33bはそれぞれのステアリング電磁石電源41、42により励磁電流が制御され、エネルギービームがビーム輸送系において所定のビーム軌道を通過して照射対象に到達するようになされる。
この他、ビーム軸上の所定位置に2個のビーム位置モニタ34a、34bを備えている。このビーム位置モニタ34a、34bは、例えば蛍光板モニタが用いられ、ビーム経路に自由に出し入れ可能に構成されている。41、42は上記ステアリング電磁石33a、33b用の電源であって、上記ビーム位置モニタ34a、34bにおけるビーム位置の検出値に応じて上記ステアリング電磁石33a、33bの補正用励磁電流の値を算出しこれを保存する制御装置を含んでいる。
 ステアリング電磁石33a、33bは、少なくとも1個あれば良いが、必要により2個以上のステアリング電磁石を設けても良い。また、ここで説明する2個のステアリング電磁石33a、33bは、それぞれ、ビームの進行方向Zに対して互いに直角な方向であるx方向とy方向について各別に作用するx軸用およびy軸用ステアリング用電磁石からなっているが、図ではそれぞれ1個として表示している。また、シンクロトロン2からのイオンビームの照射は、少なくとも治療に必要なエネルギーレベルに到達するまでの所定の時間間隔で間歇的に行われ、シンクロトロンの軌道内に設けられた高周波加速空洞(図示していない)によりON/OFF制御がなされる。このON/OFF周期を出射周期と呼ばれ、そのうちのON期間を治療用に供されるビームスピルと称している。
 図2は上記図1に示す実施の形態1のビーム輸送系3におけるビーム軌道制御の状態を説明する模式図であり、各電磁石は図1のものと対応して示している。図2(a)はこの発明によるビーム軌道補正前のビーム軌道を示し、図2(b)はこの発明によるビーム軌道補正結果を示すビーム軌道を示している。以下これを用いて周期的に変化するビーム位置変動・角度変動の影響を補正する原理を説明する。なお、図中、zは照射位置Tに向かって進行する理想的なビーム軸線を、ST1は例えば時間t1でのビーム軌道を、ST2は時間t1とは異なる時間t2でのビーム軌道を示している。
 図3はビーム輸送系3に出射された荷電粒子ビームのビーム電流(量)の時間的変化を説明するもので、ビームピルスと称されるt1-t2の間、シンクロトロン2から高エネルギービームがビーム輸送系3に出射され、その後、所定時間休止して次の出射を繰り返す状態を示している。このビームピルスの期間の長さは患者の呼吸状態その他の状況、シンクロトロンの運転状況等により変動するもので、通常はそれぞれの出射状況に応じて偏向電磁石31、四極電磁石32等によりビーム軌道を調整して照射装置に導かれ、最終的には所定のビーム軸線z上において照射対象に照射されるようになされている。
しかしながら、上述したシンクロトロン2から荷電粒子ビームを取り出すとき、シンクロトロン中の電磁石の磁場や高周波電力の周期的変動が存在すると、上記ビーム電流(量)はそれによる通常状態Mに周期的変動分Lが重畳されることになり、それが上記出射ビームの位置変動や角度変動により複雑に絡むこととなり、従来のフィードバック系を利用した補正方式では図2(a)のようなビーム軌道ST1、ST2となり、上記周期的変動要因によるズレの影響を完全には補正することができなかった。
この発明の実施の形態1では、図2(b)に示すように、上記第1のステアリング電磁石33aを用いてビーム中心が第2のステアリング電磁石33bにおいてビーム軸線zを通過するように曲げられ、続いて第2のステアリング電磁石33bでビーム中心の傾きがビーム軸線zと平行になるように曲げられるようにし、以後、ビーム軸線zに沿ってビーム中心が進行するようになされている。
このため、上記第1のステアリング電磁石33aを調整するために上記第2のステアリング電磁石33bの前方に第1のビーム位置モニタ34aが設置され、更に上記第2のステアリング電磁石33bの後方に第2のビーム位置モニタ34bが設置され、これにより第2のステアリング電磁石33bを調整するようになされている。
 次に図4、図5を用いて本実施の形態におけるステアリング電磁石電源41、42による具体的なビーム補正方法の概要を説明する。図4は具体的なビーム補正手順を示すフローチャート、図5は各ステアリング電磁石におけるキック角算出の方法を説明する基本的概念図である。図4において、先ず、ステップS1で、上流側に位置する第1のビーム位置モニタ34aによって各タイミングtにおけるビーム位置変動を示す検出信号X1(t)を検出し、ステアリング電磁石電源41に入力する。
タイミングtはビームスピル期間t1~t2の間の複数の時点を指し、それぞれの時点におけるビーム位置の動的変動を検出することを意味する。図5(a)は、ビームの進行方向Zを紙面に垂直な方向としてz軸に対してそれぞれ互いに直角なx軸、y軸上の上記タイミングt(t1~t2)におけるビーム位置を第1のビーム位置モニタ34aで観察した場合のビーム位置B1からB5の変動の一例を示したものである。上記周期的変動要因によりビーム位置はビーム軸zを外れた挙動となっている。
図5(a)は上記ビーム位置におけるx軸成分のみ表示しているがy軸成分も存在することは言うまでもない。
ステップS2では、ステアリング電磁石電源41において、上記第1のビーム位置モニタ34aの検出信号X1を入力し、ここで、X1=0となるステアリング電磁石33aのキック角を各タイミングにおいて算出する。この算出に当っては、予め検出信号X1に対してキック角を関連付けた経験値を時間テーブルの形でステアリング電磁石電源41の制御装置内に用意しておき、各タイミングにおけるX1に応じて、X1=0となるステアリング電磁石33aのキック角として導出するものである。
続いてステップS3において、算出されたキック角に応じた電流パターンI1(t)を作成し、保存する。これも各キック角に対する電流パターンを時間テーブルの形でステアリング電磁石電源41の制御装置内に用意しておき、例えば、算出されたキック角に応じた電流パターンに線形補間を施すことによりリニアな電流パターンI1(t)とし、これをステアリング電磁石33aの励磁電流として出力し、ビーム位置を矯正する。
ステップS4では、この電流パターンI1(t)をステアリング電磁石33aの励磁電流として使用して、ビーム軌道のビーム中心が第2のステアリング電磁石33bにおいて、ビーム軸線zを通過するように曲げられるように運転しながら、下流側に位置する第2のビーム位置モニタ34bによってタイミングt(t1~t2)におけるビーム位置変動を示す検出信号X2(t)を検出し、下流側に位置する第2のステアリング電磁石電源42に入力する。
ステップS5では第2のステアリング電磁石電源42において、検出信号X2=0となるステアリング電磁石ST2のキック角を算出する。図5(b)はx軸、y軸上の上記タイミングt(t1~t2)におけるビーム位置を第2のビーム位置モニタ34bで観察した場合のビーム位置B1からB7の変動の一例を示したものである。上記周期的変動要因により、やはりビーム位置Bはビーム軸zを外れた挙動となっている。上記ステップS4、S5における算出方法は上述したステップS1、ステップS2の場合と同様である。
更にステップS6において、算出されたキック角に応じた電流パターンI2(t)を作成し、保存する。これも各キック角に対する電流パターンを時間テーブルの形でステアリング電磁石電源42の制御装置内に用意しておき、例えば、算出されたキック角に応じた電流パターンに線形補間を施すことによりリニアな電流パターンI2(t)とし、ステップS7にてこれをステアリング電磁石33bの励磁電流として出力し、ビーム位置を最終的にビーム軸上に来るように矯正する。
以上は試験照射時の準備操作であり、更に、実照射時には、保存した各電流パターンを、周期的に運転するシンクロトロンに同期して上流側ステアリング電磁石と下流側ステアリング電磁石に流すことで、ビームの位置とビームの角度を変動しない状態で患者に照射して治療を行うものである。
 次に、上記周期的変動要因による補正電流パターンおよび機器配置誤差などに伴う補正電流パターンを含んだビーム軌道補正制御の機能ブロック図を図6に示す。
図6は機器配置誤差などに伴う補正電流パターン信号M(t)に、機器の周期誤差変動に伴う補正電流パターン信号L(t)を足し合わせる加算器10と、この加算信号に比例した電流Is(t)を出力できる電源20と、ビーム軌道にキックを与えることのできる別のステアリング電磁石33から構成される。
図7は上記補正制御の効果が補正手順に応じて変化する状態を説明する特性図である。
図7の(A)は、ステアリング電磁石による補正を全く行われないときのビーム挙動を示す図であり、加速器出射ビーム電流を上段に、ステアリング電磁石電流Is(t)を中段に、照射位置におけるビーム位置(x(t),y(t))を下段にそれぞれ示しており、図7の(B)、(C)においても同様である。
図7の(A)において、シンクロトロンの周期運転に合わせて出射されるビーム照射位置のビーム位置(x(t),y(t))(最下段)には、照射位置s、機器配置の誤差などの直流的軌道の動きと、機器の周期的誤差変動に伴う周期的軌道の動きを合わせたような軌道変動が含まれ、これがビーム位置モニタで観測される。上記ビーム位置モニタにより周期的変動があるが、変動の平均値が0となるステアリング電磁石電流M(t)を測定及び計算から求め、一旦保存する。
図7の(B)は、上記ステアリング電磁石電流M(t)による補正を実施した場合のビーム挙動を示した図で、上記過程で求めたステアリング電磁石電流M(t)を流すことにより、ビーム位置変動(x(t),y(t))の平均値は0となる。更に、加速ビーム出射の間に変動するビーム位置をビーム位置モニタで観測し、その結果から、ビーム位置が変動しないようするためのステアリング電磁石電流L(t)を算出し保存する。
図7の(C)は、上記M(t)+L(t)の補正を実施した場合のビーム挙動を示した図で、上記過程で求めたステリング電磁石電流L(t)を、M(t)に足し合わせたM(t)+L(t)をステアリング電磁石に流すことにより、ビーム位置(x(t),y(t))の変動は0になる。
図8は更に呼吸同期照射におけるビーム軌道補正制御機能を示すブロック図である。図6の加算器10に加え更にもう一台の加算器11を追加し、呼吸同期信号トリガ信号(加速器出射時間よりΔt遅れ)に伴う補正電流パターン信号N(t-Δt)を更に加えることにより、呼吸同期照射による位置の変動も補正できる電流信号(M(t) +L(t) +N(t-Δt))を流すことにより、ビーム位置変動を補正できる。
図9は上記呼吸同期照射に伴う機器による位置変動をも考慮したビーム位置変動を補正する場合を説明する。図9の(A)はM(t) +L(t)で補正している場合であり、M(t) +L(t)で補正しているときに、呼吸同期による照射機能を使用すると、呼吸同期出射に伴う機器によるビーム位置(x(t),y(t))の変動が発生する(最下段を参照)。ビーム出射からΔt遅れたところで、呼吸ゲート信号が出たと仮定し、この条件で同様にビーム位置モニタによりビーム位置変動を観測し、その結果から変動しない電流値パターンN(t)を取得・保存する。次に、実照射では図9の(B)に示すように、Δt =Δt1 =Δt2でタイミングをずらした補正電流N(t-Δt)を加算することで、ステアリング電磁石電流(M(t)+L(t)+N(t-Δt)を流し、ビーム位置(x(t),y(t))の変動を0(最下段を参照)とすることができる。
なお、図1では上流側ビーム位置モニタを下流側ステアリング電磁石の上流側に近接して設置したものを示した。しかし、上記上流側ビーム位置モニタは下流側ステアリング電磁石の位置でのビーム位置をモニタするのが理想であるが、下流側ステアリング電磁石の中に設置できないために、下流側ステアリング電磁石の上流側に近接して設置したものである。これに代えて、上流側ビーム位置モニタを2つ設置して、一方を下流側ステアリング電磁石の上流側に、他方を下流側ステアリング電磁石の下流側にそれぞれ近接して設置することにより、2つのビーム位置モニタの計測値から下流側ステアリング電磁石の中のビーム位置をより正確に計算により求めることもでき、これによりビーム位置の補正精度を向上させることができる。
実施の形態2.
 本発明の実施の形態2による粒子線治療システム100の概略構成を図10に基づいて説明する。本実施形態の粒子線治療システムは、実施の形態1で説明したと同様のシステム構成からなっているが、実施の形態1ではビーム輸送系3において2個のステアリング電磁石とこれに対応する2個のビーム位置モニタを使用した例を示したが、本実施の形態では1個のステアリング電磁石33とこれに対応する1個のビーム位置モニタ34を使用した点が相違している。なお、上記1個のビーム位置モニタ34は、試験照射(準備段階)において、照射位置T上に設置される場合を示している。
 図11は上記準備段階におけるビーム軌道制御の状態を説明する模式図であり、各電磁石は図10のものと対応して示している。図11(a)はビーム軌道補正前のビーム軌道を示し、図11(b)はビーム軌道補正結果を示すビーム軌道を示している。すなわち、ビーム位置モニタ34でモニタしながら時間に従いステアリング電磁石電流を制御し、結果的にビームが照射位置上で変動がなくなる状態でのステアリング電磁石電流を検出・保存する。続いて実照射(治療時)では上記ビーム位置モニタ34を外し、先に検出・保存したステアリング電磁石電流を流すことによって時間に合わせてキック角を制御するものである。
図12は具体的なビーム補正手順を示すフローチャートであり、ステップS1では、照射位置T上にあるビーム位置モニタ34でビーム軌道のビーム中心が照射位置Tを通過するように運転しながら、タイミングt(t1~t2)におけるビーム位置変動を示す検出信号X(t)を検出し、ステアリング電磁石電源41に入力する。
ステップS2ではステアリング電磁石電源41において、検出信号X=0となるステアリング電磁石33のキック角を算出する。
更にステップS3において、算出されたキック角に応じた電流パターンI(t)を作成し、保存する。これも各キック角に対する電流パターンを時間テーブルの形でステアリング電磁石電源41の制御装置内に用意しておき、例えば、算出されたキック角に応じた電流パターンに線形補間を施すことによりリニアな電流パターンI(t)とし、ステップS4にてこれをステアリング電磁石33の励磁電流として出力し、ビーム位置を最終的にビーム軸上に来るように矯正する。
以上は試験照射時の準備操作であり、更に、実照射時には、保存した電流パターンを、周期的に運転するシンクロトロン2に同期してステアリング電磁石33に流すことで、ビームの位置とビームの角度を変動しない状態で患者に照射して治療を行うものである。これにより実施の形態1の場合より簡単にビーム軌道制御を行うことが出来る。
 なお、図13は上記照射位置でビーム位置を測定するモニタ機器の概略構成図であり、ノズル4の外側から例えばボルト・ナットからなる固定具51でビーム位置モニタ34や蛍光版52を内蔵したアタッチメント50を着脱自在に取付ける構成とし、ビーム軌道STが照射位置T上にあるときのビーム位置をビーム位置モニタ34(カメラ)で撮像できるようにしている。このような照射位置でビーム位置を測定するモニタ機器を用いることにより、上述した試験照射時(準備段階)にはビーム位置モニタ34を照射位置T上に設置し、実照射(治療時)には上記固定具51を使用してビーム位置モニタ34を取り外すようにしている。
実施の形態3.
 図14は本発明の実施の形態3による粒子線治療システムの準備段階におけるビーム軌道制御の他の方法を説明する模式図であり、図14(a)は外乱がない時のビーム軌道の一例を示し、図14(b)は外乱がある時のビーム軌道を示している。図14(c)はこの実施の形態による補正方法を示している。実施の形態1、2と同一部品はその説明を省略するが、最終段の偏向電磁石31の下流に設置したビーム位置モニタ34によりシンクロトロンの周期的に加速・出射されたビームの動きを観測するものとする。
その観測結果からこのビーム輸送系3のビーム軌道を計算し、外乱がない時の位置sにおけるビーム位置X0(s)と、外乱がある時の位置sにおけるビーム位置X1(s)が等しくなる位置(点A)、すなわちX0(s)=X1(s)となる位置sに、 図14(c)のようにステアリング電磁石33を配置する。次に、試験照射で上記ステアリング電磁石33に電流を流し、上記ビーム位置モニタ34でビーム位置が変動しない電流パターンを取得・保存し、更に実照射では上記電流パターンに従った電流を流すことにより、ビーム位置およびビーム角度を変動させないようにすることができる。
実施の形態4.
 図15は本発明の実施の形態4による粒子線治療システムの準備段階におけるビーム軌道制御の更に他の方法を説明する模式図であり、図15(a)は外乱がない時のビーム軌道の一例を示し、図15(b)は外乱がある時のビーム軌道を示している。最終段の偏向電磁石31の下流であって最終段の四極電磁石32の後段に設置したビーム位置モニタ34によりシンクロトロンの周期的に加速・出射されたビームの動きを観測するものとする。
その観測結果からこのビーム輸送系3のビーム軌道を計算し、外乱がない時の位置sにおけるビーム位置X0(s)と外乱がある時の位置sにおけるビーム位置X1(s)が互いに等しく且つ0になる位置s(すなわちX0(s)=X1(s)=0となる点A)にステアリング電磁石33を配置する(図15(c))。次に、試験照射で上記ステアリング電磁石33に電流を流し、時間に合わせてキック角を制御して上記ビーム位置モニタ34でビーム位置が変動しない電流パターンを取得・保存し、更に実照射では上記電流パターンに従った電流を流すことにより、ビーム位置およびビーム角度を変動させないようにすることができる。
実施の形態5.
本発明の実施の形態5による粒子線治療システムの概略構成を図16に基づいて説明する。本実施形態の粒子線治療システム100は、基本的には図1に示す実施の形態1と略同一構成であり、相違する点はステアリング電磁石33a、33bとビーム位置モニタ34a、34bの挿入位置のみである。すなわち、実施の形態1ではビーム輸送方向に対して第1のステアリング電磁石33a、第1のビーム位置モニタ34a、第2のステアリング電磁石33b、第2のビーム位置モニタ34bの順に配置されていたのに対し、本実施の形態では第1のステアリング電磁石33a、第2のステアリング電磁石33b、第1のビーム位置モニタ34a、第2のビーム位置モニタ34bの順に配置されている。
図17は上記図16に示す実施の形態のビーム輸送系3におけるビーム軌道制御の状態を説明する模式図であり、各電磁石は図16のものと対応して示している。各ステアリング電磁石におけるキック角算出の方法は図5の説明と同一であるのでここでは省略する。
17(a)はこの発明の制御を行わない場合のビーム軌道を示し、図17(b)はこの発明の制御を行った場合のビーム軌道を示している。なお、図中、zは照射位置Tに向かって進行する理想的なビーム軸線を、ST1は時間t1でのビーム軌道を、ST2は時間t2でのビーム軌道を示している。以下これを用いて周期的に変化するビーム位置変動・角度変動の影響を補正するためのステアリング電磁石のキック量(角)を求める原理を説明する。
この発明の実施の形態1では、上記第1のステアリング電磁石33aと第2のステアリング電磁石33bの後方(下流)に第1のビーム位置モニタ34aと第2のビーム位置モニタ34bが設置されている。図17(b)に示すように、上記第1のステアリング電磁石33aと第2のステアリング電磁石33bの2台を用い、第2のステアリング電磁石33bでビーム中心の傾きがビーム軸線zと平行になるように曲げられるようにし、以後、ビーム軸線zに沿ってビーム中心が進行するようになされている。
ステアリング電磁石とビーム位置モニタをそれぞれ少なくとも2台必要とするのは、位置・傾き共に0にする補正ができるようにするためである。
次に本実施の形態におけるステアリング電磁石電源41、42による具体的なビーム補正方法を説明する。図18は具体的なビーム補正手順を示すフローチャートである。図において、先ず、ステップS1で、第1のビーム位置モニタ34aによって各タイミングtにおけるビーム位置の検出信号X1(t)を検出し、同時に第2のビーム位置モニタ34bによって各タイミングtにおけるビーム位置の検出信号X2(t)を検出する。
次にステップS2において、X1とX2を共に0にできるような各時刻におけるキック角を調整支援端末である計算機(図示していない)で連立方程式を解くか、もしくは反復法を適用して算出する。
続いてステップS3において、算出されたキック角に応じた電流パターンI1(t)とI2(t)を作成する。各キック角に対する電流パターンを時間テーブルの形でステアリング電磁石電源41および42の制御装置内にそれぞれ用意しておき、例えば、算出されたキック角に応じた電流パターンに線形補間を施すことによりリニアな電流パターンI1(t)とI2(t)とし、これをステアリング電磁石33a、33bの励磁電流として出力してビーム位置を最終的にビーム軸上に来るように矯正する。
このような実施の形態でも実施の形態1と同様の効果が得られ、かつ、建屋配置などの制約条件によって、機器配置に制約条件が発生するため、この実施の形態の方が有利な場合もある。
実施の形態6.
 粒子線治療システムにあっては、一般的にビーム輸送系において荷電粒子ビームの進行方向を変更する偏向電磁石やステアリング電磁石、及び荷電粒子ビームを収束、発散させてビームの幅を制御する四極電磁石等がそれぞれ複数個設置される。従ってこれらの装置を収容するスペースはかなり大きなものとなり、これら装置を収容するための充分な建屋面積を必要とする。例えば偏向電磁石だけでも大きなものは、その高さが2.5m、偏向半径が1.5mに及ぶものがあり、これら偏向電磁石をその使用目的によって複数個設置する必要が生じることがある。このため大きな建屋を確保できない各種設備においては、上記偏向電磁石を一つでも少なくできれば粒子線治療システムの小型化に大きく貢献し、また配置上の制約も受け難くなる。
この実施の形態6では、ビーム輸送系3において上記実施の態様1~5にて説明した粒子線治療システムにおいて、更に偏向電磁石の少なくとも一つを省略して偏向電磁石を用いなくても運動量分散関数の相関を解消することにより同一の目的を達成するようにしたものについて説明する。図19はビーム輸送系においてこの実施形態による粒子線治療システムの構成図を示している。
 図において、図1、図10と同一あるいは相当部分には同一符号を付しており、5は患者の治療室となるガントリーを示している。図中、加速器系2の出射用偏向電磁石30から出射されたビームはガントリー5に達するまでのビーム輸送系3においては周知の四極電磁石と偏向電磁石との組合せで運動量分散関数の相関を解消してはおらず、四極電磁石32とステアリング電磁石33a、33bのみにより運動量分散関数の相関を解消するものとして実際に近い状態で示している。
 運動量分散関数とは運動量と位置との相関関数のことであり、加速器系2から出射される荷電粒子ビームには運動量と位置の相関があるため、ガントリー入口まで輸送する際にこの相関をなくすことが治療品質を確保するために重要である。上記ビーム輸送系3の役割は、荷電粒子ビームをガントリー5まで運ぶだけでなく、運動量分散関数をなくして輸送することにある。一般に加速器で運動量分散がx方向に発生している場合には、そのx方向の分散を打ち消すようなx方向偏向電磁石と四極電磁石の組み合わせが必要であり、また加速器からの取り出しでy方向に運動量分散が発生している場合には、そのy方向の分散を打ち消すようなy方向偏向電磁石と四極電磁石の組み合わせが必要であった。
加速器からの出射方式には各種の方式があるが、中には、時間と運動量分布が強相関となる性質、すなわち、時間と共に中心運動量が大きく変化する傾向があるものがある。
これは上述の加速器中の電磁石の磁場や高周波電力の周期的変動等に起因すると考えられ、実施の形態1~5で説明したように、これらの加速器の運転周期に連動した周期的変動をビーム位置モニタ上で監視し、ビーム位置モニタの出力の動的変動を打ち消すように軌道補正を行うことで、これらの周期的変動、すなわち時間と運動量分布の強相関を解消することができる。
以下図19の例をもとにこれを具体的に説明する。
シンクロトロンから出射されたビームは、一般にx方向にも、y方向にも運動量分散関数を持つ。図20(a)(b)は、設計軌道に沿った軸s(横軸)の距離(m)に対するx軸あるいはy軸の運動量分散関数(縦軸)、すなわち設計軌道からのずれx(mm)、y(mm)を示す図であり、時間とともに運動量分散関数が大きく変化している状態を示している。図の下側(t=0)が出射初めで、時間とともに上側の軌跡を辿るようになる。図ではt=1までの時間間隔として示している。設計軌道に沿った軸s(m)は加速器系2の出射口を0とし、ガントリー5入り口までの距離を15mとした場合の例であり、図の下部に示す大きい四角は出射用偏向電磁石30を表し、上半分の小さい四角は収束四極電磁石、下半分の小さい四角は発散四極電磁石を表している。
これから理解されるように、時間と運動量に強い相関があり、時間とともにビームの運動量は増えて行くことが分る。x方向のs=15mの位置ではほぼビームが動かないため、運動量分散関数η=0となっているが、傾きは時間とともに変化しているので、上記ηをs方向に微分した値η’はη’≠0である。
一方、y方向ではs =13mの位置でほぼビームが動かないため、η=0となっているが、傾きは時間とともに変化しているので、やはりη’≠0である。
粒子線治療装置では、回転するガントリー入り口やアイソセンタ位置で運動量分散関数がη=0、η’=0となっていることが望まれる。
そこで、s =5mの位置とs=11mの位置に、ステアリング電磁石33a、33bをx方向とy方向の組み合わせを2セット入れ、例えばs=12m の位置とs =15mの位置にモニタ34a、34bを置く。ここで、上記実施の形態5で説明した、周期的に変化するビーム位置変動・角度変動を補正する原理を用いて、上記モニタ34a、34bの位置でビーム重心の移動量が0となるような動的ステアリング電磁石の電流パターンを求めることができる。例えば、上記動的ステアリング電磁石33a、33bに図21のような電流パターンで励磁を行ったとすると、図22のような運動量分散関数が得られる。すなわち、ガントリー入り口において、x(t)=0、x’(t)=0、 y(t)=0、 y’(t)=0 が実現できることが分かった。時間と運動量に強い相関があるため、同時に、ηx=0、η’x=0、ηy=0、η’y=0 も実現できている。
このように時間と運動量に強い相関がある場合には、モニタと動的ステアリング電磁石を組み合わせることで、従来の偏向電磁石と四極電磁石の組み合わせよりも、偏向電磁石を省略でき、小型且つ安価な装置によって運動量分散関数が0である輸送路を実現できる。
1 入射系、 2 加速器系、 3 ビーム輸送系、 4 ノズル、
5 ガントリー、 10 加算器、 11 入射器、 20 電源、 
30、31 偏向電磁石、 32 四極電磁石、 
33、33a、33b  ステアリング電磁石、
34、34a、34b ビーム位置モニタ、 
41、42 ステアリング電磁石電源、 
100 粒子線治療システム。
  
  
  
  

Claims (10)

  1. 荷電粒子ビームを加速する加速器系と、この加速器から出射された高エネルギービームを照射位置まで輸送するビーム輸送系とからなる粒子線治療システムにおいて、前記ビーム輸送系に少なくとも1個のステアリング電磁石とこれに対応する少なくとも1個のビーム位置モニタを備え、前記ビーム位置モニタは前記ステアリング電磁石に周期的に変動するビーム位置を補正する励磁電流を供給することを特徴とする粒子線治療システム。
  2. 前記ビーム輸送系に2個のステアリング電磁石とこれに対応する2個のビーム位置モニタを備え、第1のビーム位置モニタは第2のステアリング電磁石の前方に設置され第1のステアリング電磁石に周期的に変動するビーム位置を補正する励磁電流を供給すると共に、第2のビーム位置モニタは第2のステアリング電磁石の後方に設置され前記第2のステアリング電磁石に周期的に変動するビーム位置を補正する励磁電流を供給することを特徴とする請求項1に記載の粒子線治療システム。
  3. 前記第1のビーム位置モニタを前記第2のステアリング電磁石の前方に近接して設置され、第3のビーム位置モニタを前記第2のステアリング電磁石の後方に近接して設置し、前記第1および第3のビーム位置モニタの計測値から前記第2のステアリング電磁石の位置を計算により求めることを特徴とする請求項2に記載の粒子線治療システム。
  4. 前記ビーム輸送系に2個のステアリング電磁石とこれに対応する2個のビーム位置モニタを備え、第1のビーム位置モニタは第2のステアリング電磁石の後方に設置され第1のステアリング電磁石に周期的に変動するビーム位置を補正する励磁電流を供給すると共に、第2のビーム位置モニタは第1のビーム位置モニタの後方に設置され前記第2のステアリング電磁石に周期的に変動するビーム位置を補正する励磁電流を供給することを特徴とする請求項1に記載の粒子線治療システム。
  5. ビーム輸送系に少なくとも1個のステアリング電磁石とこれに対応する少なくとも1個のビーム位置モニタを備えた粒子線治療システムのビーム位置補正方法において、試験照射時に前記ビーム位置モニタを照射位置に着脱自在に設置した状態でビーム照射することにより、ビーム位置の周期的変動を捉え、この変動を無くすように前記ステアリング電磁石の励磁電流値を位置変動の周期に合わせて供給し、その周期的励磁電流値を取得・保存し、実照射時に前記ビーム位置モニタを取り外した状態で前記周期的励磁電流を前記ステアリング電磁石に供給するようにしたことを特徴とする粒子線治療システムのビーム位置補正方法。
  6. ビーム輸送系に2個のステアリング電磁石とこれに対応する2個のビーム位置モニタを備え、試験照射時に上流側ステアリング電磁石と下流側ステアリング電磁石の間であって下流側ステアリング電磁石の近くに配置した上流側ビーム位置モニタにより時間によりビーム位置が変動しない上流側ステアリング電磁石の電流パターンデータを取得・保存し、次に、上記の保存した電流パターンで上流側ステアリング電磁石電流を運転し、下流側ステアリング電磁石の下流に配置したビーム位置モニタによりビーム位置を観測し、下流側ステアリング電磁石電流を変化させて、時間によりビーム位置が変動しない下流ステアリング電磁石の電流パターンデータを取得・保存し、さらに、実照射時には、保存した電流パターンを、周期的に運転するシンクロトロンに同期して、上流側ステアリング電磁石と下流側ステアリング電磁石に流すことにより、ビームの位置とビームの角度を変動しないようにしたことを特徴とする請求項5に記載の粒子線治療システムのビーム位置補正方法。
  7. 時間によりビーム位置が変動しない下流ステアリング電磁石の電流パターンデータは機器の周期誤差変動および/あるいは呼吸同期信号に伴う機器による周期的誤差変動を含む補正パターンを上記ステアリング電磁石電流として流すことを特徴とする請求項6に記載の粒子線治療システムのビーム位置補正方法。
  8. ビーム輸送系の最終段の偏向電磁石の下流に設置したビーム位置モニタによりシンクロトロンの周期的に加速・出射されたビーム位置変動を観測し、その観測結果からビーム輸送系のビーム軌道を計算し、外乱がないときの位置sにおけるビーム位置X0(s)と外乱があるときの位置sにおけるビーム位置X1(s)が等しくなる位置、すなわちX0(s)=X1(s)となる位置sにステアリング電磁石を配置し、試験照射時に上記ステアリング電磁石に電流を上記ビームモニタにて、ビーム位置が変動しない電流パターンを取得保存し、さらに、実照射時には上記パターンに従った電流を流すことにより、ビーム位置およびビーム角度を変動させないことを特徴とする粒子線治療システムのビーム位置補正方法。
  9. 外乱がないときの位置sにおけるビーム位置X0(s)と外乱があるときの位置sにおけるビーム位置X1(s)が0なる、すなわちX0(s)=X1(s)=0となる位置sにステアリング電磁石を配置したことを特徴とする請求項8に記載の粒子線治療システムのビーム位置補正方法。
  10. ビーム輸送系に2個のステアリング電磁石とこれらの後方に2個のビーム位置モニタを備え、第1のビーム位置モニタによって各タイミングtにおけるビーム位置の検出信号X1(t)を検出すると共に第2のビーム位置モニタによって各タイミングtにおけるビーム位置の検出信号X2(t)を検出し、次に、X1とX2を共に0にできるような各時刻におけるキック角を算出し、続いて、算出されたキック角に応じた電流パターンI1(t)とI2(t)を作成し、これをそれぞれ上記2個のステアリング電磁石の励磁電流として出力し、ビーム位置を最終的にビーム軸上に来るように矯正することを特徴とする粒子線治療システムのビーム位置補正方法。
PCT/JP2012/074222 2011-11-08 2012-09-21 粒子線治療システムおよびそのビーム位置補正方法 WO2013069379A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280054629.3A CN103917274B (zh) 2011-11-08 2012-09-21 粒子射线治疗系统及其射束位置校正方法
US14/346,908 US9387346B2 (en) 2011-11-08 2012-09-21 Particle beam treatment system and beam position correcting method thereof
JP2013542890A JP5762555B2 (ja) 2011-11-08 2012-09-21 粒子線治療システムおよびそのビーム位置補正方法
EP12848652.9A EP2777766A4 (en) 2011-11-08 2012-09-21 PARTICLE BEAM TREATMENT SYSTEM AND BEAM POSITION CORRECTION FOR THIS
TW101141099A TWI510267B (zh) 2011-11-08 2012-11-06 粒子射線治療系統及該粒子射線束位置補正方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2011/075683 2011-11-08
PCT/JP2011/075683 WO2013069090A1 (ja) 2011-11-08 2011-11-08 粒子線治療システムおよびそのビーム位置補正方法

Publications (1)

Publication Number Publication Date
WO2013069379A1 true WO2013069379A1 (ja) 2013-05-16

Family

ID=48288677

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/075683 WO2013069090A1 (ja) 2011-11-08 2011-11-08 粒子線治療システムおよびそのビーム位置補正方法
PCT/JP2012/074222 WO2013069379A1 (ja) 2011-11-08 2012-09-21 粒子線治療システムおよびそのビーム位置補正方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075683 WO2013069090A1 (ja) 2011-11-08 2011-11-08 粒子線治療システムおよびそのビーム位置補正方法

Country Status (5)

Country Link
US (1) US9387346B2 (ja)
EP (1) EP2777766A4 (ja)
CN (1) CN103917274B (ja)
TW (2) TW201318660A (ja)
WO (2) WO2013069090A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015226672A (ja) * 2014-06-02 2015-12-17 株式会社日立製作所 粒子線治療システム及び装置、粒子線治療システムの制御方法
CN105392527A (zh) * 2013-07-11 2016-03-09 三菱电机株式会社 射束输送系统及粒子射线治疗装置
WO2017199385A1 (ja) * 2016-05-19 2017-11-23 三菱電機株式会社 粒子線治療装置用のビームモニタ及び粒子線治療装置
WO2018207244A1 (ja) * 2017-05-09 2018-11-15 株式会社日立製作所 粒子線治療装置
EP3405009A1 (en) 2017-05-12 2018-11-21 Hitachi, Ltd. Particle therapy system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107004453B (zh) * 2014-12-04 2019-07-19 株式会社东芝 粒子线束调整装置以及方法、粒子线治疗装置
CN105277966B (zh) * 2015-11-11 2017-09-29 广东中能加速器科技有限公司 一种束流偏转跟踪检测和校正装置
WO2017187593A1 (ja) * 2016-04-28 2017-11-02 三菱電機株式会社 粒子線治療装置
WO2018092753A1 (ja) * 2016-11-15 2018-05-24 株式会社東芝 粒子線ビーム輸送装置、回転ガントリ及び粒子線ビーム照射治療システム
US10170228B2 (en) * 2017-01-11 2019-01-01 National Synchrotron Radiation Research Center Magnetic apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282300A (ja) 2002-03-26 2003-10-03 Hitachi Ltd 粒子線治療システム
JP2009000347A (ja) 2007-06-22 2009-01-08 Hitachi Ltd 粒子線照射システム
JP2011206237A (ja) * 2010-03-30 2011-10-20 Hitachi Ltd 荷電粒子ビーム輸送装置及び粒子線治療システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3178381B2 (ja) * 1997-02-07 2001-06-18 株式会社日立製作所 荷電粒子照射装置
US6218675B1 (en) * 1997-08-28 2001-04-17 Hitachi, Ltd. Charged particle beam irradiation apparatus
DE19907121A1 (de) * 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zur Überprüfung der Strahlführung eines Ionenstrahl-Therapiesystems
JP5484036B2 (ja) 2009-12-23 2014-05-07 三菱電機株式会社 粒子線治療装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282300A (ja) 2002-03-26 2003-10-03 Hitachi Ltd 粒子線治療システム
JP2009000347A (ja) 2007-06-22 2009-01-08 Hitachi Ltd 粒子線照射システム
JP2011206237A (ja) * 2010-03-30 2011-10-20 Hitachi Ltd 荷電粒子ビーム輸送装置及び粒子線治療システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2777766A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105392527A (zh) * 2013-07-11 2016-03-09 三菱电机株式会社 射束输送系统及粒子射线治疗装置
JP6009670B2 (ja) * 2013-07-11 2016-10-19 三菱電機株式会社 ビーム輸送系及び粒子線治療装置
JP2015226672A (ja) * 2014-06-02 2015-12-17 株式会社日立製作所 粒子線治療システム及び装置、粒子線治療システムの制御方法
WO2017199385A1 (ja) * 2016-05-19 2017-11-23 三菱電機株式会社 粒子線治療装置用のビームモニタ及び粒子線治療装置
WO2018207244A1 (ja) * 2017-05-09 2018-11-15 株式会社日立製作所 粒子線治療装置
EP3405009A1 (en) 2017-05-12 2018-11-21 Hitachi, Ltd. Particle therapy system
US10456602B2 (en) 2017-05-12 2019-10-29 Hitachi, Ltd. Particle therapy system

Also Published As

Publication number Publication date
WO2013069090A1 (ja) 2013-05-16
TW201318660A (zh) 2013-05-16
CN103917274A (zh) 2014-07-09
US20140235922A1 (en) 2014-08-21
CN103917274B (zh) 2017-03-22
EP2777766A1 (en) 2014-09-17
TW201332606A (zh) 2013-08-16
TWI510267B (zh) 2015-12-01
EP2777766A4 (en) 2015-05-27
US9387346B2 (en) 2016-07-12

Similar Documents

Publication Publication Date Title
WO2013069379A1 (ja) 粒子線治療システムおよびそのビーム位置補正方法
TWI467596B (zh) Charged particle line irradiation device, charged particle line irradiation method and charged particle line irradiation program
US8742699B2 (en) Charged particle beam generator, charged particle irradiation system, method for operating charged particle beam generator and method for operating charged particle irradiation system
JP6462718B2 (ja) 粒子線ビーム調整装置及び方法、粒子線治療装置
JP6906361B2 (ja) 粒子線治療システム
EP2946809A1 (en) Neutron capture therapy apparatus and nuclear transformation apparatus
JP2010251106A (ja) 粒子線治療システム
JP2011130859A (ja) 粒子線治療装置
JP5762555B2 (ja) 粒子線治療システムおよびそのビーム位置補正方法
JP2011206237A (ja) 荷電粒子ビーム輸送装置及び粒子線治療システム
TWI610699B (zh) 粒子射線治療裝置用之射束監視器及粒子射線治療裝置
JP5469224B2 (ja) セプタム電磁石の制御方法
EP2651197B1 (en) Septum electromagnet and particle beam therapy device
JP6581522B2 (ja) 粒子線治療システム及び粒子線治療システムの制御方法
JP3748423B2 (ja) 荷電粒子線の線量分布調整機構及び照射装置
JP4742328B2 (ja) シンクロトロン加速器の制御方法、シンクロトロン加速器、並びに、シンクロトロン加速器を制御するためのコンピュータプログラム及びコンピュータ読み取り可能な記憶媒体
TWI652090B (zh) 粒子線治療裝置
JP2012004055A (ja) シンクロトロン
JP4085176B2 (ja) 電子ビームの軌道補正装置及び軌道補正方法
KR101164096B1 (ko) 이온빔 펄스 공급 장치
JP2021040901A (ja) 粒子線治療装置および粒子線治療装置の補正方法
JP2020010887A (ja) 荷電粒子線治療装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013542890

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14346908

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012848652

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE