WO2013069045A1 - 薄膜トランジスタ装置の製造方法、薄膜トランジスタ装置および表示装置 - Google Patents

薄膜トランジスタ装置の製造方法、薄膜トランジスタ装置および表示装置 Download PDF

Info

Publication number
WO2013069045A1
WO2013069045A1 PCT/JP2011/006196 JP2011006196W WO2013069045A1 WO 2013069045 A1 WO2013069045 A1 WO 2013069045A1 JP 2011006196 W JP2011006196 W JP 2011006196W WO 2013069045 A1 WO2013069045 A1 WO 2013069045A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light absorption
region
absorption layer
amorphous silicon
Prior art date
Application number
PCT/JP2011/006196
Other languages
English (en)
French (fr)
Inventor
祐太 菅原
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201180006689.3A priority Critical patent/CN103283006A/zh
Priority to PCT/JP2011/006196 priority patent/WO2013069045A1/ja
Priority to US13/495,149 priority patent/US8865529B2/en
Publication of WO2013069045A1 publication Critical patent/WO2013069045A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1281Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor by using structural features to control crystal growth, e.g. placement of grain filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Definitions

  • the present invention relates to a method for manufacturing a thin film transistor device, a thin film transistor device, and a display device.
  • a thin film transistor constituting a liquid crystal panel or an organic EL panel.
  • the channel portion of the thin film transistor is formed of a-Si which is amorphous silicon or Poly-Si which is crystalline and polycrystalline silicon.
  • a-Si layer For the crystalline silicon layer (Poly-Si layer) in the channel portion of the thin film transistor, generally, after forming an amorphous silicon layer (a-Si layer), laser light such as excimer is applied to the amorphous silicon layer. It is formed by irradiating and instantaneously raising the temperature to crystallize.
  • the thin film transistor has a bottom gate structure in which the gate metal is disposed on the substrate side as viewed from x-Si (x is a or poly) of the channel portion, and the gate metal and the source / drain metal are in the channel portion.
  • the bottom gate structure is mainly used in an a-Si TFT having a channel portion formed of an amorphous silicon layer, and the top gate structure is a Poly-Si having a channel portion formed of a crystalline silicon layer. Mainly used in TFT.
  • a bottom gate structure is generally used as a structure of a thin film transistor included in a liquid crystal panel or an organic EL panel used in a large-area display device.
  • a Poly-Si TFT is used in a bottom gate structure, and in this case, the manufacturing cost can be suppressed.
  • a crystalline silicon layer is formed by crystallizing an amorphous silicon layer by irradiating a laser.
  • laser annealing crystallization method the amorphous silicon layer is crystallized by heat based on laser light irradiation.
  • a silicon oxide layer for example, is deposited on an amorphous silicon layer as a buffer layer, and a light absorption layer is further deposited on the buffer layer, which is absorbed into the absorption layer and thermally converted.
  • a method of indirectly heating amorphous silicon by irradiating a laser beam is referred to as a laser indirect heating method.
  • the laser used in the laser indirect heating method it is effective to use red and near-infrared fixed lasers that can increase the output and have high time stability of output. This is because if there is a temporal variation in the intensity of the laser beam, the crystal will not have a uniform temperature distribution and the crystallinity of the crystalline silicon layer formed by crystallization will vary. This is because it is difficult to achieve uniform crystallization due to problems such as variations (temporal variations).
  • the fixed laser has an advantage in production that the maintenance cost can be reduced as compared with the excimer laser which is a gas laser.
  • the light absorption layer used in the laser indirect heating method has a characteristic that its optical characteristics have a large absorption for light of red and near-infrared wavelengths, specifically, wavelengths of 600 nm to 2000 nm. desirable. It is also desirable to have thermal properties that can withstand laser annealing crystallization processes involving high temperatures.
  • the light absorption layer having such characteristics there are Mo and Cr which are refractory metals.
  • These refractory metal films generally have a large extinction coefficient k (2 or more), so that they can be stably formed and can withstand heating by laser irradiation (1500 degrees or more) (10 nm or more). Then, the transmittance is 5% or less with respect to the incident laser beam. Therefore, the influence of multiple interference due to the underlying layer structure can be ignored, and the absorption rate of the light absorption layer is constant regardless of the underlying layer structure (for example, the region where the gate electrode exists and the region where it does not exist). become.
  • a gate electrode is first formed of a metal material having a higher thermal conductivity than silicon or an insulating film, and then an insulating layer and an amorphous silicon layer are formed.
  • the laser light is irradiated to the upper light absorption layer by the laser indirect heating method, and the amorphous silicon is indirectly indirectly generated by the heat generation.
  • the layer is annealed for crystallization. During the crystallization, heat that should be spent on the crystallization of the amorphous silicon layer is absorbed and propagated by the gate electrode, and the amorphous silicon layer is not sufficiently crystallized. There is a problem that uniformity occurs.
  • a method in which a dummy gate pattern is disposed in the vicinity of the gate electrode, that is, in the vicinity of the channel, thereby reducing the difference in heat capacity between the gate electrode and the amorphous silicon layer above the dummy gate pattern.
  • Patent Document 1 a method is disclosed in which a dummy gate pattern is disposed in the vicinity of the gate electrode, that is, in the vicinity of the channel, thereby reducing the difference in heat capacity between the gate electrode and the amorphous silicon layer above the dummy gate pattern.
  • FIG. 1 is a diagram showing crystal unevenness when the laser annealing crystallization method is performed by scanning a solid-state laser in the visible light region.
  • the left figure of FIG. 1 is a figure which shows the crystallization ratio with respect to the amorphous silicon on one gate metal among the several gate metals of the right figure of FIG.
  • the crystallization rate of 80% indicates that the crystalline silicon has a particle size of 30 nm to 40 nm.
  • the crystallization rate of 40% indicates that the crystalline silicon has a particle size of 10 nm to 20 nm. It represents that. Accordingly, as shown in the left diagram of FIG. 1, it can be seen that crystal unevenness occurs when crystallization is insufficient (not uniform).
  • the amorphous silicon layer is crystallized by the laser indirect heating method, the crystallization becomes insufficient. Therefore, the characteristics of the thin film transistor using the amorphous silicon layer are deteriorated and the characteristics of the individual transistors are not uniform. There is a problem that occurs.
  • the present invention has been made in view of the above problems, and a method of manufacturing a thin film transistor device capable of forming a crystalline silicon film having stable crystallinity using a laser in a red or near infrared wavelength region, It is an object to provide a thin film transistor device and a display device using the same.
  • a method of manufacturing a thin film transistor device includes a first step of preparing a substrate, a second step of forming a plurality of gate electrodes on the substrate, and the plurality of the plurality of gate electrodes.
  • a value obtained by dividing the optical film thickness of the light absorption layer by the wavelength of the laser beam is X
  • the optical film thickness of the buffer layer is a value obtained by adding the refractive index of the buffer layer to the film thickness of the buffer layer.
  • the thickness of the amorphous silicon layer and the refractive index of the amorphous silicon layer, the optical thickness of the amorphous silicon layer, the thickness of the gate insulating layer, and the gate insulation is divided by the wavelength of the laser light, and Y is the density of the light absorbing layer, and c is the specific heat.
  • the film thickness of the gate electrode is dG
  • the density is ⁇ G
  • the specific heat is G
  • AG is the maximum value of the absorptance of the gate electrode when the light absorptivity of the light absorption layer above the gate electrode and the light absorption layer not above the gate electrode are equal to each other with respect to the laser beam.
  • ⁇ A ′ is the value calculated by the equation, the film thickness of the gate insulating layer, the film of the amorphous silicon layer
  • the thickness, the thickness of the buffer layer, and the thickness of the light absorption layer are Y ⁇ ⁇ 1.06X ⁇ 0.22 ⁇ A ′ + 1.07, Y ⁇ 1.29X + 1.61 * ⁇ A ′ + 1.44, Y
  • the above X and Y belonging to the range defined by the expressions ⁇ 1.06X + 0.33 ⁇ A ′ + 0.89 and Y ⁇ 1.29X + ⁇ 0.97 * ⁇ A′ ⁇ 0.95 are satisfied.
  • the present invention it is possible to realize a thin film transistor device manufacturing method, a thin film transistor, and a display device using the thin film transistor device capable of forming a crystalline silicon film with stable crystallinity using a red or near infrared laser.
  • the silicon thin film, the gate insulating layer, the buffer layer, and the light absorption layer having predetermined optical characteristics with respect to laser light in the red and near-infrared wavelength regions each having a predetermined film thickness.
  • the electrode so as to satisfy the conditions, for example, the crystal shape by the laser indirect heating method using a red or near-infrared laser without changing the structure of the thin film transistor device, such as the pattern shape of the gate electrode.
  • Thin film transistor device manufacturing method, thin film transistor device, and display device using the same can be realized.
  • FIG. 1 is a diagram showing crystal unevenness when the laser annealing crystallization method is performed by scanning a solid-state laser in the visible light region.
  • FIG. 2 is a cross-sectional view showing the structure of the thin film transistor that constitutes the display device according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing an equivalent circuit of the display device according to the embodiment of the present invention.
  • FIG. 4 is a flowchart showing manufacturing steps of the thin film transistor of the display device according to the embodiment of the present invention.
  • FIG. 5A is a cross-sectional view for explaining the method for manufacturing the thin film transistor of the display device according to the embodiment of the present invention.
  • FIG. 5B is a cross-sectional view for explaining the method for manufacturing the thin film transistor of the display device according to the embodiment of the present invention.
  • FIG. 5C is a cross-sectional view for explaining the method for manufacturing the thin film transistor of the display device according to the embodiment of the present invention.
  • FIG. 5D is a cross-sectional view for explaining the method for manufacturing the thin film transistor of the display device according to the embodiment of the present invention.
  • FIG. 5E is a cross-sectional view for describing the method for manufacturing the thin film transistor of the display device according to the embodiment of the present invention.
  • FIG. 5F is a cross-sectional view for explaining the method for manufacturing the thin film transistor of the display device according to the embodiment of the present invention.
  • FIG. 5G is a cross-sectional view for explaining the method for manufacturing the thin film transistor of the display device according to the embodiment of the present invention.
  • FIG. 5H is a cross-sectional view for explaining the method for manufacturing the thin film transistor of the display device according to the embodiment of the present invention.
  • FIG. 5I is a cross-sectional view for explaining the method for manufacturing the thin film transistor of the display device according to the embodiment of the present invention.
  • FIG. 5J is a cross-sectional view for explaining the method for manufacturing the thin film transistor of the display device according to the embodiment of the present invention.
  • FIG. 5K is a cross-sectional view for explaining the method for manufacturing the thin film transistor of the display device according to the embodiment of the present invention.
  • FIG. 5L is a cross-sectional view for explaining the method for manufacturing the thin film transistor of the display device according to the embodiment of the present invention.
  • FIG. 6 is a diagram schematically showing the indirect laser heating method in S15 of FIG.
  • FIG. 7A is a diagram for explaining the amplitude transmittance and the calculation method of the amplitude transmittance.
  • FIG. 7B is a diagram for explaining the amplitude transmittance and the calculation method of the amplitude transmittance.
  • FIG. 8 is a diagram for showing that there are suitable film thickness ranges for the gate insulating layer, the amorphous silicon layer, the buffer layer, and the light absorption layer when the crystalline silicon layer is formed by the laser indirect heating method. .
  • FIG. 9 is a diagram illustrating an example of a value obtained by converting the value on the horizontal axis in FIG. 8 into the film thickness of the light absorption layer.
  • FIG. 10 is a diagram illustrating an example of a value obtained by converting the value on the vertical axis in FIG. 8 into the thickness of the buffer layer.
  • FIG. 11 is a cross-sectional view showing another example of the structure of the thin film transistor constituting the display device according to the embodiment of the present invention.
  • FIG. 12 is a diagram showing a set of film thicknesses when the gate insulating layer of the thin film transistor shown in FIG. 11 is formed of a silicon oxide (SiO) film and a silicon nitride (SiN) film.
  • SiO silicon oxide
  • SiN silicon nitride
  • FIG. 13 is a diagram used for calculating a preferable film thickness range of the buffer layer and the light absorption layer in FIG. 8.
  • FIG. 14 is a diagram illustrating a model used for the simulation.
  • FIG. 15 is a diagram showing the film thickness condition portions implemented in this simulation in FIG.
  • FIG. 16 is a diagram showing a simulation result of the position dependency of the highest temperature reached on the surface of the amorphous silicon layer in the first region and the second region.
  • FIG. 17A is a diagram showing the crystallinity of a crystalline silicon layer when a laser indirect heating crystallization method is performed on the structure of the embodiment of the present invention using laser light in the red and near-infrared wavelength regions. It is.
  • FIG. 14 is a diagram illustrating a model used for the simulation.
  • FIG. 15 is a diagram showing the film thickness condition portions implemented in this simulation in FIG.
  • FIG. 16 is a diagram showing a simulation result of the position dependency of the highest temperature reached on the surface of the amorphous silicon
  • FIG. 17B is a diagram showing the crystallinity of a crystalline silicon layer when a laser indirect heating crystallization method is performed on a conventional structure using laser light in the red and near-infrared wavelength regions.
  • FIG. 18 is a diagram for explaining an effect in the embodiment of the present invention.
  • FIG. 19 shows an example of a display device using the thin film transistor of the present invention.
  • a sixth step of forming a light source a predetermined laser having a wavelength of 600 nm or more is moved relative to the substrate in a predetermined direction, and the light absorption layer is formed using laser light emitted from the predetermined laser.
  • the value obtained by summing the optical thickness of the insulating layer and the wavelength of the laser beam is Y, and the density of the light absorption layer is ⁇ , the specific heat is c, and the thickness of the gate electrode is dG. , Density ⁇ G, specific heat cG, light above the gate electrode
  • the maximum value of the absorptance of the gate electrode when the light absorptivity of the light absorption layer not above the collector layer and the gate electrode with respect to the laser beam is equal is AG, and (AG / dG) ⁇ ( ⁇ ⁇ c)
  • the value calculated by the equation of ( ⁇ G ⁇ cG) is ⁇ A ′
  • the film thickness of the gate insulating layer, the film thickness of the amorphous silicon layer, the film thickness of the buffer layer, and The film thickness of the light absorption layer satisfies the X and Y belonging to the range defined by the following formulas 1) to 4).
  • Formula 1 Y ⁇ ⁇ 1.06X ⁇ 0.22 ⁇ A ′ + 1.07
  • Formula 2) Y ⁇ 1.29X + 1.61 * ⁇ A ′ + 1.44
  • Formula 3) Y ⁇ 1.06X + 0.33 ⁇ A ′ + 0 .89
  • Formula 4) Y ⁇ 1.29X + ⁇ 0.97 * ⁇ A′ ⁇ 0.95.
  • the gate insulating film, the amorphous silicon layer serving as the channel layer, the buffer layer, and the light absorption layer having predetermined optical characteristics with respect to laser light in the red and near-infrared wavelength regions When the film thickness satisfies the above conditions, 1) it is not above the gate electrode (hereinafter referred to as the second region) due to the light absorption rate of the light absorption layer above the gate electrode (hereinafter referred to as the first region). 2) the light absorption rate of the light absorption layer is set to be large, and 2) the heat generation temperature of the silicon layer above the gate electrode is set to be larger than the melting point of the amorphous silicon layer. It becomes possible.
  • the heat generation of the amorphous silicon layer in the second region is larger than the heat generation of the amorphous silicon layer in the first region due to the heat generation of the light absorption layer. Become.
  • the heat to be transmitted is propagated to the gate electrode in advance, and the gate electrode is in a state of being thermally saturated.
  • heat generated from the molten silicon layer in the second region propagates to the molten silicon layer in the first region, rather than to the gate electrode through the gate insulating layer.
  • the heat generated from the molten silicon layer in the second region does not excessively propagate to the gate electrode. Therefore, since the distribution of the heat generation temperature of the gate electrode is not deteriorated, the uniformity of the heat generation temperature distribution of the silicon layer in the first region accompanying the deterioration of the heat generation temperature distribution of the gate electrode can be avoided.
  • the uniformity of the crystal structure generated in the crystalline silicon layer obtained by crystallizing the amorphous silicon layer is maintained by the combined effect of the above 1) and 2).
  • the crystal ratio in the crystalline silicon layer from the crystalline silicon layer corresponding to the start end portion of the gate electrode that has started to be irradiated to the crystalline silicon layer corresponding to the end portion of the gate electrode that has been irradiated with the laser light can be realized.
  • the light absorption layer is translucent (extinction coefficient k ⁇ 1) in the wavelength range of the predetermined laser beam.
  • the method of manufacturing the thin film transistor device according to the third aspect includes a step of removing at least the light absorption layer after the seventh step and before the eighth step.
  • the method for manufacturing the thin film transistor device of the fourth aspect includes a step of removing the buffer layer and the light absorption layer after the seventh step and before the eighth step.
  • the predetermined laser irradiates the laser beam in an oscillation mode of a continuous oscillation mode or a pseudo continuous oscillation mode.
  • the predetermined laser is a solid laser device.
  • the predetermined laser is constituted by a laser device using a semiconductor laser element.
  • the fluctuation of the irradiation energy density of the laser light on the amorphous silicon layer is less than about 5%.
  • the wavelength of the predetermined laser is 600 nm to 2000 nm.
  • the second step includes a step of forming an undercoat layer made of silicon oxide on the substrate, and a step of forming a plurality of gate electrodes on the undercoat layer. including.
  • a thin film transistor includes a substrate, a plurality of gate electrodes formed on the substrate, a gate insulating layer formed on the plurality of gate electrodes, and a crystallinity formed on the gate insulating layer.
  • a buffer layer is formed on the amorphous silicon layer, a light absorption layer having predetermined optical characteristics is formed on the buffer layer, and the wavelength is 600 nm or more and 2000 nm or less.
  • a value obtained by dividing the optical film thickness of the light absorbing layer by the wavelength of the laser beam is X
  • the optical film thickness of the buffer layer which is a value obtained by adding the refractive index of the buffer layer to the film thickness of the buffer layer
  • the film thickness of the amorphous silicon layer and the optical film thickness of the amorphous silicon layer which is a value obtained by integrating the refractive index of the amorphous silicon layer, the film thickness of the gate insulating layer, and the gate insulating layer
  • the value obtained by summing the optical film thickness of the gate insulating layer obtained by integrating the refractive index of the above is divided by the wavelength of the laser light as Y, and the density of the light absorption layer is ⁇ and the specific heat is c,
  • the thickness of the gate electrode is dG
  • the density is ⁇ G
  • the specific heat is cG.
  • the maximum value of the absorptance of the gate electrode when the light absorptivity of the light absorption layer above the gate electrode and the light absorption layer not above the gate electrode with respect to the laser light is equal is AG,
  • the film thickness of the gate insulating layer and the film thickness of the amorphous silicon layer The film thickness of the buffer layer and the film thickness of the light absorption layer satisfy X and Y belonging to the range defined by the following formulas 1) to 4).
  • Formula 1 Y ⁇ ⁇ 1.06X ⁇ 0.22 ⁇ A ′ + 1.07
  • Formula 2) Y ⁇ 1.29X + 1.61 * ⁇ A ′ + 1.44
  • Formula 3) Y ⁇ 1.06X + 0.33 ⁇ A ′ + 0 .89
  • Formula 4) Y ⁇ 1.29X + ⁇ 0.97 * ⁇ A′ ⁇ 0.95.
  • a display device is a display device including a liquid crystal panel or an EL panel, and the display device includes the thin film transistor according to the eleventh aspect, and the thin film transistor drives the liquid crystal panel or the EL panel.
  • the EL panel is an organic EL panel.
  • a sixth step of forming a light source a predetermined laser having a wavelength of 600 nm or more is moved relative to the substrate in a predetermined direction, and the light absorption layer is formed using laser light emitted from the predetermined laser.
  • in the seventh step in the upstream region in the relative movement direction of the predetermined laser outside the gate electrode when the light absorption layer is irradiated using the laser beam.
  • the highest ultimate temperature of the light absorption layer is higher than the highest ultimate temperature of the amorphous silicon layer in the region on the gate electrode when the light absorption layer is irradiated using the laser light.
  • the maximum temperature of the light absorption layer when the light absorption layer is irradiated using the predetermined laser light is configured to be substantially constant.
  • the laser light is used in the eighth step.
  • the highest temperature of the light absorption layer in the upstream region in the relative movement direction of the predetermined laser light outside the gate electrode is determined by using the laser light.
  • the light absorbing layer is formed by using the predetermined laser beam so that the temperature is higher than the highest temperature of the light absorbing layer in the region on the gate electrode when irradiated.
  • Layer thickness is composed That.
  • a method of manufacturing a thin film transistor device includes a first step of preparing a substrate, a second step of forming a gate electrode on the substrate, and a third step of forming a gate insulating layer on the gate electrode.
  • the heat generation amount per unit volume in the second region of the light absorption layer is larger than the heat generation amount per unit volume in the first region of the light absorption layer.
  • the heat generation amount per unit volume in the second region of the light absorption layer Is larger than the calorific value per unit volume in the first region of the light absorption layer, the film thickness of the gate insulating layer, the film thickness of the amorphous silicon layer, the film thickness of the buffer layer And the said light absorption layer is comprised.
  • the second region of the light absorption layer is upstream of the first region in the relative movement direction of the predetermined laser beam with respect to the substrate in the seventh step. It corresponds to the region and the downstream region.
  • the heat generation amount per unit volume in the second region in the seventh step is larger than the heat generation amount per unit volume of the gate electrode.
  • the light absorption layer is formed in the first region.
  • the size of the portion having the same temperature distribution is configured to be 0.8 or more and 1.0 or less with respect to the first region.
  • FIG. 2 is a cross-sectional view showing a structure of a thin film transistor constituting the organic light emitting display device according to the embodiment of the present invention.
  • a thin film transistor 100 illustrated in FIG. 2 is a bottom gate thin film transistor, and includes a substrate 10, an undercoat layer 11, a gate electrode 12, a gate insulating layer 13, a crystalline silicon layer 17, and an amorphous silicon layer 18. And an n + silicon layer 19 and source / drain electrodes 20.
  • the substrate 10 is an insulating substrate made of, for example, transparent glass or quartz.
  • the undercoat layer 11 is formed on the substrate 10 and includes, for example, a silicon nitride (SiN x ) layer, a silicon oxide (SiO x ) layer, and a stacked layer thereof.
  • the undercoat layer 11 is preferably composed of silicon oxide (SiO x ) of 1.5 ⁇ x ⁇ 2.0 and a film thickness of 300 nm or more and 1500 nm or less.
  • a more preferable thickness range of the undercoat layer 11 is 500 nm or more and 1000 nm or less. This is because if the thickness of the undercoat layer 11 is increased, the thermal load on the substrate 10 can be reduced, but if it is too thick, film peeling or cracking occurs.
  • the gate electrode 12 is formed on the undercoat layer 11 and is typically made of a metal such as molybdenum (Mo) or a metal such as Mo alloy (for example, MoW (molybdenum / tungsten alloy)).
  • Mo molybdenum
  • Mo alloy for example, MoW (molybdenum / tungsten alloy)
  • the gate electrode 12 only needs to be a metal that can withstand the melting point temperature of silicon. Therefore, those containing W (tungsten), Ta (tantalum), Nb (niobium), Ni (nickel), Cr (chromium), and Mo. It may be made of an alloy of
  • the thickness of the gate electrode 12 is preferably 30 nm to 300 nm, and more preferably 50 nm to 100 nm.
  • the thickness of the gate electrode 12 is small, the transmittance of the gate electrode 12 increases, and the reflection of laser light described below tends to decrease. Further, when the thickness of the gate electrode 12 is large, the coverage of the gate insulating layer 13 described below is lowered. In particular, the gate insulating film is disconnected at the end of the gate electrode, so that the gate electrode 12 and the n + silicon are separated. This is because the characteristics of the thin film transistor 100 are likely to deteriorate, for example, the layer 19 is electrically connected.
  • the gate insulating layer 13 is formed so as to cover the gate electrode 12 and has, for example, a single layer structure of a silicon oxide layer or a silicon nitride layer, or a stacked structure of a silicon oxide layer and a silicon nitride layer.
  • the film thickness of the gate insulating layer 13 has a suitable range when the crystalline silicon layer 17 is formed by the laser indirect heating crystallization method in each of the single layer structure and the laminated structure. This preferable range is expressed by a certain relational expression. Details of this fixed relational expression will be described later.
  • the crystalline silicon layer 17 is formed on the gate insulating layer 13 and is made of a polycrystalline silicon layer (Poly-Si layer).
  • the crystalline silicon layer 17 is formed as follows. That is, first, after an amorphous silicon layer 14 (not shown) made of a-Si is formed on the gate insulating layer 13, a buffer layer 15 made of, for example, a silicon oxide film is deposited on the amorphous silicon layer 14. To do. Further, after depositing a light absorption layer 16 (for example, a diamond-like carbon film) that absorbs laser light and generates heat on the buffer layer 15, the light absorption layer is irradiated and heated with the laser light. As described above, the amorphous silicon layer 14 is indirectly heated by the heat of the light absorption layer to make the amorphous silicon layer 14 polycrystalline (including microcrystallization), whereby the crystalline silicon layer 17 is formed. It is formed.
  • a light absorption layer 16 for example, a diamond-like carbon film
  • polycrystal has a broad meaning including not only a polycrystal in a narrow sense consisting of crystals of 50 nm or more but also a microcrystal in a narrow sense consisting of crystals of 50 nm or less.
  • polycrystal is described in a broad sense.
  • the laser light source used for laser irradiation is a laser having a wavelength in the red or near infrared region of the visible light region.
  • the laser having a wavelength in the red or near infrared region is a laser having a wavelength of 600 nm to 2000 nm, preferably a laser having a wavelength of 800 nm to 1100 nm.
  • the laser in the red or near-infrared wavelength region may be in a continuous oscillation or pseudo continuous oscillation mode.
  • the reason is that when the laser is in a pulse oscillation mode other than the continuous oscillation mode or the pseudo continuous oscillation mode, the laser light is irradiated to the light absorption layer 16 discontinuously in time.
  • the heat generation state of the light absorption layer 16 cannot be continuously maintained over time.
  • the amorphous silicon layer 14 cannot always be kept in a molten state.
  • the reason why the quasi-continuous oscillation mode is also included is that the melted state can be maintained by irradiating the light absorption layer 16 with a pulse before the amorphous silicon layer 14 is cooled to below its melting point and reheating it. It is.
  • the preferred mode of the quasi-continuous oscillation mode is that the amorphous silicon layer 14 can be reheated by irradiating the light absorption layer 16 before the amorphous silicon layer 14 is cooled to below its melting point, and the high temperature state can be maintained.
  • the laser in the red or near-infrared wavelength region may be a solid-state laser device or a laser device using a semiconductor laser element. In any case, it is preferable because laser light can be accurately controlled.
  • the laser in the red or near-infrared wavelength region when the light absorption layer 16 is irradiated has a variation in irradiation energy density of about 5%. If it is less than, it is preferable. By forming the crystalline silicon layer 17 having no crystal unevenness, the initial design characteristics of the thin film transistor can be achieved, and the characteristics can be made uniform.
  • the amorphous silicon layer 18 is formed on the crystalline silicon layer 17.
  • the thin film transistor 100 has a channel layer having a structure in which the amorphous silicon layer 18 is stacked on the crystalline silicon layer 17.
  • n + silicon layer 19 is formed so as to cover the side surfaces of the amorphous silicon layer 18 and the crystalline silicon layer 17 and the gate insulating layer 13.
  • the source / drain electrodes 20 are formed on the n + silicon layer 19 and are, for example, a metal such as Mo or Mo alloy, a metal such as titanium (Ti), aluminum (Al) or Al alloy, copper (Cu) or Cu alloy, etc. Or a metal material such as silver (Ag), chromium (Cr), tantalum (Ta), or tungsten (W).
  • the thin film transistor 100 is configured.
  • FIG. 3 is a diagram showing an equivalent circuit of the display device according to the embodiment of the present invention.
  • a switching transistor 1 includes a switching transistor 1, a driving transistor 2, a data line 3, a scanning line 4, a current supply line 5, a capacitance 6, and an organic EL element 7.
  • the switching transistor 1 is connected to the data line 3, the scanning line 4, and the capacitance 6.
  • the driving transistor 2 corresponds to, for example, the thin film transistor 100 shown in FIG. 2 and is connected to the current supply line 5, the capacitance 6, and the organic EL element 7.
  • the data line 3 is a wiring through which data (the magnitude of the voltage value) that determines the brightness of the pixel of the organic EL element 7 is transmitted to the pixel of the organic EL element 7.
  • the scanning line 4 is a wiring through which data for determining the switch (ON / OFF) of the pixel of the organic EL element 7 is transmitted to the pixel of the organic EL element 7.
  • the current supply line 5 is a wiring for supplying a large current to the drive transistor 2.
  • Capacitance 6 holds a voltage value (charge) for a certain period of time.
  • the organic light emitting display device is configured as described above.
  • FIG. 4 is a flowchart showing a manufacturing process of a thin film transistor of the organic light emitting display device according to the embodiment of the present invention.
  • a plurality of the thin film transistors 100 are manufactured at the same time, but in the following, in order to simplify the description, a method for manufacturing one thin film transistor will be described.
  • 5A to 5L are views for explaining a method of manufacturing a thin film transistor of the organic light emitting display device according to the embodiment of the present invention.
  • FIG. 6 is a diagram schematically showing the indirect laser heating method in S15 of FIG.
  • the substrate 10 is prepared, the undercoat layer 11 is formed on the substrate 10 (S10), and then the gate electrode is formed on the undercoat layer 11 (S11).
  • an undercoat layer 11 is formed on the substrate 10 by plasma CVD (Chemical Vapor Deposition), and then a metal film to be a gate electrode is deposited by sputtering, and photolithography is performed. Then, the gate electrode 12 in the thin film transistor 100 is formed by etching (FIG. 5A).
  • the gate electrode 12 is typically formed of a metal material such as Mo or an Mo alloy (for example, MoW (molybdenum / tungsten alloy)).
  • the gate insulating layer 13 is formed on the gate electrode 12 (S12). Then, an amorphous silicon layer 14 is formed on the gate insulating layer 13 (S13).
  • a gate insulating layer 13 is formed on the gate electrode 12 so as to cover the undercoat layer 11 and the gate electrode 12 by plasma CVD (FIG. 5B), and the formed gate insulating layer is formed.
  • An amorphous silicon layer 14 is continuously formed on the substrate 13 (FIG. 5C).
  • the buffer layer 15 is deposited on the amorphous silicon layer 14, and the light absorption layer 16 is deposited on the deposited buffer layer 15 (S14).
  • the buffer layer 15 is a substance that does not react with silicon even in a temperature region (1400 ° C. or more) where the amorphous silicon layer 14 is annealed and crystallized.
  • a substance include silicon oxide and silicon nitride.
  • the buffer layer 15 is preferably deposited continuously by plasma CVD without depositing the gate insulating layer 13 and the amorphous silicon layer 14 and then opening the deposition chamber to the atmosphere.
  • the thickness of the buffer layer 15 is, for example, 5 nm to 500 nm, preferably 30 nm to 400 nm. The reason is that a film thickness of 5 nm or less has poor controllability and is inconvenient in production. Further, when the film thickness is 500 nm or more, the heat transfer from the light absorption layer heated by the laser irradiation deteriorates, and the light energy required for crystallization of the amorphous silicon layer becomes excessive.
  • the light absorption layer 16 has predetermined optical characteristics, and is preferably formed to be translucent (extinction coefficient k ⁇ 1) in the laser wavelength range of red or near infrared. .
  • the light absorption layer 16 is formed using a vacuum evaporation method or a sputtering method. For example, when the sputtering method is used, a carbon target is used, and Ar or the like is used as a sputtering gas.
  • the thickness of the light absorption layer 16 is, for example, 10 nm to 500 nm, preferably 20 nm to 200 nm.
  • the film thickness is 10 nm
  • the transmission of the laser light is large, the energy absorbed in the light absorption layer is reduced, and the heat absorption of the light absorption layer becomes insufficient.
  • the film thickness is 500 nm
  • the probability of occurrence of cracks increases due to an increase in the stress of the film itself, and when the light absorption layer where the cracks are generated is irradiated with laser, ablation tends to occur. It is not suitable.
  • the light absorption layer 16 Since the light absorption layer 16 has the predetermined optical characteristics, a certain proportion of the incident laser light is transmitted to the lower layer, and multiple interference occurs in the lower layer film. As a result, the absorption rate of the light absorption layer 16 differs between the region where the gate electrode is present and the region where the gate electrode is not present. In other words, by using the light absorption layer 16 having the predetermined optical characteristics, it is possible to control the absorptance between the region where the gate electrode is present and the region where the gate electrode is not present in the light absorption layer 16. Note that the light absorption layer 16 having such predetermined optical characteristics is formed of, for example, a diamond-like carbon film.
  • the thickness of the gate insulating layer 13, the thickness of the amorphous silicon layer 14, the thickness of the buffer layer 15, and the thickness of the light absorption layer 16 will be described.
  • the film thicknesses of the gate insulating layer 13, the amorphous silicon layer 14, the buffer layer 15, and the light absorption layer 16 satisfy X and Y belonging to the range defined by the following (Expression 1) to (Expression 4). It is preferable to be formed as follows.
  • X represents a value obtained by dividing the optical film thickness of the light absorption layer 16 obtained by multiplying the refractive index of the light absorption layer 16 by the film thickness of the light absorption layer 16 by the wavelength of the predetermined laser beam.
  • Y is the optical film thickness of the gate insulating layer 13 obtained by multiplying the refractive index of the gate insulating layer 13 by the film thickness of the gate insulating layer 13, and the refractive index of the amorphous silicon layer 14 is the film of the amorphous silicon layer 14.
  • a value obtained by adding the optical film thickness of the amorphous silicon layer 14 multiplied by the thickness and the optical film thickness of the buffer layer 15 multiplied by the refractive index of the buffer layer 15 and the film thickness of the buffer layer 15 is a predetermined laser beam. Represents the value divided by the wavelength of.
  • the absorption rate of the light absorption layer 16 above the region where the gate electrode 12 is formed (hereinafter referred to as the first region) is A 1 and the absorption rate A 1 is the light absorption.
  • the light absorption rate of the light absorption layer 16 above the region where the gate electrode 12 is not formed (hereinafter referred to as the second region) is A 2
  • the absorption rate A 2 is the film thickness of the light absorption layer 16.
  • the product obtained by dividing by d 2 is defined as a converted absorption rate A 2 ′.
  • the difference A 1 ′ ⁇ A 2 ′ is equal to or smaller than a value ⁇ A ′ defined in the description below. That is, in S12, S13, and S14, the gate insulating layer 13, the amorphous silicon layer 14, the buffer layer 15, and the light absorption layer 16 having a film thickness that satisfies the relational expression (Formula 5) are formed.
  • the absorption rate of the light absorption layer 16 is the film thickness and optical constant of the light absorption layer 16, the film thickness and optical constant of the buffer layer 15, and amorphous.
  • the light absorption layer 16 is irradiated and heated with a laser in the red or near-infrared wavelength region, and the amorphous silicon layer 14 is annealed by the generated heat to form the crystalline silicon layer 17 (S15). .
  • a laser having a wavelength of 600 nm or more and 2000 nm or less is moved relative to the substrate 10 in a certain direction, and the light absorption layer 16 is heated using laser light emitted from the laser, whereby the buffer layer
  • the amorphous silicon layer 14 is annealed indirectly through 15 and crystallized to produce a crystalline silicon layer 17. More specifically, first, a dehydrogenation process is performed on the formed amorphous silicon layer 14. For example, there is a method of carrying out in a nitrogen atmosphere at 500 ° C. for 20 minutes. Thereafter, the amorphous silicon layer 14 is made polycrystalline (including microcrystals) by a laser indirect heating method to form a crystalline silicon layer 17 (FIG. 5D).
  • the laser light source used for laser irradiation is a laser in a red or near infrared wavelength region as described above. That is, a laser having a wavelength of about 600 nm to 2000 nm, preferably a laser having a wavelength of 800 nm to 1100 nm.
  • the laser in the red or near infrared wavelength region may be in a continuous oscillation or quasi-continuous oscillation mode.
  • the laser in this wavelength region may be constituted by a solid-state laser device, or may be constituted by a laser device using a semiconductor laser element.
  • the fluctuation of the irradiation energy density when irradiated on the amorphous silicon layer 14 is less than about 5%.
  • the crystalline silicon layer 17 is irradiated by irradiating the amorphous silicon layer 14 with linearly focused laser light as shown in FIG. Is generated.
  • the crystalline silicon layer 17 is irradiated by irradiating the amorphous silicon layer 14 with linearly focused laser light as shown in FIG. Is generated.
  • the other is a method in which the stage is fixed and the irradiation position of the laser beam moves.
  • the laser beam is irradiated while moving relative to the light absorption layer 16.
  • the light absorption layer 16 irradiated with the laser beam by such a method absorbs the energy of the laser beam and rises in temperature. Then, the heat propagates to the amorphous silicon layer 14 through the buffer layer 15, and the amorphous silicon layer 14 is annealed and crystallized. In this way, the amorphous silicon layer becomes the crystalline silicon layer 17.
  • the light absorption layer 16 and the buffer layer 15 are removed by etching. Specifically, it is removed by dry etching or wet etching.
  • the light absorbing layer 16 and the buffer layer 15 are not necessarily removed.
  • the light absorption layer 16 and the buffer layer 15 may be used as a channel etch stopper (CES), or only the light absorption layer may be etched and the buffer layer may be used as a CES.
  • CES channel etch stopper
  • a second amorphous silicon layer 18 is formed (S17), and the silicon layer in the channel region of the thin film transistor 100 is patterned (S18).
  • a second amorphous silicon layer 18 is formed on the gate insulating layer 13 by plasma CVD (FIG. 5G). Then, the silicon layer film layer (the crystalline silicon layer 17 and the second amorphous silicon layer 18) is patterned so that the channel region of the thin film transistor 100 remains, and the amorphous silicon layer 18 and the crystal to be removed are crystallized. The quality silicon layer 17 is removed by etching (FIG. 5H). Accordingly, a desired channel layer can be formed in the thin film transistor 100.
  • n + silicon layer 19 and source / drain electrodes 20 are formed (S19).
  • an n + silicon layer 19 is formed by plasma CVD so as to cover the second amorphous silicon layer 18, the side surfaces of the crystalline silicon layer 17, and the gate insulating layer 13 (FIG. 5I). .
  • a metal to be the source / drain electrode 20 is deposited on the deposited n + silicon layer 19 by sputtering (FIG. 5J).
  • the source / drain electrodes are a metal such as Mo or Mo alloy, a metal such as titanium (Ti), aluminum (Al) or Al alloy, a metal such as copper (Cu) or Cu alloy, or silver (Ag). , Chromium (Cr), tantalum (Ta), or tungsten (W).
  • the source / drain electrode 20 is patterned (S20). Then, the n + silicon layer 19 is etched (S21), and in the process, the second amorphous silicon layer 18 is partially etched (S22).
  • the source / drain electrodes 20 are formed by photolithography and etching (FIG. 5K). Further, the n + silicon layer 19 is etched, and the amorphous silicon layer 18 in the channel region of the thin film transistor 100 is partially etched (FIG. 5L). In other words, the amorphous silicon layer 18 is channel etched so as to leave a part of the amorphous silicon layer 18 in the channel region of the thin film transistor 100.
  • the thin film transistor 100 is manufactured.
  • the thin film transistor 100 in the present embodiment is formed as a Poly-Si TFT having a bottom gate structure.
  • the gate insulating layer 13, the amorphous silicon layer 14, the buffer layer 15, and the light absorption layer 16 are formed so as to have film thicknesses that satisfy the above-described relational expression.
  • the amorphous silicon layer 14 made of an a-Si film is crystallized by annealing with heat generated by irradiating / scanning the light absorption layer 16 with laser light.
  • a crystalline silicon layer 17 made of Poly-Si made of Poly-Si.
  • the gate electrode 12 can be thermally saturated before the laser light reaches the light absorption layer 16 above the channel region (region on the gate electrode) where the thin film transistor 100 is formed, Crystallization of the crystalline silicon layer 17 corresponding to the finally obtained channel region can be performed uniformly.
  • the film thickness of the gate insulating layer 13, the amorphous silicon layer 14, the buffer layer 15, and the light absorption layer 16 has a preferable range when the crystalline silicon layer 17 is formed by laser annealing crystallization. That is.
  • a gate electrode exists under the amorphous silicon layer with the gate insulating layer interposed therebetween, and the thermal conductivity of the metal constituting the gate electrode is the thermal conductivity of the gate insulating layer. Bigger than Therefore, in the laser indirect heating method, the heat of the light absorption layer generated by irradiating the light absorption layer formed above the amorphous silicon layer via the buffer layer with the laser light is applied to the amorphous silicon layer. Heat. At the same time, the heat instantly propagates to the gate electrode through the gate insulating layer. As a result, a region where heat generation is insufficient occurs in the amorphous silicon layer above the region where the gate electrode is formed, and the temperature reached is nonuniform. For this reason, unevenness in crystallinity (crystal unevenness) of the crystalline silicon layer after crystallization as shown in FIG. 1 occurs.
  • the gate electrode is thermally saturated as described later before the laser beam reaches the light absorption layer above the first region of the thin film transistor. It is desirable to be in a state. Therefore, in this embodiment, the thin film transistor 100 is manufactured so as to have the above-described structure. That is, the gate insulating layer 13, the amorphous silicon layer 14, the buffer layer, and the light absorption layer are formed so as to satisfy the above-described X and Y. Accordingly, the heat generation of the light absorption layer 16 above the region where the gate electrode 12 is not formed (second region) is larger than the heat generation of the light absorption layer 16 above the region where the gate electrode 12 is formed (first region). can do.
  • the film thicknesses of the gate insulating layer 13, the amorphous silicon layer 14, the buffer layer, and the amorphous silicon layer film that constitute the thin film transistor 100 according to this embodiment satisfy the above X and Y.
  • the heat generated in the light absorption layer 16 above the region where the gate electrode 12 is not formed (second region) by the laser light irradiation is above the region where the gate electrode 12 is formed (first region).
  • the temperature of the gate electrode 12 is raised by being transmitted to the gate electrode 12 through the buffer layer 15, the amorphous silicon layer 14, and the gate insulating layer 13. That is, the gate electrode 12 is first preheated before the laser beam reaches.
  • the temperature of the second region is absorbed by light above the first region where the laser light has not yet reached due to the above configuration. Since the temperature is higher than the temperature of the layer 16, the heat propagated to the amorphous silicon layer 14 in the second region is further propagated to the gate electrode 12 through the gate insulating film to raise the temperature of the gate electrode 12. It is. Next, when the laser light reaches the light absorption layer 16 above the first region, the light absorption layer 16 above the first region generates heat, and the heat propagates to the amorphous silicon layer 14.
  • thermally saturating the gate electrode 12 means that the temperature of the gate electrode 12 is made uniform in the plane of the gate electrode 12.
  • the gate electrode 12 can be thermally saturated when the amorphous silicon layer 14 is crystallized. Thereby, the heat generation of the light absorption layer due to the laser light irradiation for crystallizing the amorphous silicon layer 14 is used to form the crystalline silicon layer 17 without being absorbed by the gate electrode 12, There is an effect that the crystalline silicon layer 17 without crystal unevenness can be generated.
  • the light absorption layer 16 above the region where the gate electrode 12 is formed (first region) is referred to as the light absorption layer 16 of the first region, and above the region where the gate electrode 12 is not formed (second region).
  • the light absorption layer 16 is referred to as a second region light absorption layer 16.
  • the absorption rate of the light absorption layer 16 in the first region with respect to the wavelength of the laser light is A 1
  • the heat generation amount (per unit area) of the light absorption layer 16 due to the absorption of the laser light is Q 1
  • the absorptivity of the light absorption layer 16 in the second region with respect to the wavelength of the laser light is A 2
  • the heat generation amount (per unit area) of the light absorption layer 16 due to the absorption of the laser light is Q 2 .
  • the gate electrode 12 is formed in this configuration in which a gate insulating layer 13 is formed on the gate electrode 12, an amorphous silicon layer is further formed thereon, and a buffer layer is further formed thereon.
  • a G is the laser light absorption rate
  • Q G is the calorific value (per unit area) of the gate electrode 12 due to the absorption of the laser light.
  • the light transmitted through the light absorption layer 16 is also absorbed by the gate electrode 12 and the gate electrode also generates heat (Q G > 0). Therefore, the heat generation temperature of the amorphous silicon layer 14 in the first region is higher than the heat generation temperature of the amorphous silicon layer 14 in the second region.
  • the film thickness, density, and specific heat of the light absorption layer 16 are defined as d, ⁇ , and c, respectively
  • the film thickness, density, and specific heat of the gate electrode are defined as d G , ⁇ G , and c G , respectively.
  • the heat generation amount of the absorption layer 16, the heat generation amount of the light absorption layer 16 in the second region, and the heat generation amount of the gate electrode can be expressed as follows.
  • Form 5 shows the following. That is, the gate insulation so as to satisfy the condition that the difference between the converted absorption rate of the light absorption layer 16 in the first region and the converted absorption rate of the light absorption layer 16 in the second region is less than or equal to the value defined by ⁇ A ′.
  • the heat generation temperature of the amorphous silicon layer 14 in the second region is the heat generation of the amorphous silicon layer 14 in the first region. Over temperature.
  • the upper layer of the amorphous silicon layer is formed by, for example, a red wavelength region laser.
  • the amorphous silicon layer is annealed indirectly by heat generated by irradiating and scanning the light absorption layer formed through the buffer layer, the heat absorption and propagation of the crystallization by the gate electrode 12 is prevented. The influence can be reduced. Therefore, it is possible to make uniform the temperature distribution due to the heat generation of the amorphous silicon layer 14 in the first region of the thin film transistor.
  • the absorptance of the light absorption layer 16 changes due to changes in the layer structure (the presence or absence of the gate electrode 12) and the layer thickness.
  • the light absorption layer 16 is translucent, that is, extinction coefficient k ⁇ 1, in the wavelength region of the laser beam of the predetermined (red or near infrared wavelength region). Due to this optical characteristic, the laser light incident on the light absorption layer is transmitted to the lower layer, and multiple interference occurs in the lower layer film. Therefore, since the multiple interference effect becomes stronger and weaker due to changes in the layer structure and the layer thickness, by utilizing this phenomenon, the absorption rate of the light absorption layer 16 on the gate electrode and the absorption of the light absorption layer outside the gate electrode 12 are obtained. The difference in rate can be controlled.
  • the light absorption layer that has been frequently used in the conventional laser indirect heating method is a refractory metal such as Mo or Cr. Since these refractory metals have a large extinction coefficient k of 2 or more, the incident laser beam hardly transmits to the lower layer film, and multiple interference cannot occur in the lower layer film (or very small). In other words, the absorptance of the light absorption layer is constant regardless of the change in the layer structure or the layer thickness, so that the effect of the present invention cannot be produced.
  • the laser light having the predetermined wavelength region has the optical characteristic that the light absorption layer 16 is translucent, which is different from the conventional technique in producing the effect of the present invention.
  • the gate insulating layer 13 As described above, by forming the gate insulating layer 13, the amorphous silicon layer 14, the buffer layer 15, and the light absorption layer 16 so as to satisfy the above-described conditions, laser light having various wavelengths, gates are formed. Even if it is the material and film thickness of an electrode, the crystalline silicon layer 17 without a crystal nonuniformity can be produced
  • amorphous silicon layer 14 is crystallized using a laser beam condensed linearly is shown.
  • other spot shapes circular or elliptical
  • including other shapes may also be used. In that case, it is preferable to carry out laser light by a scanning method suitable for crystallization.
  • the thicknesses of the gate insulating layer 13, the amorphous silicon layer 14, the buffer layer 15, and the light absorption layer 16 satisfy the above-described conditions.
  • the distribution of the temperature reached by the heat generation of the amorphous silicon layer 14 in the first region can be made uniform, and the amorphous silicon layer 14 in the first region can be crystallized sufficiently and uniformly.
  • 7A and 7B are diagrams for explaining the amplitude transmittance and the calculation method of the amplitude transmittance.
  • Model structure shown in Figure 7A a layer 401 made of complex refractive index N 1, a layer 402 made of complex refractive index N 2, a layer 403 made of complex refractive index N 3, consisting of complex refractive index N 4 layer 404 comprising the, a layer 405 made of complex refractive index N 5, and a substrate layer 406 made of complex refractive index N 6.
  • a layer 405, a layer 404, a layer 403, a layer 402, and a layer 401 are stacked on the substrate layer 406 in this order. Note that the model structure illustrated in FIG.
  • the region of the complex refractive index N 0 shown in the figure is outside the model structure and indicates the side on which the laser light is incident on the model structure. This region is, for example, air.
  • the refractive index is 1 and the extinction coefficient is 0.
  • the substrate layer 406 is an insulating substrate made of, for example, transparent glass or quartz, and has a refractive index of 1.46, for example, and corresponds to the substrate 10 shown in FIG. 5A.
  • the layer 405 has, for example, a refractive index of 3.55, an extinction coefficient of 3.86, is made of MoW having a thickness of 50 nm, and corresponds to the gate electrode 12 shown in FIG. 5A.
  • the layer 404 is made of, for example, silicon oxide (SiO x ) having a refractive index of 1.46 and an extinction coefficient of 0, and corresponds to the gate insulating film 13 shown in FIG. 5B.
  • the layer 403 is made of, for example, a-Si having a refractive index of 4.19 and an extinction coefficient of 0, and corresponds to the amorphous silicon layer 14 shown in FIG. 5C.
  • the layer 402 is made of a transparent film having a refractive index of 1.46 and an extinction coefficient of 0, for example, and corresponds to the buffer layer 15 shown in FIG. 5D.
  • the layer 401 is a diamond-like carbon film having a refractive index of 1.9 and an extinction coefficient of 0.6, for example, and corresponds to the light absorption layer 16 in FIG. 5D.
  • the layer corresponding to the undercoat layer 11 shown in FIG. 5A is omitted. This is because if the undercoat layer 11 is a transparent layer and does not absorb laser light, its film thickness does not affect the results of this calculation. Therefore, hereinafter, the calculation proceeds with a model structure in which the layer corresponding to the undercoat layer 11 is omitted.
  • the amplitude reflection coefficient for light incident on the layer 401 from the outside is r 01
  • the amplitude reflection coefficient for light incident from the layer 401 to the layer 402 is r 12
  • the layer 402 to layer 403 The amplitude reflection coefficient for light incident on the layer is r 23
  • the amplitude reflection coefficient for light incident on the layer 404 from the layer 403 is r 34
  • the amplitude reflection coefficient for light incident on the layer 404 from the layer 403 is r 34
  • the layer The amplitude reflection coefficient for light incident from 404 to the layer 405 is r 45
  • the amplitude reflection coefficient for light incident from the layer 404 to the substrate layer 406 is r 46 .
  • the amplitude transmission coefficient for light incident on the layer 401 from the outside is t 01
  • the amplitude transmission coefficient for light incident on the layer 402 from the layer 401 is t 12
  • the coefficient is t 23
  • the amplitude transmission coefficient for light incident on the layer 404 from the layer 403 is t 34
  • the amplitude transmission coefficient for light incident on the substrate layer 406 from the layer 404 is t 46 .
  • the amplitude reflection coefficients of the entire layers above the region where the layer 405 corresponding to the gate electrode 12 is formed are r 012345 (R1), r 12345 (R2), and r 2345 (R3), respectively.
  • R 345 (R4) Specifically, the amplitude reflection coefficient when the layers 405 and 404 are regarded as one layer is r 345 (R4).
  • the amplitude reflection coefficient when the layers 405, 404, and 403 are regarded as one layer is r 2345 (R3), and the amplitude when the layers 405, 404, 403, and 402 are regarded as one layer.
  • the reflection coefficient is r 12345 (R2), and the amplitude reflection coefficient when the layers 405, 404, 403, 402, and 401 are regarded as one layer is r 012345 (R1).
  • the amplitude transmission coefficients of the entire layers in the first region are t 012345 (T1), t 12345 (T2), t 2345 (T3), and t 345 (T4), respectively.
  • the amplitude transmission coefficient when the layers 405 and 404 are regarded as one layer is t 345 (T4).
  • the amplitude transmission coefficient when the layers 405, 404, and 403 are regarded as one layer is t 2345 (T3), and the amplitude when the layers 405, 404, 403, and 402 are regarded as one layer.
  • the transmission coefficient is t 12345 (T2), and the amplitude transmission coefficient when the layers 405, 404, 403, 402, and 401 are regarded as one layer is t 012345 (T1).
  • the amplitude reflection coefficients of the entire layers (in the second region) above the region where the layer 405 corresponding to the gate electrode is not formed are respectively r 012346 (R1 ′) and r 12346 (R2 '), R 2346 (R3'), r 346 (R4 ').
  • the amplitude reflection coefficient when the substrate layer 406 and the layer 404 are regarded as one layer is r 346 (R4 ′).
  • the amplitude reflection coefficient when the substrate layer 406, the layer 404, and the layer 403 are regarded as one layer is r 2346 (R3 ′), and the substrate layer 406, the layer 404, the layer 403, and the layer 402 are regarded as one layer.
  • the amplitude reflection coefficient is r 12346 (R2 ′), and the amplitude reflection coefficient when the substrate layer 406, the layer 404, the layer 403, the layer 402, and the layer 401 are regarded as one layer is r 012346 (R1 ′).
  • the amplitude transmission coefficients of the entire layers of the second region are t 012346 (T1 ′), t 12346 (T2 ′), t 2346 (T3 ′), and t 346 (T4 ′), respectively.
  • the amplitude transmission coefficient when the substrate layer 406 and the layer 403 are regarded as one layer is t 346 (T4 ′).
  • the amplitude transmission coefficient when the substrate layer 406, the layer 404, and the layer 403 are regarded as one layer is t 2346 (T3 ′), and the substrate layer 406, the layer 404, the layer 403, and the layer 402 are regarded as one layer.
  • the amplitude transmission coefficient is t 12346 (T2 ′), and the amplitude transmission coefficient when the substrate layer 406, the layer 404, the layer 403, the layer 402, and the layer 401 are regarded as one layer is t 012346 (T1 ′).
  • the amplitude reflection coefficient and amplitude transmission coefficient of each layer in the first region can be expressed by the following (Expression 9) to (Expression 16).
  • the amplitude reflection coefficient and amplitude transmission coefficient of each layer in the second region can be expressed by the following (Expression 17) to (Expression 24).
  • d is the film thickness of each layer
  • is the incident angle / transmission angle in each layer
  • is the wavelength of the laser beam
  • can be calculated as shown below from Snell's law of the following equation.
  • the amplitude reflection coefficients r 01 , r 12 , r 23 , r 34 , r 35 and the amplitude transmission coefficients t 01 , t 12 , t 12 , t 34 , t 35 of each layer are expressed by the following (formula 25) to (formula). 36).
  • the laser beam is a monochromatic laser beam, and its polarization is assumed to be P-polarized light.
  • the amplitude reflection coefficient and amplitude transmission coefficient of the entire layer in the first region are calculated as follows. That is, first, r 345 is calculated by substituting (Equation 28) and (Equation 29) into (Equation 12). Next, r 2345 is calculated by substituting (Equation 27) and r 345 into (Equation 11). Next, r 12345 is calculated by substituting (Equation 26) and r 2345 into (Equation 10). Next, r 012345 is calculated by substituting (Equation 25) and r 12345 into (Equation 9).
  • t 345 is calculated by substituting (Expression 28), (Expression 29), (Expression 34), and (Expression 35) into (Expression 16).
  • t 2345 is calculated by substituting (Equation 27), (Equation 33), r 345 and t 345 into (Equation 15).
  • t 12345 is calculated by substituting (Equation 26), (Equation 32), r 2345 and t 2345 into (Equation 14).
  • t 012345 is calculated by substituting (Equation 25), (Equation 31), r 12345, and t 12345 into (Equation 13).
  • the amplitude reflection coefficient and the amplitude transmission coefficient of the entire layers in the second region are calculated as follows. That is, first, r 346 is calculated by substituting (Equation 28) and (Equation 30) into (Equation 20). Next, r 2346 is calculated by substituting (Equation 27) and r 346 into (Equation 19). Next, r 12346 is calculated by substituting (Equation 26) and r 2346 into (Equation 18). Then, the r 012346, is calculated by substituting the equation (25) and r 12346 in (Equation 17).
  • t 346 is calculated by substituting (Equation 28), (Equation 30), (Equation 34), and (Equation 36) into (Equation 24).
  • t 2346 is calculated by substituting (Equation 27), (Equation 33), r 346 and t 346 into (Equation 23).
  • t 12346 is calculated by substituting (Equation 26), (Equation 32), r 2346 and t 2346 into (Equation 22).
  • the reflectances R1 ', R2', R3 'and R4' and the transmittances T1 ', T2', T3 'and T4' in each layer in the second region are calculated by (Equation 45) to (Equation 52).
  • 600 nm ⁇ ⁇ ⁇ 2000 nm
  • the calculated absorption rate for the laser light of the light absorption layers in the first region and the second region is calculated. The difference was calculated. In this case, the calculation result is the same even if the polarization of the laser beam is S polarization.
  • FIG. 8 is a diagram for showing that there are suitable film thickness ranges for the gate insulating layer, the amorphous silicon layer, the buffer layer, and the light absorption layer when the crystalline silicon layer is formed by the laser indirect heating method. .
  • the thicknesses of the gate insulating layer 13, the amorphous silicon layer 14, the buffer layer 15, and the light absorption layer 16 are changed using the model structure shown in FIGS. 7A and 7B.
  • the horizontal axis (X) represents a value obtained by dividing the optical film thickness of the light absorption layer 16 obtained by multiplying the refractive index of the light absorption layer 16 by the film thickness of the light absorption layer 16 by the wavelength of a predetermined laser beam.
  • the vertical axis (Y) indicates the optical film thickness of the gate insulating film 13 obtained by multiplying the refractive index of the gate insulating layer 13 by the film thickness of the gate insulating layer 13, and the refractive index of the amorphous silicon layer 14 is amorphous.
  • FIG. 9 is a diagram illustrating a value obtained by converting the value on the horizontal axis in FIG. 8 into the film thickness of the light absorption layer.
  • the vertical axis of FIG. 8 can be converted into the thickness of the buffer layer 15 by using the thickness and optical constant of the gate insulating layer and the thickness and optical constant of the amorphous silicon layer.
  • the vertical axis X and the horizontal axis Y in FIG. 8 can be obtained even when the thickness, optical characteristics, and the configuration of the gate insulating layer of the gate insulating layer, the amorphous silicon layer, the buffer layer, and the light absorbing layer are changed. By converting this value, it is possible to calculate a preferable film thickness range of the gate insulating layer, the amorphous silicon layer, the buffer layer, and the light absorption layer when the crystalline silicon layer is formed by the laser indirect heating method.
  • the value obtained by adding the product of the refractive index and the film thickness (optical film thickness) of each insulating film constituting the laminated film is the same as above.
  • the vertical axis in FIG. 8 can be converted to the film thickness of the buffer layer 15.
  • FIG. 11 is a cross-sectional view showing another example of the structure of the thin film transistor constituting the display device according to the embodiment of the present invention.
  • FIG. 12 is a diagram showing pairs of film thicknesses when the gate insulating layer of the thin film transistor shown in FIG. 11 is formed of a silicon oxide film and a silicon nitride film.
  • the gate insulating layer 23 is composed of an upper insulating film 23a and a lower insulating film 23b.
  • the upper insulating film 23a is a silicon oxide (SiO) film having a refractive index of 1.46
  • the lower insulating film 23b is a silicon nitride (SiN) film having a refractive index of 1.92.
  • the upper layer in the case where the gate insulating layer 23 having a laminated structure of these insulating films has an optical constant equal to that of the gate insulating layer 13 formed of, for example, a 125 nm-thick silicon oxide film.
  • a set of the thickness of the silicon oxide film of the insulating layer 23a and the thickness of the silicon nitride film of the lower insulating layer 23b is as shown in FIG. 12 (with a laser light wavelength ⁇ in the range of 600 nm to 2000 nm).
  • the converted absorptance difference A 1 ′ ⁇ A 2 ′ of the light absorption layer 16 in the first region and the second region is ⁇ A ′ or less.
  • the curve indicated by the dotted line in FIG. 8 shows a contour line with a converted absorption coefficient difference of ⁇ 0.00018. That is, the converted absorption difference between the curve and the inner region is ⁇ 0.00018 or less.
  • This region is calculated by the above-described equation (calculation method) from the film thicknesses of the amorphous silicon layer 14 and the gate insulating layer 13, their optical constants, and the optical constants of the gate electrode 12 and the substrate 10. .
  • FIG. 13 is a diagram used for calculating a preferable film thickness range of the gate insulating layer, the amorphous silicon layer, the buffer layer, and the light absorption layer in FIG.
  • X is the optical thickness of the light absorption layer 16 calculated by the wavelength of the laser beam, the optical thickness of the gate insulating layer 13, the optical thickness of the amorphous silicon layer, and the optical thickness of the buffer layer.
  • Y is the product of the sum of the above and the wavelength of the laser beam.
  • ⁇ and c are the density and specific heat of the light absorption layer 16 respectively
  • d G , ⁇ G and c G are the film thickness, density and specific heat of the gate electrode, respectively.
  • the density of the light absorption layer 16 is 1800 (kg / m 3), and the specific heat is 970 (J / (kg ⁇ K)).
  • the gate electrode 12 is made of MoW having a film thickness of 50 nm, its density is 11720 (kg / m 3), and its specific heat is 226.4 (J / (kg ⁇ K)).
  • the maximum value AG of the absorption rate of the gate electrode is calculated. As a result, AG is calculated as 0.25, and ⁇ A ′ is calculated as 0.00018 therefrom.
  • the refractive index n SiO of silicon oxide, the refractive index n G of the gate electrode, and the extinction coefficient k G of the gate electrode are used.
  • ⁇ A ′ is calculated as 0.00018. Using this value, the product of the set indicated by L1 to L4 above The range represented by is determined.
  • FIG. 14 shows a model used for the simulation.
  • the model includes a substrate layer 406, a corresponding layer 405 corresponding to the gate electrode 12, a layer 404 corresponding to the gate insulating layer 13, a layer 403 corresponding to the amorphous silicon layer 14, and a buffer.
  • a layer 402 corresponding to the layer 15 and a layer 401 corresponding to the light absorption layer 16 are configured.
  • the length of the layer 405 corresponding to the gate electrode 12 in the laser scanning direction is 30 ⁇ m
  • the physical properties of the layer 401 corresponding to the light absorption layer 16 and the layer 405 corresponding to the gate electrode 12 are the values described above.
  • FIG. 15 is a diagram showing the film thickness condition portions implemented in this simulation in FIG.
  • the gate insulating layer 13 was a silicon oxide (SiO) film and the film thickness was 125 nm.
  • the film thickness of the amorphous silicon layer 14 was assumed to be 100 nm.
  • the difference in converted absorption rate at A 1 is greater than ⁇ A ′ at A 1 ′ ⁇ A 2 ′. That is, star 1, star 2, star 3, and star 4 are present in the dotted line inner region of FIG.
  • FIG. 16 is a diagram showing a simulation result of the position dependency of the highest temperature reached on the surface of the amorphous silicon layer in the first region and the second region.
  • the horizontal axis represents position coordinates
  • the vertical axis represents the highest temperature reached on the surface of the amorphous silicon layer 14.
  • the amorphous silicon layer 14 receives heat from the light absorption layer that has generated heat by absorbing the laser light, and the temperature rises.
  • FIG. 16 shows the simulation results of the film thickness conditions at the locations of star 1 to star 8 shown in FIG.
  • the curve indicating the highest temperature reached on the surface of the amorphous silicon layer 14 is flat in the first region on the gate electrode 12.
  • the curve indicating the highest temperature reached on the surface of the amorphous silicon layer 14 is not flat in the first region on the gate electrode 12.
  • the equivalent absorptance difference A 1 ′ ⁇ A 2 ′ of the amorphous silicon layer 14 in the first region and the second region on the contour line represented by ⁇ A ′ and in the inner region thereof is shown.
  • the film thickness of the amorphous silicon layer 14 and the film thickness of the gate insulating layer 13 are satisfied, it can be seen that the temperature distribution due to heat generation of the amorphous silicon layer 14 in the first region of the thin film transistor 100 can be made uniform. Thereby, it is possible to generate a crystalline silicon layer 17 in which the amorphous silicon layer 14 in the first region of the thin film transistor 100 is sufficiently and uniformly crystallized.
  • a buffer layer and a light absorption layer are formed on the amorphous silicon layer, and the light absorption layer is irradiated with laser light to heat the light absorption layer, and indirectly by the generated heat through the buffer layer.
  • the amorphous material above the gate electrode is affected by the heat absorption and heat propagation of the gate electrode.
  • the heat generation of the crystalline silicon layer becomes insufficient and non-uniform, and the crystallinity of the formed crystalline silicon layer varies.
  • FIG. 17A is a diagram showing the crystallinity of a crystalline silicon layer when a laser indirect heating crystallization method is performed on the structure of the embodiment of the present invention using laser light in the red and near-infrared wavelength regions. It is.
  • FIG. 17A is a diagram showing the crystallinity of a crystalline silicon layer when a laser indirect heating crystallization method is performed on the structure of the embodiment of the present invention using laser light in the red and near-infrared wavelength regions. It is.
  • 17B is a diagram showing the crystallinity of a crystalline silicon layer when a laser indirect heating crystallization method is performed on a conventional structure using laser light in the red and near infrared wavelength regions for comparison.
  • . 17A and 17B show an example in which the laser beam energy density is 100 KW / cm 2 per unit time and the laser scanning speed is 600 mm / s.
  • the conventional structure is divided into a region crystallized with a crystal grain size of 50 nm and a region crystallized with a crystal grain size of less than 50 nm, that is, the crystallinity is uneven.
  • the structure according to the embodiment of the present invention is uniformly crystallized with a crystal grain size of 50 nm.
  • the unevenness in crystallinity shown in FIG. 17B represents unevenness in the maximum temperature reached of the amorphous silicon layer on the gate electrode.
  • the arrival temperature of the amorphous silicon layer on the gate electrode can be made uniform in the plane, and the crystallinity of the obtained crystalline silicon layer is also improved. It becomes uniform.
  • FIG. 18 is a diagram for explaining the effect of the embodiment of the present invention. That is, FIG. 18 focuses on a region other than the gate electrode 12 as a means for thermally saturating the gate electrode 12, and utilizes the heat generation of the light absorption layer 16 (in the second region) not above the gate electrode 12. It shows that. Specifically, by setting the film thicknesses of the gate insulating layer 13, the amorphous silicon layer 14, the buffer layer 15, and the light absorption layer 16 within appropriate ranges, the difference in the light interference effect due to the presence or absence of the gate electrode 12 can be reduced.
  • the light absorption rate of the light absorption layer 16 not above the gate electrode 12 is larger than the light absorption rate of the light absorption layer 16 above the gate electrode 12, that is, when laser annealing is performed, the gate
  • the heat absorption of the light absorption layer 16 not above the gate electrode 12 (second region) can be set larger than the heat generation of the light absorption layer 16 above the electrode 12 (first region), and 2) the gate electrode 12
  • the heating temperature of the upper (first region) amorphous silicon layer 14 can be set to be equal to or higher than the melting point of silicon.
  • the heat generated from the light absorption layer 16 in the second region is absorbed and propagated to the gate electrode 12 through the buffer layer 15, the amorphous silicon layer 14, and the gate insulating layer 13. be able to. Accordingly, the gate electrode 12 can be thermally saturated in advance before the laser light irradiates the light absorption layer 16 on the gate electrode 12 (first region). In the crystallization of the amorphous silicon layer 14, the influence of heat absorption / propagation of the gate electrode 12 can be reduced.
  • the gate electrode when the light absorption rate of the light absorption layer (in the second region) not above the gate electrode 12 is transiently larger than the light absorption rate of the light absorption layer 16 above the gate electrode 12, that is, Even when the heat generation of the light absorption layer 16 (in the second region) not above the gate electrode 12 is extremely larger than the heat generation of the light absorption layer 16 (in the first region) above the gate electrode 12, the gate electrode The amorphous silicon layer 14 in both regions of the light absorption layer 16 above the first electrode 12 (in the first region) and the light absorption layer 16 above the gate electrode 12 (in the second region) is melted to melt the molten silicon layer.
  • the thermal conductivity increases to a value similar to the thermal conductivity of a metal generally used as the gate electrode 12.
  • heat conducted to the molten silicon layer (in the second region) that is not above the gate electrode 12 mainly propagates to the molten silicon layer (in the first region) above the gate electrode 12, so that the gate insulation There is no excessive propagation to the gate electrode 12 through the layer 13. Therefore, the temperature distribution of the gate electrode 12 is not deteriorated, and the heat generation temperature distribution of the amorphous silicon layer 14 (in the first region) thereabove is not affected.
  • the temperature distribution of the amorphous silicon layer 14 (in the first region) above the gate electrode 12 can be maintained uniformly by the combined effects of 1) and 2) above, and crystalline silicon obtained at that time can be maintained.
  • the uniformity of the crystal structure generated in the layer 17 can be maintained.
  • a method of manufacturing a thin film transistor device capable of forming a crystalline silicon film with stable crystallinity using laser beams in the red and near-infrared wavelength regions, a thin film transistor, and a display using the same
  • An apparatus can be realized. Specifically, by forming the gate insulating layer, the amorphous silicon layer, the buffer layer, and the light absorption layer so that each film thickness satisfies a predetermined condition, for example, the pattern shape of the gate electrode, etc.
  • a method of manufacturing a thin film transistor device capable of forming a crystalline silicon layer having stable crystallinity using laser light in the red and near-infrared wavelength regions without changing the structure of the thin film transistor, and the thin film transistor The display device that has been used can be realized.
  • the thin film transistor of the present invention when used for the display device shown in FIG. 19, a high-quality display device having uniform TFT characteristics can be realized. Further, the yield can be improved and the cost can be reduced by improving the display quality.
  • the effect can be realized only by taking the film thickness condition within the above range without changing the structure of the thin film transistor, for example, the pattern shape of the gate electrode. Even when a higher-definition display device is manufactured, it can be said that it is superior to the conventional technique in that the design flexibility can be maintained.
  • the present invention is not limited to this embodiment. Unless it deviates from the meaning of this invention, the form which carried out the various deformation
  • the present invention can be used for a manufacturing method of a thin film transistor device, a thin film transistor, a liquid crystal panel using the thin film transistor, or a display device including an EL panel such as an organic EL panel.
  • the gate electrode is present through the gate insulating film, the effect of heat absorption and heat propagation of the gate electrode can be suppressed and stable crystallization can be performed, so that a high-quality liquid crystal panel having homogeneous TFT characteristics or It can be used for manufacturing a display device including an EL panel such as an organic EL panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本発明の薄膜トランジスタの製造方法等は、基板上に複数のゲート電極を形成する工程(S11)と、複数のゲート電極上にゲート絶縁層を形成する工程(S12)と、ゲート絶縁層上に非晶質性シリコン層を形成する工程(S13)と、非晶質性シリコン層上にバッファー層、光吸収層を形成する工程(S14)と、赤色または近赤外のレーザー光を用いて前記光吸収層を加熱させた熱により非晶質性シリコン層を結晶化させて結晶性シリコン層を生成する工程(S15)と、複数のゲート電極の各々に対応する結晶性シリコン層上の領域にソース電極及びドレイン電極を形成する工程(S20)と、を含み、ゲート絶縁層、非晶質性シリコン層の膜厚、バッファー層、及び、光吸収層の膜厚は、所定の条件式を満たすように形成される。

Description

薄膜トランジスタ装置の製造方法、薄膜トランジスタ装置および表示装置
 本発明は薄膜トランジスタ装置の製造方法、薄膜トランジスタ装置および表示装置に関する。
 例えば、液晶パネルまたは有機ELパネルを構成する薄膜トランジスタ(TFT:Thin Film Transistor)がある。薄膜トランジスタのチャネル部は、非晶質シリコンであるa-Siまたは結晶質で多結晶シリコンであるPoly-Siで形成されている。薄膜トランジスタのチャネル部の結晶質シリコン層(Poly-Si層)は、一般的に、非晶質シリコン層(a-Si層)を形成後、その非晶質シリコン層に例えばエキシマ等のレーザー光を照射して瞬間的に温度を上昇させて結晶化することにより、形成される。
 また、薄膜トランジスタの構造としては、ゲートメタルがチャネル部のx-Si(xは、aまたはPoly)からみて基板側に配置されているボトムゲート構造と、ゲートメタルおよびソース・ドレインメタルがチャネル部のx-Siからみて基板と反対方向に配置されているトップゲート構造とが存在する。ボトムゲート構造は、非晶質シリコン層で形成されたチャネル部を有するa-Si TFTで主に用いられており、トップゲート構造は、結晶質シリコン層で形成されたチャネル部を有するPoly-Si TFTで主に用いられている。なお、大面積の表示装置に用いられる液晶パネルまたは有機ELパネルを構成する薄膜トランジスタの構造としては、ボトムゲート構造が一般的である。
 さらに、ボトムゲート構造でPoly-Si TFTが用いられる場合も存在し、その場合には、作製コストが抑えられるといった長所を持っている。このようなボトムゲート構造のPoly-Si TFTでは、非晶質シリコン層にレーザーが照射され結晶化されることで結晶質シリコン層が形成される。この手法(レーザーアニール結晶化法)では、レーザー光照射に基づく熱で非晶質シリコン層を結晶化させる。
 レーザーアニール手法の1つとして、非晶質シリコン層上にバッファー層として、例えば酸化珪素層を堆積し、さらにバッファー層の上に光吸収層を堆積し、その吸収層に吸収され熱変換されるレーザー光を照射することにより、非晶質シリコンを間接的に加熱する手法がある。以下、この手法をレーザー間接加熱法という。
 また、レーザー間接加熱法に用いるレーザーとしては、大出力化が可能で、かつ出力の時間安定性が高い赤色、及び近赤外の固定レーザーを用いるのが効果的である。なぜなら、レーザー光の強度に、時間的な変動が存在すると、結晶に均一な温度分布にならず、結晶化によって形成される結晶質シリコン層の結晶性がばらついてしまうが、エキシマレーザーは、エネルギーばらつき(時間的変動)などの問題によって均一な結晶化を図ることが難しいからである。また、固定レーザーは、ガスレーザーであるエキシマレーザーと比較して、メンテナンスコストも低減できるという生産上の利点もあるからである。
 またレーザー間接加熱法に用いる光吸収層としては、その光学特性が、赤色、及び近赤外の波長、具体的には波長600nm以上2000nm以下の光に対する吸収が大きい特徴を有していることが望ましい。かつ、高温を伴うレーザーアニール結晶化プロセスに耐えうる熱特性も兼ね備えていることが望ましい。
 そのような特徴を有する光吸収層の一例として、高融点金属であるMoやCrがある。これらの高融点金属膜は、その消衰係数kが一般的に大きい(2以上)ため、安定に成膜でき、かつレーザー照射による加熱に耐えうる(1500度以上)膜厚では(10nm以上)では、入射したレーザー光に対して5%以下の透過率となる。そのため、下地の層構造による多重干渉の影響が無視できるようになり、下地の層構造によらず(例えば、ゲート電極の存在する領域と存在しない領域とで)、光吸収層の吸収率は一定になる。
 しかし、有機ELパネルを構成する薄膜トランジスタには、特に均一な特性が求められるため、上記のレーザーアニール結晶化法をボトムゲート構造の薄膜トランジスタの製造に適用した場合には不都合(問題)が生じてしまう。具体的には、ボトムゲート構造の薄膜トランジスタでは、シリコンや絶縁膜に比して高い熱伝導率の金属材料でゲート電極が先に形成されて、その後に絶縁層及び非晶質シリコン層が形成される。さらに、形成された非晶質シリコン層上に光吸収層が形成された後、レーザー間接加熱法により、上方の光吸収層にレーザー光を照射して、その発熱により間接的に非晶質シリコン層をアニールして結晶化を行う。その結晶化の際、非晶質シリコン層の結晶化に費やされるはずの熱がゲート電極によって吸収、伝播されてしまい、非晶質シリコン層が十分に結晶化されずに結晶性の低下や不均一化が生じてしまう問題がある。
 それに対して、ゲート電極の近接領域すなわちチャネル近傍に、ダミーゲートパターンを配置させることにより、ゲート電極及びダミーゲートパターン上方にある非晶質シリコン層におけるそれぞれの熱容量の差を低減させる方法が開示されている(例えば、特許文献1)。また、レーザー光のスキャン上流側にゲート電極を伸長させることにより、伸長させたゲート電極の部分のプリアニール効果を利用して、レーザー光が薄膜トランジスタのゲート電極上方の光吸収層に到達する前に、ゲート電極を熱的に飽和させ、ゲート電極によるシリコン薄膜において発生した熱の吸収を軽減させる方法が開示されている(例えば特許文献2)。
特開平10―242052号公報 特開2007―035964号公報
 しかしながら、上記従来の方法をレーザー間接加熱法に適用する場合、次に述べるような課題がある。すなわち、特許文献1及び文献2に開示の方法では、ゲート電極上方の光吸収層にレーザー光が到達する前にゲート電極を熱的に飽和させる手段として、ゲート電極周辺、及びゲート電極に接触して電極材料を配置する。そのため、ボトムゲート構造の薄膜トランジスタを用いてより高精細な表示装置を作製する場合には、ゲート電極パターンを密に配置することが困難になるという課題がある。さらに、上記特許文献2に開示の方法では、スキャン方向に対して薄膜トランジスタのチャネル方向が常に平行になるように薄膜トランジスタを配置しなければならないという制約が生じる。これは、表示装置の画素内の回路パターンの設計の自由度を著しく低減させてしまうため、より高精細な表示装置の作製をする場合には、深刻な課題となる。
 また、非晶質シリコン層の結晶化を、上記のように、光吸収層を用いて行う場合、すなわち、光吸収層に赤色(または近赤外)の波長領域の連続発振(または擬似連続発振)のレーザーを照射・スキャンし、その発熱により間接的に行う場合、エキシマレーザーのスキャンによって行う場合とは異なる問題が生じる。具体的には、上記の結晶化を行うと、非晶質シリコン層における熱拡散長がより大きくなるので、ゲート電極による熱伝導の影響がより顕著になり、結晶化が不十分となる。これを、図1を用いて説明する。図1は、レーザーアニール結晶化法を可視光領域の固体レーザーのスキャンによって行った場合の結晶ムラを示す図である。
 図1の右図に示すように、結晶ムラは、スキャンの上流側(図中の右方向)に発生しているのがわかる。ここで、図1の左図は、図1の右図の複数のゲートメタルのうちの1つのゲートメタル上の非晶質シリコンに対する結晶化率を示す図である。図1の左図において、例えば結晶化率80%とは、粒径30nm~40nmの結晶質シリコンであること表しており、例えば結晶化率40%とは、粒径10nm~20nmの結晶質シリコンであること表している。したがって、図1の左図で示すように、結晶化が不十分(均一でない)である場合に結晶ムラが生じることがわかる。
 このように、レーザー間接加熱法により非晶質シリコン層の結晶化を行う場合、結晶化が不十分となるので、それを用いた薄膜トランジスタの特性の劣化、個々のトランジスタの特性の不均一化を生じてしまう問題がある。
 本発明は、上記の問題点を鑑みてなされたもので、赤色又は近赤外の波長領域のレーザーを用いて、結晶性の安定した結晶シリコン膜を形成することができる薄膜トランジスタ装置の製造方法、薄膜トランジスタ装置、それを用いた表示装置を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る薄膜トランジスタ装置の製造方法は、基板を準備する第1工程と、前記基板上に複数のゲート電極を形成する第2工程と、前記複数のゲート電極上にゲート絶縁層を形成する第3工程と、前記ゲート絶縁層上に非晶質シリコン層を積層する第4工程と、前記非晶質シリコン層上にバッファー層を形成する第5工程と、前記バッファー層上に光吸収層を形成する第6工程と、波長が600nm以上である所定のレーザーを前記基板に対して一定の方向に相対移動させて、前記所定のレーザーから照射されるレーザー光を用いて前記光吸収層を加熱させ、加熱により発生した熱により間接的に前記非晶質シリコン層を結晶化させて結晶性シリコン層を生成する第7工程と、前記複数のゲート電極の各々に対応する前記結晶性シリコン層上の領域にソース電極及びドレイン電極を形成する第8工程と、を含み、前記光吸収層の膜厚に前記光吸収層の屈折率を積算した値である前記光吸収層の光学膜厚を、前記レーザー光の波長で除算した値をXとし、前記バッファー層の膜厚に前記バッファー層の屈折率を積算した値である前記バッファー層の光学膜厚と、前記非晶質シリコン層の膜厚と前記非晶質シリコン層の屈折率を積算した値である前記非晶質シリコン層の光学膜厚と、前記ゲート絶縁層の膜厚と前記ゲート絶縁層の屈折率を積算した前記ゲート絶縁層の光学膜厚とを和算した値を前記レーザー光の波長で除算した値をYとし、さらに、前記光吸収層の密度をρ、比熱をcとし、前記ゲート電極の膜厚をdG、密度をρG、比熱をcGとし、前記ゲート電極の上方の光吸収層と前記ゲート電極の上方にない光吸収層の、前記レーザー光に対するそれぞれの光吸収率が等しいときの前記ゲート電極の吸収率の最大値をAGとし、(AG/dG)×(ρ×c)/(ρG×cG)の式にて算出される値をΔA’とおいたとき、前記ゲート絶縁層の膜厚、前記非晶質性シリコン層の膜厚、前記バッファー層の膜厚、及び、前記光吸収層の膜厚は、Y≦-1.06X-0.22ΔA’+1.07、Y≧1.29X+1.61*ΔA’+1.44、Y≧1.06X+0.33ΔA’+0.89、およびY≦1.29X+-0.97*ΔA’-0.95の式により区画される範囲に属する前記X、及び前記Yを満たす。
 本発明によれば、赤色または近赤外のレーザーを用いて、結晶性の安定した結晶シリコン膜を形成することができる薄膜トランジスタ装置の製造方法、薄膜トランジスタ、それを用いた表示装置を実現することができる。具体的には、前記シリコン薄膜、ゲート絶縁層、バッファー層、及び、赤色及び近赤外の波長領域のレーザー光に対して所定の光学特性を有する光吸収層を、それぞれの膜厚が所定の条件を満足するように形成することにより、例えば、ゲート電極のパターン形状等、特に薄膜トランジスタ装置の構造に変更を加えることなく、赤色又は及び近赤外のレーザーを用いたレーザー間接加熱法により、結晶性の安定した結晶シリコン層を形成することができる薄膜トランジスタ装置の製造方法、薄膜トランジスタ装置、それを用いた表示装置を実現することができる。
図1は、レーザーアニール結晶化法を可視光領域の固体レーザーのスキャンによって行った場合の結晶ムラを示す図である。 図2は、本発明の実施の形態に係る表示装置を構成する薄膜トランジスタの構造を示す断面図である。 図3は、本発明の実施の形態に係る表示装置の等価回路を示す図である。 図4は、本発明の実施の形態に係る表示装置の薄膜トランジスタの製造工程を示すフローチャートである。 図5Aは、本発明の実施の形態に係る表示装置の薄膜トランジスタの製造方法を説明するための断面図である。 図5Bは、本発明の実施の形態に係る表示装置の薄膜トランジスタの製造方法を説明するための断面図である。 図5Cは、本発明の実施の形態に係る表示装置の薄膜トランジスタの製造方法を説明するための断面図である。 図5Dは、本発明の実施の形態に係る表示装置の薄膜トランジスタの製造方法を説明するための断面図である。 図5Eは、本発明の実施の形態に係る表示装置の薄膜トランジスタの製造方法を説明するための断面図である。 図5Fは、本発明の実施の形態に係る表示装置の薄膜トランジスタの製造方法を説明するための断面図である。 図5Gは、本発明の実施の形態に係る表示装置の薄膜トランジスタの製造方法を説明するための断面図である。 図5Hは、本発明の実施の形態に係る表示装置の薄膜トランジスタの製造方法を説明するための断面図である。 図5Iは、本発明の実施の形態に係る表示装置の薄膜トランジスタの製造方法を説明するための断面図である。 図5Jは、本発明の実施の形態に係る表示装置の薄膜トランジスタの製造方法を説明するための断面図である。 図5Kは、本発明の実施の形態に係る表示装置の薄膜トランジスタの製造方法を説明するための断面図である。 図5Lは、本発明の実施の形態に係る表示装置の薄膜トランジスタの製造方法を説明するための断面図である。 図6は、図4のS15におけるレーザー間接加熱法を模式的に示した図である。 図7Aは、振幅透過率及び振幅透過率の計算方法を説明するための図である。 図7Bは、振幅透過率及び振幅透過率の計算方法を説明するための図である。 図8は、レーザー間接加熱法により結晶質シリコン層を形成する場合にゲート絶縁層、非晶質シリコン層、バッファー層及び光吸収層に好適な膜厚範囲があることを示すための図である。 図9は、図8の横軸の値を光吸収層の膜厚に変換した値の例を示す図である。 図10は、図8の縦軸の値を、バッファー層の膜厚に変換した値の例を示す図である。 図11は、本発明の実施の形態に係る表示装置を構成する薄膜トランジスタの構造の別の例を示す断面図である。 図12は、図11に示す薄膜トランジスタのゲート絶縁層が酸化珪素(SiO)膜と窒化珪素(SiN)膜で構成されている場合の、それぞれの膜厚の組を示す図である。 図13は、図8において、バッファー層と光吸収層との好適な膜厚範囲を算出するために用いた図である。 図14は、シミュレーションに用いたモデルを示す図である。 図15は、図8において、本シミュレーションで実施した膜厚条件箇所を示す図である。 図16は、第1領域及び第2領域の非晶質シリコン層表面の最高到達温度の位置依存性のシミュレーション結果を示す図である。 図17Aは、本発明の実施の形態の構造に対して赤色及び近赤外の波長領域のレーザー光を用いてレーザー間接加熱結晶化法を行った場合の結晶質シリコン層の結晶性を示す図である。 図17Bは、従来の構造に対して赤色及び近赤外の波長領域のレーザー光を用いてレーザー間接加熱結晶化法を行った場合の結晶質シリコン層の結晶性を示す図である。 図18は、本発明の実施の形態における効果を説明するための図である。 図19は、本発明の薄膜トランジスタを用いた表示装置の一例を示す図である。
 第1の態様の薄膜トランジスタ装置の製造方法は、基板を準備する第1工程と、前記基板上に複数のゲート電極を形成する第2工程と、前記複数のゲート電極上にゲート絶縁層を形成する第3工程と、前記ゲート絶縁層上に非晶質シリコン層を積層する第4工程と、前記非晶質シリコン層上にバッファー層を形成する第5工程と、前記バッファー層上に光吸収層を形成する第6工程と、波長が600nm以上である所定のレーザーを前記基板に対して一定の方向に相対移動させて、前記所定のレーザーから照射されるレーザー光を用いて前記光吸収層を加熱させ、加熱により発生した熱により間接的に前記非晶質シリコン層を結晶化させて結晶性シリコン層を生成する第7工程と、前記複数のゲート電極の各々に対応する前記結晶性シリコン層上の領域にソース電極及びドレイン電極を形成する第8工程と、を含み、前記光吸収層の膜厚に前記光吸収層の屈折率を積算した値である前記光吸収層の光学膜厚を、前記レーザー光の波長で除算した値をXとし、前記バッファー層の膜厚に前記バッファー層の屈折率を積算した値である前記バッファー層の光学膜厚と、前記非晶質シリコン層の膜厚と前記非晶質シリコン層の屈折率を積算した値である前記非晶質シリコン層の光学膜厚と、前記ゲート絶縁層の膜厚と前記ゲート絶縁層の屈折率を積算した前記ゲート絶縁層の光学膜厚とを和算した値を前記レーザー光の波長で除算した値をYとし、さらに、前記光吸収層の密度をρ、比熱をcとし、前記ゲート電極の膜厚をdG、密度をρG、比熱をcGとし、前記ゲート電極の上方の光吸収層と前記ゲート電極の上方にない光吸収層の、前記レーザー光に対するそれぞれの光吸収率が等しいときの前記ゲート電極の吸収率の最大値をAGとし、(AG/dG)×(ρ×c)/(ρG×cG)の式にて算出される値をΔA’とおいたとき、前記ゲート絶縁層の膜厚、前記非晶質性シリコン層の膜厚、前記バッファー層の膜厚、及び、前記光吸収層の膜厚は、下記の式1)から式4)により区画される範囲に属する前記X、及び前記Yを満たす。ここで、式1)Y≦-1.06X-0.22ΔA’+1.07、式2)Y≧1.29X+1.61*ΔA’+1.44、式3)Y≧1.06X+0.33ΔA’+0.89、式4)Y≦1.29X+-0.97*ΔA’-0.95。
 本態様によれば、ゲート絶縁膜、チャネル層となる非晶質性シリコン層、バッファー層、及び、赤色及び近赤外の波長領域のレーザー光に対して所定の光学特性を有する光吸収層の膜厚が前記上記条件を満たすことにより、1)前記ゲート電極の上方(以下、第1領域、と記述する)の光吸収層の光吸収率より前記ゲート電極の上方にない(以下、第2領域、と記述する)光吸収層の光吸収率が大きく設定され、且つ、2)前記ゲート電極の上方のシリコン層の発熱温度を、前記非晶質性シリコン層の融点より大きく設定することが可能になる。
 従って、先ず、1)の効果より、前記光吸収層の発熱を受けて、前記第2領域の非晶質性シリコン層の発熱は、前記第1領域の非晶質性シリコン層の発熱より大きくなる。これにより、前記レーザー光が照射され始める第1領域の光吸収層の始端部に、前記所定のレーザーから照射されるレーザー光が到達する前に、前記第2領域上方の光吸収層にて発生する熱が予め前記ゲート電極に伝播され、前記ゲート電極が熱的に飽和した状態となる。
 その結果、前記レーザー光が照射され始める前記ゲート電極の始端部から、前記レーザー光が照射され終わる前記ゲート電極の終端部にかけて、前記第1領域の光吸収層より発生した熱が前記ゲート電極により吸収される割合を低減できるので、前記第1領域の非晶質性シリコン層の発熱温度分布をほぼ均一に制御できる。これにより、前記非晶質性シリコン層を結晶化した結晶性シリコン層内に生成される結晶組織をほぼ均一に制御できる。
 さらに、2)の効果より、前記第2領域の光吸収層の光吸収率が、前記第1領域の光吸収層の光吸収率より過度に大きい場合、即ち、前記第2領域の光吸収層の発熱が、前記第1領域の光吸収層の発熱より極端に大きくなった場合においても、前記第1領域及び前記第2領域の非晶質性シリコンが溶融し溶融シリコンとなることによって、その熱伝導率が、一般的にゲート電極として用いられる金属の熱伝導率と同程度の値まで増加する。
 よって、前記第2領域の溶融したシリコン層より発生した熱は、前記ゲート絶縁層を介して前記ゲート電極に伝播するよりも、前記第1領域の溶融したシリコン層へ伝播するようになるので、前記第2領域の溶融したシリコン層より発生した熱が前記ゲート電極へと過度に伝播することは無い。故に、前記ゲート電極の発熱温度の分布が悪化することは無くなるので、前記ゲート電極の発熱温度の分布の悪化に伴う前記第一領域のシリコン層の発熱温度分布の均一性の低下は避けられる。
 以上により、上記1)と2)の複合効果により、前記非晶質性シリコン層を結晶化した結晶性シリコン層内に生成される結晶組織の均一性が保持され、その結果、前記レーザー光が照射され始めた前記ゲート電極の始端部に対応する結晶性シリコン層から、前記レーザー光が照射され終わる前記ゲート電極の終端部に対応する結晶性シリコン層にかけて、前記結晶性シリコン層内の結晶率のバラツキが抑制された薄膜トランジスタ装置を実現できる。
 第2の態様の薄膜トランジスタ装置の製造方法として、前記光吸収層は、前記所定のレーザー光の波長範囲において半透明(消衰係数k<1)である。
 第3の態様の薄膜トランジスタ装置の製造方法として、前記第7工程後、且つ、前記第8工程前において、少なくとも前記光吸収層を除去する工程を含む。
 第4の態様の薄膜トランジスタ装置の製造方法として、前記第7工程後、且つ、前記第8工程前において、前記バッファー層及び前記光吸収層を除去する工程を含む。
 第5の態様の薄膜トランジスタ装置の製造方法として、前記第6工程において、前記所定のレーザーは、連続発振または擬似連続発振モードの発振モードで前記レーザー光を照射する。
 第6の態様の薄膜トランジスタ装置の製造方法として、前記所定のレーザーは、固体レーザー装置で構成される。
 第7の態様の薄膜トランジスタ装置の製造方法としては、前記所定のレーザーは、半導体レーザー素子を用いたレーザー装置で構成される。
 第8の態様の薄膜トランジスタ装置の製造方法としては、前記第6工程において、前記レーザー光の前記非晶質性シリコン層上における照射エネルギー密度の変動は、5%程度未満である。
 第9の態様の薄膜トランジスタ装置の製造方法としては、前記所定のレーザーの波長は、600nm~2000nmである。
 第10の態様の薄膜トランジスタ装置の製造方法として、前記第2工程は、前記基板上に酸化シリコンからなるアンダーコート層を形成する工程と、前記アンダーコート層上に複数のゲート電極を形成する工程とを含む。
 第11の態様の薄膜トランジスタは、基板と、前記基板上に形成された複数のゲート電極と、前記複数のゲート電極上に形成されたゲート絶縁層と、前記ゲート絶縁層上に形成された結晶性シリコン層と、前記複数のゲート電極の各々に対応する前記結晶性シリコン層上の領域に形成されたソース電極及びドレイン電極とを備え、前記結晶性シリコン層は、前記ゲート絶縁層上に非晶質性シリコン層を形成後、前記非晶質シリコン層上にバッファー層を形成し、前記バッファー層上に所定の光学特性を有する光吸収層を形成し、波長が600nm以上2000nm以下である所定のレーザーを前記基板に対して一定の方向に相対移動させて、前記所定のレーザーから照射されるレーザー光を用いて前記光吸収層にレーザー光を吸収させ発生した熱により、前記バッファー層を介して間接的に非晶質性シリコン層をアニールし結晶化させて生成され、前記光吸収層の膜厚に前記光吸収層の屈折率を積算した値である前記光吸収層の光学膜厚を、前記レーザー光の波長で除算した値をXとし、前記バッファー層の膜厚に前記バッファー層の屈折率を積算した値である前記バッファー層の光学膜厚と、前記非晶質シリコン層の膜厚と前記非晶質シリコン層の屈折率を積算した値である前記非晶質シリコン層の光学膜厚と、前記ゲート絶縁層の膜厚と前記ゲート絶縁層の屈折率を積算した前記ゲート絶縁層の光学膜厚とを和算した値を前記レーザー光の波長で除算した値をYとし、さらに、前記光吸収層の密度をρ、比熱をcとし、前記ゲート電極の膜厚をdG、密度をρG、比熱をcGとし、前記ゲート電極の上方の光吸収層と前記ゲート電極の上方にない光吸収層の、前記レーザー光に対するそれぞれの光吸収率が等しいときの前記ゲート電極の吸収率の最大値をAG、とし、(AG/dG)×(ρ×c)/(ρG×cG)の式にて算出される値をΔA’とおいたとき、前記ゲート絶縁層の膜厚、前記非晶質性シリコン層の膜厚、前記バッファー層の膜厚、及び、前記光吸収層の膜厚は、下記の式1)から式4)により区画される範囲に属する前記X、及び前記Yを満たす。ここで、式1)Y≦-1.06X-0.22ΔA’+1.07、式2)Y≧1.29X+1.61*ΔA’+1.44、式3)Y≧1.06X+0.33ΔA’+0.89、式4)Y≦1.29X+-0.97*ΔA’-0.95。
 第12の態様の表示装置は、液晶パネルまたはELパネルを含む表示装置であって、前記表示装置は、第11の態様に記載の薄膜トランジスタを備え、前記薄膜トランジスタは、前記液晶パネルまたはELパネルを駆動させる。
 第13の態様の表示装置として、前記ELパネルは、有機ELパネルである。
 第14の態様の薄膜トランジスタ装置の製造方法は、基板を準備する第1工程と、前記基板上に複数のゲート電極を形成する第2工程と、前記複数のゲート電極上にゲート絶縁層を形成する第3工程と、前記ゲート絶縁層上に非晶質シリコン層を積層する第4工程と、前記非晶質シリコン層上にバッファー層を形成する第5工程と、前記バッファー層上に光吸収層を形成する第6工程と、波長が600nm以上である所定のレーザーを前記基板に対して一定の方向に相対移動させて、前記所定のレーザーから照射されるレーザー光を用いて前記光吸収層を加熱させ、発生した熱により間接的に前記非晶質シリコン層を結晶化させて結晶性シリコン層を生成する第7工程と、前記バッファー層及び光吸収層を除去する第8工程と、前記複数のゲート電極の各々に対応する前記結晶性シリコン層上の領域にソース電極及びドレイン電極を形成する第9工程と、を含み、前記第2工程、前記第3工程、前記第4工程、前記第5工程、及び前記第6工程では、前記第7工程において、前記レーザー光を用いて前記光吸収層を照射した際の、前記ゲート電極外の前記所定のレーザーの相対移動方向の上流領域での前記光吸収層の最高到達温度が、前記レーザー光を用いて前記光吸収層を照射した際の前記ゲート電極上の領域での前記非晶質性シリコン層の最高到達温度より高くなるように、且つ、前記ゲート電極上の領域内では、前記所定のレーザー光を用いて前記光吸収層を照射した際の前記光吸収層の最高到達温度がほぼ一定になるように、構成される。
 第15の態様の薄膜トランジスタ装置の製造方法として、前記第3工程、前記第4工程、前記第5工程、前記第6工程及び前記第7工程では、前記第8工程において、前記レーザー光を用いて前記光吸収層を照射した際の、前記ゲート電極外の前記所定のレーザー光の相対移動方向の上流領域での前記光吸収層の最高到達温度が、前記レーザー光を用いて前記光吸収層を照射した際の前記ゲート電極上の領域での前記光吸収層の最高到達温度より高くなるように、且つ、前記ゲート電極上の領域内では、前記所定のレーザー光を用いて前記光吸収層を照射した際の前記光吸収層の最高到達温度がほぼ一定になるように、前記ゲート絶縁層の膜厚、前記非晶質シリコン層の膜厚、前記バッファー層の膜厚、及び、前記光吸収層の膜厚が構成される。
 第16の態様の薄膜トランジスタ装置の製造方法は、基板を準備する第1工程と、前記基板上にゲート電極を形成する第2工程と、前記ゲート電極上にゲート絶縁層を形成する第3工程と、前記ゲート絶縁層上に半導体材料を含む半導体材料層を形成する第4工程と、前記半導体材料層上にバッファー層を形成する第5工程と、前記バッファー層上に所定の光学定数を有する光吸収層を形成する第6工程と、前記光吸収層に対して波長が600nm以上2000nm以下である所定のレーザー光を照射し、前記光吸収層にレーザー光を吸収させ、前記光吸収層から発生した熱により、バッファー層を介して間接的に前記半導体材料層を結晶化させて結晶質の半導体層を生成する第7工程と、前記ゲート電極に対応する領域である第1領域とは異なる、前記ゲート電極に対応しない領域である第2領域における前記半導体層上に、ソース電極及びドレイン電極を形成する第8工程と、を含み、前記第3工程、前記第4工程、前記第5工程及び前記第6工程において、前記光吸収層の前記第2領域での単位体積あたりの発熱量が、前記光吸収層の前記第1領域での単位体積あたりの発熱量よりも大きくなるように前記ゲート絶縁層、前記半導体材料層、前記バッファー層及び前記光吸収層を形成することにより、前記第7工程において、前記所定のレーザー光が照射されることによって発熱した前記第1領域の前記光吸収層から、前記ゲート電極に対して熱伝導して、前記ゲート電極に吸収されている熱分を、第2領域の前記半導体材料層に対して熱拡散することを抑えて蓄熱させた状態にさせ、かつ、発熱している前記第1領域の前記光吸収層において、等しい温度分布を有する部位を形成させて、前記半導体材料層を結晶化させる。
 第17の態様の薄膜トランジスタ装置の製造方法として、前記第3工程、前記第4工程、前記第5工程及び前記第6工程では、前記光吸収層の前記第2領域での単位体積あたりの発熱量が、前記光吸収層の前記第1領域での単位体積あたりの発熱量よりも大きくなるように、前記ゲート絶縁層の膜厚、前記非晶質シリコン層の膜厚、前記バッファー層の膜厚及び前記光吸収層が構成される。
 第18の態様の薄膜トランジスタ装置の製造方法として、前記光吸収層の前記第2領域は、前記第7工程における前記所定のレーザー光の前記基板に対する相対移動方向において、前記第1領域に対して上流領域および下流領域に対応している。
 第19の態様の薄膜トランジスタ装置の製造方法として、前記第3工程、前記第4工程、前記第5工程及び前記第6工程では、前記第7工程において、前記第2領域における単位体積あたりの発熱量が、前記第1領域における単位体積あたりの発熱量に比べて、前記ゲート電極の単位体積あたりの発熱量以上大きくなるように、構成される。
 第20の態様の薄膜トランジスタ装置の製造方法として、前記第3工程、前記第4工程、前記第5工程及び前記第6工程では、前記第7工程において、前記光吸収層の前記第1領域に形成される前記等しい温度分布を有する部位における大きさが、前記第1領域に対して0.8以上1.0以下となるように構成される。
 以下、本発明の実施形態を、図面を参照しながら説明する。
 図2は、本発明の実施の形態に係る有機発光表示装置を構成する薄膜トランジスタの構造を示す断面図である。
 図2に示す薄膜トランジスタ100は、ボトムゲート構造の薄膜トランジスタであり、基板10と、アンダーコート層11と、ゲート電極12と、ゲート絶縁層13と、結晶質シリコン層17と、非晶質シリコン層18と、n+シリコン層19と、ソース・ドレイン電極20とを備える。
 基板10は、例えば透明なガラスまたは石英からなる絶縁基板である。
 アンダーコート層11は、基板10上に形成され、例えば窒化珪素(SiN)層、酸化珪素(SiO)層、及びその積層等から構成される。ここで、アンダーコート層11は、1.5<x<2.0の酸化珪素(SiO)で、300nm以上1500nm以下の膜厚で構成されるのが好ましい。より好ましいアンダーコート層11の膜厚範囲は、500nm以上1000nm以下である。これは、アンダーコート層11の厚みを厚くすると基板10への熱負荷を低減できるが、厚すぎると膜剥がれやクラックが発生しまうことによる。
 ゲート電極12は、アンダーコート層11上に形成され、典型的にはモリブデン(Mo)等の金属やMo合金等(例えばMoW(モリブデン・タングステン合金))の金属からなる。なお、ゲート電極12は、シリコンの融点温度に耐えられる金属であればよいので、W(タングステン)、Ta(タンタル)、Nb(ニオブ)、Ni(ニッケル)、Cr(クロム)およびMoを含むこれらの合金からなるとしてもよい。ゲート電極12の膜厚は、好ましくは30nm以上~300nm以下であり、より好ましくは、50nm以上~100nm以下である。これは、ゲート電極12の膜厚が薄いと、ゲート電極12の透過率が増加してしまい、以下に記すレーザー光の反射が低下しやすくなるからである。また、ゲート電極12の膜厚が厚いと以下に説明するゲート絶縁層13のカバレッジが低下してしまい、特にはゲート電極の端部でゲート絶縁膜が段切れすることでゲート電極12とn+シリコン層19とが電気的に導通してしまうなど、薄膜トランジスタ100の特性が劣化しやすくなるからである。
 ゲート絶縁層13は、ゲート電極12を覆うように形成され、例えば酸化珪素層、もしくは窒化珪素層の単層構造、または、酸化珪素層及び窒化珪素層の積層構造からなる。ゲート絶縁層13の膜厚は、単層構造及び積層構造それぞれにおいて、レーザー間接加熱結晶化法により結晶質シリコン層17を形成する場合に好適な範囲がある。この好適な範囲は、一定の関係式で表現される。この一定の関係式の詳細については、後述する。
 結晶質シリコン層17は、ゲート絶縁層13上に形成され、多結晶のシリコン層(Poly-Si層)からなる。なお、この結晶質シリコン層17は、次のように形成される。すなわち、まず、ゲート絶縁層13上にa-Siからなる非晶質シリコン層14(不図示)を形成後、その非晶質シリコン層14上に、例えば酸化珪素膜からなるバッファー層15を堆積する。さらにバッファー層15上にレーザー光を吸収して発熱する光吸収層16(例えば、ダイヤモンドライクカーボン膜)を堆積後、レーザー光により光吸収層を照射加熱する。このように、光吸収層の熱により間接的に非晶質シリコン層14が加熱されて非晶質シリコン層14を多結晶質化(微結晶化も含む)することにより結晶質シリコン層17が形成される。
 ここで、多結晶とは、50nm以上の結晶からなる狭義の意味での多結晶だけでなく、50nm以下の結晶からなる狭義の意味での微結晶を含んだ広義の意味としている。以下、多結晶を広義の意味として記載する。
 なお、レーザー照射に用いられるレーザー光源は、可視光領域のうち赤色または近赤外領域の波長のレーザーである。この赤色または近赤外領域の波長のレーザーは、600nm~2000nmの波長のレーザーであり、好ましくは800nm~1100nmの波長のレーザーである。
 この赤色または近赤外領域の波長領域のレーザーは、連続発振または擬似連続の発振モードであればよい。その理由は、このレーザーが連続発振または擬似連続の発振モード以外の発信モードのパルス発振モードである場合、レーザー光は光吸収層16に対して時間的に非連続に照射されることになるため、光吸収層16の発熱状態を時間的に連続的に保持できない。そのため、非晶質シリコン層14を常時溶融状態に保持することできない。また、擬似連続の発振モードも含まれる理由は、非晶質シリコン層14がその融点以下まで冷却しないうちにパルスを光吸収層16に照射し再加熱させることにより、その溶融状態を維持できるからである。すなわち、擬似連続発振モードの好ましい態様は、非晶質シリコン層14がその融点以下まで冷却しないうちにパルスを光吸収層16に照射し再加熱させることができ、かつ、その高温状態を維持できるものである。また、赤色または近赤外領域の波長領域のレーザーは、固体レーザー装置であってもよく、半導体レーザー素子を用いたレーザー装置であってもよい。いずれにせよ、レーザー光を精度良く制御できるため好ましい。さらに、結晶ムラのない結晶質シリコン層17を形成するためには、光吸収層16上に照射したときの赤色または近赤外領域の波長領域のレーザーは、照射エネルギー密度の変動が5%程度未満であれば好ましい。結晶ムラのない結晶質シリコン層17を形成することにより、薄膜トランジスタの当初設計特性が達成でき、また、特性の均一化が実現できることとなる。
 非晶質シリコン層18は、結晶質シリコン層17上に形成されている。なお、このようにして、薄膜トランジスタ100は、結晶質シリコン層17に非晶質シリコン層18が積層された構造のチャネル層を有する。
 n+シリコン層19は、非晶質シリコン層18と結晶質シリコン層17の側面とゲート絶縁層13とを覆うように形成されている。
 ソース・ドレイン電極20は、n+シリコン層19上に形成され、例えばMo、若しくはMo合金などの金属、チタニウム(Ti)、アルミニウム(Al)若しくはAl合金などの金属、銅(Cu)若しくはCu合金などの金属、または、銀(Ag)、クロム(Cr)、タンタル(Ta)若しくはタングステン(W)等の金属の材料からなる。
 以上のように薄膜トランジスタ100は、構成されている。
 図3は、本発明の実施の形態に係る表示装置の等価回路を示す図である。
 図3に示す有機発光表示装置は、スイッチングトランジスタ1と、駆動トランジスタ2と、データ線3と、走査線4と、電流供給線5と、キャパシタンス6と、有機EL素子7とを備える。
 スイッチングトランジスタ1は、データ線3と走査線4とキャパシタンス6とに接続されている。
 駆動トランジスタ2は、例えば図2に示す薄膜トランジスタ100に相当し、電流供給線5とキャパシタンス6と有機EL素子7とに接続されている。
 データ線3は、有機EL素子7の画素の明暗を決めるデータ(電圧値の大小)が、有機EL素子7の画素に伝達される配線である。
 走査線4は、有機EL素子7の画素のスイッチ(ON/OFF)を決めるデータが有機EL素子7の画素に伝達される配線である。
 電流供給線5は、駆動トランジスタ2に大きな電流を供給するための配線である。
 キャパシタンス6は、電圧値(電荷)を一定時間保持する。
 以上のようにして有機発光表示装置は構成されている。
 次に、上述した薄膜トランジスタ100の製造方法について説明する。
 図4は、本発明の実施の形態に係る有機発光表示装置の薄膜トランジスタの製造工程を示すフローチャートである。この薄膜トランジスタ100は同時に複数製造されるが、以下では、説明を簡単にするため、1つの薄膜トランジスタを製造する方法として説明する。図5A~図5Lは、本発明の実施の形態に係る有機発光表示装置の薄膜トランジスタの製造方法を説明するための図である。図6は、図4のS15におけるレーザー間接加熱法を模式的に示した図である。
 まず、基板10を準備し、基板10上に、アンダーコート層11を形成し(S10)、続いて、アンダーコート層11上にゲート電極を形成する(S11)。
 具体的には、基板10上にプラズマCVD(Chemical Vapor Deposition:気相成長)法により、アンダーコート層11を成膜し、続いて、スパッタ法によりゲート電極となる金属膜を堆積し、フォトリソグラフィーおよびエッチングにより薄膜トランジスタ100におけるゲート電極12を形成する(図5A)。ここで、ゲート電極12は、典型的にはMo等あるいはMo合金等(例えばMoW(モリブデン・タングステン合金))の金属材料で形成される。
 次に、ゲート電極12上にゲート絶縁層13を形成する(S12)。そして、ゲート絶縁層13上に非晶質シリコン層14を形成する(S13)。
 具体的には、プラズマCVD法により、ゲート電極12の上にすなわちアンダーコート層11とゲート電極12とを覆うように、ゲート絶縁層13を成膜し(図5B)、成膜したゲート絶縁層13上に非晶質シリコン層14を連続的に成膜する(図5C)。
 次に、非晶質シリコン層14上に、バッファー層15を堆積し、堆積したバッファー層15上に、光吸収層16を堆積する(S14)。
 ここで、バッファー層15は、非晶質シリコン層14をアニールし結晶化する温度領域(1400度以上)においても、シリコンと反応しない物質であることが好ましい。このような物質として例えば、酸化珪素、窒化珪素などがある。また、バッファー層15の堆積は、プラズマCVD法により、ゲート絶縁層13及び非晶質シリコン層14を堆積した後、成膜チャンバーを大気開放することなく、連続的に成膜するのが望ましい。また、バッファー層15の厚さは例えば、5nm~500nmであり、好ましくは30nm~400nmである。理由は、5nm以下の膜厚は制御性が悪く、生産上不都合だからである。また500nm以上の膜厚は、レーザー照射にて加熱された光吸収層からの熱の伝わりが悪化し、非晶質シリコン層の結晶化に要する光エネルギーが過剰となってしまうからである。
 また、光吸収層16は、所定の光学特性を有しており、赤色または近赤外領域のレーザー光波長範囲において半透明(消衰係数k<1)となるよう成膜されることが望ましい。光吸収層16は、真空蒸着法、またはスパッタ法を用いて成膜される。例えば、スパッタ法を用いた場合、カーボンターゲットを使用し、スパッタガスとしてAr等を用いる。ここで、光吸収層16の厚さは、例えば、10nm~500nmであり、好ましくは20nm~200nmである。理由は、10nmの膜厚ではレーザー光の透過が大きく、光吸収層に吸収されるエネルギーが低下し、光吸収層の発熱が不十分となってしまうためである。また、500nmの膜厚では、膜自体の応力増大によりクラックの発生確率が高くなってしまい、またクラックが発生した光吸収層にレーザー照射と実施するとアブレーションが起きやすくなり、レーザー間接加熱プロセスには適さないからである。
 光吸収層16は、上記所定の光学特性を有することにより、入射したレーザー光のある割合が下層に透過し、下層膜で多重干渉が生じる。それにより、光吸収層16の吸収率が、ゲート電極の存在する領域と存在しない領域で差が生じる。言い換えると、上記所定の光学特性を有する光吸収層16を用いることにより、光吸収層16におけるゲート電極が存在する領域とゲート電極が存在しない領域との吸収率を制御できる。なお、このような所定の光学特性を有する光吸収層16は、例えば、ダイヤモンドライクカーボン膜で構成される。
 以下、ゲート絶縁層13の膜厚、非晶質シリコン層14の膜厚、バッファー層15の膜厚、及び光吸収層16の膜厚について、説明する。
 ゲート絶縁層13、非晶質シリコン層14、バッファー層15、及び光吸収層16の膜厚は、以下の(式1)から(式4)により区画される範囲に属するX、及びYを満たすように形成されるのが好ましい。
 Y≦-1.06X-0.22ΔA’+1.07   (式1)
 Y≧1.29X+1.61*ΔA’+1.44   (式2)
 Y≧1.06X+0.33ΔA’+0.89   (式3)
 Y≦1.29X+-0.97*ΔA’-0.95   (式4)
 ここで、Xは光吸収層16の屈折率に光吸収層16の膜厚を乗算した光吸収層16の光学膜厚を所定のレーザー光の波長にて除算した値を表す。一方、Yはゲート絶縁層13の屈折率にゲート絶縁層13の膜厚を乗算したゲート絶縁層13の光学膜厚と、非晶質シリコン層14の屈折率に非晶質シリコン層14の膜厚を乗算した非晶質シリコン層14の光学膜厚と、バッファー層15の屈折率とバッファー層15の膜厚を乗算したバッファー層15の光学膜厚とを和算した値を所定のレーザー光の波長にて除算した値を表す。
 より具体的には、ゲート電極12が形成されている領域(以下、第1領域と呼ぶ)の上方の光吸収層16のレーザー光に対する吸収率をAとし、その吸収率Aを光吸収層16の膜厚dで商算(除算)したものを換算吸収率A’とする。ゲート電極12が形成されていない領域(以下、第2領域と呼ぶ)の上方の光吸収層16のレーザー光に対する光吸収率をAとし、その吸収率Aを光吸収層16の膜厚dで商算したものを換算吸収率A’とする。そのとき、その差A’-A’は、後述の説明で定義される値-ΔA’以下である。すなわち、S12、S13およびS14において、(式5)という関係式を成立させる膜厚を有するゲート絶縁層13、非晶質シリコン層14、バッファー層15、及び光吸収層16を形成する。
 A’-A’ ≦-ΔA’   (式5)
 なお、詳細は後述するため、ここでの説明を省略するが、光吸収層16の吸収率は、光吸収層16の膜厚及び光学定数、バッファー層15の膜厚及び光学定数、非晶質シリコン層14の膜厚及び光学定数、ゲート絶縁層13の構成、膜厚及び光学定数、さらに下地のゲート電極12を形成する金属材料の光学定数及び基板の光学定数をパラメータとして、レーザー光の多重干渉を考慮した光学計算により導かれる。以下、再び製造工程の説明に戻る。
 次に、赤色または近赤外領域の波長領域のレーザーにより、光吸収層16を照射・加熱し、その発熱により非晶質シリコン層14をアニールすることで結晶質シリコン層17にする(S15)。
 具体的には、波長が600nm以上2000nm以下であるレーザーを基板10に対して一定の方向に相対移動させて、このレーザーから照射されるレーザー光を用いて光吸収層16を加熱させ、バッファー層15を介して間接的に非晶質シリコン層14をアニールし結晶化させて結晶質シリコン層17を生成する。より具体的には、先ず、形成された非晶質シリコン層14に対して脱水素処理を実施する。例えば、500℃20分間で、窒素雰囲気中で実施する方法がある。その後、非晶質シリコン層14をレーザー間接加熱法により、多結晶質(微結晶を含む)にすることにより結晶質シリコン層17を形成する(図5D)。
 ここで、上記レーザーアニール法において、レーザー照射に用いられるレーザー光源は、上述したように、赤色または近赤外の波長領域のレーザーである。すなわち、約600nm~2000nmの波長のレーザーであり、好ましくは800nm~1100nmの波長のレーザーである。また、赤色または近赤外の波長領域のレーザーは、連続発振または擬似連続の発振モードであればよい。また、この波長領域のレーザーは、固体レーザー装置で構成されていてもよく、半導体レーザー素子を用いたレーザー装置で構成されていてもよい。さらに、この波長領域のレーザーは、非晶質シリコン層14上に照射したときの照射エネルギー密度の変動が5%程度未満である。
 また、S15の工程すなわち図5Dから図5Eの工程では、図6に示すように、線状に集光されたレーザー光が、非晶質シリコン層14に照射されることで結晶質シリコン層17を生成する。レーザー光を非晶質シリコン層14に照射する方法は、具体的には2つの方法がある。1つは線状に集光されたレーザー光の照射位置は固定され、かつ、非晶質シリコン層14が形成された基板10がステージに載せられており、ステージが移動する方法がある。もう1つは、ステージは固定され、レーザー光の照射位置が移動する方法である。何れの方法においても、レーザー光が光吸収層16に対して相対的に移動しながら照射される。このような方法でレーザー光を照射された光吸収層16は、レーザー光のエネルギーを吸収して温度上昇する。そして、その熱が、バッファー層15を介して、非晶質シリコン層14に伝播し、非晶質シリコン層14がアニールされ結晶化される。このようにして非晶質シリコン層は結晶質シリコン層17になる。
 次に、光吸収層16、及びバッファー層15をエッチングにより除去する。具体的には、ドライエッチング、またはウェットエッチングにより除去する。なお、光吸収層16、及びバッファー層15は必ずしも除去する必要はない。光吸収層16及びバッファー層15をチャネルエッチストッパ(Channel Etching Stopper:CES)として利用してもよいし、光吸収層のみエッチングして、バッファー層をCESとして利用してもよい。
 次に、2層目の非晶質シリコン層18を形成し(S17)、薄膜トランジスタ100のチャネル領域のシリコン層をパターニングする(S18)。
 具体的には、プラズマCVD法により、ゲート絶縁層13上に、2層目の非晶質シリコン層18を形成する(図5G)。そして、薄膜トランジスタ100のチャネル領域が残るようにシリコン層膜層(結晶質シリコン層17および2層目の非晶質シリコン層18の層)をパターニングし、除去すべき非晶質シリコン層18と結晶質シリコン層17とをエッチングにより除去する(図5H)。それにより、薄膜トランジスタ100において所望のチャネル層を形成することができる。
 次に、n+シリコン層19とソース・ドレイン電極20とを成膜する(S19)。
 具体的には、プラズマCVD法により、2層目の非晶質シリコン層18と結晶質シリコン層17の側面とゲート絶縁層13とを覆うようにn+シリコン層19を成膜する(図5I)。そして、成膜したn+シリコン層19上に、スパッタ法によりソース・ドレイン電極20となる金属が堆積される(図5J)。ここで、ソース・ドレイン電極は、Mo若しくはMo合金などの金属、チタニウム(Ti)、アルミニウム(Al)若しくはAl合金などの金属、銅(Cu)若しくはCu合金などの金属、または、銀(Ag)、クロム(Cr)、タンタル(Ta)若しくはタングステン(W)等の金属の材料で形成される。
 次に、ソース・ドレイン電極20のパターニングを行う(S20)。そして、n+シリコン層19をエッチングし(S21)、その過程で、2層目の非晶質シリコン層18を一部エッチングする(S22)。
 具体的には、ソース・ドレイン電極20をフォトリソグラフィーおよびエッチングにより形成する(図5K)。また、n+シリコン層19をエッチングし、薄膜トランジスタ100のチャネル領域の非晶質シリコン層18を一部エッチングする(図5L)。言い換えると、非晶質シリコン層18は、薄膜トランジスタ100のチャネル領域の非晶質シリコン層18を一部残すようにチャネルエッチングされる。
 このようにして、薄膜トランジスタ100は製造される。
 以上のように、本実施の形態における薄膜トランジスタ100は、ボトムゲート構造を有するPoly-Si TFTとして形成される。この薄膜トランジスタ100の製造時には、ゲート絶縁層13、非晶質シリコン層14、バッファー層15、及び光吸収層16を、上述した関係式を成立させる膜厚を有するように成膜する。そして、a-Si膜からなる非晶質シリコン層14を、レーザー光を光吸収層16に対して照射・スキャンすることにより生ずる熱によりアニールして結晶化することで、非晶質シリコン層14をPoly-Siからなる結晶質シリコン層17にする。このとき、薄膜トランジスタ100が形成されるチャネル領域(ゲート電極上の領域)の上方の光吸収層16にレーザー光が到達する前にゲート電極12を熱的に飽和させた状態とすることができ、最終的に得るチャネル領域に相当する結晶質シリコン層17の結晶化を均一に行うことができる。
 つまり、ゲート絶縁層13、非晶質シリコン層14、バッファー層15、及び光吸収層16の膜厚に、レーザーアニール結晶化法により結晶質シリコン層17を形成する場合に好適な範囲があるということである。
 以下、このメカニズムについて説明する。
 一般的に、非晶質シリコン層を加熱によりアニールした場合、その到達温度と結晶化後の結晶質シリコン層の結晶度とには相関がある。到達温度が高いほど、結晶化後に形成された結晶質シリコン層の結晶度は大きくなる。そこで、薄膜トランジスタの第1領域(ゲート電極が形成されている領域の上方)における非晶質シリコン層を充分かつ均一に結晶化を図るために、薄膜トランジスタの第1領域における非晶質シリコン層の到達温度の分布を均一にすることが必要となる。
 しかしながら、ボトムゲート構造の薄膜トランジスタにおいては、非晶質シリコン層の下部にゲート絶縁層を挟んでゲート電極が存在し、かつ、ゲート電極を構成する金属の熱伝導率がゲート絶縁層の熱伝導率に比べて大きい。そのため、レーザー間接加熱法において、非晶質シリコン層の上方にバッファー層を介して形成された光吸収層へレーザー光を照射することによって発生した光吸収層の熱は、非晶質シリコン層を加熱する。また、それと同時に、上記熱は瞬時にゲート絶縁層を介してゲート電極へと伝播してしまう。その結果、ゲート電極が形成されている領域上方の非晶質シリコン層では発熱が不十分となる領域が生じ、その到達温度が不均一となる。このような理由により、図1に示すような結晶化後の結晶質シリコン層の結晶度のムラ(結晶ムラ)が生じる。
 したがって、この結晶ムラが生じてしまう現象を回避するためには、薄膜トランジスタの第1領域上方の光吸収層にレーザー光が到達する前に、後述するように、ゲート電極を熱的に飽和させた状態にするのが望ましい。そこで、本実施の形態では、上述した薄膜トランジスタ100の構成となるように製造する。すなわち、ゲート絶縁層13、非晶質シリコン層14、バッファー層及光吸収層の膜厚を上述したXおよびYを満たすように形成する。それにより、ゲート電極12が形成されていない領域上方(第2領域)の光吸収層16の発熱をゲート電極12が形成されている領域上方(第1領域)の光吸収層16の発熱より大きくすることができる。
 換言すると、本実施の形態に係る薄膜トランジスタ100の構成となる、ゲート絶縁層13、非晶質シリコン層14、バッファー層、及び非晶質シリコン層膜の膜厚を上述したXおよびYを満たすように形成する。それにより、まず、レーザー光の照射によりゲート電極12が形成されていない領域上方(第2領域)の光吸収層16において発生した熱は、ゲート電極12が形成されている領域上方(第1領域)の光吸収層16にレーザー光が到達する前に、バッファー層15、非晶質シリコン層14、ゲート絶縁層13をそれぞれ介して、ゲート電極12に伝わりゲート電極12の温度を上昇させる。つまり、ゲート電極12は、まず、レーザー光が到達する前に予備加熱されることとなる。これは、第2領域にある光吸収層16にレーザー光が照射されて熱が発生すると、上記構成により、第2領域の温度が、未だレーザー光が到達していない第1領域上方の光吸収層16の温度より高くなるため、第2領域にある非晶質シリコン層14に伝播した熱が、さらにゲート絶縁膜を介してゲート電極12にも伝播し、ゲート電極12の温度を上昇させるからである。次に、レーザー光が第1領域上方の光吸収層16に到達すると、第1領域上方の光吸収層16が発熱し、その熱が非晶質シリコン層14に伝播する。さらに、第1領域での光吸収層16の発熱量に対応した熱がゲート電極12に伝わる(レーザー光による加熱)。ゲート電極12は、このレーザー光による加熱と上記の予備加熱との両方により加熱されて、ゲート電極12を熱的に飽和される。ここで、ゲート電極12を熱的に飽和させるとは、ゲート電極12の面内でゲート電極12の温度が均一化されていることを意味する。
 このように、本実施の形態に係る薄膜トランジスタの構成によれば、非晶質シリコン層14を結晶化する際に、ゲート電極12を熱的に飽和することができる。それにより、非晶質シリコン層14を結晶化するためのレーザー光照射による光吸収層の発熱が、ゲート電極12に吸収されてしまうことなく、結晶質シリコン層17を形成するために用いられ、結晶ムラのない結晶質シリコン層17を生成することができるという効果を奏する。
 次に、ΔA’の算出方法について説明する。上述したように、ゲート電極12が形成されている領域上方(第1領域)、及びゲート電極12が形成されていない領域上方(第2領域)それぞれの光吸収層16のレーザー光に対する換算吸収率の差が-ΔA’以下になることにより、本実施の形態に係る効果が得られる。
 ここで、光吸収層16で吸収されるレーザー光の光吸収エネルギーの100%が光吸収層の発熱に寄与すると仮定し、レーザー光の単位面積当たりのエネルギーをエネルギー密度Eとする。以下では、ゲート電極12が形成されている領域上方(第1領域)の光吸収層16を第1領域の光吸収層16と呼び、ゲート電極12が形成されていない領域上方(第2領域)の光吸収層16を第2領域の光吸収層16と呼ぶ。また、第1領域の光吸収層16のレーザー光の波長に対する吸収率をA、レーザー光を吸収したことによる光吸収層16の発熱量(単位面積当たり)をQとする。第2領域の光吸収層16のレーザー光の波長に対する吸収率をA、レーザー光を吸収したことによる光吸収層16の発熱量(単位面積当たり)をQとする。さらに、ゲート電極12上にゲート絶縁層13が形成されており、さらにその上に非晶質シリコン層が形成されており、さらにその上にバッファー層が形成されている本構成において、ゲート電極12のレーザー光吸収率をA、レーザー光を吸収したことによるゲート電極12の発熱量(単位面積当たり)をQとする。
 次に、ゲート絶縁層13、非晶質シリコン層14、バッファー層15、及び光吸収層16を所定の膜厚にすることで、第1領域の光吸収層16のレーザー光の波長に対する吸収率と第2領域の光吸収層16のレーザー光の波長に対する吸収率が等しくなる場合を考える。すなわち、A=Aが成立する場合を考える。その場合には、Q=Qが成立する。しかし、実際には光吸収層16を透過した光はゲート電極12にも吸収されてゲート電極も発熱する(Q>0)。そのために第1領域の非晶質シリコン層14の発熱温度は第2領域の非晶質シリコン層14の発熱温度より大きくなる。
 以上を鑑みると、第2領域の光吸収層16の発熱量が第1領域の光吸収層16の発熱量とゲート電極の発熱量との総和以上であれば、第2領域の非晶質シリコン層14の発熱温度が第1領域の非晶質シリコン層14の発熱温度以上になると考えられる。この関係は、(式6)で示すことができる。
 Q+Q≦Q   (式6)
 そして、この(式6)を変形すると、(式7)のように表すことができる。
 Q-Q≦-Q   (式7)
 ここで、光吸収層16の膜厚、密度、比熱をそれぞれd、ρ、c、ゲート電極の膜厚、密度、比熱をそれぞれd、ρ、cと定義すると、第1領域の光吸収層16の発熱量、第2領域の光吸収層16の発熱量およびゲート電極の発熱量はそれぞれ、以下のように表すことができる。
 Q=E×A/(d×ρ×c)
 Q=E×A/(d×ρ×c)
 Q=E×A/(d×ρ×c
 次に、これらの式を(式7)に代入して整理すると、(式8)のようになる。
 (A-A)/d≦-(A/d)×(ρ×c)/(ρ×c)   (式8)
 ここで、吸収率を膜厚で商算したものを換算吸収率と定義し、A/d=A’、A/d=A’と以下では記載する。さらに(式8)の右辺を-ΔA’と定義する。すると、(式7)は、A’-A’≦-ΔA’となり、(式5)が導かれる。
 (式5)は、以下のことを示している。すなわち、第1領域の光吸収層16の換算吸収率と第2領域の光吸収層16の換算吸収率との差が-ΔA’で定義される値以下になる条件を満足させるようにゲート絶縁層13、非晶質シリコン層14、バッファー層、及び光吸収層の膜厚を構成すると、第2領域の非晶質シリコン層14の発熱温度が第1領域の非晶質シリコン層14の発熱温度以上になる。つまり、この条件を満足させるゲート絶縁層13、非晶質シリコン層14、バッファー層、及び光吸収層の膜厚が形成されると、例えば赤色の波長領域のレーザーにより非晶質シリコン層の上方にバッファー層を介して形成された光吸収層を照射・スキャンすることにより発生した熱をもって、非晶質シリコン層を間接的にアニールする場合に、結晶化に対するゲート電極12による熱吸収、伝播の影響を小さくすることができる。そのため、薄膜トランジスタの第1領域における非晶質シリコン層14の発熱による到達温度の分布を均一にできる。
 なお、本効果を生じせしめるためには、層構造(ゲート電極12の有無)、及び、層膜厚の変化により、光吸収層16の吸収率が変化することが必要である。これは、上記所定(赤色または近赤外領域の波長領域)のレーザー光の波長領域において、光吸収層16が半透明、すなわち消衰係数k<1であることが必要である。この光学特性により、光吸収層に入射したレーザー光が下層に透過し、下層膜での多重干渉が生じる。よって、層構造や層膜厚の変化により、多重干渉効果が強弱するため、この現象を利用することで、ゲート電極上の光吸収層16の吸収率とゲート電極12外の光吸収層の吸収率の差を制御できる。
 逆に、従来のレーザー間接加熱法で多用されていた光吸収層は、MoやCr等の高融点金属である。これら高融点金属は、消衰係数kが2以上と大きいため、入射したレーザー光はほとんど下層膜に透過せず、下層膜での多重干渉が起こりえない(もしくは、非常に小さい)。つまり、層構造や層膜厚の変化によらず、光吸収層の吸収率は一定になるので、本発明の効果を生じさせることはできない。
 以上から、上記所定の波長領域を有するレーザー光において、光吸収層16が半透明であるという光学特性を有するという点が、本発明の効果を生じさせる上で、従来の技術とは異なる。
 以上のように、ゲート絶縁層13、非晶質シリコン層14、バッファー層15、及び光吸収層16の膜厚を上述した条件を満たすように形成することで、さまざまな波長のレーザー光、ゲート電極の材質と膜厚であっても、結晶ムラのない結晶質シリコン層17を生成することができる。つまり、例えば、ゲート電極12のパターン形状等、特に薄膜トランジスタ100の構造に変更を加えることなく、ゲート電極12上に形成された結晶質シリコン層17の結晶性のばらつきを低減することができ、安定した結晶化が可能となる。それにより、これを使用した薄膜トランジスタ100の特性のばらつきを抑え、LCDやOLEDなどの表示装置で高精細化が進んでも、その表示品位を向上させることができるという効果を奏する。
 なお、以上の記載では、線状に集光されたレーザー光を用いて非晶質シリコン層14が結晶化される場合の例を示したが、本願ではこのほかにもスポット状(円形や楕円形その他も含む)のレーザー光を使ってもよい。その場合は、レーザー光を結晶化に適したスキャン方法で実施することが好ましい。
 以上のように、本実施の形態における薄膜トランジスタ100の製造方法によれば、ゲート絶縁層13、非晶質シリコン層14、バッファー層15、及び光吸収層16の膜厚が上述した条件を満たすことにより、第1領域における非晶質シリコン層14の発熱による到達温度の分布を均一にして、第1領域おける非晶質シリコン層14を充分かつ均一に結晶化を図ることができる。
 以下、ゲート絶縁層13、非晶質シリコン層14、バッファー層15、及び光吸収層16の膜厚が満たすべき条件を、実施例に詳細に説明する。
 (実施例)
 まず、光吸収層のレーザー光波長に対する吸収率の算出方法について説明する。
 図7A及び図7Bは、振幅透過率及び振幅透過率の計算方法を説明するための図である。
 図7A及び図7Bは、図2に示す薄膜トランジスタ100の構造をモデル化した多層構造のモデル構造を示している。図7Aに示すモデル構造は、複素屈折率Nからなる層401と、複素屈折率Nからなる層402と、複素屈折率Nからなる層403と、複素屈折率Nからなる層404と、複素屈折率Nからなる層405と、複素屈折率Nからなる基板層406とを備える。このモデル構造では、層405、層404、層403、層402及び層401がこの順に基板層406上に積層されたものを示している。なお、図7Bに示すモデル構造は、図7Aの層405がない場合のモデル構造を示している。また、図中に示す複素屈折率Nの領域は、モデル構造の外部であり、レーザー光がモデル構造に入射される側を示している。この領域は、例えば空気であり、その場合、屈折率1、消衰係数0である。
 基板層406は、例えば透明なガラスまたは石英からなる絶縁基板であり、例えば屈折率1.46を有し、図5Aに示す基板10に対応する。層405は、例えば屈折率3.55、消衰係数3.86を有し、膜厚が50nmのMoWで構成されており、図5Aに示すゲート電極12に対応する。層404は、例えば屈折率1.46、消衰係数0の酸化珪素(SiO)で構成されており、図5Bに示すゲート絶縁膜13に対応する。層403は、例えば屈折率4.19、消衰係数0のa-Siで構成されており、図5Cに示す非晶質シリコン層14に対応する。層402は、例えば屈折率1.46、消衰係数0の透明膜で構成されており、図5Dで示すバッファー層15に対応する。層401は、例えば屈折率1.9、消衰係数0.6のダイヤモンドライクカーボン膜であり、図5Dの光吸収層16に対応する。
 なお、本モデル構造においては、図5Aに示すアンダーコート層11に対応する層を省略した。なぜなら、アンダーコート層11は透明な層であり、レーザー光に対する吸収がない層であるとすれば、その膜厚は本計算結果に影響を与えないからである。よって、以下、アンダーコート層11に対応する層を省略したモデル構造にて計算を進める。
 図7A及び図7Bに示すように、外部から層401へ入射される光に対する振幅反射係数をr01、層401から層402へ入射される光に対する振幅反射係数をr12、層402から層403へ入射される光に対する振幅反射係数をr23、層403から層404へ入射される光に対する振幅反射係数をr34、層403から層404へ入射される光に対する振幅反射係数をr34、層404から層405へ入射される光に対する振幅反射係数をr45、また、層404から基板層406へ入射される光に対する振幅反射係数をr46としている。さらに、外部から層401へ入射される光に対する振幅透過係数をt01、層401から層402へ入射される光に対する振幅透過係数をt12、層402から層403へ入射される光に対する振幅透過係数をt23、層403から層404へ入射される光に対する振幅透過係数をt34、層404から基板層406へ入射される光に対する振幅透過係数をt46としている。
 また、ゲート電極12に対応する層405が形成されている領域上方の(第1領域に相当)各層全体の振幅反射係数をそれぞれr012345(R1)、r12345(R2)、r2345(R3)、r345(R4)としている。具体的には、層405及び層404を1層とみなしたときの振幅反射係数をr345(R4)としている。同様に、層405、層404及び層403を1層とみなしたときの振幅反射係数をr2345(R3)とし、層405、層404、層403及び層402を1層とみなしたときの振幅反射係数をr12345(R2)とし、層405、層404、層403、層402及び層401を1層とみなしたときの振幅反射係数をr012345(R1)としている。また、第1領域の各層全体の振幅透過係数をそれぞれt012345(T1)、t12345(T2)、t2345(T3)、t345(T4)としている。具体的には、層405及び層404を1層とみなしたときの振幅透過係数をt345(T4)としている。同様に、層405、層404及び層403を1層とみなしたときの振幅透過係数をt2345(T3)とし、層405、層404、層403及び層402を1層とみなしたときの振幅透過係数をt12345(T2)とし、層405、層404、層403、層402及び層401を1層とみなしたときの振幅透過係数をt012345(T1)としている。
 次に、図7Bに示すように、ゲート電極に対応する層405が形成されていない領域上方の(第2領域の)各層全体の振幅反射係数をそれぞれr012346(R1’)、r12346(R2’)、r2346(R3’)、r346(R4’)としている。具体的には、基板層406及び層404を1層とみなしたときの振幅反射係数をr346(R4’)としている。同様に、基板層406、層404、層403を1層とみなしたときの振幅反射係数をr2346(R3’)とし、基板層406、層404、層403及び層402を1層とみなしたときの振幅反射係数をr12346(R2’)とし、基板層406、層404、層403、層402及び層401を1層とみなしたときの振幅反射係数をr012346(R1’)としている。また、第2領域の各層全体の振幅透過係数をそれぞれt012346(T1’)、t12346(T2’)、t2346(T3’)、t346(T4’)としている。具体的には、基板層406、層403を1層とみなしたときの振幅透過係数をt346(T4’)としている。同様に、基板層406、層404及び層403を1層とみなしたときの振幅透過係数をt2346(T3’)とし、基板層406、層404、層403及び層402を1層とみなしたときの振幅透過係数をt12346(T2’)、基板層406、層404、層403、層402及び層401を1層とみなしたときの振幅透過係数をt012346(T1’)としている。
 そして、第1領域の各層全体の振幅反射係数、振幅透過係数は、下記の(式9)~(式16)で表すことができる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 また、第2領域の各層全体の振幅反射係数、振幅透過係数は、下記の(式17)~(式24)で表すことができる。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 ここで、
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
であり、dは各層の膜厚、θは各層での入射角・透過角、λはレーザー光の波長である。
 また、θは下式のスネルの法則より以下に示す通りに算出できる。
Figure JPOXMLDOC01-appb-M000021
 また、各層それぞれの振幅反射係数r01、r12、r23、r34、r35及び振幅透過係数t01、t12、t12、t34、t35は下記の(式25)~(式36)を用いて算出できる。
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000033
 なお、ここでレーザー光は単色レーザー光であり、その偏光はP偏光を仮定している。
 次に、以上の式を用いて、次のようにして第1領域における各層全体の振幅反射係数、振幅透過係数を算出する。すなわち、まず、r345を、(式12)に(式28)及び(式29)を代入することにより算出する。次いで、r2345を、(式11)に(式27)及びr345を代入することにより算出する。次いで、r12345を、(式10)に(式26)及びr2345を代入することにより算出する。次いで、r012345を、(式9)に(式25)及びr12345を代入することにより算出する。次いで、t345を、(式16)に(式28)、(式29)、(式34)及び(式35)を代入することにより算出する。次いで、t2345を、(式15)に(式27)、(式33)、r345及びt345を代入することにより算出する。次いで、t12345を、(式14)に(式26)、(式32)、r2345及びt2345を代入することにより算出する。次いで、t012345を、(式13)に(式25)、(式31)、r12345及びt12345を代入することにより算出する。
 さらに、次のようにして第2領域における各層全体の振幅反射係数、振幅透過係数を算出する。すなわち、まず、r346を、(式20)に(式28)及び(式30)を代入することにより算出する。次いで、r2346を、(式19)に(式27)及びr346を代入することにより算出する。次いで、r12346を、(式18)に(式26)及びr2346を代入することにより算出する。次いで、r012346を、(式17)に(式25)及びr12346を代入することにより算出する。次いで、t346を、(式24)に(式28)、(式30)、(式34)、及び(式36)を代入することにより算出する。次いで、t2346を、(式23)に(式27)、(式33)、r346及びt346を代入することにより算出する。次いで、t12346を、(式22)に(式26)、(式32)、r2346及びt2346を代入することにより算出する。
 次いで、t012346を、(式21)に(式25)、(式31)、r12346及びt12346を代入することにより算出する。
 次に、第1領域における各層での反射率R1、R2、R3及びR4、透過率T1、T2、T3及びT4を(式37)~(式44)により算出する。
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000041
 さらに、第2領域における各層での反射率R1’、R2’、R3’及びR4’、透過率T1’、T2’、T3’及びT4’を(式45)~(式52)により算出する。
Figure JPOXMLDOC01-appb-M000042
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000044
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000046
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000048
Figure JPOXMLDOC01-appb-M000049
 最後に、(式53)によって、第1領域の光吸収層の光吸収率Aを算出することができる。
Figure JPOXMLDOC01-appb-M000050
 また、(式54)によって、第2領域の光吸収層の光吸収率Aを算出することができる。
Figure JPOXMLDOC01-appb-M000051
 以上より、光吸収層の膜厚dを用いて、第1領域の光吸収層の換算吸収率A’(A’=A/d)から第2領域の光吸収層の換算吸収率A’ (A’=A/d)を減算した値ΔA’=A’-A’(換算吸収率差)を算出することができる。
 次に、上述した計算方法を用いて、図7A及び図7Bに示すモデル構造に対して垂直に、すなわちθ=0、またはsinθ=0が近似的に成り立つ範囲の入射角θにおいて波長λ(600nm≦λ≦2000nm)のレーザー光(赤色または近赤外の波長領域のレーザー光)を入射した場合に、第1領域及び第2領域の光吸収層のレーザー光に対する換算吸収率を算出し、その差を計算した。また、この場合、レーザー光の偏光がS偏光としても計算結果は同じである。
 図8は、レーザー間接加熱法により結晶質シリコン層を形成する場合にゲート絶縁層、非晶質シリコン層、バッファー層及び光吸収層に好適な膜厚範囲があることを示すための図である。具体的には、図8は、図7A及び図7Bに示すモデル構造を用いて、ゲート絶縁層13、非晶質シリコン層14、バッファー層15、光吸収層16の膜厚をそれぞれ変化させた場合の、第1領域及び第2領域の光吸収層16の換算吸収率差ΔA’=A’-A’の計算結果を示す等高線図である。
 ここで、横軸(X)は、光吸収層16の屈折率に光吸収層16の膜厚を乗算した光吸収層16の光学膜厚を所定のレーザー光の波長にて除算した値を表す。また、縦軸(Y)は、ゲート絶縁層13の屈折率にゲート絶縁層13の膜厚を乗算したゲート絶縁膜13の光学膜厚と、非晶質シリコン層14の屈折率に非晶質シリコン層14の膜厚を乗算した非晶質シリコン層14の光学膜厚と、バッファー層15の屈折率とバッファー層15の膜厚を乗算したバッファー層15の光学膜厚とを和算した値を所定のレーザー光の波長にて除算した値を表す。
 例えば、λ=808nmのときの光吸収層16の屈折率を用いると、図8の横軸の値を光吸収層の膜厚に変換することができる。例えば、図9は、図8の横軸の値を光吸収層の膜厚に変換した値を示す図である。図9には、λ=808nmのとき及びλ=1064nmのとき、図8の横軸の値を非晶質シリコン層の膜厚に変換した値を示している。
 また、例えばλ=808nmのとき、図8の縦軸の値からゲート絶縁層13、非晶質シリコン層14及びバッファー層15の膜厚に変換することができる。図10は、例えば、ゲート絶縁層(酸化珪素膜)の膜厚が125nm、非晶質シリコン層の膜厚が100nmの場合のλ=808nmのとき及びλ=1064nmのとき、図8の縦軸の値をバッファー層の膜厚に変換した値である。このように、ゲート絶縁層の膜厚及び光学定数、非晶質シリコン層の膜厚及び光学定数を用いることにより、図8の縦軸をバッファー層15の膜厚に変換できる。
 このように、ゲート絶縁層、非晶質シリコン層、バッファー層及び光吸収層の膜厚、光学特性、また、ゲート絶縁層の構成が変化しても、図8の縦軸X、横軸Yの値を変換することにより、レーザー間接加熱法により結晶質シリコン層を形成する場合における、ゲート絶縁層、非晶質シリコン層、バッファー層及び光吸収層の好適な膜厚範囲を計算できる。
 なお、例えばゲート絶縁層13が積層構造の場合でも、上記同様に、積層膜を構成するそれぞれの絶縁膜の屈折率と膜厚の積(光学膜厚)を和算した値を、そのゲート絶縁膜の光学膜厚として用いることにより、図8の縦軸をバッファー層15の膜厚に変換できる。
 図11は、本発明の実施の形態に係る表示装置を構成する薄膜トランジスタの構造の別の例を示す断面図である。図12は、図11に示す薄膜トランジスタのゲート絶縁層が酸化珪素膜と窒化珪素膜で構成されている場合の、それぞれの膜厚の組を示す図である。
 図11に示す薄膜トランジスタ200は、ゲート絶縁層23が上層絶縁膜23a及び下層絶縁膜23bにより構成されている。ここで、例えば上層絶縁膜23aが屈折率1.46を有する酸化珪素(SiO)膜、下層絶縁膜23bが屈折率1.92を有する窒化珪素(SiN)膜であるとする。このとき、これらの絶縁膜による積層構造のゲート絶縁層23が、例えば膜厚125nmの酸化珪素膜単層にて構成されているゲート絶縁層13と等しい光学定数を有している場合の、上層絶縁層23aの酸化珪素膜の膜厚、及び下層絶縁層23bの窒化珪素膜の膜厚の組は図12のようになる(レーザー光波長λが600nmから2000nmの範囲にて)。
 なお、ゲート絶縁膜にSiN膜を含めると、絶縁基板である、例えばガラスからのアルカリ金属などの不純物をブロックすることができるため、TFT特性や信頼性に影響を与えない手段として有効である。
 図8において、-ΔA’で表される等高線の線上及び内側領域は、第1領域及び第2領域の光吸収層16の換算吸収率差A’-A’が-ΔA’以下になる領域であることを示している。換言すると、図8の点線で示される曲線は、換算吸収率差が-0.00018の等高線を示している。つまり、この曲線上、及びその内側領域の換算吸収率差は-0.00018以下である。また、この領域は、非晶質シリコン層14及びゲート絶縁層13の膜厚と、それらの光学定数と、ゲート電極12及び基板10の光学定数とから上述した式(計算方法)により算出される。そして、算出された第1領域及び第2領域の非晶質シリコン層14の換算吸収率差A’-A’が-ΔA’以下になる条件を満たすとき、薄膜トランジスタ100の第1領域における光吸収層16の発熱による到達温度の分布を均一できる。それにより、第1領域おける非晶質シリコン層14は充分かつ均一に結晶化されて結晶質シリコン層17になる。
 図13は、図8において、ゲート絶縁層、非晶質シリコン層、バッファー層及び光吸収層との好適な膜厚範囲を算出するために用いた図である。
 図13において、光吸収層16の光学膜厚をレーザー光の波長で商算したものをX、ゲート絶縁層13の光学膜厚と非晶質シリコン層の光学膜厚とバッファー層の光学膜厚の和をレーザー光の波長で商算したものをYとおいている。なお、これらのXとYは上述したものと同じである。そして、これらXとYとを用いて、-ΔA’で表される等高線の線上及び内側領域を数式で近似する。すなわち、L1~L4で示される集合の積
Figure JPOXMLDOC01-appb-M000052
で表すことができる。なお、L1~L4は、以下のように表すことができるが、これらはそれぞれ上述した(式1)~(式4)に相当する。
 L1:Y≦-1.06X-0.22ΔA’+1.07
 L2:Y≧1.29X+1.61*ΔA’+1.44
 L3:Y≧1.06X+0.33ΔA’+0.89
 L4:Y≦1.29X+-0.97*ΔA’-0.95
 なお、ΔA’は、上述したように、ΔA’=(A/d)×(ρ×c)/(ρ×c)で表される。ここで、ρ、cはそれぞれ光吸収層16の密度、及び比熱であり、d、ρ、cはそれぞれゲート電極の膜厚、密度、及び比熱である。
 次に、具体例として、波長808nmの赤色レーザー光を、図7A及び図7Bのモデル構造上方から垂直に照射した場合を考える。ここで光吸収層16の密度を1800(kg/m3)、比熱を970(J/(kg・K))とする。また、ゲート電極12を膜厚50nmのMoWとし、その密度を11720(kg/m3)、比熱を226.4(J/(kg・K))とする。このとき、第1領域の光吸収層16のレーザー光の波長に対する吸収率と第2領域の光吸収層のレーザー光の波長に対する吸収率とが等しくなる、すなわち、A=Aが成立するとする。そして、A=Aが成立するときのゲート絶縁層、非晶質シリコン層、バッファー層及び光吸収層の膜厚と、上述の光学計算式(式9)~(式54)と用いてゲート電極の吸収率の最大値Aを計算する。その結果、Aは0.25と計算され、そこからΔA’が0.00018と算出される。なお、Aは、A=T1×T2×T3×T4×(1-R)の関係式から計算される。ここでRは酸化珪素膜を媒質とした場合のゲート電極12の反射率であり、R={(nSiO-n+k }/{(nSiO+n+k }と計算される。また、酸化珪素の屈折率nSiO、ゲート電極の屈折率n、ゲート電極の消衰係数kとしている。以上のように、ΔA’が0.00018と算出される。この値を用いて、上記のL1~L4で示される集合の積
Figure JPOXMLDOC01-appb-M000053
で表す範囲が決定される。
 次に、λ=808nmの赤色レーザー光を、図7A及び図7Bで示されるモデルに対して垂直に照射しスキャンしたときの、光吸収層からの発生した熱を受けて温度上昇した非晶質シリコン層14表面の最高到達温度の位置依存性のシミュレーションを実施した。図14に、シミュレーションに用いたモデルを示す。本モデルは、図14に示すように、基板層406と、ゲート電極12に対応層405と、ゲート絶縁層13に対応する層404と、非晶質シリコン層14に対応する層403と、バッファー層15に対応する層402及び光吸収層16に対応する層401とで構成されている。本モデルにおいて、ゲート電極12に対応する層405のレーザースキャン方向の長さは30μmとし、光吸収層16に対応する層401およびゲート電極12に対応する層405の物性値として、上述した値を用いた。
 図15は、図8において、本シミュレーションで実施した膜厚条件箇所を示す図である。ここで、縦軸(X)及び横軸(Y)は、図8に示す縦軸(X)及び横軸(Y)をλ=808nmの時のそれぞれの膜の光学定数を用いて変換してある。本シミュレ-ションで用いたモデルにおいて、ゲート絶縁層13は酸化珪素(SiO)膜でありその膜厚は125nmと仮定した。また非晶質シリコン層14の膜厚は100nmを仮定した。図15に示す星(☆)が付された1~8(星1~星8)の点の箇所は、本シミュレーションで実施したバッファー層15と光吸収層16の膜厚条件を示している。また、星1、星2、星3、星4における換算吸収率差A’-A’は-ΔA’(=-0.00018)より小さく、星5、星6、星7、星8における換算吸収率差はA’-A’は-ΔA’より大きい。つまり、星1、星2、星3、星4、は、図13の点線内側領域に存在している。
 図16は、第1領域及び第2領域の非晶質シリコン層表面の最高到達温度の位置依存性のシミュレーション結果を示す図である。横軸は、位置座標を示しており、縦軸は、非晶質シリコン層14表面の最高到達温度を示している。非晶質シリコン層14は、レーザー光を吸収して発熱した光吸収層から熱を受けて、温度上昇する。また、図16は、図15に示す星1~星8の箇所における膜厚条件のシミュレーション結果を示している。図16に示すように、星1~星4の箇所における膜厚条件においては、非晶質シリコン層14表面の最高到達温度を示す曲線がゲート電極12上の第1領域で平坦であるのに対して、星5~星8の箇所における膜厚条件においては、非晶質シリコン層14表面の最高到達温度を示す曲線がゲート電極12上の第1領域で平坦でない。
 以上のシミュレーション結果によれば、-ΔA’で表される等高線の線上及びその内側の領域の第1領域及び第2領域の非晶質シリコン層14の換算吸収率差A’-A’を非晶質シリコン層14の膜厚及びゲート絶縁層13の膜厚が満たすとき、薄膜トランジスタ100の第1領域における非晶質シリコン層14の発熱による到達温度の分布を均一できることがわかる。それにより、薄膜トランジスタ100の第1領域おける非晶質シリコン層14を充分かつ均一に結晶化した結晶質シリコン層17を生成することが可能となる。
 総括すると、非晶質シリコン層の上部に、バッファー層及び光吸収層を形成し、光吸収層にレーザー光を照射し光吸収層を加熱させ、発生した熱によりバッファー層を介して間接的に非晶質シリコン層を結晶化するレーザー間接加熱結晶化プロセスがある。通常、このレーザー間接加熱結晶化プロセスにおいて、非晶質シリコン層の下部にゲート絶縁層を介してゲート電極が存在する場合、ゲート電極の熱吸収、熱伝播の影響により、ゲート電極上方の非晶質シリコン層の発熱が不十分かつ不均一になり、形成された結晶質シリコン層の結晶度にバラツキを生じさせる。それに対して、上述した膜厚範囲でゲート絶縁層、非晶質シリコン層、バッファー層及び光吸収層を形成すると、レーザー間接加熱結晶化プロセスにおいて、ゲート電極の熱吸収、熱伝播の影響を抑えて、結晶化を行える。そのため、非晶質シリコン層とその下地膜であるゲート絶縁層とを備える薄膜トランジスタ(TFT)では、均質な薄膜トランジスタの特性を実現できることとなる。図17Aは、本発明の実施の形態の構造に対して赤色及び近赤外の波長領域のレーザー光を用いてレーザー間接加熱結晶化法を行った場合の結晶質シリコン層の結晶性を示す図である。図17Bは、比較として、従来の構造に対して赤色及び近赤外の波長領域のレーザー光を用いてレーザー間接加熱結晶化法を行った場合の結晶質シリコン層の結晶性を示す図である。図17A及び図17Bでは、単位時間当たりのレーザー光のエネルギー密度100KW/cmで、レーザースキャンのスピードを600mm/sとした場合の例を示している。従来の構造では、50nm結晶粒径で結晶化されている領域と、50nm未満の結晶粒径で結晶化されている領域に分かれている、すなわち、結晶性にムラがある。それに対して、本発明の実施の形態の構造では、50nmの結晶粒径で均一に結晶化されているのがわかる。図17Bに示される結晶性のムラは、ゲート電極上の非晶質シリコン層の最高到達温度のムラを表す。本実施の形態の構造に対してレーザー間接加熱結晶化プロセスを行った場合、ゲート電極上の非晶質シリコン層の到達温度は面内で均一にでき、得られる結晶性シリコン層の結晶性も均一になる。
 図18は、本発明の実施の形態における効果を説明するための図である。つまり、図18は、ゲート電極12を熱的に飽和させる手段として、ゲート電極12以外の領域に着目し、ゲート電極12上方に無い(第2領域の)光吸収層16の発熱を利用していることを示している。具体的には、ゲート絶縁層13、非晶質シリコン層14、バッファー層15及び光吸収層16の膜厚を適切な範囲におくことで、ゲート電極12の有無による光の干渉効果の差を利用し、1)ゲート電極12上方の光吸収層16の光吸収率より、ゲート電極12上方にない光吸収層16の光吸収率が大きくなるように、すなわち、レーザーアニールを施した際、ゲート電極12上方(第1領域)の光吸収層16の発熱より、ゲート電極12上方にない(第2領域の)光吸収層16の発熱が大きくなるように設定でき、かつ、2)ゲート電極12上方(第1領域)の非晶質シリコン層14の発熱温度がシリコンの融点以上になるように設定できる。
 そして、1)と設定できることにより、第2領域の光吸収層16から発生した熱を、バッファー層15、非晶質シリコン層14及びゲート絶縁層13を介して、ゲート電極12に吸収、伝播させることができる。これにより、レーザー光がゲート電極12上(第1領域)の光吸収層16を照射する前に、予めゲート電極12を熱的に飽和することができるので、ゲート電極12上の(第1領域の)非晶質シリコン層14の結晶化において、ゲート電極12の熱吸収・伝播の影響を低減することができる。さらに、2)と設定できることにより、ゲート電極12上方にない(第2領域の)光吸収層の光吸収率が、ゲート電極12上方の光吸収層16の光吸収率より過渡に大きい場合、すなわち、ゲート電極12上方にない(第2領域の)光吸収層16の発熱が、ゲート電極12上方の(第1領域の)光吸収層16の発熱より極端に大きくなった場合においても、ゲート電極12上方の(第1領域の)光吸収層16とゲート電極12上方にない(第2領域の)光吸収層16との双方の領域における非晶質シリコン層14が溶融することにより溶融シリコン層となり、その熱伝導率が、一般的にゲート電極12として用いられる金属の熱伝導率と同程度の値まで増加する。
 従って、ゲート電極12上方にない(第2領域の)溶融シリコン層へ伝導した熱は、主にゲート電極12上方の(第1領域の)溶融したシリコン層へ伝播するようになるので、ゲート絶縁層13を介してゲート電極12に過度に伝播ことは無い。それゆえに、ゲート電極12の温度分布が悪化することなく、その上方の(第1領域の)非晶質シリコン層14の発熱温度分布に影響を与えない。
 よって、上記の1)と2)の複合的効果より、ゲート電極12上方の(第1領域の)非晶質シリコン層14の温度分布を均一に維持できるので、その際に得られる結晶質シリコン層17内に生成される結晶組織の均一性を保つことができるという効果を奏する。
 以上、本発明によれば、赤色及び近赤外の波長領域のレーザー光を用いて、結晶性の安定した結晶シリコン膜を形成することができる薄膜トランジスタ装置の製造方法、薄膜トランジスタ、それを用いた表示装置を実現することができる。具体的には、ゲート絶縁層、非晶質シリコン層、バッファー層及び光吸収層、それぞれの膜厚が所定の条件を満足するように形成することにより、例えば、ゲート電極のパターン形状等、特に薄膜トランジスタの構造に変更を加えることなく、赤色及び近赤外の波長領域のレーザー光を用いて、結晶性の安定した結晶シリコン層を形成することができる薄膜トランジスタ装置の製造方法、薄膜トランジスタ、それを用いた表示装置を実現することができる。
 さらに、図19に示す表示装置に、本発明の薄膜トランジスタを用いた場合には、均質なTFT特性を備える高画質な表示装置を実現することができる。また、表示品位の向上による歩留り向上、コストダウンも可能となる。
 なお、本発明によれば、例えば、ゲート電極のパターン形状等、特に薄膜トランジスタの構造に変更を加えることなく、膜厚条件を上記の範囲にとるだけ効果を実現することが可能になるので、例えば、より高精細な表示装置を作製する場合においても、その設計の柔軟性を保つことが出来る点が従来の技術より優れているといえる。
 以上、本発明の薄膜トランジスタ装置の製造方法、薄膜トランジスタ、それを用いた表示装置について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
 本発明は、薄膜トランジスタ装置の製造方法、薄膜トランジスタ、それを用いた液晶パネルまたは、有機ELパネル等のELパネルを含む表示装置に利用でき、特に、レーザー結晶化プロセスにおいて、非晶質シリコン膜の下部にゲート絶縁膜を介してゲート電極が存在する場合において、ゲート電極の熱吸収、熱伝播の影響を抑えて、安定した結晶化を行えるため、均質なTFT特性を備える高画質な液晶パネルまたは、有機ELパネル等のELパネルを含む表示装置の製造などに利用できる。
  1  スイッチングトランジスタ
  2  駆動トランジスタ
  3  データ線
  4  走査線
  5  電流供給線
  6  キャパシタンス
  7  有機EL素子
  10  基板
  11  アンダーコート層
  12  ゲート電極
  13、23  ゲート絶縁層
  23a  酸化珪素層
  23b  窒化珪素層
  14、18  非晶質シリコン層
  15  バッファー層
  16  光吸収層
  17  結晶質シリコン層
  19  n+シリコン層
  20  ソース・ドレイン電極
  100、200  薄膜トランジスタ
  401、402、403、404、405  層
  406  基板層

Claims (20)

  1.  基板を準備する第1工程と、
     前記基板上に複数のゲート電極を形成する第2工程と、
     前記複数のゲート電極上にゲート絶縁層を形成する第3工程と、
     前記ゲート絶縁層上に非晶質シリコン層を積層する第4工程と、
     前記非晶質シリコン層上にバッファー層を形成する第5工程と、
     前記バッファー層上に光吸収層を形成する第6工程と、
     波長が600nm以上である所定のレーザーを前記基板に対して一定の方向に相対移動させて、前記所定のレーザーから照射されるレーザー光を用いて前記光吸収層を加熱させ、加熱により発生した熱により間接的に前記非晶質シリコン層を結晶化させて結晶性シリコン層を生成する第7工程と、
     前記複数のゲート電極の各々に対応する前記結晶性シリコン層上の領域にソース電極及びドレイン電極を形成する第8工程と、を含み、
     前記光吸収層の膜厚に前記光吸収層の屈折率を積算した値である前記光吸収層の光学膜厚を、前記レーザー光の波長で除算した値をXとし、
     前記バッファー層の膜厚に前記バッファー層の屈折率を積算した値である前記バッファー層の光学膜厚と、前記非晶質シリコン層の膜厚と前記非晶質シリコン層の屈折率を積算した値である前記非晶質シリコン層の光学膜厚と、前記ゲート絶縁層の膜厚と前記ゲート絶縁層の屈折率を積算した前記ゲート絶縁層の光学膜厚とを和算した値を前記レーザー光の波長で除算した値をYとし、
     さらに、前記光吸収層の密度をρ、比熱をcとし、前記ゲート電極の膜厚をdG、密度をρG、比熱をcGとし、
     前記ゲート電極の上方の光吸収層と前記ゲート電極の上方にない光吸収層の、前記レーザー光に対するそれぞれの光吸収率が等しいときの前記ゲート電極の吸収率の最大値をAGとし、
     (AG/dG)×(ρ×c)/(ρG×cG)の式にて算出される値をΔA’とおいたとき、
     前記ゲート絶縁層の膜厚、前記非晶質性シリコン層の膜厚、前記バッファー層の膜厚、及び、前記光吸収層の膜厚は、下記の式1)から式4)により区画される範囲に属する前記X、及び前記Yを満たす、
     薄膜トランジスタ装置の製造方法。
     式1)Y≦-1.06X-0.22ΔA’+1.07
     式2)Y≧1.29X+1.61*ΔA’+1.44
     式3)Y≧1.06X+0.33ΔA’+0.89
     式4)Y≦1.29X+-0.97*ΔA’-0.95
  2.  前記光吸収層は、前記所定のレーザー光の波長範囲において半透明(消衰係数k<1)である、
     請求項1に記載の薄膜トランジスタ装置の製造方法。
  3.  前記第7工程後、且つ、前記第8工程前において、
     少なくとも前記光吸収層を除去する工程を含む、
     請求項1または2に記載の薄膜トランジスタ装置の製造方法。
  4.  前記第7工程後、且つ、前記第8工程前において、
     前記バッファー層及び前記光吸収層を除去する工程を含む、
     請求項1または2に記載の薄膜トランジスタ装置の製造方法。
  5.  前記第6工程において、前記所定のレーザーは、連続発振または擬似連続発振モードの発振モードで前記レーザー光を照射する、
     請求項1~4のいずれか1項に記載の薄膜トランジスタ装置の製造方法。
  6.  前記所定のレーザーは、固体レーザー装置で構成される、
     請求項1~4のいずれか1項に記載の薄膜トランジスタ装置の製造方法。
  7.  前記所定のレーザーは、半導体レーザー素子を用いたレーザー装置で構成される、
     請求項1~4のいずれか1項に記載の薄膜トランジスタ装置の製造方法。
  8.  前記第6工程において、前記レーザー光の前記非晶質性シリコン層上における照射エネルギー密度の変動は、5%程度未満である、
     請求項1~7のいずれか1項に記載の薄膜トランジスタ装置の製造方法。
  9.  前記所定のレーザーの波長は、600nm~2000nmである、
     請求項1~8のいずれか1項に記載の薄膜トランジスタ装置の製造方法。
  10.  前記第2工程は、前記基板上に酸化シリコンからなるアンダーコート層を形成する工程と、前記アンダーコート層上に複数のゲート電極を形成する工程とを含む、
     請求項1~9のいずれか1項に記載の薄膜トランジスタ装置の製造方法。
  11.  基板と、
     前記基板上に形成された複数のゲート電極と、
     前記複数のゲート電極上に形成されたゲート絶縁層と、
     前記ゲート絶縁層上に形成された結晶性シリコン層と、
     前記複数のゲート電極の各々に対応する前記結晶性シリコン層上の領域に形成されたソース電極及びドレイン電極とを備え、
     前記結晶性シリコン層は、
     前記ゲート絶縁層上に非晶質性シリコン層を形成後、前記非晶質シリコン層上にバッファー層を形成し、前記バッファー層上に所定の光学特性を有する光吸収層を形成し、波長が600nm以上2000nm以下である所定のレーザーを前記基板に対して一定の方向に相対移動させて、前記所定のレーザーから照射されるレーザー光を用いて前記光吸収層にレーザー光を吸収させ発生した熱により、前記バッファー層を介して間接的に非晶質性シリコン層をアニールし結晶化させて生成され、
     前記光吸収層の膜厚に前記光吸収層の屈折率を積算した値である前記光吸収層の光学膜厚を、前記レーザー光の波長で除算した値をXとし、前記バッファー層の膜厚に前記バッファー層の屈折率を積算した値である前記バッファー層の光学膜厚と、前記非晶質シリコン層の膜厚と前記非晶質シリコン層の屈折率を積算した値である前記非晶質シリコン層の光学膜厚と、前記ゲート絶縁層の膜厚と前記ゲート絶縁層の屈折率を積算した前記ゲート絶縁層の光学膜厚とを和算した値を前記レーザー光の波長で除算した値をYとし、さらに、前記光吸収層の密度をρ、比熱をcとし、前記ゲート電極の膜厚をdG、密度をρG、比熱をcGとし、前記ゲート電極の上方の光吸収層と前記ゲート電極の上方にない光吸収層の、前記レーザー光に対するそれぞれの光吸収率が等しいときの前記ゲート電極の吸収率の最大値をAG、とし、(AG/dG)×(ρ×c)/(ρG×cG)の式にて算出される値をΔA’とおいたとき、
     前記ゲート絶縁層の膜厚、前記非晶質性シリコン層の膜厚、前記バッファー層の膜厚、及び、前記光吸収層の膜厚は、下記の式1)から式4)により区画される範囲に属する前記X、及び前記Yを満たす、
     薄膜トランジスタ装置。
     式1)Y≦-1.06X-0.22ΔA’+1.07
     式2)Y≧1.29X+1.61*ΔA’+1.44
     式3)Y≧1.06X+0.33ΔA’+0.89
     式4)Y≦1.29X+-0.97*ΔA’-0.95
  12.  液晶パネルまたはELパネルを含む表示装置であって、
     前記表示装置は、請求項11記載の薄膜トランジスタ装置を備え、
     前記薄膜トランジスタ装置は、前記液晶パネルまたはELパネルを駆動させる、
     表示装置。
  13.  前記ELパネルは、有機ELパネルである、
     請求項12に記載の表示装置。
  14.  基板を準備する第1工程と、
     前記基板上に複数のゲート電極を形成する第2工程と、
     前記複数のゲート電極上にゲート絶縁層を形成する第3工程と、
     前記ゲート絶縁層上に非晶質シリコン層を積層する第4工程と、
     前記非晶質シリコン層上にバッファー層を形成する第5工程と、
     前記バッファー層上に光吸収層を形成する第6工程と、
     波長が600nm以上である所定のレーザーを前記基板に対して一定の方向に相対移動させて、前記所定のレーザーから照射されるレーザー光を用いて前記光吸収層を加熱させ、加熱により発生した熱により間接的に前記非晶質シリコン層を結晶化させて結晶性シリコン層を生成する第7工程と、
     前記複数のゲート電極の各々に対応する前記結晶性シリコン層上の領域にソース電極及びドレイン電極を形成する第8工程と、を含み、
     前記第2工程、前記第3工程、前記第4工程、前記第5工程、及び前記第6工程では、前記第7工程において、前記レーザー光を用いて前記光吸収層を照射した際の、前記ゲート電極外の前記所定のレーザーの相対移動方向の上流領域での前記光吸収層の最高到達温度が、前記レーザー光を用いて前記光吸収層を照射した際の前記ゲート電極上の領域での前記非晶質性シリコン層の最高到達温度より高くなるように、且つ、前記ゲート電極上の領域内では、前記所定のレーザー光を用いて前記光吸収層を照射した際の前記光吸収層の最高到達温度がほぼ一定になるように、構成される、
     薄膜トランジスタ装置の製造方法。
  15.  前記第3工程、前記第4工程、前記第5工程、前記第6工程及び前記第7工程では、
     前記第8工程において、前記レーザー光を用いて前記光吸収層を照射した際の、前記ゲート電極外の前記所定のレーザー光の相対移動方向の上流領域での前記光吸収層の最高到達温度が、前記レーザー光を用いて前記光吸収層を照射した際の前記ゲート電極上の領域での前記光吸収層の最高到達温度より高くなるように、且つ、前記ゲート電極上の領域内では、前記所定のレーザー光を用いて前記光吸収層を照射した際の前記光吸収層の最高到達温度がほぼ一定になるように、
     前記ゲート絶縁層の膜厚、前記非晶質シリコン層の膜厚、前記バッファー層の膜厚、及び、前記光吸収層の膜厚が構成される、
     請求項14に記載の薄膜トランジスタ装置の製造方法。
  16.  基板を準備する第1工程と、
     前記基板上にゲート電極を形成する第2工程と、
     前記ゲート電極上にゲート絶縁層を形成する第3工程と、
     前記ゲート絶縁層上に半導体材料を含む半導体材料層を形成する第4工程と、
     前記半導体材料層上にバッファー層を形成する第5工程と、
     前記バッファー層上に所定の光学定数を有する光吸収層を形成する第6工程と、
     前記光吸収層に対して波長が600nm以上2000nm以下である所定のレーザー光を照射し、前記光吸収層にレーザー光を吸収させ、前記光吸収層から発生した熱により、バッファー層を介して間接的に前記半導体材料層を結晶化させて結晶質の半導体層を生成する第7工程と、
     前記ゲート電極に対応する領域である第1領域とは異なる、前記ゲート電極に対応しない領域である第2領域における前記半導体層上に、ソース電極及びドレイン電極を形成する第8工程と、を含み、
     前記第3工程、前記第4工程、前記第5工程及び前記第6工程において、前記光吸収層の前記第2領域での単位体積あたりの発熱量が、前記光吸収層の前記第1領域での単位体積あたりの発熱量よりも大きくなるように前記ゲート絶縁層、前記半導体材料層、前記バッファー層及び前記光吸収層を形成することにより、前記第7工程において、前記所定のレーザー光が照射されることによって発熱した前記第1領域の前記光吸収層から、前記ゲート電極に対して熱伝導して、前記ゲート電極に吸収されている熱分を、第2領域の前記半導体材料層に対して熱拡散することを抑えて蓄熱させた状態にさせ、かつ、発熱している前記第1領域の前記光吸収層において、等しい温度分布を有する部位を形成させて、前記半導体材料層を結晶化させる、
     薄膜トランジスタ装置の製造方法。
  17.  前記第3工程、前記第4工程、前記第5工程及び前記第6工程では、
     前記光吸収層の前記第2領域での単位体積あたりの発熱量が、前記光吸収層の前記第1領域での単位体積あたりの発熱量よりも大きくなるように、
     前記ゲート絶縁層の膜厚、前記非晶質シリコン層の膜厚、前記バッファー層の膜厚及び前記光吸収層が構成される、
     請求項16に記載の薄膜トランジスタ装置の製造方法。
  18.  前記光吸収層の前記第2領域は、前記第7工程における前記所定のレーザー光の前記基板に対する相対移動方向において、前記第1領域に対して上流領域および下流領域に対応している、
     請求項16に記載の薄膜トランジスタ装置の製造方法。
  19.  前記第3工程、前記第4工程、前記第5工程及び前記第6工程では、
     前記第7工程において、前記半導体材料層の前記第2領域における単位体積あたりの発熱量が、前記半導体材料層の前記第1領域における単位体積あたりの発熱量に比べて、前記ゲート電極の単位体積あたりの発熱量以上大きくなるように、構成される、
     請求項16に記載の薄膜トランジスタ装置の製造方法。
  20.  前記第3工程、前記第4工程、前記第5工程及び前記第6工程では、
     前記第7工程において、前記光吸収層の前記第1領域に形成される前記等しい温度分布を有する部位における大きさが、前記第1領域に対して0.8以上1.0以下となるように構成される、
     請求項16に記載の薄膜トランジスタ装置の製造方法。
PCT/JP2011/006196 2011-11-07 2011-11-07 薄膜トランジスタ装置の製造方法、薄膜トランジスタ装置および表示装置 WO2013069045A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180006689.3A CN103283006A (zh) 2011-11-07 2011-11-07 薄膜晶体管器件的制造方法、薄膜晶体管器件以及显示装置
PCT/JP2011/006196 WO2013069045A1 (ja) 2011-11-07 2011-11-07 薄膜トランジスタ装置の製造方法、薄膜トランジスタ装置および表示装置
US13/495,149 US8865529B2 (en) 2011-11-07 2012-06-13 Thin-film transistor device manufacturing method, thin-film transistor device, and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/006196 WO2013069045A1 (ja) 2011-11-07 2011-11-07 薄膜トランジスタ装置の製造方法、薄膜トランジスタ装置および表示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/495,149 Continuation US8865529B2 (en) 2011-11-07 2012-06-13 Thin-film transistor device manufacturing method, thin-film transistor device, and display device

Publications (1)

Publication Number Publication Date
WO2013069045A1 true WO2013069045A1 (ja) 2013-05-16

Family

ID=48288637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006196 WO2013069045A1 (ja) 2011-11-07 2011-11-07 薄膜トランジスタ装置の製造方法、薄膜トランジスタ装置および表示装置

Country Status (3)

Country Link
US (1) US8865529B2 (ja)
CN (1) CN103283006A (ja)
WO (1) WO2013069045A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425562A (zh) * 2013-09-02 2015-03-18 乐金显示有限公司 有机发光二极管显示器
CN109545820A (zh) * 2017-09-22 2019-03-29 三星显示有限公司 显示装置和制造该显示装置的方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856392B (zh) * 2012-10-09 2015-12-02 深圳市华星光电技术有限公司 薄膜晶体管主动装置及其制作方法
US9362428B2 (en) 2012-11-27 2016-06-07 Artilux, Inc. Photonic lock based high bandwidth photodetector
US10916669B2 (en) 2012-12-10 2021-02-09 Artilux, Inc. Photonic lock based high bandwidth photodetector
US10388806B2 (en) * 2012-12-10 2019-08-20 Artilux, Inc. Photonic lock based high bandwidth photodetector
CN105990098B (zh) * 2015-02-16 2019-09-13 上海和辉光电有限公司 形成多晶硅薄膜的方法及包含多晶硅薄膜的薄膜晶体管
TWI593024B (zh) 2015-07-24 2017-07-21 友達光電股份有限公司 薄膜電晶體的製造方法
US10644187B2 (en) 2015-07-24 2020-05-05 Artilux, Inc. Multi-wafer based light absorption apparatus and applications thereof
CN105845737B (zh) * 2016-05-17 2019-07-02 京东方科技集团股份有限公司 薄膜晶体管及其制造方法、阵列基板、显示装置
TWI651848B (zh) 2016-12-13 2019-02-21 友達光電股份有限公司 金屬氧化物半導體層的結晶方法、半導體結構、主動陣列基板、及氧化銦鎵鋅晶體
JP2018107190A (ja) * 2016-12-22 2018-07-05 トヨタ自動車株式会社 半導体装置の製造方法
CN109841501A (zh) * 2019-03-12 2019-06-04 深圳第三代半导体研究院 一种高质量半极性二维超薄铟氮/镓氮叠层结构及其制备方法
EP3767686A1 (en) * 2019-07-18 2021-01-20 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO Method of manufacturing a thin-film photovoltaic product
CN113113431B (zh) * 2021-04-13 2023-08-29 合肥鑫晟光电科技有限公司 阵列基板及其制备方法和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035964A (ja) * 2005-07-27 2007-02-08 Sony Corp 薄膜トランジスタとその製造方法、及び表示装置
JP2007220918A (ja) * 2006-02-16 2007-08-30 Ulvac Japan Ltd レーザアニール方法、薄膜半導体装置及びその製造方法、並びに表示装置及びその製造方法
JP2008288425A (ja) * 2007-05-18 2008-11-27 Sony Corp 薄膜の結晶化方法、薄膜半導体装置の製造方法、電子機器の製造方法、および表示装置の製造方法
JP2010287645A (ja) * 2009-06-10 2010-12-24 Sharp Corp 薄膜トランジスタおよびその製造方法
JP2011040587A (ja) * 2009-08-12 2011-02-24 Sony Corp 半導体製造方法、半導体製造装置、半導体装置および表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242052A (ja) 1997-03-03 1998-09-11 Sanyo Electric Co Ltd 多結晶シリコン薄膜トランジスタ
KR100707026B1 (ko) * 2003-11-26 2007-04-11 비오이 하이디스 테크놀로지 주식회사 비정질실리콘막의 결정화 방법
JP4200458B2 (ja) * 2006-05-10 2008-12-24 ソニー株式会社 薄膜トランジスタの製造方法
JP5245287B2 (ja) * 2007-05-18 2013-07-24 ソニー株式会社 半導体装置の製造方法、薄膜トランジスタ基板の製造方法および表示装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035964A (ja) * 2005-07-27 2007-02-08 Sony Corp 薄膜トランジスタとその製造方法、及び表示装置
JP2007220918A (ja) * 2006-02-16 2007-08-30 Ulvac Japan Ltd レーザアニール方法、薄膜半導体装置及びその製造方法、並びに表示装置及びその製造方法
JP2008288425A (ja) * 2007-05-18 2008-11-27 Sony Corp 薄膜の結晶化方法、薄膜半導体装置の製造方法、電子機器の製造方法、および表示装置の製造方法
JP2010287645A (ja) * 2009-06-10 2010-12-24 Sharp Corp 薄膜トランジスタおよびその製造方法
JP2011040587A (ja) * 2009-08-12 2011-02-24 Sony Corp 半導体製造方法、半導体製造装置、半導体装置および表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425562A (zh) * 2013-09-02 2015-03-18 乐金显示有限公司 有机发光二极管显示器
US9590201B2 (en) 2013-09-02 2017-03-07 Lg Display Co., Ltd. Organic light emitting diode display
CN104425562B (zh) * 2013-09-02 2017-08-25 乐金显示有限公司 有机发光二极管显示器
CN109545820A (zh) * 2017-09-22 2019-03-29 三星显示有限公司 显示装置和制造该显示装置的方法
CN109545820B (zh) * 2017-09-22 2023-11-10 三星显示有限公司 显示装置和制造该显示装置的方法

Also Published As

Publication number Publication date
US20130164892A1 (en) 2013-06-27
US8865529B2 (en) 2014-10-21
CN103283006A (zh) 2013-09-04

Similar Documents

Publication Publication Date Title
WO2013069045A1 (ja) 薄膜トランジスタ装置の製造方法、薄膜トランジスタ装置および表示装置
US9929274B2 (en) Thin-film transistor, method for fabricating thin-film transistor, and display device
JPWO2011161714A1 (ja) シリコン薄膜の結晶化方法およびシリコンtft装置の製造方法
WO2013030865A1 (ja) 薄膜トランジスタアレイの製造方法、薄膜トランジスタアレイおよび表示装置
JP5309387B2 (ja) 半導体層とこの半導体層を用いた半導体装置および表示装置
WO2012153365A1 (ja) 薄膜トランジスタ装置の製造方法、薄膜トランジスタ装置および表示装置
JP2011066243A (ja) 結晶シリコン膜の形成方法、それを用いた薄膜トランジスタおよび表示装置
JP4856252B2 (ja) 薄膜トランジスタの製造方法
US8778746B2 (en) Thin-film transistor device manufacturing method, thin-film transistor, and display device
WO2012114379A1 (ja) 薄膜トランジスタ装置の製造方法、薄膜トランジスタ装置および表示装置
JP2013161963A (ja) 薄膜トランジスタ、薄膜トランジスタの製造方法、及び表示装置
JP2013232548A (ja) 薄膜トランジスタ装置の製造方法、薄膜トランジスタ装置および表示装置
US8530900B2 (en) Method for selectively forming crystalline silicon layer regions above gate electrodes
JP2009147256A (ja) ディスプレーデバイス用半導体装置の製造方法
JPWO2013069045A1 (ja) 薄膜トランジスタ装置の製造方法、薄膜トランジスタ装置および表示装置
JP4239744B2 (ja) 薄膜トランジスタの製造方法
JPWO2013030865A1 (ja) 薄膜トランジスタアレイの製造方法、薄膜トランジスタアレイおよび表示装置
JP5143411B2 (ja) 薄膜Si素子の製造方法
Sugawara et al. The uniform crystallization process towards the bottom-gated LTPS TFT back-plane technology for large-sized AM-OLED displays by CW green laser annealing
WO2012060104A1 (ja) トランジスタの製造方法、トランジスタ、および、表示装置
WO2013080246A1 (ja) 結晶性基板の製造方法
WO2013018123A1 (ja) 薄膜トランジスタ及びその製造方法
JPWO2013080248A1 (ja) 薄膜トランジスタアレイの製造方法、薄膜トランジスタアレイ及び表示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012518670

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875273

Country of ref document: EP

Kind code of ref document: A1