JPWO2013080248A1 - 薄膜トランジスタアレイの製造方法、薄膜トランジスタアレイ及び表示装置 - Google Patents

薄膜トランジスタアレイの製造方法、薄膜トランジスタアレイ及び表示装置 Download PDF

Info

Publication number
JPWO2013080248A1
JPWO2013080248A1 JP2012521814A JP2012521814A JPWO2013080248A1 JP WO2013080248 A1 JPWO2013080248 A1 JP WO2013080248A1 JP 2012521814 A JP2012521814 A JP 2012521814A JP 2012521814 A JP2012521814 A JP 2012521814A JP WO2013080248 A1 JPWO2013080248 A1 JP WO2013080248A1
Authority
JP
Japan
Prior art keywords
silicon layer
amorphous silicon
region
film transistor
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012521814A
Other languages
English (en)
Inventor
光正 松本
光正 松本
祐太 菅原
祐太 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2012521814A priority Critical patent/JPWO2013080248A1/ja
Publication of JPWO2013080248A1 publication Critical patent/JPWO2013080248A1/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

基板(1)を準備する第1工程と、基板(1)上に複数のゲート電極(3a,3b)を形成する第2工程と、複数のゲート電極(3a,3b)上にゲート絶縁層(6)を形成する第3工程と、ゲート絶縁層(6)上に非晶質性シリコン層を形成する第4工程と、波長が473nm以上561nm以下であるレーザー光をゲート電極(3a,3b)の上方の領域における非晶質性シリコン層に照射することにより、ゲート電極(3a,3b)の上方の領域に結晶性シリコン層領域(7a’,7b’)を形成するとともに、ゲート電極(3a,3b)の上方以外の領域に非晶質性シリコン層領域(12’)を形成する第5工程と、結晶性シリコン層領域(7a’,7b’)の上方にソース電極及びドレイン電極を形成する第6工程と、を含む。ゲート絶縁層(6)の膜厚及び非晶質性シリコン層の膜厚は、所定の関係式を満たすように構成される。

Description

本発明は、薄膜トランジスタアレイの製造方法、薄膜トランジスタアレイ及び表示装置に関する。
近年、液晶ディスプレイに代わる次世代のフラットパネルディスプレイの一つとして、有機EL(Electro Luminescence)を利用した有機ELディスプレイが注目されている。有機ELディスプレイ等のアクティブマトリクス方式の表示装置には、複数の薄膜トランジスタ(TFT:Thin Film Transistor)素子がマトリクス状に配置された薄膜トランジスタアレイが用いられる。
この薄膜トランジスタアレイとしては、ゲート電極がシリコン層よりも基板側に形成されたボトムゲート型の薄膜トランジスタアレイが一般的に用いられる。図10は、従来の薄膜トランジスタアレイの製造方法におけるレーザーアニール法を模式的に示す斜視図である。従来の薄膜トランジスタアレイ500は、次のようにして製造される(例えば、特許文献1及び2参照)。
まず、基板51を準備し(第1工程)、基板51上にアンダーコート層52を形成する。次に、アンダーコート層52上に複数のゲート電極53a,53bを形成する(第2工程)。続いて、複数のゲート電極53a,53b上に、ゲート絶縁層56を形成する(第3工程)。このゲート絶縁層56は、窒化珪素膜54及び酸化珪素膜55を積層することによって形成される。例えば、窒化珪素膜54の膜厚は約65nm、酸化珪素膜55の膜厚は約85nmである。その後、ゲート絶縁層56上にアモルファスシリコン(非晶質性シリコン)で構成された非晶質性シリコン層57を形成する(第4工程)。例えば、非晶質性シリコン層57の膜厚は約45nmである。さらにその後、レーザーアニール法によりポリシリコン(多結晶シリコン)で構成された結晶性シリコン層58を形成する(第5工程)。このレーザーアニール法では、図10に示すように、レーザー光源(図示せず)を基板51に対して所定方向に相対的に移動させ、レーザー光を非晶質性シリコン層57の全域に照射する。これにより、レーザー光に基づく熱によって非晶質性シリコン層57の全域が結晶化され、結晶性シリコン層58が形成される。その後、複数のゲート電極53a,53bに対応する結晶性シリコン層58の上方の領域に、ソース電極(図示せず)及びドレイン電極(図示せず)を形成する(第6工程)。
特開2002−261008号公報 特開2010−192611号公報
上述した従来の薄膜トランジスタアレイの製造方法では、次のような問題が生じる。図11は、従来の薄膜トランジスタアレイの製造方法において、非晶質性シリコン層に対してレーザー光を照射した状態を示す平面図である。図11において斜線が施された部分は、非晶質性シリコン層が結晶化されることにより結晶性シリコン層が形成された領域を示している。図11において、領域61は、ゲート電極の上方の領域であり、領域62は、ゲート電極の上方以外の領域である。図11に示すように、第5工程では、領域61及び領域62、即ち、非晶質性シリコン層の全域が結晶化されることにより、結晶性シリコン層が形成される。
しかしながら、第5工程において、非晶質性シリコン層の全域が結晶化されることにより、レーザー光に基づく熱がゲート絶縁層を通して基板の全域に伝達される。これにより、基板に大きな熱的負荷が作用することによって、基板にクラック又は反りが生じるおそれがある。また、非晶質性シリコン層の全域が結晶化される際に、結晶性シリコン層には大きな応力が発生する。この応力が基板に伝達されることによっても、基板にクラック又は反りが生じるおそれがある。
本発明は上記従来の課題を解決するものであり、その目的は、基板のクラック又は反りを抑制することができる薄膜トランジスタアレイの製造方法、薄膜トランジスタアレイ及び表示装置を提供することである。
上記目的を達成するために、本発明の一態様に係る薄膜トランジスタアレイの製造方法は、基板を準備する第1工程と、前記基板上に複数のゲート電極を形成する第2工程と、前記複数のゲート電極上にゲート絶縁層を形成する第3工程と、前記ゲート絶縁層上に非晶質性シリコン層を形成する第4工程と、波長が473nm以上561nm以下であるレーザー光を照射するレーザー光源を前記基板に対して所定の方向に相対的に移動させて、前記レーザー光を前記ゲート電極の上方の領域における前記非晶質性シリコン層に照射することにより、前記ゲート電極の上方の領域における前記非晶質性シリコン層を結晶化させて結晶性シリコン層領域を形成する第5工程と、前記結晶性シリコン層領域の上方にソース電極及びドレイン電極を形成する第6工程と、を含み、前記第4工程で形成された前記非晶質性シリコン層の膜厚に前記非晶質性シリコン層の屈折率を積算した値である前記非晶質性シリコン層の光学膜厚を、前記レーザー光の波長で除算した値をXとし、前記第3工程で形成された前記ゲート絶縁層の膜厚に前記ゲート絶縁層の屈折率を積算した値である前記ゲート絶縁層の光学膜厚を、前記レーザー光の波長で除算した値をYとしたとき、前記X及び前記Yは、下記の式1)から式5)で規定される範囲を満たす数値である。ここで、式1)Y≧−4400X+12600X−14900X+9320X−3250X+594X−43.7、式2)Y≦0.69、式3)Y≧0.33、式4)X≦0.85、式5)Y≦−119000X+529000X−980000X+965000X−533000X+157000X−19100である。
本発明の薄膜トランジスタアレイでは、非晶質性シリコン層が局所的に結晶化されることにより、レーザー光に基づく熱がゲート絶縁層を通して基板に局所的に伝達される。これにより、基板に作用する熱的負荷を小さく抑えることができるので、基板にクラック又は反りが生じるのを抑制することができる。また、非晶質性シリコン層が結晶化される際に発生する応力を小さく抑えることができるので、このことによっても、基板にクラック又は反りが生じるのを抑制することができる。
図1は、本発明の実施の形態に係る薄膜トランジスタアレイの構成を示す断面図である。 図2Aは、本発明の実施の形態に係る薄膜トランジスタアレイの製造方法を説明するための断面図である。 図2Bは、本発明の実施の形態に係る薄膜トランジスタアレイの製造方法を説明するための断面図である。 図2Cは、本発明の実施の形態に係る薄膜トランジスタアレイの製造方法を説明するための断面図である。 図2Dは、本発明の実施の形態に係る薄膜トランジスタアレイの製造方法を説明するための断面図である。 図2Eは、本発明の実施の形態に係る薄膜トランジスタアレイの製造方法を説明するための断面図である。 図2Fは、本発明の実施の形態に係る薄膜トランジスタアレイの製造方法を説明するための断面図である。 図2Gは、本発明の実施の形態に係る薄膜トランジスタアレイの製造方法を説明するための断面図である。 図2Hは、本発明の実施の形態に係る薄膜トランジスタアレイの製造方法を説明するための断面図である。 図2Iは、本発明の実施の形態に係る薄膜トランジスタアレイの製造方法を説明するための断面図である。 図2Jは、本発明の実施の形態に係る薄膜トランジスタアレイの製造方法を説明するための断面図である。 図2Kは、本発明の実施の形態に係る薄膜トランジスタアレイの製造方法を説明するための断面図である。 図2Lは、本発明の実施の形態に係る薄膜トランジスタアレイの製造方法を説明するための断面図である。 図3は、図2Fにおけるレーザーアニール法を模式的に示す斜視図である。 図4は、レーザーアニール法により結晶性シリコン層領域を形成する際に、第3工程で形成されるゲート絶縁層及び第4工程で形成される非晶質性シリコン層にそれぞれ好適な膜厚の範囲が存在することを説明するための図である。 図5Aは、ゲート電極の上方の領域における、第4工程で形成された非晶質性シリコン層のレーザー光の吸収率を示す分布図である。 図5Bは、ゲート電極の上方以外の領域における、第4工程で形成された非晶質性シリコン層のレーザー光の吸収率を示す分布図である。 図5Cは、ゲート電極の上方の領域における非晶質性シリコン層のレーザー光の吸収率と、ゲート電極の上方以外の領域における非晶質性シリコン層のレーザー光の吸収率との差分を示す分布図である。 図6は、第4工程で形成された非晶質性シリコン層のレーザー光の吸収率と、レーザー光のエネルギー密度の相対値との関係を示す図である。 図7は、第4工程で形成された非晶質性シリコン層に対してレーザー光を照射した状態を示す平面図である。 図8は、非晶質性シリコン層に対するレーザー光の照射面積と基板の反り量との関係を示す図である。 図9は、本発明の実施の形態に係る薄膜トランジスタアレイを用いた表示装置を示す図である。 図10は、従来の薄膜トランジスタアレイの製造方法におけるレーザーアニール法を模式的に示す斜視図である。 図11は、従来の薄膜トランジスタアレイの製造方法において、非晶質性シリコン層に対してレーザー光を照射した状態を示す平面図である。
本発明に係る薄膜トランジスタアレイの製造方法の一態様は、基板を準備する第1工程と、前記基板上に複数のゲート電極を形成する第2工程と、前記複数のゲート電極上にゲート絶縁層を形成する第3工程と、前記ゲート絶縁層上に非晶質性シリコン層を形成する第4工程と、波長が473nm以上561nm以下であるレーザー光を照射するレーザー光源を前記基板に対して所定の方向に相対的に移動させて、前記レーザー光を前記ゲート電極の上方の領域における前記非晶質性シリコン層に照射することにより、前記ゲート電極の上方の領域における前記非晶質性シリコン層を結晶化させて結晶性シリコン層領域を形成する第5工程と、前記結晶性シリコン層領域の上方にソース電極及びドレイン電極を形成する第6工程と、を含み、前記第4工程で形成された前記非晶質性シリコン層の膜厚に前記非晶質性シリコン層の屈折率を積算した値である前記非晶質性シリコン層の光学膜厚を、前記レーザー光の波長で除算した値をXとし、前記第3工程で形成された前記ゲート絶縁層の膜厚に前記ゲート絶縁層の屈折率を積算した値である前記ゲート絶縁層の光学膜厚を、前記レーザー光の波長で除算した値をYとしたとき、前記X及び前記Yは、下記の式1)から式5)で規定される範囲を満たす数値である。ここで、式1)Y≧−4400X+12600X−14900X+9320X−3250X+594X−43.7、式2)Y≦0.69、式3)Y≧0.33、式4)X≦0.85、式5)Y≦−119000X+529000X−980000X+965000X−533000X+157000X−19100である。
本態様によれば、非晶質性シリコン層が局所的に結晶化されることにより、レーザー光に基づく熱がゲート絶縁層を通して基板に局所的に伝達される。これにより、基板に作用する熱的負荷を小さく抑えることができるので、基板にクラック又は反りが生じるのを抑制することができる。また、非晶質性シリコン層が結晶化される際に発生する応力を小さく抑えることができるので、このことによっても、基板にクラック又は反りが生じるのを抑制することができる。
また、本発明に係る薄膜トランジスタアレイの製造方法の一態様において、前記第4工程で形成された前記非晶質性シリコン層の前記レーザー光の吸収率(%)をxとし、前記第4工程で形成された前記非晶質性シリコン層の前記レーザー光の吸収率が23.2(%)である場合に、前記非晶質性シリコン層を結晶化させて前記結晶性シリコン層領域を形成するのに必要な前記レーザー光のエネルギー密度を1としたときの相対値をyとしたとき、前記x及び前記yは、下記の式6)、式7)及び式8)で規定される範囲を満たす数値である。ここで、式6)20≦x≦50、式7)y≧42.9x−1.19、式8)y≦―0.0041x+1.45である。
本態様によれば、レーザー光の照射によって、結晶性シリコン層領域を安定して形成することができる。
また、本発明に係る薄膜トランジスタアレイの製造方法の一態様において、前記第5工程において、前記ゲート電極の上方以外の領域には非晶質性シリコン層領域を形成し、前記非晶質性シリコン層領域には、微結晶シリコンが含まれることが好ましい。
本態様によれば、非晶質性シリコン層領域に微結晶シリコンが含まれることによって、基板に作用する応力を非晶質性シリコン層領域によって緩和することができる。
また、本発明に係る薄膜トランジスタアレイの製造方法の一態様において、前記非晶質性シリコン層領域には、さらに、非晶質性シリコンが含まれることが好ましい。
本態様によれば、非晶質性シリコン層領域にアモルファスシリコンがさらに含まれることによって、基板に作用する応力を非晶質性シリコン層領域によってより効果的に緩和することができる。
また、本発明に係る薄膜トランジスタアレイの製造方法の一態様において、前記第5工程において、前記ゲート電極の上方以外の領域には非晶質性シリコン層領域を形成し、前記非晶質性シリコン層領域には、非晶質性シリコンが含まれることが好ましい。
本態様によれば、非晶質性シリコン層領域にアモルファスシリコンが含まれることによって、基板に作用する応力を非晶質性シリコン層領域によって効果的に緩和することができる。
また、本発明に係る薄膜トランジスタアレイの製造方法の一態様において、前記第5工程において、前記レーザー光源は、連続発振モード又は擬似連続発振モードで前記レーザー光を照射することが好ましい。
本態様によれば、連続発振モード又は擬似連続発振モードでレーザー光を照射することにより、非晶質性シリコン層を溶融状態に保持することができる。
また、本発明に係る薄膜トランジスタアレイの製造方法の一態様において、前記レーザー光の波長に対する、前記第3工程で形成された前記ゲート絶縁層の消衰係数は0.01以下であることが好ましい。
本態様によれば、レーザー光の波長に対するゲート絶縁層の消衰係数を0.01以下とすることにより、レーザー光はゲート絶縁層にほとんど吸収されないので、レーザー光の熱がゲート絶縁層内において発生するのを抑制することができる。これにより、ゲート電極の上方以外の領域において、レーザー光の熱が基板に伝達されるのを効果的に抑制することができる。
また、本発明に係る薄膜トランジスタアレイの製造方法の一態様において、前記第3工程で形成された前記ゲート絶縁層は、酸化珪素膜であることが好ましい。
本態様によれば、ゲート絶縁層を酸化珪素膜によって形成することができる。
また、本発明に係る薄膜トランジスタアレイの製造方法の一態様において、前記第3工程で形成された前記ゲート絶縁層は、窒化珪素膜であることが好ましい。
本態様によれば、ゲート絶縁層を窒化珪素膜によって形成することができる。
また、本発明に係る薄膜トランジスタアレイの一態様は、基板と、前記基板上に形成された複数のゲート電極と、前記複数のゲート電極上に形成されたゲート絶縁層と、前記複数のゲート電極の各々に対応する前記ゲート絶縁層の上方の領域に形成された結晶性シリコン層と、前記複数のゲート電極の各々に対応する前記結晶性シリコン層の上方の領域に形成されたソース電極及びドレイン電極と、を備え、前記結晶性シリコン層は、前記ゲート絶縁層上に非晶質性シリコン層を形成した後に、波長が473nm以上561nm以下であるレーザー光を照射するレーザー光源を前記基板に対して所定の方向に相対的に移動させて、前記レーザー光を前記ゲート電極の上方の領域における前記非晶質性シリコン層に照射させることにより、前記ゲート電極の上方の領域における前記非晶質性シリコン層を結晶化させて形成され、前記非晶質性シリコン層の膜厚に前記非晶質性シリコン層の屈折率を積算した値である前記非晶質性シリコン層の光学膜厚を、前記レーザー光の波長で除算した値をXとし、前記ゲート絶縁層の膜厚に前記ゲート絶縁層の屈折率を積算した値である前記ゲート絶縁層の光学膜厚を、前記レーザー光の波長で除算した値をYとしたとき、前記X及び前記Yは、下記の式1)から式5)で規定される範囲を満たす数値である。ここで、式1)Y≧−4400X+12600X−14900X+9320X−3250X+594X−43.7、式2)Y≦0.69、式3)Y≧0.33、式4)X≦0.85、式5)Y≦−119000X+529000X−980000X+965000X−533000X+157000X−19100である。
本態様によれば、非晶質性シリコン層が局所的に結晶化されることにより、レーザー光に基づく熱がゲート絶縁層を通して基板に局所的に伝達される。これにより、基板に作用する熱的負荷を小さく抑えることができるので、基板にクラック又は反りが生じるのを抑制することができる。また、非晶質性シリコン層が結晶化される際に発生する応力を小さく抑えることができるので、このことによっても、基板にクラック又は反りが生じるのを抑制することができる。
また、本発明に係る表示装置の一態様は、表示パネルと、請求項10に記載の薄膜トランジスタアレイと、を備え、前記薄膜トランジスタアレイは、前記表示パネルを駆動させる。
本態様によれば、基板にクラック又は反りが生じるのを抑制することができ、高品質の表示装置を実現することができる。
(実施の形態)
以下、本発明の実施の形態に係る薄膜トランジスタアレイの製造方法、薄膜トランジスタアレイ及び表示装置について、図面を参照しながら説明する。本発明は、請求の範囲の記載に基づいて特定される。よって、以下の実施の形態における構成要素のうち、請求項に記載されていない構成要素は、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。なお、各図は模式図であり、必ずしも厳密に図示したものではない。
図1は、本発明の実施の形態に係る薄膜トランジスタアレイの構成を示す断面図である。 図1に示すように、本実施の形態に係る薄膜トランジスタアレイ200は、複数の薄膜トランジスタ素子100a,100bがマトリクス状に配置されることにより構成されている。なお、理解を容易にするために、図1では、2つの薄膜トランジスタ素子100a,100bのみが図示されている。
薄膜トランジスタ素子100a,100bはそれぞれ、ボトムゲート型の薄膜トランジスタ素子である。薄膜トランジスタ素子100a,100bは同じ構成であるので、以下、薄膜トランジスタ素子100aの構成について説明する。薄膜トランジスタ素子100aは、基板1、アンダーコート層2、ゲート電極3a、ゲート絶縁層6、結晶性シリコン層7a、非晶質性シリコン層8a、コンタクト層9a、ソース電極10Sa及びドレイン電極10Daを備えている。
基板1は、例えば、石英ガラス、無アルカリガラス及び高耐熱性ガラス等のガラス材料で構成されるガラス基板である。
アンダーコート層2は、基板1上に形成されている。このアンダーコート層2は、シリコン窒化膜(SiN)、シリコン酸化膜(SiO)及びシリコン酸窒化膜(SiO)等で構成される。アンダーコート層2は、基板1中に含まれるナトリウム及びリン等の不純物が結晶性シリコン層7aに侵入することを防止する機能を有する。また、このアンダーコート層2は、レーザーアニール法等の高温熱処理プロセスにおいて、基板1に対する熱の影響を緩和させる機能をも有する。
ゲート電極3aは、アンダーコート層2上に所定形状でパターン形成される。ゲート電極3aは、導電性材料及びその合金等の単層構造又は多層構造とすることができ、例えば、モリブデン(Mo)、アルミニウム(Al)、銅(Cu)、タングステン(W)、チタン(Ti)、クロム(Cr)及びモリブデンタングステン(MoW)等で構成することができる。
ゲート絶縁層6は、ゲート電極3a上を覆うようにして、アンダーコート層2上に形成されている。本実施の形態では、ゲート絶縁層6は、窒化珪素(Si)で構成される窒化珪素膜4と、酸化珪素(SiO)で構成される酸化珪素膜5との積層膜で構成されている。
結晶性シリコン層7aは、ゲート電極3aに対応するゲート絶縁層6上の領域に形成されている。この結晶性シリコン層7aは、ポリシリコンで構成されている。なお、この結晶性シリコン層7aは、後述するように、レーザー光を非晶質性シリコン層12に照射して、非晶質性シリコン層12を結晶化させることにより形成される。
非晶質性シリコン層8aは、結晶性シリコン層7a上に形成されている。この非晶質性シリコン層8aは、アモルファスシリコンで構成されている。本実施の形態の薄膜トランジスタ素子100aは、結晶性シリコン層7aと非晶質性シリコン層8aとが積層されることにより構成された2層構造のチャネル層を有している。このチャネル層は、ゲート電極3aの電圧によってキャリアの移動が制御される層である。
コンタクト層9aは、結晶性シリコン層7a及び非晶質性シリコン層8aの側面とゲート絶縁層6の上面とを覆うようにして形成されている。コンタクト層9aは、不純物を高濃度に含む非晶質半導体膜で構成されている。コンタクト層9aは、例えば、アモルファスシリコンに不純物としてリン(P)をドーピングしたn型半導体膜によって構成することができ、1×1019atm/cm以上の高濃度の不純物を含むn層である。
ソース電極10Sa及びドレイン電極10Daは、コンタクト層9a上に形成されている。ソース電極10Sa及びドレイン電極10Daは、間隔を置いて且つ相互に対向して配置されている。ソース電極10Sa及びドレイン電極10Daは、導電性材料及びその合金等の単層構造又は多層構造とすることができ、例えば、アルミニウム(Al)、モリブデン(Mo)、タングステン(W)、銅(Cu)、チタン(Ti)及びクロム(Cr)等で構成される。
薄膜トランジスタ素子100bは、薄膜トランジスタ素子100aと同様に、基板1、アンダーコート層2、ゲート電極3b、ゲート絶縁層6、結晶性シリコン層7b、非晶質性シリコン層8b、コンタクト層9b、ソース電極10Sb及びドレイン電極10Dbを備えている。
次に、本実施の形態に係る薄膜トランジスタアレイ200の製造方法について、図2A〜図2Lを用いて説明する。図2A〜図2Lは、本発明の実施の形態に係る薄膜トランジスタアレイ200の製造方法を説明するための断面図である。
まず、図2Aに示すように、ガラス基板で構成される基板1を準備する(第1工程)。次に、図2Bに示すように、プラズマCVD(Chemical Vapor Deposition)等によって、基板1上にシリコン窒化膜、シリコン酸化膜及びシリコン酸窒化膜等で構成されるアンダーコート層2を形成する。
続いて、図2Cに示すように、アンダーコート層2上に複数のゲート電極3a,3bを形成する(第2工程)。この第2工程においては、例えば、アンダーコート層2上にモリブデンタングステン(MoW)で構成されるゲート金属膜をスパッタによって成膜した後に、フォトリソグラフィ法及びウェットエッチング法を用いてゲート金属膜をパターニングすることにより、所定形状のゲート電極3a,3bを形成することができる。モリブデンタングステン(MoW)のウェットエッチングは、例えば、リン酸(HPO)、硝酸(HNO)、酢酸(CHCOOH)及び水を所定の配合で混合した薬液を用いて行うことができる。
その後、図2Dに示すように、複数のゲート電極3a,3b及びアンダーコート層2を覆うようにして、ゲート絶縁層6を形成する(第3工程)。この第3工程においては、まず、プラズマCVD等によって、窒化珪素(Si)で構成される窒化珪素膜4を複数のゲート電極3a,3b及びアンダーコート層2を覆うようにして成膜する。その後、プラズマCVD等によって、酸化珪素(SiO)で構成される酸化珪素膜5を窒化珪素膜4上に成膜する。酸化珪素膜5は、例えば、シランガス(SiH)及び亜酸化窒素ガス(NO)を所定の濃度比で導入することにより成膜することができる。なお、本実施の形態では、窒化珪素膜4の膜厚は約80nm、酸化珪素膜5の膜厚は約75nmに構成されている。なお、レーザー光の波長に対するゲート絶縁層6の消衰係数は0.01以下であるのが好ましい。これにより、ゲート絶縁層6は、レーザー光をほとんど吸収しない透明な層となる。
その後、図2Eに示すように、ゲート絶縁層6上に非晶質性シリコン層12を形成する(第4工程)。この第4工程では、プラズマCVD等によって、アモルファスシリコンで構成される非晶質性シリコン層12を成膜する。なお、非晶質性シリコン層12は、例えば、シランガス(SiH)及び水素ガス(H)を所定の濃度比で導入することにより成膜することができる。なお、本実施の形態では、非晶質性シリコン層12の膜厚は約65nmに構成されている。
続いて、図2Fに示すように、レーザーアニール法によって、ゲート電極3a,3bの上方の領域における非晶質性シリコン層12を結晶化させて、結晶性シリコン層領域7a’,7b’を形成する(第5工程)。この第5工程においては、第4工程で形成された非晶質性シリコン層12に対して脱水素処理を行った後に、レーザーアニール法によって、非晶質性シリコン層12の全域に対してレーザー光源13からのレーザー光を照射する。このレーザーアニール法では、基板1が搭載されたステージ(図示せず)の位置が固定された状態で、レーザー光源13が基板1に対して所定方向に相対的に移動することにより、線状に集光されたレーザー光が、非晶質性シリコン層12の全域に対して走査しながら照射される。或いは、レーザー光源13の位置が固定された状態で、基板1が搭載されたステージがレーザー光源13に対して所定方向に相対的に移動するように構成することもできる。本実施の形態では、レーザーアニール法で用いられるレーザー光は、473nm以上561nm以下の波長を有する緑色のレーザー光である。
なお、レーザー光は、連続発振モード又は擬似連続発振モードで照射されることが好ましい。その理由として、連続発振モード又は擬似連続発振モードでレーザー光を照射することにより、非晶質性シリコン層12を溶融状態に保持することができるためである。なお、上記発振モード以外の発振モード、例えばパルス発振モードでレーザー光が照射される場合には、非晶質性シリコン層12にレーザー光が非連続的に照射されるため、非晶質性シリコン層12を溶融状態に保持することが難しい。なお、レーザー光源13は、固体レーザー装置、或いは、半導体レーザー素子を用いたレーザー装置で構成することができる。
本実施の形態では、第3工程で形成されたゲート絶縁層6の膜厚及び第4工程で形成された非晶質性シリコン層12の膜厚は、後述する所定の関係式(式1〜式5)を満たすように構成されている。これにより、後述するように、ゲート電極3a,3bの上方の領域における非晶質性シリコン層12のレーザー光の吸収率は、ゲート電極3a,3bの上方以外の領域における非晶質性シリコン層12のレーザー光の吸収率よりも大きくなる。そのため、ゲート電極3a,3bの上方の領域においては、レーザー光が非晶質性シリコン層12に吸収されて非晶質性シリコン層12内を多重反射するので、この領域における非晶質性シリコン層12はレーザー光の熱に基づいて結晶化される。一方、ゲート電極3a,3bの上方以外の領域においては、レーザー光が非晶質性シリコン層12に吸収されずに非晶質性シリコン層12を透過するので、この領域における非晶質性シリコン層12は結晶化されない。従って、図3に示すように、ゲート電極3a,3bの上方の領域には、ポリシリコンで構成される結晶性シリコン層領域7a’,7b’が形成され、ゲート電極3a,3bの上方以外の領域には、アモルファスシリコンで構成される非晶質性シリコン層領域12’が形成される。
ここで、第3工程で形成されたゲート絶縁層6の膜厚及び第4工程で形成された非晶質性シリコン層12の膜厚が満たすべき所定の関係式(式1〜式5)について説明する。所定の関係式を表現するための変数X,Yをそれぞれ次のように定義する。まず、第4工程で形成された非晶質性シリコン層12の膜厚に非晶質性シリコン層12の屈折率を積算した値である非晶質性シリコン層12の光学膜厚を、レーザー光の波長で除算した値をXとする。次に、窒化珪素膜4の膜厚に窒化珪素膜4の屈折率を積算した値である窒化珪素膜4の光学膜厚と、酸化珪素膜5の膜厚に酸化珪素膜5の屈折率を積算した値である酸化珪素膜5の光学膜厚とを和算する。そして、この和算により得られた値をレーザー光の波長で除算した値をYとする。
このようにして定義されたX,Yを用いて、ゲート絶縁層6及び非晶質性シリコン層12の好適な膜厚の範囲を定める。具体的には、ゲート絶縁層6の膜厚及び非晶質性シリコン層12の膜厚は、下記の式1〜式5で規定される範囲に属するX,Yを満たすように構成される。
Y≧−4400X+12600X−14900X+9320X−3250X+594X−43.7 (式1)
Y≦0.69 (式2)
Y≧0.33 (式3)
X≦0.85 (式4)
Y≦−119000X+529000X−980000X+965000X−533000X+157000X−19100 (式5)
図4は、レーザーアニール法により結晶性シリコン層領域7a’,7b’を形成する際に、ゲート絶縁層6及び非晶質性シリコン層12にそれぞれ好適な膜厚の範囲が存在することを説明するための図である。図4において、横軸は上記Xを表し、縦軸は上記Yを表している。図4は、上記X,Yの大きさに対して、非晶質性シリコン層12のレーザー光の吸収率の差分(具体的には、ゲート電極3a,3bの上方の領域における非晶質性シリコン層12のレーザー光の吸収率と、ゲート電極3a,3bの上方以外の領域における非晶質性シリコン層12のレーザー光の吸収率との差分)がどのように分布しているかを示している。
図4において破線で囲まれた領域は、レーザー光の吸収率の差分が0より大きい(即ち、ゲート電極3a,3bの上方の領域における非晶質性シリコン層12のレーザー光の吸収率が、ゲート電極3a,3bの上方以外の領域における非晶質性シリコン層12のレーザー光の吸収率よりも大きい)領域であり、上記式1〜式5は、この領域内に属するX,Yを表す数式である。従って、ゲート絶縁層6の膜厚及び非晶質性シリコン層12の膜厚をそれぞれ、式1〜式5で規定される範囲に属するX,Yを満たすように構成することにより、ゲート電極3a,3bの上方の領域における非晶質性シリコン層12のレーザー光の吸収率は、ゲート電極3a,3bの上方以外の領域における非晶質性シリコン層12のレーザー光の吸収率よりも大きくなる。これにより、第5工程において非晶質性シリコン層12にレーザー光を照射した際に、ゲート電極3a,3bの上方の領域に結晶性シリコン層領域7a’,7b’が形成され、ゲート電極3a,3bの上方以外の領域に非晶質性シリコン層領域12’が形成される。
上述した図4の分布図は、図5A〜図5Cの各分布図に基づいて得ることができる。図5Aは、ゲート電極3a,3bの上方の領域における、第4工程で形成された非晶質性シリコン層12のレーザー光の吸収率を示す分布図である。図5Bは、ゲート電極3a,3bの上方以外の領域における、第4工程で形成された非晶質性シリコン層12のレーザー光の吸収率を示す分布図である。図5Cは、ゲート電極3a,3bの上方の領域における非晶質性シリコン層12のレーザー光の吸収率と、ゲート電極3a,3bの上方以外の領域における非晶質性シリコン層12のレーザー光の吸収率との差分を示す分布図である。図5A〜図5Cにおいて、横軸は、第4工程で形成された非晶質性シリコン層12の膜厚の実寸値を表し、縦軸は、第3工程で形成されたゲート絶縁層6の膜厚の実寸値を表している。
図5A及び図5Bは、ゲート絶縁層6の膜厚及び非晶質性シリコン層12の膜厚に対して、非晶質性シリコン層12のレーザー光の吸収率がどのように分布しているかを示している。図5Cは、ゲート絶縁層6の膜厚及び非晶質性シリコン層12の膜厚に対して、非晶質性シリコン層12のレーザー光の吸収率の差分(具体的には、ゲート電極3a,3bの上方の領域における非晶質性シリコン層12のレーザー光の吸収率と、ゲート電極3a,3bの上方以外の領域における非晶質性シリコン層12のレーザー光の吸収率との差分)がどのように分布しているかを示している。
図5Aに示されるレーザー光の吸収率と図5Bに示されるレーザー光の吸収率とを比較することにより、図5Aに示されるレーザー光の吸収率が図5Bに示されるレーザー光の吸収率よりも大きくなるようなゲート絶縁層6の膜厚及び非晶質性シリコン層12の膜厚の範囲を求めると、図5A〜図5Cにおいて破線で囲まれた領域となる。この領域は、図4において破線で囲まれた領域に対応している。なお、図5Cにおける横軸及び縦軸の膜厚をそれぞれ光学換算することにより、図4の分布図が得られる。
また、第5工程において、結晶性シリコン層領域7a’,7b’を安定して形成するために、レーザー光のエネルギー密度は、所定の関係式(式6〜式8)を満たすことが好ましい。図6は、第4工程で形成された非晶質性シリコン層12のレーザー光の吸収率と、レーザー光のエネルギー密度の相対値との関係を示す図である。図6において、横軸(x軸)は、第4工程で形成された非晶質性シリコン層12のレーザ光の吸収率(%)を表している。縦軸(y軸)は、第4工程で形成された非晶質性シリコン層12のレーザー光の吸収率が23.2(%)である場合に、非晶質性シリコン層12を結晶化させて結晶性シリコン層領域7a’,7b’を形成するのに少なくとも必要なレーザー光のエネルギー密度を1としたときの相対値を表している。このとき、非晶質性シリコン層12のレーザー光の吸収率及びレーザー光のエネルギー密度は、下記の式6、式7及び式8で規定される範囲に属するx,yを満たすように構成されることが好ましい。
20≦x≦50 (式6)
y≧42.9x−1.19 (式7)
y≦−0.0041x+1.45 (式8)
図6において、上側のグラフは式8を表し、下側のグラフは式7を表している。非晶質性シリコン層12のレーザー光の吸収率及びレーザー光のエネルギー密度が、下記の式6、式7及び式8で規定される範囲に属するx,yを満たすように構成されることによって、結晶性シリコン層領域7a’,7b’を安定して形成することができる。なお、yの値が式7で規定される範囲よりも小さい場合には、レーザー光のエネルギー密度が低下し過ぎてしまい、非晶質性シリコン層12を結晶化することができない。yの値が式8で規定される範囲よりも大きい場合には、レーザー光のエネルギー密度が増大し過ぎてしまい、非晶質性シリコン層12がレーザー光によって損傷されるおそれがある。
上述した第5工程が行われた後には、図2Gに示すように、プラズマCVDにより、ゲート絶縁層6上に、2層目の非晶質性シリコン層8を形成する。その後、図2Hに示すように、結晶性シリコン層領域7a’,7b’及び非晶質性シリコン層領域12’をパターニングし、結晶性シリコン層領域7a’,7b’及び非晶質性シリコン層領域12’の除去すべき部分をエッチングにより除去する。これにより、薄膜トランジスタ素子100a,100bにおいて、結晶性シリコン層7a,7bと非晶質性シリコン層8a,8bとが積層されたチャネル層を形成することができる。
その後、図2Iに示すように、結晶性シリコン層7a,7b及び非晶質性シリコン層8a,8bの側面とゲート絶縁層6とを覆うようにして、コンタクト層9を成膜する。この工程においては、例えば、プラズマCVDによって、リン(P)等の5価元素の不純物をドープしたアモルファスシリコンで構成されるコンタクト層9を成膜する。
その後、コンタクト層9上にソース電極10Sa,10Sb及びドレイン電極10Da,10Dbをパターン形成する(第6工程)。この第6工程においては、まず、図2Jに示すように、ソース電極10Sa,10Sb及びドレイン電極10Da,10Dbの材料で構成されたソースドレイン金属膜10を、例えばスパッタによって成膜する。その後、所定形状のソース電極10Sa,10Sb及びドレイン電極10Da,10Dbを形成するために、ソースドレイン金属膜10上にレジスト材料を塗布し、露光及び現像を行って、所定形状にパターニングされたレジストを形成する。次いで、このレジストをマスクとしてウェットエッチングを施してソースドレイン金属膜10をパターニングすることにより、図2Lに示すように、所定形状のソース電極10Sa,10Sb及びドレイン電極10Da,10Dbが形成される。このとき、コンタクト層9がエッチングストッパ層として機能する。その後、ソース電極10Sa,10Sb及びドレイン電極10Da,10Db上のレジストを除去する。
その後、図2Lに示すように、ソース電極10Sa,10Sb及びドレイン電極10Da,10Dbをマスクとしてドライエッチングを施すことにより、コンタクト層9をパターニングするとともに、ソース電極10Sa,10Sb及びドレイン電極10Da,10Dbを島状にパターニングする。これにより、コンタクト層9a,9b、ソース電極10Sa,10Sb及びドレイン電極10Da,10Dbを島状に形成することができる。なお、ドライエッチングの条件としては、塩素系ガスを用いることができる。
以上のようにして、本発明の実施の形態に係る薄膜トランジスタアレイ200を製造することができる。
次に、本実施の形態に係る薄膜トランジスタアレイ200の作用効果について説明する。図7は、第4工程で形成された非晶質性シリコン層12に対してレーザー光を照射した状態を示す平面図である。図7において斜線が施された部分は、非晶質性シリコン層12が結晶化されることにより結晶性シリコン層領域7a’,7b’が形成された領域を示している。図7において、領域15は、ゲート電極3a,3bの上方の領域であり、領域16は、ゲート電極3a,3bの上方以外の領域である。図7に示すように、第5工程では、領域15においてのみ、結晶性シリコン層領域7a’,7b’が形成される。
このように、非晶質性シリコン層12が局所的に結晶化されることにより、レーザー光に基づく熱がゲート絶縁層6を通して基板1に局所的に伝達される。これにより、基板1に作用する熱的負荷を小さく抑えることができ、基板1にクラック又は反りが生じるのを抑制することができる。また、非晶質性シリコン層12が結晶化される際に発生する応力を小さく抑えることができ、このことによっても、基板1にクラック又は反りが生じるのを抑制することができる。
なお、上述したように、レーザー光の波長に対するゲート絶縁層6の消衰係数を0.01以下とすることにより、レーザー光はゲート絶縁層6にほとんど吸収されないので、レーザー光の熱がゲート絶縁層6内において発生するのを抑制することができる。これにより、ゲート電極3a,3bの上方以外の領域において、レーザー光の熱が基板1に伝達されるのを効果的に抑制することができる。
また、図8は、非晶質性シリコン層12に対するレーザー光の照射面積と基板1の反り量との関係を示す図である。図8に示すように、レーザー光の照射面積(即ち、レーザー光の照射によって非晶質性シリコン層12が結晶化される面積)が増大するに従って、基板1の反り量が増大することが理解できる。これは、レーザー光の照射面積が増大することにより、基板1に作用する熱的負荷が増大するためであると考えられる。従来の薄膜トランジスタアレイの製造方法では、レーザー光の照射によって非晶質性シリコン層12の全域が結晶化されるので、レーザー光の照射面積は約100%であり、基板1の反り量は約−100μmである。本実施の形態に係る薄膜トランジスタアレイ200の製造方法では、ゲート電極3a,3bの上方の領域における非晶質性シリコン層12のみが結晶化されるので、レーザー光の照射面積は例えば約17%であり、基板1の反り量は約20μmである。このように、本実施の形態に係る薄膜トランジスタアレイ200の製造方法では、基板1の反り量を大幅に低下させることができる。
本実施の形態による薄膜トランジスタアレイ200は、例えば、図9に示すような表示装置20に搭載することができる。図9に示す表示装置20は、液晶パネル及び有機ELパネル等で構成される表示パネル21を備えている。この表示パネル21は、薄膜トランジスタアレイ200によって駆動される。
以上、本発明の実施の形態について説明したが、上記実施の形態に示す構成は一例であって、発明の趣旨を逸脱しない範囲でさまざまな変形を加えることができるのは言うまでも無い。
上記実施の形態では、非晶質性シリコン層領域12’をアモルファスシリコンで構成したが、非晶質性シリコン層領域12’を微結晶シリコンで構成することもできる。或いは、非晶質性シリコン層領域12’を微結晶シリコンとアモルファスシリコンとの混合物で構成することもできる。
上記実施の形態では、ゲート電極3a,3bの上方の領域における非晶質性シリコン層12が結晶化されるように構成したが、例えばゲート電極3a,3bの上方の領域の一部に、非晶質性シリコン層12が結晶化されない領域が存在しても実用上差し支えない。
本発明に係る薄膜トランジスタアレイは、テレビジョンセット、パーソナルコンピュータ及び携帯電話等の表示装置又はその他薄膜トランジスタアレイを有する様々な電気機器に広く利用することができる。
1,51 基板
2,52 アンダーコート層
3a,3b,53a,53b ゲート電極
4,54 窒化珪素膜
5,55 酸化珪素膜
6,56 ゲート絶縁層
7a,7b 結晶性シリコン層
7a’,7b’ 結晶性シリコン層領域
8a,8b 非晶質性シリコン層
9,9a,9b コンタクト層
10 ソースドレイン金属膜
10Sa,10Sb ソース電極
10Da,10Db ドレイン電極
12,57 非晶質性シリコン層
12’ 非晶質性シリコン層領域
13 レーザー光源
15,16,61,62 領域
20 表示装置
21 表示パネル
58 結晶性シリコン層
100a,100b 薄膜トランジスタ素子
200,500 薄膜トランジスタアレイ
上記目的を達成するために、本発明の一態様に係る薄膜トランジスタアレイの製造方法は、基板を準備する第1工程と、前記基板上に複数のゲート電極を形成する第2工程と、前記複数のゲート電極上にゲート絶縁層を形成する第3工程と、前記ゲート絶縁層上に非晶質性シリコン層を形成する第4工程と、波長が473nm以上561nm以下であるレーザー光を照射するレーザー光源を前記基板に対して所定の方向に相対的に移動させて、前記レーザー光を前記ゲート電極の上方の領域における前記非晶質性シリコン層に照射することにより、前記ゲート電極の上方の領域における前記非晶質性シリコン層を結晶化させて結晶性シリコン層領域を形成する第5工程と、前記結晶性シリコン層領域の上方にソース電極及びドレイン電極を形成する第6工程と、を含み、前記第4工程で形成された前記非晶質性シリコン層の膜厚に前記非晶質性シリコン層の屈折率を積算した値である前記非晶質性シリコン層の光学膜厚を、前記レーザー光の波長で除算した値をXとし、前記第3工程で形成された前記ゲート絶縁層の膜厚に前記ゲート絶縁層の屈折率を積算した値である前記ゲート絶縁層の光学膜厚を、前記レーザー光の波長で除算した値をYとしたとき、前記X及び前記Yは、下記の式1)から式5)で規定される範囲を満たす数値であり、前記第4工程で形成された前記非晶質性シリコン層の前記レーザー光の吸収率(%)をxとし、前記第4工程で形成された前記非晶質性シリコン層の前記レーザー光の吸収率が23.2(%)である場合に、前記非晶質性シリコン層を結晶化させて前記結晶性シリコン層領域を形成するのに必要な前記レーザー光のエネルギー密度を1としたときの相対値をyとしたとき、前記x及び前記yは、下記の式6)、式7)及び式8)で規定される範囲を満たす数値である。ここで、式1)Y≧−4400X+12600X−14900X+9320X−3250X+594X−43.7、式2)Y≦0.69、式3)Y≧0.33、式4)X≦0.85、式5)Y≦−119000X+529000X−980000X+965000X−533000X+157000X−19100、式6)20≦x≦50、式7)y≧42.9x −1.19 、式8)y≦―0.0041x+1.45である。
また、本発明に係る表示装置の一態様は、表示パネルと、請求項に記載の薄膜トランジスタアレイと、を備え、前記薄膜トランジスタアレイは、前記表示パネルを駆動させる。

Claims (11)

  1. 基板を準備する第1工程と、
    前記基板上に複数のゲート電極を形成する第2工程と、
    前記複数のゲート電極上にゲート絶縁層を形成する第3工程と、
    前記ゲート絶縁層上に非晶質性シリコン層を形成する第4工程と、
    波長が473nm以上561nm以下であるレーザー光を照射するレーザー光源を前記基板に対して所定の方向に相対的に移動させて、前記レーザー光を前記ゲート電極の上方の領域における前記非晶質性シリコン層に照射することにより、前記ゲート電極の上方の領域における前記非晶質性シリコン層を結晶化させて結晶性シリコン層領域を形成する第5工程と、
    前記結晶性シリコン層領域の上方にソース電極及びドレイン電極を形成する第6工程と、を含み、
    前記第4工程で形成された前記非晶質性シリコン層の膜厚に前記非晶質性シリコン層の屈折率を積算した値である前記非晶質性シリコン層の光学膜厚を、前記レーザー光の波長で除算した値をXとし、
    前記第3工程で形成された前記ゲート絶縁層の膜厚に前記ゲート絶縁層の屈折率を積算した値である前記ゲート絶縁層の光学膜厚を、前記レーザー光の波長で除算した値をYとしたとき、
    前記X及び前記Yは、下記の式1)から式5)で規定される範囲を満たす数値である
    薄膜トランジスタアレイの製造方法。
    式1)Y≧−4400X+12600X−14900X+9320X−3250X+594X−43.7
    式2)Y≦0.69
    式3)Y≧0.33
    式4)X≦0.85
    式5)Y≦−119000X+529000X−980000X+965000X−533000X+157000X−19100
  2. 前記第4工程で形成された前記非晶質性シリコン層の前記レーザー光の吸収率(%)をxとし、
    前記第4工程で形成された前記非晶質性シリコン層の前記レーザー光の吸収率が23.2(%)である場合に、前記非晶質性シリコン層を結晶化させて前記結晶性シリコン層領域を形成するのに必要な前記レーザー光のエネルギー密度を1としたときの相対値をyとしたとき、
    前記x及び前記yは、下記の式6)、式7)及び式8)で規定される範囲を満たす数値である
    請求項1に記載の薄膜トランジスタアレイの製造方法。
    式6)20≦x≦50
    式7)y≧42.9x−1.19
    式8)y≦―0.0041x+1.45
  3. 前記第5工程において、前記ゲート電極の上方以外の領域には非晶質性シリコン層領域を形成し、
    前記非晶質性シリコン層領域には、微結晶シリコンが含まれる
    請求項1又は2に記載の薄膜トランジスタアレイの製造方法。
  4. 前記非晶質性シリコン層領域には、さらに、非晶質性シリコンが含まれる
    請求項3に記載の薄膜トランジスタアレイの製造方法。
  5. 前記第5工程において、前記ゲート電極の上方以外の領域には非晶質性シリコン層領域を形成し、
    前記非晶質性シリコン層領域には、非晶質性シリコンが含まれる
    請求項1又は2に記載の薄膜トランジスタアレイの製造方法。
  6. 前記第5工程において、前記レーザー光源は、連続発振モード又は擬似連続発振モードで前記レーザー光を照射する
    請求項1〜5のいずれか1項に記載の薄膜トランジスタアレイの製造方法。
  7. 前記レーザー光の波長に対する、前記第3工程で形成された前記ゲート絶縁層の消衰係数は0.01以下である
    請求項1〜6のいずれか1項に記載の薄膜トランジスタアレイの製造方法。
  8. 前記第3工程で形成された前記ゲート絶縁層は、酸化珪素膜である
    請求項1〜7のいずれか1項に記載の薄膜トランジスタアレイの製造方法。
  9. 前記第3工程で形成された前記ゲート絶縁層は、窒化珪素膜である
    請求項1〜7のいずれか1項に記載の薄膜トランジスタアレイの製造方法。
  10. 基板と、
    前記基板上に形成された複数のゲート電極と、
    前記複数のゲート電極上に形成されたゲート絶縁層と、
    前記複数のゲート電極の各々に対応する前記ゲート絶縁層の上方の領域に形成された結晶性シリコン層と、
    前記複数のゲート電極の各々に対応する前記結晶性シリコン層の上方の領域に形成されたソース電極及びドレイン電極と、を備え、
    前記結晶性シリコン層は、前記ゲート絶縁層上に非晶質性シリコン層を形成した後に、波長が473nm以上561nm以下であるレーザー光を照射するレーザー光源を前記基板に対して所定の方向に相対的に移動させて、前記レーザー光を前記ゲート電極の上方の領域における前記非晶質性シリコン層に照射させることにより、前記ゲート電極の上方の領域における前記非晶質性シリコン層を結晶化させて形成され、
    前記非晶質性シリコン層の膜厚に前記非晶質性シリコン層の屈折率を積算した値である前記非晶質性シリコン層の光学膜厚を、前記レーザー光の波長で除算した値をXとし、
    前記ゲート絶縁層の膜厚に前記ゲート絶縁層の屈折率を積算した値である前記ゲート絶縁層の光学膜厚を、前記レーザー光の波長で除算した値をYとしたとき、
    前記X及び前記Yは、下記の式1)から式5)で規定される範囲を満たす数値である
    薄膜トランジスタアレイ。
    式1)Y≧−4400X+12600X−14900X+9320X−3250X+594X−43.7
    式2)Y≦0.69
    式3)Y≧0.33
    式4)X≦0.85
    式5)Y≦−119000X+529000X−980000X+965000X−533000X+157000X−19100
  11. 表示パネルと、
    請求項10に記載の薄膜トランジスタアレイと、を備え、
    前記薄膜トランジスタアレイは、前記表示パネルを駆動させる
    表示装置。
JP2012521814A 2011-11-29 2011-11-29 薄膜トランジスタアレイの製造方法、薄膜トランジスタアレイ及び表示装置 Pending JPWO2013080248A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012521814A JPWO2013080248A1 (ja) 2011-11-29 2011-11-29 薄膜トランジスタアレイの製造方法、薄膜トランジスタアレイ及び表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012521814A JPWO2013080248A1 (ja) 2011-11-29 2011-11-29 薄膜トランジスタアレイの製造方法、薄膜トランジスタアレイ及び表示装置

Publications (1)

Publication Number Publication Date
JPWO2013080248A1 true JPWO2013080248A1 (ja) 2015-04-27

Family

ID=53013392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012521814A Pending JPWO2013080248A1 (ja) 2011-11-29 2011-11-29 薄膜トランジスタアレイの製造方法、薄膜トランジスタアレイ及び表示装置

Country Status (1)

Country Link
JP (1) JPWO2013080248A1 (ja)

Similar Documents

Publication Publication Date Title
US7960295B2 (en) Film transistor and method for fabricating the same
JP5927523B2 (ja) 薄膜トランジスタおよび薄膜トランジスタの製造方法
US9929274B2 (en) Thin-film transistor, method for fabricating thin-film transistor, and display device
US8912054B2 (en) Thin-film semiconductor device and method of manufacturing the same
WO2013069045A1 (ja) 薄膜トランジスタ装置の製造方法、薄膜トランジスタ装置および表示装置
JPWO2011161714A1 (ja) シリコン薄膜の結晶化方法およびシリコンtft装置の製造方法
JP5309387B2 (ja) 半導体層とこの半導体層を用いた半導体装置および表示装置
WO2013080248A1 (ja) 薄膜トランジスタアレイの製造方法、薄膜トランジスタアレイ及び表示装置
WO2012153365A1 (ja) 薄膜トランジスタ装置の製造方法、薄膜トランジスタ装置および表示装置
JP2013161963A (ja) 薄膜トランジスタ、薄膜トランジスタの製造方法、及び表示装置
JP6040438B2 (ja) 薄膜形成基板及び薄膜形成方法
JPWO2013080248A1 (ja) 薄膜トランジスタアレイの製造方法、薄膜トランジスタアレイ及び表示装置
WO2012098575A1 (ja) 薄膜トランジスタ装置の製造方法、薄膜トランジスタおよび表示装置
JP2013232548A (ja) 薄膜トランジスタ装置の製造方法、薄膜トランジスタ装置および表示装置
JP5668696B2 (ja) 薄膜トランジスタ基板の製造方法
JP4239744B2 (ja) 薄膜トランジスタの製造方法
KR101599280B1 (ko) 어레이 기판의 제조방법
WO2012114379A1 (ja) 薄膜トランジスタ装置の製造方法、薄膜トランジスタ装置および表示装置
WO2013018126A1 (ja) 薄膜トランジスタ及びその製造方法
TWI239041B (en) Manufacturing method of low-temperature poly-silicon device
WO2013018123A1 (ja) 薄膜トランジスタ及びその製造方法
WO2013047694A1 (ja) 微結晶Si-TFT基板および半導体装置の製造方法
WO2012060104A1 (ja) トランジスタの製造方法、トランジスタ、および、表示装置
WO2013080246A1 (ja) 結晶性基板の製造方法
JPWO2013061383A1 (ja) 薄膜半導体装置及びその製造方法