WO2013067896A1 - 一种微波化学法提取褐藻多糖的方法 - Google Patents

一种微波化学法提取褐藻多糖的方法 Download PDF

Info

Publication number
WO2013067896A1
WO2013067896A1 PCT/CN2012/083932 CN2012083932W WO2013067896A1 WO 2013067896 A1 WO2013067896 A1 WO 2013067896A1 CN 2012083932 W CN2012083932 W CN 2012083932W WO 2013067896 A1 WO2013067896 A1 WO 2013067896A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polysaccharide
ethanol
solution
rich
Prior art date
Application number
PCT/CN2012/083932
Other languages
English (en)
French (fr)
Inventor
张劲松
李明天
刘志宇
许磊
Original Assignee
沈阳科思高科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳科思高科技有限公司 filed Critical 沈阳科思高科技有限公司
Priority to JP2014539227A priority Critical patent/JP5878241B2/ja
Priority to BR112014010922-2A priority patent/BR112014010922B1/pt
Priority to EP12848103.3A priority patent/EP2778178B1/en
Priority to US14/355,535 priority patent/US9447199B2/en
Priority to KR1020147014850A priority patent/KR101605065B1/ko
Publication of WO2013067896A1 publication Critical patent/WO2013067896A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0084Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0003General processes for their isolation or fractionation, e.g. purification or extraction from biomass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/04Alginic acid; Derivatives thereof

Definitions

  • the invention relates to the field of medical chemistry, and relates to a method for extracting brown algae polysaccharide, in particular to a method for extracting brown algae polysaccharide by microwave chemical method. Background technique
  • Seaweed is a general term for marine algae, usually fixed on the seabed or a certain solid structure. It is a single plant or a long series of simple plants composed of basic cells.
  • the nutrients in seaweed include polysaccharides, proteins, lipids, pigments and low molecular substances.
  • Traditional Chinese medicine and current scientific research prove that the main component of seaweed with enhanced immunity and anti-cancer activity is polysaccharide.
  • Seaweed includes red algae, green algae, brown algae, etc.
  • the research and application of seaweed polysaccharides are mainly deep brown algae polysaccharides.
  • Brown algae are a class of higher algae, about 250 genera and more than 1,500 species.
  • the algae of brown algae are yellowish brown or dark brown and contain polysaccharides, proteins, lipids and mannitol.
  • Some species, such as kelp, contain a large amount of I in the cells.
  • Fucoidan polysaccharide is an important component of brown algae, including alginate, fucoidan, brown algae starch and the like.
  • Alginate usually referred to as sodium alginate, is composed of ⁇ D-mannuronic acid (abbreviated as ⁇ ) and (X-L guluronic acid (abbreviated as G) two uronic acid monomers linked by 14 glycosidic bonds
  • D-mannuronic acid
  • G X-L guluronic acid
  • the linear polysaccharide block copolymer has a high content in brown algae.
  • Alginate is also one of the most representative seaweed chemical products.
  • alginate According to statistics, the annual output of alginate in China is the highest in the world. For the convenience of preservation and use, alginate is generally used. Conversion to sodium alginate as a final product. As a sodium salt of a polyanionic polysaccharide (alginic acid), sodium alginate has a wide range of industrial uses due to its inherent physical and chemical properties.
  • sodium alginate In the food industry, sodium alginate is low in heat, non-toxic, easy to puff, and high in flexibility. It can be used in foods to coagulate, thicken, roll, suspend, stabilize and prevent food from drying out. Edible additives.
  • sodium alginate has easy coloration, high color yield, bright color and printing.
  • the fabric is soft to the touch and is the most commonly used paste for cotton fabric reactive dye printing. At the same time, it can be used as a water-soluble fiber for warp yarn processing, waterproof processing, and manufacturing of lace.
  • sodium alginate is used as a toothpaste base, shampoo, hair conditioner, and the like. It can be used as a sizing agent in the paper industry, as a latex concentrate in the rubber industry, and as a water-based paint and water-resistant paint.
  • Sodium alginate is also an important biomedical material widely used as drug release agents, polymer films, cell packaging, wound dressings, surgical sponges and embolization agents, etc. in biomedical materials science, clinical medicine, tissue engineering And the fields of pharmacy and other fields are receiving more and more attention.
  • the basic principle is to convert various alginate which is insoluble in water into sodium alginate by using soda ash (Na. 2 C0 3 ), dissolved in water and filtered. Dry sodium alginate powder is obtained after impurity removal, acid/calcium precipitation, and sodium salt conversion.
  • Fucoidan is a heteropolysaccharide containing, in addition to fucose and sulfate, monosaccharides such as half-milled sugar, xylose, mannose and uronic acid. Due to its unique structure and excellent physiological activity, such as regulating blood lipids, lowering blood sugar, lowering blood pressure, anticoagulation, anti-tumor, anti-mutation and anti-radiation, anti-virus, and enhancing immune function, fucoidan has become this century. One of the hot spots in marine drug research. Brown algae starch, also known as laminarin, is also a polysaccharide with a variety of physiological activities. The preparation of fucoidan and fucoidan is mainly based on the waste materials for producing alginate, iodine and mannitol, and is subjected to water leaching to classify alcohol precipitation.
  • the chemical processes of the existing alkali digestion process mainly include the addition of acid and calcium salt:
  • the water-insoluble alginate in brown algae is converted into water-soluble sodium alginate, such as acid or calcium ion.
  • the sodium alginate is precipitated into alginic acid or calcium alginate, then washed and converted back to sodium alginate, and finally the sodium alginate is further processed into various products. Either way, The large amount of industrial wastewater to be produced poses a serious threat to the ecological environment.
  • the sodium alginate product has a single variety, poor quality and low added value.
  • the classification of sodium alginate can be divided into three types: high GZM ratio, medium G/M ratio, and low G/M ratio. From viscosity, it can be divided into ultra low viscosity, low viscosity, medium viscosity, high viscosity and super high.
  • the viscosity sodium alginate can be divided into three levels of industrial use, edible and medical. At present, sodium alginate produced by domestic enterprises is mostly medium-viscosity products. As a health care medicine product, its application is limited by its strong gelation property and low solubility, and its activity is not fully reflected.
  • Modifications to traditional seaweed polysaccharide products include the use of biological, chemical or physical methods to degrade sodium alginate and fucoidan into alginate oligosaccharides, oligosaccharides and low molecular weight fucose, to adjust the sulfur content of fucoidan And other measures.
  • polymannuronic acid (M) and polyguluronic acid (G) are peculiar to alginate molecules, and such compounds which are present alone have not been found in nature.
  • M/G ratio of the two uronic acid glycans
  • the structure and arrangement of the blocks in alginate are different, the properties will be significantly different. Therefore, many researchers have obtained such unique polysaccharide fragments and their oligosaccharides through different degradation and separation methods to study their unique biological activities. All of these different series of oligosaccharides or oligosaccharides greatly enrich the heterogeneity of the seaweed polysaccharide product.
  • all of the above studies use medium-viscosity alginate as a raw material, which does not fundamentally solve the problems of water consumption, serious pollution, and low yield/content in the traditional production process of sodium alginate.
  • M/G ratio determination (Mahesh Clihatbar, C rhoh dmte Polymers Vol 76 (2009) 650-656); it discloses partial degradation of sodium alginate in a domestic microwave oven using a dilute solution of oxalic acid solution or sulfuric acid as a solvent, The main objective was to find a simple, rapid and gentle method for determining the ratio of M/G (mannuronic acid/guluronic acid) in sodium alginate.
  • the sodium alginate raw material used in the method is still prepared by the conventional extraction method, and does not overcome the defects of the old process water consumption and energy consumption.
  • Microwave assisted desuifation of sulfated polysaccharides discloses the use of microwave-assisted removal of red algae carrageenan, agar and brown algae in a domestic microwave oven
  • the sulfur component of fucoidan and animal polysaccharide chondroitin sulfate overcomes the drawbacks of the commonly used hydrochloric acid desulfurization method.
  • the method still uses polysaccharide as a raw material, and does not overcome the defects of water consumption and energy consumption in the prior art.
  • the purpose of pursuing excessive desulfurization rate in this paper is to improve the convenience of analyzing samples without considering the activity of polysaccharides.
  • the present invention provides a novel method for extracting brown algae polysaccharides, that is, a method for extracting active polysaccharides from brown algae by microwave chemical method.
  • the method for extracting active polysaccharide of brown algae by the microwave chemical method of the invention comprises the following steps:
  • the pulverized brown algae powder is placed in a microwave reaction chamber, and a mass concentration of 5% 99% acid solution is added.
  • the microwave power is 1 kilowatt per kilogram of material and 10 kilowatts per kilogram of material, and the working pressure is 20 mmHg 760 mmHg.
  • the next reaction is 5 i20 min; optionally concentrated, followed by washing with an organic solvent to remove excess acid.
  • the obtained product is added to an aqueous solution for water extraction, the extract is concentrated, the pH is adjusted to neutral with a base, and then subjected to fractional alcohol precipitation to obtain a mannuronic acid-rich fragment (rich M) alginate, respectively. Fucoidan and/or brown algae starch; and residual brown algae residue.
  • step 3 Adding an alkali solution to the brown algae residue obtained in step 2), performing alkali digestion reaction at a temperature of 35 60 ° C for 20-80 minutes, filtering off the residue, adjusting the pH of the filtrate to neutrality, and concentrating the alcohol to form a rich Alginate precipitation containing guluronic acid fragment (G-rich).
  • the pulverized brown algae powder is obtained by pulverizing the conventional method in the field, or the pulverized brown algae powder is directly used in the method of the invention, wherein the number of pulverized brown algae powder is in the field a conventional mesh number, or one skilled in the art, in combination with the present invention and the method of the present invention, as one of the embodiments, when the organic acid is a non-volatile acid in the acid solution added in the step 1), after the microwave action is completed Then, the concentrated acid is used to remove the acid solution; when the organic acid to be added is a volatile acid, after the microwave is finished, the acid is concentrated and concentrated, and then concentrated under reduced pressure under microwave heating, and then washed with an organic solvent. A small amount of residual acid.
  • the microwave power application method in the step 1) is a continuous microwave or a combination of continuous microwave and pulse microwave; wherein, in the combination of continuous microwave and pulse microwave, After continuous microwave irradiation to the acid solution reflux, it is converted into pulsed microwave, and the irradiation is continued for 5 min - 120 min; the continuous microwave is also maintained for 5 ⁇ ⁇ - 120 min after the solution is refluxed.
  • the selection of the microwave reaction chamber can be determined by those skilled in the art in conjunction with the present invention and common knowledge in the art, and can be either a traveling wave microwave reaction chamber or a resonant microwave reaction chamber.
  • the weight ratio of the brown algae raw material to the acid solution in the step 1) is in the range of 5/1 - 1/5.
  • the acid solution in the step 1) is selected from the group consisting of an organic acid or a mixed solution of an organic acid and a mineral acid.
  • the organic acid is selected from the group consisting of oxalic acid having a concentration of 5% to 50%, preferably 10% to 35% of oxalic acid; 10% to 99% of formic acid, preferably 30-85. % formic acid; 10% to 99% acetic acid, preferably 60-95% acetic acid; or 10% 99% propionic acid, preferably 70 95% aqueous solution of propionic acid.
  • oxalic acid having a concentration of 5% to 50%, preferably 10% to 35% of oxalic acid
  • 10% to 99% of formic acid preferably 30-85. % formic acid
  • 10% to 99% acetic acid preferably 60-95% acetic acid
  • propionic acid preferably 70 95% aqueous solution of propionic acid.
  • the concentration of the organic acid in the mixed acid solution is the organic content defined above.
  • the concentration of the acid; and the concentration of the inorganic acid is
  • the inorganic acid is selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid or phosphoric acid.
  • the above inorganic acid solution may be a commercially available chemical reagent, and then a corresponding concentration of the organic-inorganic mixed acid solution is prepared by a method conventional in the art, for example, using a concentration of 36% hydrochloric acid, and then added to the organic acid to the corresponding concentration. .
  • the synergistic action between the microwave, the organic acid molecule and the brown algae polymer polysaccharide is used to selectively cleave the glycosidic bond of the brown algae polymer polysaccharide, thereby realizing the controlled degradation of the brown algae polysaccharide.
  • the organic solvent for washing the residual acid in the step 1) is selected from the group consisting of methanol, ethanol, propanol or acetone, or a combination of two or more of them, the organic
  • concentration of the solvent is not particularly limited and can be determined by those skilled in the art in connection with the prior art or common knowledge in the art.
  • Step 1) 5-8 times the product product obtained.
  • V When the extract is concentrated, it is preferably concentrated to 1/5-1/8 of the extract.
  • step 2) of the method of the present invention the pH is adjusted.
  • the acid used in the step 3) to adjust the pH is selected from the group consisting of hydrochloric acid,
  • the alcohol used for the alcohol precipitation in the step 3) is selected from the group consisting of ethanol or methanol, and the alcohol is precipitated by using ethanol or decyl alcohol.
  • the alcohol is added to the solution and no precipitate is precipitated, and the alcohol content in the solution is preferred. It can reach 80%-85%.
  • fucoidan extracted from brown algae separation include but are not I 1 to Burgundy, Laminaria (the Laminaria) kelp, Sargassum (of Sargassum) Sargassum, sea millet, hijiki, rat tail Algae, Litchi, Sargassum, Fucus, Fucus, Pdvetia, Antweed, Undaria, or Maerocystis.
  • the present invention also provides a preparation of kelp kelp
  • the formic acid solution was refluxed for 1.5 30 min under a pressure of 500 mmHg-760 niniHg, and then the methyl formic acid solution was evaporated under reduced pressure.
  • a 3- to 5-fold ethanol solution of kelp powder weight was added to the reaction chamber, and the mixture was stirred and washed for 40-60 minutes, and filtered. After the filter residue is dried, it is extracted twice with water. The water consumption is 4-6 times the weight of the filter residue, the extraction temperature is 60-80 C, and the extraction time is about 40 minutes.
  • Filtration combine the two filtrates, neutralize to neutral with sodium hydroxide solution, concentrate to 1/5 of the liquid helium, then add ethanol to the solution to reach 35% ethanol, let stand for 4-8 hours, filter, The filter cake is washed with absolute ethanol and diethyl ether and then dried to obtain polysaccharide A.
  • the ethanol is added to the filtrate until the ethanol content in the solution reaches 65%, and the mixture is allowed to stand for 4 to 8 hours, filtered, and the filter cake is washed with anhydrous ethanol and diethyl ether. After drying, the polysaccharide 13 was obtained.
  • the above-mentioned water-extracted kelp filter residue is added with a sodium carbonate solution, and subjected to alkali digestion at a temperature of 35 60 ° C for about 40 minutes, filtered, and the filtrate is adjusted to pH with hydrochloric acid, and concentrated to form an alcohol D.
  • polysaccharide A is sodium alginate rich in mannuronic acid (rich M)
  • polysaccharide B is fucoidan
  • polysaccharide C is brown algae starch
  • polysaccharide D is sodium alginate rich in guluronic acid (rich G).
  • the present invention also provides a method for preparing an active polysaccharide by using Sargassum sylvestris, the method is as follows: Adding acacia powder into a microwave extraction chamber, adding (), 5 - 1.0 times 20% oxalic acid solution, under a microwave of a power density of 12 KW / Kg, the oxalic acid solution is kept at a pressure of 500 mmHg-760 mmHg for 15-25 min, and then the liquid in the microwave extraction chamber is evaporated under reduced pressure. To the reaction chamber, a 46-fold ethanol solution of kelp powder weight was added, and the washing material was stirred for 40 minutes, filtered, and the residue was dried.
  • the filtrate is distilled to recover ethanol and oxalic acid.
  • the dried filter residue water is extracted twice, each time with water being 4-6 times the weight of the material, the extraction temperature is 70 ° C, and the extraction time is about 40 minutes. Filtration, combine the two filtrates, neutralize to neutral with sodium hydroxide solution, concentrate to about 1/5 of the volume of the extract, then add ethanol to the solution to reach 3 ()% ethanol, let stand for 48 hours, filter The filter cake is washed with anhydrous ethanol and diethyl ether and dried to obtain polysaccharide A.
  • the ethanol is added to the filtrate until the ethanol content in the solution reaches 6 ()%, and the mixture is allowed to stand for 4 to 8 hours, filtered, and the filter cake is made of absolute ethanol. After washing with diethyl ether, it was dried to obtain polysaccharide 8.
  • the filter cake is washed with absolute ethanol and diethyl ether and dried to obtain polysaccharide C.
  • polysaccharide A is sodium alginate rich in mannuronic acid (rich M)
  • polysaccharide B is fucoidan
  • polysaccharide C is brown algae starch
  • polysaccharide D is alginic acid rich in guluronic acid (rich G). sodium.
  • the present invention also provides a method for preparing an active polysaccharide by using Fucus algae, the method is as follows: adding dry algae powder to a microwave extraction chamber, adding 1-2 times 80 %- 95% propionic acid solution, acting at a microwave of 3- 5KW/Kg power density, to
  • polysaccharide A is sodium alginate rich in mannuronic acid (rich M)
  • polysaccharide B is fucoidan
  • polysaccharide C is brown algae starch
  • polysaccharide D is sodium alginate rich in guluronic acid (rich G).
  • the present invention also provides a method for preparing active polysaccharide by using Carrageenus carrageen 5, which is as follows: Add dried carrageen powder into a microwave extraction chamber, and add (). 2 times oxalic acid-hydrochloric acid mixed acid solution, the oxalic acid content of the mixed acid is 20%, the hydrochloric acid content is 0, 1 %, under the microwave of i - 2KW/Kg power density, 500mmHg 760mmHg pressure The mixed acid solution was refluxed for 15-25 min, and then the liquid in the reaction chamber was evaporated under reduced pressure.
  • a 3- to 5-fold ethanol solution of the weight of the carrageenan powder was added to the reaction chamber, stirred for 30-60 minutes, and filtered. After the filter residue was dried, 4-6 times of water was added, and the mixture was extracted at 70 C for 40 minutes, and filtered. The above extraction process was repeated once, the filtrate was combined twice, neutralized to neutral with a sodium hydrogen sulfide solution, concentrated to 1/5 of the volume of the extract, and then ethanol was added until the ethanol content in the solution reached 35%, and allowed to stand for 4 to 8 hours. After filtration, the filter cake is washed with anhydrous ethanol and diethyl ether and dried to obtain polysaccharide A.
  • the ethanol is added to the filtrate until the ethanol content in the solution reaches 65%, and the mixture is allowed to stand for 4 to 8 hours, filtered, and the filter cake is made of absolute ethanol. After washing with diethyl ether and drying, a polysaccharide 8 was obtained.
  • ethanol is added to the filtrate until the ethanol content in the solution reaches 85%, let stand for 4-8 hours, filter, filter cake washed with absolute ethanol and ether and then dried to obtain polysaccharide ( ⁇ .
  • the above-mentioned water-treated carrageen A sodium carbonate solution is added to the residue, and alkali digestion reaction is carried out at a temperature of 35-60 C for 40-60 minutes, and the mixture is filtered.
  • the filtrate is adjusted to a neutral value with hydrochloric acid, and concentrated to form an alcohol D.
  • polysaccharide A is sodium alginate rich in mannuronic acid (rich M)
  • polysaccharide B is fucoidan
  • polysaccharide C is brown algae starch
  • polysaccharide D is sodium alginate rich in guluronic acid (rich G).
  • the present invention also provides a method for preparing active polysaccharide by using wakame wakame, the method is as follows: adding wakame powder to a microwave extraction chamber, adding 0.5-2.5 times formic acid- a mixed acid solution of hydrochloric acid, wherein the formic acid content is 80%, the hydrochloric acid content is 0, 5%, and the mixed acid solution is maintained at a reflux of 10 - 3 () miri under a microwave of a power density of 2 - 4: KW / Kg at 500 mmHg 760 ⁇ ⁇ Torr. The mixed acid solution was then evaporated to dryness under reduced pressure.
  • a 35-fold ethanol solution of the weight of the wakame powder was added to the reaction chamber, stirred for 30 minutes and filtered. After the filter residue was dried, 4 to 6 times of water was added, and the mixture was extracted at 60 C for 40 minutes, and filtered. The above extraction process was repeated once, the filtrate was combined twice, neutralized with sodium hydroxide solution to neutrality, concentrated to 1/5 of the volume of the extract, and then ethanol was added until the ethanol content in the solution reached 35%, and allowed to stand for 4 to 8 hours. After filtration, the filter cake is washed with anhydrous ethanol and diethyl ether and dried to obtain polysaccharide A.
  • the ethanol is added to the filtrate until the ethanol content in the solution reaches 65%, and the mixture is allowed to stand for 48 hours, filtered, and the filter cake is made with anhydrous ethanol and The ether was washed and dried to obtain a polysaccharide]8.
  • the sodium carbonate solution is added to the wakame filter residue after water extraction, and the alkali digestion reaction is carried out at a temperature of 35-60 C for 40-60 minutes, filtered, and the filtrate is adjusted to pH with hydrochloric acid, and concentrated to form alcohol. .
  • polysaccharide A is sodium alginate rich in mannuronic acid (rich M)
  • polysaccharide B is fucoidan
  • polysaccharide C is brown algae starch
  • polysaccharide D is sodium alginate rich in guluronic acid (rich G).
  • the present invention also provides a method for preparing an active polysaccharide by using a macroalgae macroalgae, the method is as follows: adding dried macroalgae powder to a microwave extraction chamber, adding 0, 3-1.2 times 80%-95% acetic acid solution, under the microwave of 1- 4KW/Kg power density, after the acetic acid solution is refluxed, hold the temperature at 500mmHg ⁇ 760mmHg for 30-4()min, then evaporate the acetic acid under reduced pressure. Solution.
  • polysaccharide A is sodium alginate rich in mannuronic acid (rich M)
  • polysaccharide B is fucoidan
  • polysaccharide C is brown algae starch
  • polysaccharide D is sodium alginate rich in guluronic acid (rich G).
  • the present invention also provides a brown algae polysaccharide prepared by the method of the present invention, characterized in that the fucoidan polysaccharide is prepared by the method of the present invention.
  • the present invention also provides a guuronic acid-rich fragment-enriched alginate or a mannuronic acid-rich fragment (rich M) alginate prepared by the method of the present invention;
  • the alginate rich in guluronic acid fragment (G-rich) of the present invention is preferably a keloid alginate rich in guluronic acid (G-rich), and a brown algae of Sargassum fusiformis Gum, fucoal alginate, carrageenan alginate, wakame alginate or macroalgae alginate;
  • the alginate rich in mannosolic acid fragment (M-rich) of the present invention is preferably a kelp alginate rich in mannuronic acid fragment (rich M) alginate, and acacia.
  • the invention also provides a preparation method of a mannosolic acid-rich fragment (M-rich) sodium alginate, which is prepared by the method of the invention to prepare a mannuronic acid-rich segment (rich M) alginate obtained by the method of the invention. Adding sodium carbonate to convert, 3 ⁇ 4 is rich in mannuronic acid fragment (rich M) sodium alginate.
  • M-rich mannosolic acid-rich fragment
  • Adding sodium carbonate to convert, 3 ⁇ 4 is rich in mannuronic acid fragment (rich M) sodium alginate.
  • the present invention also provides a mannuronic acid-rich (M-rich) sodium alginate prepared by the method of the present invention.
  • the method of the invention has the following features:
  • the use of microwaves in combination with organic acids directly acts on the raw materials of brown algae, and utilizes various bonding between organic acid cleavage polysaccharides and organic macromolecular substances (including cellulose and algin) of the cell wall of brown algae raw materials, thereby promoting the raw materials of the medicinal materials.
  • the release of polysaccharides increases the extraction rate of polysaccharides; at the same time, organic acids, in addition to: H + ions degrade the polysaccharides, organic acid ions can also protect the polysaccharide molecules by forming hydrogen bonds with hydroxyl groups in the polysaccharides. .
  • the microwave-enhanced organic acid can further degrade the polysaccharide released, so that the water solubility of the polysaccharide is greatly enhanced, and a polysaccharide having a relatively concentrated molecular weight distribution and good water solubility is obtained, and the high-efficiency extraction of the brown algae polysaccharide is realized in the whole process. Structural Adjustment.
  • the brown algae polysaccharides with different molecular structures have different sensitivity to microwave radiation and organic acid.
  • the molecular weight of the M-rich fragments sensitive to organic acid degradation under microwave irradiation in brown algae is significantly reduced, and the water solubility is greatly increased. It can be submitted without digesting.
  • the G-rich fragment which is insensitive to the degradation of organic acids under microwave irradiation, remains in the brown algae residue and can be proposed by the alkali digestion process, which simplifies the separation process of the M-rich alginate and the G-rich alginate.
  • microwave heating can simultaneously heat the inside and outside of the material, which can fully overcome the conventional heating.
  • a series of problems in the way that the materials that are difficult to overcome are unevenly heated and have high energy consumption;
  • the present invention has the following advantages:
  • the invention saves time, has less acid consumption, and is easy to recycle efficiently, save water and save energy.
  • the microwave heating technology effectively overcomes the heat transfer problem that is difficult to avoid by conventional heating, significantly reduces the amount of organic acid, and reduces the processing time. Especially in the process of distillation and acid removal, it can well eliminate the heat that cannot be avoided during conventional heating. All phenomena. This feature is particularly evident in large-scale production.
  • the microwave-enhanced organic acid can further adjust the molecular structure of the released fucoidan, including moderate degradation of alginate, improving its water solubility, and separation of the M-rich segment and the G-rich segment. Moderately reduce the sulfur content of the sulfur-containing brown algae polysaccharide.
  • the method uses acid to directly act on the raw material of the medicinal material, and overcomes many shortcomings in the extraction of polysaccharides in the prior art process. At present, the research on various modification and modification of brown algae polysaccharides is mainly based on brown algae polysaccharides, and cannot overcome many problems in polysaccharide extraction.
  • the polysaccharide product obtained by the invention has narrow molecular weight distribution, high purity, good water solubility and good activity, and the invention has obvious advantages in large-scale industrial production. Attach a description;
  • FIG. 1 is a schematic view of the process flow of the present invention. detailed description
  • Microwave treatment applying microwave power, using the synergy between microwave, organic acid molecule and brown algae polymer polysaccharide to selectively cut the glycosidic bond of brown algae polymer polysaccharide to achieve controlled degradation;
  • Microwave-pretreated brown algae adding about 5-8 times of water for extraction, concentrated extract and stepwise alcohol precipitation to obtain a well-water soluble alginate (M-rich) alginate, brown algae Sugar gum and brown algae starch;
  • the brown algae raw material residue is pretreated, and then treated by an alkali digestion process to obtain alginate rich in guluronic acid fragment (rich G).
  • the specific reference method in each of the examples has established a control process, and the extraction rate of sodium alginate, fucoidan, and brown algae starch corresponding to the control process and the new process examples, and the total process
  • the water consumption, the molecular weight of the sodium alginate product, the duration of action, the amount of organic acid (or mixed acid), and the fucose sulfate sulfate content were compared for a list.
  • the sodium alginate product is purified by a suitable method to obtain a uniform monomeric polysaccharide.
  • Control process Weigh 100 grams of washed, dried, pulverized kelp powder into a 2L beaker, add 1L of water and 20g of sodium carbonate in a hot water bath at 70 ° C, then use 80 -100 L of water was diluted, thoroughly stirred, filtered, and the filtrate was adjusted to pH with hydrochloric acid to 2,0, centrifuged, and sodium carbonate was added to the precipitate for conversion to obtain sodium alginate. The supernatant obtained by centrifugation was fractionated with ethanol to obtain a fucoidan gum (e.g., ethanol to an alcohol content of 65 wt%) and a brown algae starch (with ethanol to an alcohol content of 85 wt%). The extraction rate was calculated after each step of the product was dried, and the extraction rate was a percentage of the mass ratio of the product of each step to the raw material kelp powder. See the table for all analysis results.
  • Example 1 Example 1:
  • step 3 Add 0.75 L of the formic acid solution in step 2) to the microwave reaction chamber in step 1), and thoroughly stir to make the kelp powder uniformly wet;
  • step 4) The wetted material obtained in step 3) is irradiated to 5KW continuous microwave power until liquid reflux, that is, the organic acid solution is vaporized, and the pulse microwave power working mode is changed, and the duty ratio is 5 seconds/5 seconds (ie, : ratio of on-time to off-time), peak power 10 kW, maintaining 12 iiiin vacuum (reaction chamber working pressure 20 mmHg), no liquid in the microwave reaction chamber, finished
  • step 6 Take the microwave pretreatment kelp powder 100g in step 5), put it into a 1L beaker, add 500ml distilled water, extract 40 ⁇ in 7CTC 'hot water bath, filter, repeat the above process once, merge twice The filtrate is adjusted to neutral pH and the filter residue is used;
  • Step 6) The filtrate is concentrated and fractionated to form an alginate-rich sodium alginate (adding ethanol to an alcohol content of 30% by weight), fucoidan (adding ethanol to an alcohol content of 65 wt%), and fucoidan
  • step 6 Add 6g of sodium carbonate and 500ml of water to the residue obtained in step 6), stir it in a hot water bath at 70 °C for 40min, filter, concentrate and concentrate the filtrate, and obtain the G-rich sodium alginate.
  • the control process is as follows: Weigh 100 grams of washed, dried, pulverized yam food ingredients into a 2L beaker, add 1L of water and 25g of sodium carbonate in a 70 ⁇ hot water bath for 1 hour, then use 80-100L of water is diluted, fully stirred and filtered. The filtrate is added with hydrochloric acid to adjust the pH to 2 relieve0, centrifuged, and sodium carbonate is added to the precipitate to obtain sodium alginate. The supernatant obtained by centrifugation is fractionated with ethanol.
  • step 3 Take the oxalic acid solution 1,5L in step 2), add it to the microwave reaction chamber in step 1), and stir well to wet the yam food;
  • step 3 the uniformly wetted material is irradiated to the liquid reflux under the continuous microwave power of 3KW, that is, the organic acid solution is vaporized, and the pulse microwave power working mode is changed, the duty ratio is 5 seconds Z5 seconds, peak value. 5KW, after 15min, vacuum (reaction chamber working pressure is lOOmmHg), vacuum distillation, remove organic acid solution, no liquid in the microwave reaction chamber, complete Microwave pre-treatment of yam food;
  • step 4 1.5 kg of pre-treated Sargassum powder is added with 5:L of absolute ethanol, stirred thoroughly, filtered, and the filtrate is distilled to recover ethanol and oxalic acid. After the filter residue is dried, it is microwave pretreated. ;
  • step 6) Take step 5) and pre-treat the microwave into the 1 liter beaker, add 500mi distilled water, extract in a 70 C hot water bath for 40 min, filter, repeat the above process i times, merge two The filtrate is adjusted to neutral pH and the filter residue is used;
  • the control process is as follows: Weigh 100 grams of washed, dried, pulverized macroalgae powder into a 2L beaker, add 1L of water and 25g of sodium carbonate in a hot water bath at 70 ° C for 1 hour, then Dilute with 80 100L of water, mix well, filter, and adjust the filtrate with hydrochloric acid. The pH was adjusted to 2,0, centrifuged, and sodium carbonate was added to the precipitate for conversion to obtain sodium alginate. The supernatant obtained by centrifugation was fractionated with ethanol to obtain fucoidan (ethanol to 65 wt% alcohol) and brown algae starch (ethanol to 85 wt% alcohol). The product parameters were determined in the same manner as in Comparative Example 1. The results of all analyses are shown in Table 3.
  • step 2) acetic acid solution 0,5L, added to the Huibo reaction chamber in step i), fully stir and evenly wet;
  • step 3 the uniformly wetted material is irradiated to the liquid reflux under the continuous microwave power of 2KW, that is, the organic acid solution is vaporized, and the pulse microwave power working mode is changed, the duty ratio is 5 seconds/5 seconds, and the peak power is 4KW, after 35min, vacuum (reaction chamber working pressure is 200mmHg), vacuum distillation, remove organic acid solution, no liquid in the microwave reaction chamber;
  • Step 4) In the microwave reaction chamber, add 5L of absolute ethanol, stir well, filter, and distillate the filtrate to recover ethanol. After the filter residue is dried, it is microwave pretreated macroalgae powder;
  • step 6 Take the microwave pretreated macroalcohol powder in step 5), put it into a 1L beaker, add 500ml of distilled water, extract it in a hot water bath at 70 °C for 40min, filter, repeat the above process once, merge The filtrate was adjusted twice to neutrality, and the filter residue was used;
  • Fucoidan cavity yield (wt) 0.6% 3.5% Brown algae starch yield (wt) 0.6% sodium alginate molecular weight L 15 X 10 6 7.8 X 10 4 (rich) fucoidan sulfate content (wt) 15.5% 6 8%
  • Amount of alkali (alkali / giant algae powder) 0,25 0.05
  • Example 4 Weigh 100 grams of washed, dried, crushed wakame material into a 2L beaker, add 1L of water and 25g of sodium carbonate in a 70 ⁇ hot water bath for 1 hour, then use 80-100L of water Dilute, thoroughly stir and filter, add hydrochloric acid to adjust the pH to 2,0, centrifuge, and add sodium carbonate to the precipitate for conversion to obtain sodium alginate. The supernatant obtained by centrifugation was fractionated with ethanol to obtain fucoidan (with ethanol to an alcohol content of 65 wt%) and brown algae starch (with ethanol to an alcohol content of 85 wt%). The method for determining the product parameters was the same as in Example 1. The results of all analyses are shown in Table 4. Example 4
  • Embodiment 1 The difference from Embodiment 1 is that:
  • step 3 Take 1 L of the mixed acid solution in step 2), add it to the microwave reaction chamber in step 1), and stir well to make the wetting;
  • step 3) The wetting material in step 3) is irradiated to the liquid reflux under the continuous microwave power of 15KW, that is, the organic acid solution is vaporized, and the pulse microwave power working mode is changed, the duty ratio is 5 seconds Z5 seconds, and the peak power is 7KW.
  • vacuum reaction chamber working pressure 150 mmHg
  • step 4 Add 5 L of absolute ethanol to the microwave reaction chamber in the above step 4), stir well, and filter. The filtrate is distilled to recover ethanol, and the filter residue is dried to be a microwave pretreated wakame powder.
  • Embodiment 1 The difference from Embodiment 1 is that:
  • step 3 Take 2L of propionic acid solution in step 2), add it to the Huibo reaction chamber in step i), and stir it thoroughly to make it evenly wet;
  • step 4) The wetting material in step 3) is irradiated to the liquid reflux under 4KW continuous microwave power, that is, the organic acid solution is vaporized, the microwave power is changed to 2KW, and after 30 minutes, the vacuum is applied (the working pressure of the reaction chamber is 150mmHg). Pressurize the distillation to remove the organic acid solution until there is no liquid in the microwave reaction chamber.
  • step 4 In the above step 4), add 5:L of absolute ethanol to the microwave reaction chamber, stir well and filter. The filtrate is distilled to recover ethanol, and the filter residue is dried to be microwave pretreated algae powder.
  • Example 6 Weigh 100 grams of washed, dried, crushed carrageen raw materials into a 2L beaker, add 1L of water and 25g of sodium carbonate in a 70 ⁇ hot water bath for 1 hour, then use 80-100L of water Dilute, thoroughly stir and filter, add hydrochloric acid to adjust the pH to 2,0, centrifuge, and add sodium carbonate to the precipitate for conversion to obtain sodium alginate. The supernatant obtained by centrifugation was fractionated with ethanol to obtain fucoidan (with ethanol to an alcohol content of 65 wt%) and brown algae starch (with ethanol to an alcohol content of 85 wt%). The method for determining the product parameters was the same as in Example 1. The results of all analyses are shown in Table 5. Example 6
  • Embodiment 1 The difference from Embodiment 1 is that:
  • step 3 Take 1.5L of the oxalic acid-hydrochloric acid mixed acid solution in step 2), add it to the microwave reaction chamber in step 1), and stir well to make the wetting;
  • step 4) The wetting material in step 3) is irradiated to 3KW continuous microwave power until there is liquid reflux, that is, the organic acid solution is vaporized, the microwave power is changed to L5KW, and after 30 minutes, the vacuum is applied (the working pressure of the reaction chamber is lOOmmHg) Distilled under reduced pressure until there is no liquid in the microwave reaction chamber.
  • the results of the examples show that the invention adopts the microwave chemical method to pretreat the brown algae raw materials, and then adopts the water leaching and alkali digestion processes respectively to obtain the oligosaccharide oligosaccharides and the fucoidan oligomers having different structures.
  • Sugar, and the sulfate content in the fucoidan is in a moderate range, while overcoming many shortcomings such as water consumption and serious pollution in the prior art.
  • mice Kunming mice, male, weight (22i: 2) g, provided by the Animal Experimental Center of Beijing Academy of Military Medical Sciences
  • Streptozotocin STZ was produced by Sigma, and kelp brown algae polysaccharide was used as the actual preparation.
  • Test method Take a single intraperitoneal injection of streptozotocin (STZ) 50mg/kg, take a blood glucose level ⁇ 1L1 mmoi/L as a diabetes model, take 20 mice, and randomly group according to the blood sugar level , divided into model group, brown algae polysaccharide group, and another 10 normal mice, as a blank group. Each group of mice was intragastrically administered at 9:00 am every day, and the amount of the brown algae polysaccharide group was 500 mg Zkg. The model group and the blank group were given corresponding volumes of distilled water. Continuous gavage treatment for 32 days.
  • STZ streptozotocin
  • mice On the 21st and 32nd day, the mice were fasted for 12 hours, blood was taken from the eyelids, and serum was used to detect the fasting blood glucose level of the mice.
  • Statistical methods were performed using SPSS statistical software. The data of each group were represented by soil s, and the comparison between groups was analyzed by variance. The results of the experiment are listed in the following table: Effects of kelp fucoidan on fasting blood glucose in diabetic mice (x ⁇ s, ⁇ ol/L)
  • the fucoidan of the present invention can effectively and significantly reduce blood sugar in diabetic mice.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Cosmetics (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

发明公开了一种微波化学法提取褐藻活性多糖的方法以及采用该方法获得的褐藻多糖。所述方法包括:将粉碎后的褐藻类原料置于微波反应腔中加入酸溶液进行反应;任选进行浓缩、然后加入有机溶剂洗涤,除去多余的酸;然后水提取后分级醇沉,分别得到富含甘露糖醛酸片段的褐藻胶、褐藻糖胶和/或褐藻淀粉;向剩余褐藻残渣中加入碱溶液进行消化处理,过滤,滤液调节pH值至中性,然后醇沉,得富含古洛糖醛酸片段的褐藻胶沉淀。

Description

一种微波化学法提取褐藻多糖的方法 技术领域
本发明涉及医药化学领域, 涉及一种褐藻多糖的提取方法, 具体为 一种基予微波化学法提取褐藻多糖的方法。 背景技术
海藻为海产藻类的统称, 通常固着于海底或某种固体结构上, 是由 基础细胞所构成的单株或一长串的简单植物。 海藻中的营养成分包括多 糖类、 蛋白质、 脂质、 色素及低分子物质。 经传统中药及现在科学研究 证明, 海藻中具有增强免疫力及抗癌活性的物质主要成分是多糖类。
海藻包括红藻、 绿藻、 褐藻等, 而目前海藻多糖中研究和应用比较 深入的主要为褐藻类多糖。褐藻为一类较高级的藻类, 约有 250属, 1500 多种。 褐藻类的藻体呈黄褐色或深褐色, 含有多糖类、 蛋白类、 脂类和 甘露醇等物质。 有的种类, 如海带, 细胞内还含有大量^ I。
褐藻多糖是褐藻重要的组成成分, 其中包括褐藻胶、 褐藻糖胶、 褐 藻淀粉等。 褐藻胶, 通常是指褐藻酸钠, 是由 β D-甘露糖醛酸 (简称 Μ) 和 (X- L古洛糖醛酸(简称 G)两种糖醛酸单体依靠 1 4糖苷键连接成的线 性多糖嵌段共聚物, 在褐藻中含量很高。 其段链结构有三种类型: 由连 续 Μ单元組成的 Μ嵌段, 由连续 G单元形成的 G嵌段, 以及由 G单元 和 Μ单元交替连接形成的 MG嵌段。 褐藻胶也是一类最具代表性的海藻 化工产品, 有据数据显示, ¾前我国褐藻胶年产量已高居世界首位。 为 便于保存和使用, 一般将褐藻胶转化为褐藻酸钠作为最终产品。 作为一 种聚阴离子多糖 (海藻酸) 的钠盐, 褐藻酸钠以其固有的理化性质, 在 工业上有着极为广泛的用途。
在食品工业上, 褐藻酸钠低热无毒、 易膨化、 柔韧度高, 添加到食 品中可起到凝固、 增稠、 轧化、 悬浮、 稳定和防止食品千燥等诸多功能, 是一种优良的食用添加剂。
在纺织工业中, 褐藻酸钠具有易着色、 得色量高、 色泽鲜艳和印花 织物手感柔软等特点, 是棉织物活性染料印花中最常用的糊料。 同时, 它还可作为经纱浆料、 防水加工、 制造花边用等工艺过程的水溶纤維。
在化妆品工业中褐藻酸钠用作牙膏基料、 洗发剂、 整发剂等。 在造 纸工业上可作为施胶, 在橡胶工业中用作胶乳浓縮剂, 还可以制成水性 涂料和耐水性涂料。
褐藻酸钠还是一种重要的生物医用材料, 被广泛用作药物緩释剂、 聚合物薄膜、 细胞封装、 伤口敷料、 手术海绵和栓塞剂等, 在生物医用 材料学、 临床医学、 组织工程学和药物学等领域正在受到越来越多的关 注。 至今, 褐藻胶的生产基本上仍沿用碱消化工艺, 基本原理是利用纯 碱 (Na.2C03) 把各种不溶予水的褐藻酸盐转化成褐藻酸钠, 并溶解在水 中, 再经过滤除杂、 酸 /钙析、 钠盐转化后得到干燥的海藻酸钠粉末。
褐藻糖胶是一种杂多糖, 组成除了含有岩藻糖和硫酸根外, 还含有 半轧糖、 木糖、 甘露糖和糖醛酸等单糖。 由于具有独特的结构和优异的 生理活性, 如调节血脂、 降血糖、 降血压、 抗凝血、 抗胂瘤、 抗突变和 防辐射、 抗病毒、 增强免疫功能等, 褐藻糖胶已成为本世纪海洋药物研 究的热点之一。 褐藻淀粉又名昆布多糖, 同样是一种具有多种生理活性 的多糖。 褐藻糖胶及褐藻淀粉的制取主要利用生产褐藻胶、 碘及甘露醇 的废弃物为主要原料, 经水浸提后分级醇沉。
现有褐藻胶生产工艺方法的主要缺点:
耗水耗能严重, 污染大。 这也是制约海藻工业发展的关键因素之一。 碱消化工艺原理简单, 但实际工业制备中往往需要数十道过程, 有些步 骤是非常困难的。 例如, 海带经过碳酸钠处理形成的褐藻酸钠的浓浆中, 有许多不溶于水的纤维素等成份需要滤除, 由于浓浆粘度过高, 除了需 要力如入硅藻土等助滤 ^外, 还需要消耗大量的水进行稀释, 而且对用水 的水质要求很高。据统计, 生产 1吨成品海藻酸钠约需用 700-1000吨水。 另外, 现有碱消化工艺的化学过程主要有加酸和如钙盐两种方法: 首先 把褐藻中不溶于水的褐藻酸盐转换成可溶于水的褐藻酸钠, 如入酸或钙 离子使褐藻酸钠形成褐藻酸或褐藻酸钙沉淀, 然后清洗后转换回褐藻酸 钠, 最后再进一步把褐藻酸钠加工成各类产品。 无论采用哪种方法, 都 要产生的大量工业废水, 对生态环境构成了严重的威胁。
同时, 目前褐藻酸钠产品的品种单一, 质量欠优, 附加值低。 褐藻 酸钠的分类从结构上可分为高 GZM比、 中 G/M比、 低 G/M比三种, 从粘度上可分为超低粘度、 低粘度、 中等粘度、 高粘度和超高粘度褐 藻酸钠, 从纯度上可分为工业用、 食用以及医用三个级别。 目前国内 企业生产的褐藻酸钠大多是中等粘度产品, 作为保健医药类产品应用受 到其胶凝性较强, 溶解度低等特性的限制, 活性得不到充分体现。
为突破上述困境, 国内外研究人员针对以上各项不足, 在多个环节 做了长期不懈的努力, 许多研究卓有成效, 取得了许多重要的进展。 这 些研究包括对旧有工艺的改进以及新工艺的开发, 比如最近国外学者报 道的褐藻胶反应挤出新工艺, 就同时具备节水、 省时、 减用量少等优点, 而且产品的粘度和牧率都有不同程度的提高, 但该工艺不能直接得到生 物活性良好的水溶性多糖。 对传统海藻多糖产品的修饰包括利用生物、 化学或物理方法, 将褐藻酸钠和褐藻糖胶降解为褐藻胶低聚糖、 寡糖和 低分子量岩藻糖, 对褐藻糖胶的硫含量进行调整等措施。
研究结果也已证实, 降解后的褐藻酸钠和褐藻糖胶的活性得到了有 效的提高, 有些低分子量褐藻酸钠已具有类似肝素的抗胂瘤和抗病毒的 生理活性, 可用于心脑血管疾病和病毒方面的药用研究。 有些具有整肠 和解毒、 降血糖血脂、 抗凝血、 抗炎、 免疫调节等作用, 可作为糖尿病、 肥胖症、 直肠结肠癌、 习惯性便秘患者的疗效食品。
尤其是近年来, 经过修饰后的低分子量褐藻胶或岩藻多糖的独特的 生理作用不断被发现出来, 它的活性及药用价值的研究已成为新的研究 挑占 -― n
另外, 聚甘露糖醛酸 (M) 和聚古洛糖醛酸 (G) 是褐藻胶分子中所 特有的, 在自然界中尚未发现有单独存在的此类化合物。 而且褐藻胶中 两种糖醛酸聚糖的比例 (M/G)、 嵌段的结构和排列等不同时, 其性能会 表现出显著不同。 因此, 也有许多科研工作者通过不同的降解、 分离方 法得到这类结构独特的多糖片段及其寡糖, 研究其独特的生物活性, 以 所有这些结构不同的系列低聚糖或寡糖, 极大地丰富了海藻多糖产 物的多祥性。 但上述这些研究都以中等粘度褐藻胶为原料, 并未从根本 上解决褐藻酸钠的传统生产工艺中所存在的耗水耗能、 污染严重、 产率 / 含量低等问题。
Microwave assisted rapid method for hydrolysis of sodium alginate for
M/G ratio determination (Mahesh Clihatbar, C rhoh dmtePolymers Vol 76 (2009) 650-656) ; 其公开了在家用微波炉中, 以草酸溶液或者硫酸的稀 溶液为溶剂, 对褐藻酸钠进行部分降解, 其主要目的是寻找一种简便快 速、 温和的测定褐藻酸钠中 M/G (甘露糖醛酸 /古洛糖醛酸) 比值的方法。 但是该方法所用褐藻酸钠原料仍沿用传统的提取方法制备, 并未克服旧 有工艺耗水、 耗能等缺陷。
Microwave assisted desuifation of sulfated polysaccharides (Diego A, Navaroo, C rboh dmiePol mers Vol 69 (2007) 742-747) 公开了在家用微 波炉中, 利用微波辅助方法脱除红藻多糖角叉胶、 琼胶以及褐藻中岩藻 多糖、 动物多糖硫酸软骨素中的硫成分, 以克服常用的盐酸脱硫方法的 弊病, 该方法仍以多糖为原料, 并未克服现有工艺中耗水耗能等缺陷。 另外该文中追求过高的脱硫率的目的是为了提高分析样品时的方便性, 并未顾及到多糖的活性。
因此, 有必要继续开展海洋科学与海藻工业新工艺、 新技术、 新产 品的研究和开发。 发明内容
针对以上技术缺陷, 本发明提供一种新的褐藻多糖的提取方法, 即微波化学法提取褐藻活性多糖的方法。 本发明微波化学法提取褐藻活 性多糖的方法, 包括如下步骤:
1 ) 将粉碎后的褐藻粉置入微波反应腔中, 加入质量浓度为 5% 99% 酸溶液,在微波功率为每千克物料 1千瓦-每千克物料 10千瓦质量功率密 度、 工作压力为 20mmHg 760mmHg下反应 5 i20min; 可选择地进行浓 縮, 然后加入有机溶剂洗涤, 除去多余的酸.。 2) 向歩骤 1 ) 所得产物加入水溶液进行水提, 将提取液浓缩, 用碱 调节 PH至中性, 然后进行分级醇沉, 分别得到富含甘露糖醛酸片段(富 M) 褐藻胶、 褐藻糖胶和 /或褐藻淀粉; 并剩余褐藻残渣。
3 ) 向步骤 2) 所得褐藻残渣中加入碱溶液, 在 35 60°C温度进行碱消 化反应 20-80分钟, 滤去残渣, 将滤液调节 pH值至中性, 浓縮后醇沉, 得 富含古洛糖醛酸片段 (富 G) 的褐藻胶沉淀。
本发明方法中, 所述粉碎的褐藻粉为本领域常规方法进行粉碎而得 的褐藻粉, 或购买粉碎好的褐藻粉直接用于本发明方法中, 其中粉碎的 褐藻粉的目数为本领域常规的目数, 或由本领域技术人员结合本发明及 本发明方法中, 作为实施方式之一, 当步骤 1 ) 中加入的酸溶液中, 有机酸为不挥发性酸时, 在微波作用结束后则不依靠浓缩来除去酸液; 当加入的有机酸为挥发性酸时, 在微波作用结束后, 先进行浓缩除酸, 此时优选微波加热下的减压浓缩, 然后再用有机溶剂洗涤去除少量残留 的酸。
本发明方法中, 作为实施方式之一, 所述步骤 1 ) 中的微波功率施加 方式为连续微波或连续微波与脉冲微波相结合方式; 其中, 连续微波与 脉冲微波相结合的使用方式中, 先用连续微波辐照至酸溶液回流后, 转 换为脉沖微波, 继续辐照 5min- 120min; 连续微波同样是至溶液回流后保 持 5ιτώι- 120min。
本发明方法中, 作为进一步优选的实施方式之一, 所述步骤 1 ) 中, 在连续微波情况下,质量功率密度为每千克物料 1千瓦每千克物料 5千瓦; 脉冲微波情况下, 质量功率密度为每千克物料 2千瓦-每千克物料 10千瓦, 占空比为 A/B, 其中 100秒, B=l秒 _1 ()0秒。
本发明方法中, 所述微波反应腔的选择可以由本领域技术人员结合 本发明以及本领域常识进行确定, 既可为行波式微波反应腔, 也可以为 谐振式微波反应腔。 本发明方法中, 作为实施方式之一, 所述步骤 1 ) 中褐藻原料与酸溶 液的重量比范围 =5/1 - 1/5。
本发明方法中, 作为实施方式之一, 所述步骤 1 ) 中的酸溶液选自有 机酸或有机酸与无机酸的混合溶液。
本发明方法中, 作为进一步实施方式之一, 所述有机酸选自质量浓 度为 5 %- 50%的草酸、 优选 10%- 35%的草酸; 10%- 99%的甲酸、 优选 30- 85%的甲酸; 10%- 99%的乙酸, 优选 60- 95%的乙酸; 或 10% 99%丙 酸, 优选 70 95%的丙酸的水溶液。 进行制备相应浓度的酸溶液, 如用浓度为 100%酸 (例如純甲酸) 然后加 入适量的水稀释至相应的浓度。
本发明方法中, 作为实施方式之一, 当使用有机酸和无机酸的混合 溶液时, 在有机酸和无机酸组合的溶液中, 所述混合酸溶液中的有机酸 的浓度为以上所限定有机酸的浓度; 而无机酸质量百分比浓度为
15% ; 作为进一步优选实施方式之一, 无机酸选自盐酸、 硫酸、 硝 酸或磷酸。
上述无机酸溶液可以是直接商业购买的化学试剂, 然后采用本领域 常规的方法进行制备相应浓度的有机-无机混酸溶液, 如用浓度为 36%的 盐酸, 然后加入到有机酸中至相应的浓度。
本发明方法中, 通过控制反应条件, 利用微波、 有机酸分子和褐藻 高分子多糖之间的协同作用, 选择性切断褐藻高分子多糖的糖苷键, 实 现褐藻多糖的可控降解。
本发明方法中, 作为实施方式之一, 所述步骤 1 ) 中洗涤残余酸的有 机溶剂选自甲醇、 乙醇、 丙醇或丙酮, 或它们中的两种或两种以上的组 合, 所述有机溶剂的浓度没有特殊的要求, 本领域技术人员可以结合本 领域现有技术或常识进行确定。
本发明方法中, 作为实施方式之一, 所述歩骤 2) 中, : 骤 1 )所得产物 积的 5- 8倍。本领域技术人员结合本发明及常识可以进行 适当的增加或:. V; 当对提取液进行浓縮时, 优选浓縮至提取液 的 1/5-1/8。
本发明方法中 所述步骤 2) 中, 调节 pH值所用
Figure imgf000009_0001
段低聚褐藻胶沉淀; 然后加乙醇至含 量 60wt%- 70wt%时, 过滤或离心 分离、 获得褐藻糖胶沉淀; 最后加乙 至含醇量 8()wt%- 85 %时, 过滤
或氫氡化钠
Figure imgf000009_0002
氫氧化钠溶液。
本发明方 方式之一, 所述步驟 3) 中调节 pH值所用的 酸选自盐酸,
i
Figure imgf000009_0003
其特征在于, 所述步骤 3) 中醇 沉所用的醇选自乙醇或甲醇, 采用乙醇或曱醇进行醇沉, 原则上是添加 醇至溶液中不再有沉淀析出, 优选溶液中含醇量达到 80%- 85%即可。
本发明方法中, 利用本发明方法从中提取分离褐藻多糖的褐藻包括 但不 I1艮于, 海带属 (Laminaria) 海带、 马尾藻属 (Sargassum) 海蒿子、 海黍子、 羊栖菜、 鼠尾藻、 匍枝马尾藻、 墨角藻属 (Fucus) 岩藻、 墨角 藻、 鹿角菜属 (Pdvetia) 鹿角菜、 裙带菜属 (Undaria) 裙带菜或巨藻属 ( Maerocystis ) 巨藻。
作为优选的实施方式之一, 本发明还提供一种采用海带属海带制备 500mmHg-760niniHg气压下保 甲酸溶液回流 1.5 30min,然后减压蒸千甲 酸溶液。 向反应腔中加入海带粉重量的 3- 5倍的乙醇溶液, 搅拌洗涤 40- 60 分钟, 过滤。 滤渣烘干后用水进行提取 2次, 每次用水量为滤渣重量的 4- 6 倍, 提取温度 60- 80 C, 提取时间约 40分钟。 过滤, 合并两次滤液, 用氫 氧化钠溶液中和至中性, 浓縮至提取液体枳的 1/5, 然后加入乙醇至溶液 中乙醇含量达到 35%, 静置 4- 8小时, 过滤, 滤饼用无水乙醇及乙醚洗涤 后烘千, 得到多糖 A,继续向滤液中添加乙醇至溶液中乙醇含量达到 65%, 静置 4- 8小时, 过滤, 滤饼用无水乙醇及乙醚洗涤后烘干, 得到多糖13。 继续向滤液中补加乙醇至溶液中乙醇含量达到 85%, 静置 4 8小时, 过滤, 滤饼经无水乙醇和乙醚洗涤后烘干, 得到多糖(::。
上述水提后的海带滤渣中加入碳酸钠溶液, 在 35 60°C温度进行碱消 化反应约 40分钟, 过滤, 滤液用盐酸调节 pH值至中性, 浓缩后醇沉, 得 到多糖 D。
其中多糖 A为富含甘露糖醛酸 (富 M) 的褐藻酸钠, 多糖 B为褐藻糖 胶, 多糖 C为褐藻淀粉, 多糖 D为富含古洛糖醛酸 (富 G) 的褐藻酸钠。
作为优选的实施方式之一, 本发明还提供一种采用马尾藻属羊栖菜 制备活性多糖的方法, 所述方法如下: 将千羊栖菜粉加入到微波提取腔 中, 加入 (),5- 1.0倍的 20%的草酸溶液, 于 1 2KW/Kg功率密度的微波 下, 500mmHg-760mmHg气压下保持草酸溶液回流 15-25min,然后减压蒸 干微波提取腔中的液体。向反应腔中加入海带粉重量的 4 6倍的乙醇溶液, 搅拌洗涤物料 40 60分钟, 过滤, 滤渣烘千。 滤液蒸馏回收乙醇和草酸。 烘干的滤渣水提取两次, 每次用水为物料重量的 4- 6倍, 提取温度 70°C, 提取时间约 40分钟。 过滤, 合并两次滤液, 用氫氧化钠溶液中和至中性, 浓缩至提取液体积的约 1/5, 然后加入乙醇至溶液中乙醇含量达到 3()%, 静置 4 8小时, 过滤, 滤饼用无水乙醇及乙醚洗涤后烘干, 得到多糖 A,继 续向滤液中添加乙醇至溶液中乙醇含量达到 6()%, 静置 4- 8小时, 过滤, 滤饼用无水乙醇及乙醚洗涤后烘千, 得到多糖8。 继续向滤液中补加乙醇 至溶液中乙醇含量达到 80%, 静置 4- 8小时, 过滤, 滤饼经无水乙醇和乙 醚洗涤后烘干,得到多糖 C。上述水提后的羊栖菜滤渣中加入碳酸钠溶液, 在 35- 6CTC温度进行碱消化反应 40- 60分钟, 过滤, 滤液用盐酸调节 pH值. 至中性, 浓缩后醇沉, 得到多糖:0。
5 其中多糖 A为富含甘露糖醛酸 (富 M) 的褐藻酸钠, 多糖 B为褐藻糖 胶, 多糖 C为褐藻淀粉, 多糖 D为富含古洛糖醛酸 (富 G) 的褐藻酸钠。
作为优选的实施方式之一, 本发明还提供一种采用墨角藻属岩藻制 备活性多糖的方法, 所述方法如下: 将干岩藻粉加入到微波提取腔中, 加入 1-2倍 80%- 95%的丙酸溶液, 于 3- 5KW/Kg功率密度的微波下作用, 至
10 丙酸溶液回流后, 5 OOmmHg- 760mmHg气压下保持 40- 6()min,然后减压蒸 干丙酸溶液。 向反应腔中加入岩藻粉重量的 3- 5倍的乙醇溶液, 搅拌 30 6() 分钟, 过滤, 滤渣烘干。 向烘千的滤渣中加入 4- 6倍的水, 于 70°C下提取 4()分钟, 过滤。 重复上述提取过程一次, 合并两次滤液, 用氫氧化钠溶 液中和至中性, 浓縮至提 -取液体积的 1/5, 然后加入乙醇至溶液中乙醇含 i s 量达到 35%, 静置 4- 8小时, 过滤, 滤饼用无水乙醇及乙醚洗涤后烘干, 得到多糖 A,继续向滤液中添加乙醇至溶液中乙醇含量达到 65%, 静置 4 8 小时, 过滤, 滤饼用无水乙醇及乙醚洗涤后烘干, 得到多糖8。 继续向滤 液中补加乙醇至溶液中乙醇含量达到 85%, 静置 4 8小时, 过滤, 滤饼经 无水乙醇和乙醚洗涤后烘干, 得到多糖 (:。 上述水提后的岩藻滤渣中加入 0 碳酸钠溶液, 在 35 6()°C温度进行碱消化反应 40- 60分钟, 过滤, 滤液用盐 酸调节 pH值至中性, 浓缩后醇沉, 得到多糖0。
其中多糖 A为富含甘露糖醛酸 (富 M) 的褐藻酸钠, 多糖 B为褐藻糖 胶, 多糖 C为褐藻淀粉, 多糖 D为富含古洛糖醛酸 (富 G) 的褐藻酸钠。
作为优选的实施方式之一, 本发明还提供一种采用鹿角菜属鹿角菜 5 制备活性多糖的方法, 所述方法如下: 将干鹿角菜粉加入到微波提取腔 中, 加入 ().5- 2倍草酸 -盐酸混酸溶液, 混酸中草酸含量为 20%, 盐酸含量 为 0, 1 % , 于 i - 2KW/Kg功率密度的微波下, 500mmHg 760mmHg气压下保 持混酸溶液回流 15- 25min,然后减压蒸干反应腔中液体。 向反应腔中加入 鹿角菜粉重量的 3- 5倍的乙醇溶液, 搅拌 30- 60分钟, 过滤。 滤渣烘千后加 入 4— 6倍的水, 于 70 C下提取 40分钟, 过滤。 重复上述提取过程一次, 合 并两次滤液, 用氫氣化钠溶液中和至中性, 浓缩至提取液体积的 1/5, 然 后加入乙醇至溶液中乙醇含量达到 35%, 静置 4- 8小时, 过滤, 滤饼用无 水乙醇及乙醚洗涤后烘干, 得到多糖 A,继续向滤液中添加乙醇至溶液中 乙醇含量达到 65%, 静置 4- 8小时, 过滤, 滤饼用无水乙醇及乙醚洗涤后 烘干, 得到多糖8。 继续向滤液中补加乙醇至溶液中乙醇含量达到 85%, 静置 4- 8小时, 过滤, 滤饼经无水乙醇和乙醚洗涤后烘干, 得到多糖(〕。 上述水提后的鹿角菜滤渣中加入碳酸納溶液, 在 35- 60 C温度进行碱消化 反应 40- 60分钟, 过滤, 滤液用盐酸调节 pH值至中性, 浓縮后醇沉, 得到 多糖 D。
其中多糖 A为富含甘露糖醛酸 (富 M) 的褐藻酸钠, 多糖 B为褐藻糖 胶, 多糖 C为褐藻淀粉, 多糖 D为富含古洛糖醛酸 (富 G) 的褐藻酸钠。
作为优选的实施方式之一, 本发明还提供一种采用裙带菜属裙带菜 制备活性多糖的方法, 所述方法如下: 将千裙带菜粉加入到微波提取腔 中, 加入 0.5- 2.5倍甲酸 -盐酸的混酸溶液, 其中甲酸含量为 80%, 盐酸含 量为 0,5%, 于 2- 4:KW/Kg功率密度的微波下, 500mmHg 760π ηΙ 气压下 保持混酸溶液回流 10- 3()miri,然后减压蒸干混酸溶液。 向反应腔中加入裙 带菜粉重量的 3 5倍的乙醇溶液, 搅拌 30 60分钟, 过滤。 滤渣烘干后加入 4- 6倍的水, 于 60 C下提取 40分钟, 过滤。 重复上述提取过程一次, 合并 两次滤液, 用氫氧化钠溶液中和至中性, 浓缩至提取液体积的 1/5, 然后 加入乙醇至溶液中乙醇含量达到 35%, 静置 4- 8小时, 过滤, 滤饼用无水 乙醇及乙醚洗涤后烘干, 得到多糖 A,继续向滤液中添加乙醇至溶液中乙 醇含量达到 65%, 静置 4 8小时, 过滤, 滤饼用无水乙醇及乙醚洗涤后烘 干, 得到多糖]8。 继续向滤液中补加乙醇至溶液中乙醇含量达到 85%, 静 置 4 8小时, 过滤, 滤饼经无水乙醇和乙醚洗涤后烘千, 得到多糖(。 上 述水提后的裙带菜滤渣中加入碳酸钠溶液, 在 35- 60 C温度进行碱消化反 应 40- 60分钟, 过滤, 滤液用盐酸调节 pH值至中性, 浓縮后醇沉, 得到多 糖0。
其中多糖 A为富含甘露糖醛酸 (富 M) 的褐藻酸钠, 多糖 B为褐藻糖 胶, 多糖 C为褐藻淀粉, 多糖 D为富含古洛糖醛酸 (富 G) 的褐藻酸钠。
作为优选的实施方式之一, 本发明还提供一种采用巨藻属巨藻制备 活性多糖的方法, 所述方法如下: 将干巨藻粉加入到微波提取腔中, 加 入 0,3- 1.2倍 80%- 95%的乙酸溶液, 于 1- 4KW/Kg功率密度的微波下作用, 至乙酸溶液回流后 , 500mmHg~760mmHg气压下 'ί呆持 30- 4()min,然后减压 蒸干乙酸溶液。 向反应腔中加入巨藻粉重量的 3- 5倍的乙醇溶液, 搅拌 30- 60分钟, 过滤,滤渣烘干后加入 4 6倍的水于 60 C下提取 40分钟, 过滤。 重复上述提取过程一次, 合并两次滤液, 用氫氧化钠溶液中和至中性, 浓縮至提取液体积的 1/5 , 然后加入乙醇至溶液中乙醇含量达到 35%, 静 置 4- 8小时, 过滤, 滤饼用无水乙醇及乙醚洗涤后烘干, 得到多糖 A,继续 向滤液中添加乙醇至溶液中乙醇含量达到 65%, 静置 4- 8小时, 过滤, 滤 饼用无水乙醇及乙醚洗涤后烘千, 得到多糖:13。 继续向滤液中补加乙醇至 溶液中乙醇含量达到 85%, 静置 4- 8小时, 过滤, 滤饼经无水乙醇和乙醚 洗涤后烘干, 得到多糖(。 上述水提后的巨藻滤渣中加入碳酸钠溶液, 在 35- 60 C温度进行碱消化反应 40- 60分钟, 过滤, 滤液用盐酸调节 pH值至 中性, 浓缩后醇沉, 得到多糖:0。
其中多糖 A为富含甘露糖醛酸 (富 M) 的褐藻酸钠, 多糖 B为褐藻糖 胶, 多糖 C为褐藻淀粉, 多糖 D为富含古洛糖醛酸 (富 G) 的褐藻酸钠。
本发明还提供一种采用本发明方法制备而得的褐藻多糖, 其特征在 于, 所述褐藻多糖采用本发明方法制备而得。
作为优选实施方式之一, 本发明还提供一种采用本发明方法制备的 富含古洛糖醛酸片段 (富 G) 的褐藻胶或富含甘露糖醛酸片段 (富 M) 褐 藻胶; 作为优选的实施方式之一, 本发明所述富含古洛糖醛酸片段 (富 G) 的褐藻胶优选为富含古洛糖醛酸片段(富 G) 的海带褐藻胶、 羊栖菜褐藻 胶、 岩藻褐藻胶、 鹿角菜褐藻胶、 裙带菜褐藻胶或巨藻褐藻胶;
同样作为优选的实施方式之一, 本发明所述富含甘露糖醛酸片段(富 M) 的褐藻胶优选为富含甘露糖醛酸片段 (富 M) 褐藻胶的海带褐藻胶、 羊栖菜褐藻胶、 岩藻褐藻胶、 鹿角菜褐藻胶、 裙带菜褐藻胶或巨藻褐藻 胶。
本发明还提供一种富含甘露糖醛酸片段 (富 M) 褐藻酸钠的制备方 法, 所述方法为: 采用本发明方法制备 ¾得的富含甘露糖醛酸 段 (富 M) 褐藻胶加入碳酸钠转化, ¾得富含甘露糖醛酸片段 (富 M) 褐藻酸钠。
本发明还提供一种采用本发明方法制备的富含甘露糖醛酸 段 (富 M) 褐藻酸钠。
本发明方法具有以下特 ¾:
第一, 使用微波配合有机酸直接作用于褐藻原料, 利用有机酸断裂 多糖与褐藻原料细胞壁的有机大分子物质 (包括纤維素、 藻胶) 之间的 各种键合作用, 从而促进药材原料中多糖的释放, 提高多糖的提取率; 同时有机酸, 除了 : H+离子对多糖的降解作用外, 有机酸根离子还能通过 与多糖中的羟基形成氫键等作用而对多糖分子起到保护作用。
第二, 微波强化的有机酸可进一步将释放的多糖进行适度降解, 从 而使多糖的水溶性大幅增强, 得到分子量分布相对集中、 水溶性良好的 多糖, 在整个过程中实现了褐藻多糖高效提取及结构调整。
第三, 具有不同分子结构的褐藻多糖对微波辐射和有机酸作用的敏 感度不同, 褐藻中对微波辐射下的有机酸降解作用较敏感的富 M片段的 分子量显著降低, 其水溶性大大增加, 不需经过消化就可以顺利提出。
对微波辐射下的有机酸降解作用不敏感的富 G片段则残留在褐藻残 渣中, 可通过碱消化工艺提出, 简化了富 M褐藻胶和富 G褐藻胶的分离 过程 o
第四, 微波加热能使物料内外得到同时加热, 能充分克服常规加热 方式中难以克服的物料受热不均匀、 能耗高等系列问题;
与现有技术相比, 本发明更具有如下优点:
1、 本发明省时、 酸用量少、 且易高效回收、 节水和节能效果显著。 采用微波加热技术, 有效地克服了常规加热所难以避免的传热问题, 显 著降低有机酸用量, 减少处理时间, 特別是在蒸馏排酸过程中, 能很好 地消除常规加热时无法避免受热不均现象。 这一特点在规模化生产时 表现得尤为明显。
2、 微波强化的有机酸可进一步将释放的褐藻多糖分子结构进行适度 调整, 包括对褐藻胶进行适度降解, 改善其水溶性, 并实现其中富 M片 段和富 G片段的分离。 适度降低含硫褐藻多糖的硫含量。 本方法使用酸 直接作用于药材原料, 克服了已有工艺过程中多糖提取时的诸多不足。 而目前对褐藻多糖所进行的各种修饰改性的研究基本都是以褐藻多糖为 原料, 无法克服多糖提取时的诸多问题。
3、 本发明获得的多糖产物分子量分布范围窄、 纯度高、 水溶性好、 活性好, 本发明工艺在大规模工业化生产時优势明显。 附 a说明;
图 1为本发明工艺流程示意图。 具体实施方式
本发明通过以下实施例和试验例进行进一步的说明, 但本发明并不 受限于此。
本发明的工艺过程如下:
1 ) 将经洗净.、 千燥、 粉碎后的褐藻类原料置入微波反应腔中, 加入 有机酸或有机 /无机混酸溶液, 充分搅拌使均 润湿;
2) 微波处理, 施加微波功率, 利用微波、 有机酸分子和褐藻高分子 多糖三者之间的协同作用, 选择性切断褐藻高分子多糖的糖苷键, 实现 其可控降解;
3 )利用微波加热减压蒸馏, 排除大部分有机酸溶液或有机 /无机混酸 溶液, 利用有机溶剂充分洗涤, 除去少量残留的酸, 完成褐藻的微波预 赴理;
4) 经微波预处理的褐藻, 加入约 5- 8倍水进行提取, 提取液浓縮后 分步醇沉可得到水溶性良好的富含甘露糖醛酸片段 (富 M) 的褐藻胶、 褐藻糖胶和褐藻淀粉;
5) 经过水提后的微波预处理褐藻原料残渣, 再按碱消化工艺进行处 理, 可获得富含古洛糖醛酸片段 (富 G) 的褐藻胶。
整个工艺过程见附图 1。
为了对新工艺进行评价, 各实施例中特参考文献制定了对照工艺, 并把对照工艺、 新工艺各实施例相应的褐藻酸钠、 褐藻糖胶、 褐藻淀粉 的提取率、 工艺过程中的总耗水量、 褐藻酸钠产品的分子量、 作用时间、 有机酸 (或混酸) 用量以及褐藻糖胶硫酸根含量等数据进行了列表比较。 褐藻酸钠产物再经适当的方法純化后得组成均一的单体多糖, 采用
H1 NMR方法测定其聚甘露糖醛酸片段 (M) 与古洛糖醛酸片段 (G) 比 值 M/G (参见 《糖复合物生化研究技术》 一书), 褐藻酸钠分子量采用高 效液相色谱仪进行测定 (台文静, 于广利, 吴建东, 赵峡„4种海蕴多糖的 提取及理化性质,中国海洋大学学报, 2010,40 (5) : 23-26.) , 褐藻糖胶硫 酸根含量采用比浊法测定 (丛建波.王长振,李妍, 等, 褐藻硫酸多糖硫酸 基含量测定一硫酸钡比浊法研究 [J] 。解放军药学学报, 2003,19 (3) : 181.) 对照例 i
对照工艺: 称取 100克经洗净、 千燥、 粉碎后的海带粉原料放入 2L 的烧杯中,加入 1L水以及 20g碳酸钠于 70°C的热水浴中进行搅拌 时, 然后用 80-100L的水进行冲稀, 充分搅拌后过滤, 滤液加盐酸调节 pH值 至 2,0, 离心分离, 沉淀中加入碳酸钠进行转化, 得到褐藻酸钠。 离心所 得上清液用乙醇分级沉淀, 可得到褐藻糖胶 (如乙醇至含醇量 65wt%) 和褐藻淀粉(加乙醇至含醇量 85wt%)。各步产物千燥后分别计算提取率, 提取率为各步产物与原料海带粉的质量比的百分数。 所有分析结果见表 实施例 1 :
1 ) L5kg千海带粉置于行波式微波反应腔中;
2) 取无水甲酸 0 5L, 加水 0 25L配成 70%的甲酸溶液 0,75:L;
3)将步骤 2) 中的甲酸溶液 0.75L, 加到步骤 1 ) 中的微波反应腔中, 充分搅摔使海带粉均匀润湿;
4) 步骤 3) 中得到的润湿的物料予 5KW连续微波功率下辐照至有 液体回流, 即有机酸溶液汽化, 改为脉冲微波功率工作方式, 占空比为 5 秒 /5秒(即:接通时间与断开时间的比值), 峰值功率 10KW, 保持 12iiiin 抽真空 (反应腔工作压力为 20mmHg), 至微波反应腔中无液体, 完
^海带粉的微波预处理;
5) 经过预处理后的海带粉 i .5kg中加入无水乙醇 5L, 充分搅拌, 过 滤, 滤液蒸餾回收乙醇, 滤渣干燥后即为微波预处理海带粉;
6) 取步骤 5) 中微波预^理海带粉 100克, 放入 1L的烧杯中, 加人 500ml 蒸馏水, 于 7CTC '的热水浴中提取 40ηώι, 过滤, 重复上述过程 1 次, 合并两次滤液并调 pH至中性, 滤渣备用;
7) 步骤 6) 中滤液浓縮后分级醇沉, 得到富 M片段的褐藻酸钠 (加 乙醇至含醇量 30wt%)、 褐藻糖胶 (加乙醇至含醇量 65wt%) 和褐藻淀粉
(加乙醇至含醇量 85wt%) ;
8) 步骤 6) 中所得滤渣中加入 6g碳酸钠及 500ml水, 于 70°C的热 水浴中进行搅摔 40min, 过滤, 滤液中和浓縮, 醇沉得到富 G片段 藻酸纳。
各步产物提取率, 以及工艺过程中的总耗水:
Figure imgf000017_0001
度、 褐藻糖胶中硫酸根含量等数据结果见表 i。
表 i 微波预处
提取率、 总用水量、
Figure imgf000017_0002
对照工艺 新工艺 用水量 (水 /海带粉) 100/1 15/1
10.1% (富 M)
褐藻酸钠得率 (wt) 16.2%
6,2% (富 G)
褐藻糖胶得率 (wt) 1 ,4% 4,0%
褐藻淀粉得率 (wt) 1.0% 1.0%
褐藻酸钠分子量 1,5 X 106 1.2 X 105 (富 M) 褐藻搪胶硫酸根含量 (wt) 15,5% 6.9%
用减量 ('喊 /海带粉) 0.2 0.05
有机酸溶液用量(液固比) - 1/2
褐藻酸钠 M/G 8.52 (富 M)
理 (min) 60 12
Figure imgf000018_0001
对照工艺如下: 称取 100 克经洗净、 干燥、 粉碎后的羊栖菜粉原料 放入 2L的烧杯中, 加入 1L水以及 25g碳酸钠于 70Γ的热水浴中进行搅 拌 1 小时, 然后用 80- 100L的水进行沖稀, 充分搅拌后过滤, 滤液加盐 酸调节 pH值至 2„0, 离心分离, 沉淀中加入碳酸钠进行转化, 得到褐藻 酸钠。 离心所得上清液用乙醇分级沉淀, 可得到褐藻糖胶 (加乙醇至含 醇量 65wt%) 和褐藻淀粉 (加乙醇至含醇量 85wt%) , 产物参数测定方法 同对照例 1。 所有分析结果见表 2。
实施例 2:
1 ) L5kg干羊栖菜粉置予行波式微波反应腔中;
2) 取草酸 l_80g, 加水 L5L配成 10%的草酸溶液;
3) 取步骤 2) 中的草酸溶液 1,5L, 加到步骤 1 ) 中的微波反应腔中, 充分搅拌使羊栖菜粉均 润湿;
4) 步骤 3) 中均匀润湿的物料于 3KW 连续微波功率下辐照至有液 体回流, 即有机酸溶液汽化, 改为脉冲微波功率工作方式, 占空比为 5 秒 Z5 秒, 峰值.功率 5KW , 保持 15min 后, 抽真空 (反应腔工作压力为 lOOmmHg) 减压蒸馏, 排除有机酸溶液, 至微波反应腔中无液体, 完成 羊栖菜粉的微波预赴理;
5) 步骤 4) 中经过预处理后的羊栖菜粉 1.5kg中加入无水乙醇 5:L, 充分搅拌, 过滤, 滤液蒸馏回收乙醇和草酸, 滤渣干燥后即为微波预处 理羊栖菜粉;
6) 取步骤 5) 中微波预赴理羊栖菜粉 100克, 放入 1L的烧杯中, 加 入 500mi蒸馏水, 于 70 C的热水浴中提取 40min, 过滤, 重复上述过程 i 次, 合并两次滤液并调 pH至中性, 滤渣备用;
7)、 8) 步骤同实施例 1。
各步产物提取率, 以及工艺过程中的总耗水量、 褐藻酸钠产品的分 子量、 褐藻糖胶硫酸根含量等数据结果见表 2。
表 2微波预处理羊栖菜干粉与未经处理羊栖菜干粉原料的各步多糖 产物提取率、 总用水量及褐藻酸钠分子量等比较情况:
Figure imgf000019_0001
对照例 3
对照工艺如下: 称取 100 克经洗净、 干燥、 粉碎后的巨藻粉原料放 入 2L的烧杯中, 加入 1L水以及 25g碳酸钠于 70°C的热水浴中进行搅拌 1小时, 然后用 80 100L的水进行沖稀, 充分搅拌后过滤, 滤液加盐酸调 节 pH值至 2,0, 离心分离, 沉淀中加入碳酸钠进行转化, 得到褐藻酸钠。 离心所得上清液用乙醇分级沉淀, 可得到褐藻糖胶 (加乙醇至含醇量 65wt%) 和褐藻淀粉 (加乙醇至含醇量 85wt%), 产物参数测定方法同对 照例 1。 所有分析结果见表 3。
实施例 3 :
1 ) i .5Kg干巨藻粉置于谐振式微波反应腔中;
2) 取无水乙酸 0 4L, 加水 0 1丄配成 80%的乙酸溶液 0.5L;
3 ) 取步骤 2) 中乙酸溶液 0,5L, 加到步骤 i ) 中的徽波反应腔中, 充分搅摔使均勻润湿;
4) 步骤 3) 中均匀润湿的物料于 2KW连续微波功率下辐照至有液 体回流, 即有机酸溶液汽化, 改为脉冲微波功率工作方式, 占空比为 5 秒 /5 秒, 峰值功率 4KW, 保持 35min 后, 抽真空 (反应腔工作压力为 200mmHg) 减压蒸馏, 排除有机酸溶液, 至微波反应腔中无液体;
5) 步骤 4) 中的微波反应腔体中如入无水乙醇 5L, 充分搅拌, 过滤, 滤液蒸馏回收乙醇, 滤渣千燥后即为微波预处理巨藻粉;
6) 取步骤 5) 中的微波预处理巨藻粉 100克, 放入 1L的烧杯中, 加 入 500ml蒸餾水, 于 70°C '的热水浴中提取 40min, 过滤, 重复上述过程 1 次, 合并两次滤液并调 pH至中性, 滤渣备用;
7) 8) 步骤同实施例 1。
各步产物提取率, 以及工艺过程中的总耗水量、 褐藻酸钠产品的分
Figure imgf000020_0001
对照工艺 微波工艺
用水量 (水 /巨藻粉) 100/1 15/1
16.0% (富 M) 褐藻酸钠得率 (wt) 24,6%
8,8% (富 G)
褐藻糖腔得率 (wt) 0.6% 3.5% 褐藻淀粉得率 (wt) 0.6% 褐藻酸钠分子量 L 15 X 106 7.8 X 104 (富 Μ) 褐藻糖胶硫酸根含量 (wt) 15.5% 6 8%
用碱量 (碱 /巨藻粉) 0,25 0.05
有机酸溶液用量 (液固比) ― 1/3
褐藻酸钠 M/G L56 7.55 (富 Μ)
处理时间 (min) 60 35 比较例 4
称取 100克经洗净、 千燥、 粉碎后的裙带菜原料放入 2L的烧杯中, 加入 1L水以及 25g碳酸钠于 70Γ的热水浴中进行搅拌 1 小时, 然后用 80- 100L的水进行冲稀, 充分搅拌后过滤, 滤液加盐酸调节 pH值至 2,0, 离心分离, 沉淀中加入碳酸钠进行转化, 得到褐藻酸钠。 离心所得上清 液用乙醇分级沉淀, 可得到褐藻糖胶 (加乙醇至含醇量 65wt%) 和褐藻 淀粉 (加乙醇至含醇量 85wt%)。 产物参数测定方法同实施例 1。 所有分 析结果见表 4。 实施例 4
与实施例 1不同之处在于:
1 ) L5kg经千燥除杂、 粉碎后的裙带菜置于谐振式微波反应腔中;
2) 取无水甲酸 0.8L, 加水 0.15L, 加 20\\1;%的盐酸溶液 0.05L配成 甲酸-盐酸混酸溶液 1L, 其中甲酸含量为 83%, 盐酸含量为 0.1% ;
3 ) 取歩骤 2) 中的混酸溶液 1L, 加到步骤 1 ) 中的微波反应腔中, 充分搅拌使均 润湿;
4) 步骤 3) 中的润湿物料于 15KW连续微波功率下辐照至有液体回 流, 即有机酸溶液汽化, 改为脉冲微波功率工作方式, 占空比为 5 秒 Z5 秒,峰值功率 7KW,保持 13min后,抽真空(反应腔工作压力为 150mmHg) 减压蒸馏, 排除有机酸溶液, 至微波反应腔中无液体。 5 ) 上述步骤 4) 中微波反应腔体中加入无水乙醇 5L, 充分搅拌, 过 滤。 滤液蒸馏回收乙醇, 滤渣千燥后即为微波预处理裙带菜粉。
6)取上述步骤 5 )中微波预处理裙带菜粉 100克,放入 1 L的烧杯中, 加入 500ιτι1蒸馏水, 于 70°C的热水浴中提取 40min, 过滤, 重复上述过 程 1次, 合并两次滤液, 调 pH至中性, 滤渣备用。
7 ) 8) 步骤同实施例 1。
各步产物提取率, 以及工艺过程中的总耗水量、 褐藻酸钠产品的分 子量、 褐藻糖胶硫酸根含量等数据结果见表 4。
Figure imgf000022_0001
比较-例 5
称取 克经洗净、 干燥、 粉碎后的岩藻原料放入 2L的烧杯中, 加 入 1L 水以及 25g碳酸钠于 7CTC的热水浴中进行搅拌 1 小时, 然后用 80-100L的水进行冲稀, 充分搅拌后过滤, 滤液加盐酸调节 pH值至 2.0, 离心分离, 沉淀中加入碳酸钠进行转化, 得到褐藻酸钠。 离心所得上清 液用乙醇分級沉淀, 可得到褐藻糖胶 (加乙醇至含醇量 65wt%) 和褐藻 淀粉 (加乙醇至含醇量 85wt%)。 产物参数测定方法同实施例 1。 所有分 柝结果见表 5。
实施例 5
与实施例 1不同之处在于:
1 ) L5kg经千燥除杂、 粉碎后的岩藻置于谐振式微波反应腔中; 2) 取无水丙酸 L8L, 加水 0 2L, 配成 90%的丙酸溶液 2L;
3 ) 取步骤 2) 中的丙酸溶液 2L, 加到步骤 i ) 中的徽波反应腔中, 充分搅摔使均勻润湿;
4) 步骤 3) 中的润湿物料于 4KW 连续微波功率下辐照至有液体回 流, 即有机酸溶液汽化, 微波功率改为 2KW, 保持 30min后, 抽真空 (反应腔工作压力为 150mmHg) 减压蒸馏, 排除有机酸溶液, 至微波反 应腔中无液体。
5) 上述步骤 4) 中微波反应腔体中加入无水乙醇 5:L, 充分搅摔, 过 滤。 滤液蒸馏回收乙醇, 滤渣干燥后即为微波预处理岩藻粉。
6) 取上述步骤 5) 中微波预处理岩藻粉 100克, 放入 iL的烧杯中, 加入 500ml蒸馏水, 于 70Ό的热水浴中提取 40min, 过滤, 重复上述过 程 i次, 合并两次滤液, 调 pH至中性, 滤渣备用。
7) 8) 步骤同实施例 1。
各步产物提取率, 以及工艺过程中的总耗水量、 褐藻酸钠产品的分 子量、 褐藻糖胶硫酸根含量等数据结果见表 4。
对照工艺 微波工艺
用水量 (水 /岩藻粉) 100/1 15/1
7.0% (富 M)
褐藻酸钠得率 (wt) 1 1.7%
6,2% (富 G)
褐藻糖胶得率 (wt) 1.1 % 2,2%
褐藻淀粉得率 (wt) 0.6% 0,7%
褐藻酸納分子量 6.7 X 105 2,2 X 1()5(富 M )
褐藻糖胶硫酸根含量 (wt) 13,7% 5,7%
用^!量 (咸./岩藻.粉) 0.25 0.05 有机酸溶液用量 (液固比) - 4/3 褐藻酸钠 M/G 2.53 5.90 (富 M)
处理时间 (min) 60 30 比较例 6
称取 100克经洗净、 千燥、 粉碎后的鹿角菜原料放入 2L的烧杯中, 加入 1L水以及 25g碳酸钠于 70Γ的热水浴中进行搅拌 1 小时, 然后用 80- 100L的水进行冲稀, 充分搅拌后过滤, 滤液加盐酸调节 pH值至 2,0, 离心分离, 沉淀中加入碳酸钠进行转化, 得到褐藻酸钠。 离心所得上清 液用乙醇分级沉淀, 可得到褐藻糖胶 (加乙醇至含醇量 65wt%) 和褐藻 淀粉 (加乙醇至含醇量 85wt%)。 产物参数测定方法同实施例 1。 所有分 析结果见表 5。 实施例 6
与实施例 1不同之处在于:
1 ) i .5kg经千燥除杂、 粉碎后的鹿角菜置予谐振式微波反应腔中;
2) 取无水草酸 300g, 加入 0.12%盐酸溶液 1.5L, 配成草酸-盐酸混 酸溶液约 1.5L, 混酸中草酸含量为 20%, 盐酸含量 0.1%;
3) 取步骤 2) 中的草酸-盐酸混酸溶液 1.5L, 加到步骤 1 ) 中的微波 反应腔中, 充分搅拌使均 润湿;
4) 步骤 3) 中的润湿物料予 3KW连续微波功率下辐照至有液体回 流, 即有机酸溶液汽化, 将微波功率改为 L5KW, 保持 30min后, 抽真 空 (反应腔工作压力为 lOOmmHg) 减压蒸馏, 至微波反应腔中无液体。
5) 上述步骤 4) 中微波反应腔体中加入无水乙醇 5L, 充分搅摔, 过 滤。 滤液蒸馏回收乙醇和草酸, 滤渣千燥后即为微波预处理鹿角菜粉。
6)取上述步骤 5)中微波预^理鹿角菜粉 iOO克,放入 1L的烧杯中, 加入 500ml蒸馏水, 于 70Ό的热水浴中提取 40min, 过滤, 重复上述过 程 i次, 合并两次滤液, 调 pH至中性, 滤渣备用。 7) 8) 步骤同实施例 1。
各步产物提取率, 以及工艺过程中的总耗水量、 褐藻酸钠产品的分 子量、 褐藻糖胶硫酸根含量等数据结果见表 4。
Figure imgf000025_0001
5
实施例结果表明, 本发明采用微波化学方式对褐藻类原料进行预处 理, 然后再分别采用水浸提和碱消化工艺处理, 即可得到结构不同的糖 醛酸低聚糖和褐藻糖胶低聚糖, 并使褐藻糖胶中的硫酸根含量处于一个 适中的范围, 同时克服了现有工艺耗水、 污染严重等诸多缺点。
! 0
实验例 1 海带褐藻多糖对糖尿病小鼠血糖影响的实验
实验动物: 昆明种小鼠, 雄性, 体重 (22i:2) g, 由北京军事医学科 学院动物实验中心提供
实验材料 : 链脲佐菌素 (STZ)为 Sigma公司产品, 海带褐藻多糖为实 3 5 施例 1制备。
主要的仪器和设备: TU- 1810紫外可见分光光度计, 北京普析通用仪 器有限责任公司; BS 124S电子天平,德国塞多利斯股份公司; TGL 16G- A 离心机, 上海安亭科学仪器厂; HPX- 9052MBE电热恒温箱, 上海博迅实 业有限公司; F6/ 10超细匀浆机, 上海弗鲁克流体机械制造有限公司。
验方法: 取小鼠一次性腹腔注射链脲佐菌素(STZ)50mg/kg, 取血 糖值≥1L1 mmoi/L的作为糖尿病模型,取成模小鼠 20只,按血糖值的高低 随机分组, 分为模型組、 褐藻多糖組, 另取正常小鼠 10只, 作为空白组。 各組小鼠每天早 9:00灌胃治疗, 褐藻多糖組灌胃剂量为 500mgZkg, 模型 組和空白組给予相应体积的蒸馏水。 连续灌胃治疗 32d., 于第 21天和第 32 天小鼠禁食不禁水 12 h, 眼眶取血, 分离血清检测小鼠空腹血糖值。 统计学方法:统计学方法采用 SPSS统计软件,各組数据均用 土 s表示, 組间比较用方差分析。 实验结果列在下表: 海带褐藻多糖对糖尿病小鼠空腹血糖的影响 ( x±s,匪 ol/L )
Figure imgf000026_0001
本发明褐藻多糖能够有效、 显著的降低糖尿病小鼠的血糖。

Claims

L 一种微波化学法提取褐藻活性多糖的方法, 其特征在于, 包括如 下步骤:
1 ) 将粉碎后的褐藻类原料置入微波反应腔中, 加入质量浓度为
5%- 99%酸溶液, 在微波功率为每千克物料 1千瓦-每千克物料 10千瓦质 量功率密度; 工作压力为 20mmHg- 760mmHg下反应 5- 120mm ; 可选择 地进行浓缩, 然后加入有机溶剂洗涤, 除去多余的酸;
2) 向歩骤 1 ) 所得产物加入水溶液提取、 将提取液浓縮、 用碱调节 PH至中性。 进行分级醇沉, 分别得到富含甘露糖醛酸片段褐藻胶、 褐藻 糖胶和褐藻淀粉; 并剩余褐藻残渣;
3) 向步骤 2) 所得褐藻残渣中加入碱溶液并在 35 60°C、 进行消化反 应 20 80分钟, 滤去残渣, 将滤液调节 pH值至中性, 然后醇沉, 得富含古 洛糖 酸片段 (富 G) 的褐藻胶沉淀。
2, 根据权利要求 1 所述的方法, 其特征在于, 所述步骤 1 ) 中的微 波功率施加方式为连续微波或连续微波与脉冲微波相结合方式; 其中, 连续微波与脉沖微波相结合的使用方式中, 先用连续微波辐照至酸溶液 回流, 转换为脉冲微波, 继续辐照 5min- 120min。
3. 根据权利要求 i 所述的方法, 其特征在于, 所述步骤 1 ) 中, 当 加入的酸溶液为不挥发性酸时, 不进行浓縮除酸; 当加入的酸为挥发性 酸时, 先进行浓縮除酸, 并优选微波加热下进行减压蒸馏浓缩的方法。
4. 根据权利要求 2所述的方法, 其特征在于, 所述步骤 1 ) 中, 连 续微波情况下, 质量功率密度为每千克物料 1_千瓦-每千克物料 5千瓦; 脉冲微波情况下,质量功率密度为每千克物料 2千瓦-每千克物料 10千瓦, 占空比为 AZB, 其中 A=l秒- 100秒, B=l秒- 100秒。
5. 根据权利要求 i所述的方法, 其特征在于, 所述步骤 1 ) 中褐藻 原料与酸溶液的重量比范围 =5/1 i/5。
6. 根据权利要求 5所述的方法, 其特征在于, 所述步骤 1 ) 中的酸溶 液选自有机酸或有机酸与无机酸的混合溶液。
7. 根据权利要求 6所述的方法, 其特征在于, 所述步骤 1 ) 中的有机 酸选自 5 % 50%的草酸、 优选 10%- 35%的草酸; 10%- 99%的甲酸、 优选 30- 85%的甲酸; 10%- 99%的乙酸、 优选 60- 95%的乙酸; 或 10% 99%的 丙酸、 优选 70- 95%的丙酸的水溶液。
8. 根据权利要求 6所述的方法, 其特征在于, 所述步骤 1 ) 中的有机 酸和无机酸組合的溶液中, 其中无机酸质量百分比浓度为 0.1%- 15%。
9. 根据权利要求 8所述的方法, 其特征在于, 所述步骤 1 ) 中的无机 酸选自盐酸、 硫酸、 硝酸或磷酸; 优选盐酸。
10. 根据权利要求 1所述的方法, 其特征在于, 所述步骤 1 ) 中洗涤 残余酸的有机溶剂选自甲醇、 乙醇、 丙醇或丙酮、 或它们中的两种或两 种以上的组合。
11 . 根据权利要求 1所述的方法, 其特征在于, 所述步骤 2) 中, 水 的用量为步骤 1 ) 所得产物体积的 5- 8倍。
12. 根据权利要求 1所述的方法, 其特征在于, 所述步骤 2) 中, 调 节 pH值所用的碱选自碳酸销或氫氧化销。
13. 根据权利要求 1所述的方法, 其特征在于, 所述步骤 2) 分级醇 沉包括: 加乙醇至含醇量 20wt% 4()wt% 、 离心或过滤分离, 得富含甘露 糖醛酸片段低聚褐藻胶沉淀; 然后加乙醇至含醇量 60wt%- 70wt%时, 过 滤或离心分离、 获得褐藻糖胶沉淀; 最后加乙醇至含醇量 80wt%- 85wt% 时, 过滤或离心分离可获得褐藻淀粉沉淀。
14. 根据权利要求 1所述的方法, 其特征在于, 所述步骤 3 ) 中的碱 选自碳酸钠或氫氧化钠 。
15. 根据权利要求 1所述的方法, 其特征在于, 所述步骤 3 ) 中调节 pH:值的酸选自盐酸 。
16. 根据权利要求 1所述的方法, 其特征在于, 所述步骤 3 ) 中醇选 自甲醇或乙醇。
17. 根据权利要求 1-16任一所述的方法, 其特征在于, 所述褐藻选自 海带属海带; 马尾藻属海蒿子、 海黍子、 羊栖菜、 鼠尾藻、 匍枝马尾藻; 墨角藻属岩藻、 墨角藻; 鹿角菜属鹿角菜; 裙带菜属裙带菜和 /或巨藻属
5 18. 根据权利要求 17所述的方法, 其特征在于, 采用海带属海带制 备活性多糖的方法如下:
将千海带粉置入微波提取腔中,添加其重量的 0.5- 1„5倍 60%- 85%的甲 酸溶液, 于 i- 2KW/Kg功率密度的微波下, 500mmHg- 760mmHg压力下保 持甲酸溶液回流 15- 3()min,然后减压蒸干甲酸溶液; 向反应腔中加入海带
10 粉重量的 3- 5倍的乙醇溶液, 搅拌洗涤 40 60分钟, 过滤; 滤渣烘干后用水 进行提取 2次, 每次用水量为滤渣重量的 4 6倍, 提取温度 60- 80 C, 提取 时间约 40分钟; 过滤, 合并两次滤液, 用氫氧化納溶液中和至中性, 浓 缩至提取液体积的 1/5 , 然后加入乙醇至溶液中乙醇含量达到 35%, 静置 4- 8小时, 过滤, 滤饼用无水乙醇及乙醚洗涤后烘千, 得到多糖 A,继续向 i s 滤液中添加乙醇至溶液中乙醇含量达到 65%, 静置 4- 8小时, 过滤, 滤饼 用无水乙醇及乙醚洗涤后烘千, 得到多糖 B ; 继续向滤液中补加乙醇至溶 液中乙醇含量达到 85%, 静置 4- 8小时, 过滤, 滤饼经无水乙醇和乙醚洗 涤后烘千, 得到多糖 C ; 上述水提后的海带滤渣中加入碳酸钠溶液, 在 35- 60 C温度进行碱消化反应 40- 60分钟, 过滤, 滤液用盐酸调节 pH值至 0 中性, 浓缩后醇沉, 得到多糖 D ;
其中多糖 A为富含甘露糖醛酸 (富 M) 的褐藻酸钠, 多糖 B为褐藻糖 胶, 多糖 C为褐藻淀粉, 多糖 D为富含古洛糖醛酸 (富 G) 的褐藻酸钠。
19. 根据权利要求 17所述的方法, 其特征在于, 采用马尾藻属羊栖 菜制备活性多糖的方法如下: 将干羊栖菜粉加入到微波提取腔中, 加入 5 0,5 U)倍 20%的草酸溶液, 于 1 2KW/Kg功率密度的微波下,
500mmHg-760mmHg气压下保持草酸溶液回流 15- 25:min,然后减压蒸千微 波提取腔中的液体; 向反应腔中加入海带粉重量的 4 6倍的乙醇溶液, 搅 拌洗涤物料 40- 60分钟, 过滤, 滤渣烘千; 滤液蒸馏回收乙醇和草酸。 烘 干的滤渣水提取两次, 每次用水为物料重量的 4 6倍, 提取温度 7CfC, 提 取时间约 40分钟; 过滤, 合并两次滤液, 用氫氧化钠溶液中和至中性, 浓縮至提取液体积的约 1/5, 然后加入乙醇至溶液中乙醇含量达到 30%, 5 静置 4- 8小时, 过滤, 滤饼用无水乙醇及乙醚洗涤后烘干, 得到多糖 A,继 续向滤液中添加乙醇至溶液中乙醇含量达到 60%, 静置 4- 8小时, 过滤, 滤饼用无水乙醇及乙醚洗涤后烘干, 得到多糖 B ; 继续向滤液中补加乙醇 至溶液中乙醇含量达到 80%, 静置 4- 8小时, 过滤, 滤饼经无水乙醇和乙 醚洗涤后烘干,得到多糖 ;上述水提后的羊栖菜滤渣中加入碳酸销溶液,
10 在 35 60°C温度进行碱消化反应 40- 60分钟, 过滤, 滤液用盐酸调节 pH值 至中性, 浓缩后醇沉, 得到多糖 ΐ)。
其中多糖 Α为富含甘露糖醛酸 (富 M) 的褐藻酸钠, 多糖 B为褐藻糖 胶, 多糖 C为褐藻淀粉, 多糖 D为富含古洛糖醛酸 (富 G) 的褐藻酸钠。
20. 根据权利要求 17所述的方法, 其特征在于, 采用墨角藻属岩藻 i s 制备活性多糖的方法如下: 将千岩藻粉加入到微波提取腔中, 加入 1-2倍 8()%- 95%的丙酸溶液, 于 3- 5KW/Kg功率密度的微波下作用, 至丙酸溶液 回流后 , 500mmHg~760mmHg气压下保持 40- 6()min,然后减压蒸干丙酸溶 液。 向反应腔中加入岩藻粉重量的 3-5倍的乙醇溶液, 搅捽 30- 60分钟, 过 滤, 滤渣烘干; 向烘干的滤渣中加入 4- 6倍的水, 于 70 C下提取 40分钟, 0 过滤; 重复上述提取过程一次, 合并两次滤液, 用氫氧化钠溶液中和至 中性, 浓缩至提取液体积的 1/5, 然后加入乙醇至溶液中乙醇含量达到 35%, 静置 4 8小时, 过滤, 滤饼用无水乙醇及乙醚洗涤后烘干, 得到多 糖 A,继续向滤液中添加乙醇至溶液中乙醇含量达到 65%, 静置 4- 8小时, 过滤, 滤饼用无水乙醇及乙醚洗涤后烘干, 得到多糖 B ; 继续向滤液中补 5 加乙醇至溶液中乙醇含量达到 85%, 静置 4- 8小时, 过滤, 滤饼经无水乙 醇和乙醚洗涤后烘干, 得到多糖 C ; 上述水提后的岩藻滤渣中加入碳酸钠 溶液, 在 35-6CTC温度进行碱消化反应 40 60分钟, 过滤, 滤液用盐酸调节 pH值.至中性, 浓缩后醇沉, 得到多糖 D;
其中多糖 A为富含甘露糖醛酸 (富 M) 的褐藻酸钠, 多糖 B为褐藻糖 胶, 多糖 C为褐藻淀粉, 多糖 D为富含古洛糖醛酸 (富 G) 的褐藻酸钠。
21. 根据权利要求 17所述的方法, 其特征在于, 采用鹿角菜属鹿角 菜制备活性多糖的方法如下: 将干鹿角菜粉加入到微波提取腔中, 加入
0.5- 2倍草酸 -盐酸混酸溶液, 混酸中草酸含量为 20%, 盐酸含量为 0„1_%, 于 1 - 2KW/Kg功率密度的微波下, 500minHg- 760mmHg气压下保持混酸溶 液回流 15- 25min,然后减压蒸干反应腔中液体; 向反应腔中加入鹿角菜粉 重量的 3- 5倍的乙醇溶液, 搅拌 30- 60分钟, 过滤; 滤渣烘千后加入 4- 6倍 的水, 于 70°C下提取 40分钟, 过滤; 重复上述提取过程一次, 合并两次 滤液, 用氫氧化销溶液中和至中性, 浓縮至提取液体积的 1/5 , 然后加入 乙醇至溶液中乙醇含量达到 35%, 置 4- 8小时, 过滤, 滤饼用无水乙醇 及乙醚洗涤后烘千, 得到多糖 Α,继续向滤液中添加乙醇至溶液中乙醇含 量达到 65%, 静置 4- 8小时, 过滤, 滤饼用无水乙醇及乙醚洗涤后烘干, 得到多糖 Β ;继续向滤液中补加乙醇至溶液中乙醇含量达到 85%,静置 4- 8 小时, 过滤, 滤饼经无水乙醇和乙醚洗涤后烘干, 得到多糖 C ; 上述水提 后的鹿角菜滤渣中加入碳酸销溶液,在 35- 60 C温度进行碱消化反应 40 6() 分钟, 过滤, 滤液用盐酸调节 p:H值至中性, 浓缩后醇沉, 得到多糖: D;
其中多糖 A为富含甘露糖醛酸 (富 M) 的褐藻酸钠, 多糖 B为褐藻糖 胶, 多糖 C为褐藻淀粉, 多糖 D为富含古洛糖醛酸 (富 G) 的褐藻酸钠。
22. 根据权利要求 17所述的方法, 其特征在于, 采用裙带菜属裙带 菜制备活性多糖的方法如下: 将干裙带菜粉加入到微波提取腔中, 加入 0,5 2,5倍甲酸盐酸混酸溶液, 其中曱酸含量为 80%, 盐酸含量为 0.5%, 于 2 4KW/Kg功率密度的微波下, 50()mniH:g- 76()mmH:g气压下保持混酸溶 液回流 10- 30miri,然后减压蒸干混酸溶液; 向反应腔中加入裙带菜粉重量 的 3 5倍的乙醇溶液, 搅捽 30- 60分钟, 过滤; 滤渣烘干后加入 4-6倍的水, 于 6CTC下提取 40分钟, 过滤; 重复上述提取过程一次, 合并两次滤液, 用氫氣化钠溶液中和至中性, 浓缩至提取液体积的 1/5, 然后加入乙醇至 溶液中乙醇含量达到 35%, 静置 4- 8小时, 过滤, 滤饼用无水乙醇及乙醚 洗涤后烘干, 得到多糖 A,继续向滤液中添加乙醇至溶液中乙醇含量达到 65%, 静置 4- 8小时, 过滤, 滤饼用无水乙醇及乙醚洗涤后烘干, 得到多 糖 B ; 继续向滤液中补加乙醇至溶液中乙醇含量达到 85%, 静置 4- 8小时, 过滤, 滤饼经无水乙醇和乙醚洗涤后烘干, 得到多糖 C ; 上述水提后的裙 带菜滤渣中加入碳酸钠溶液在 35- 60°C温度进行碱消化反应 40- 60分钟, 过 滤, 滤液用盐酸调节 pH值至中性, 浓縮后醇沉, 得到多糖 D ;
其中多糖 A为富含甘露糖醛酸 (富 M) 的褐藻酸钠, 多糖 B为褐藻糖 胶, 多糖 C为褐藻淀粉, 多糖 D为富含古洛糖醛酸 (富 G) 的褐藻酸钠。
23. 根据权利要求 17所述的方法, 其特征在于, 采用巨藻属巨藻制 备活性多糖的方法如下: 将千巨藻粉加入到微波提取腔中, 加入 0,3- 1 ,2 倍 80%- 95%的乙酸溶液, 于 1 - 4KW/Kg功率密度的微波下作用, 至乙酸溶 液回流后, 5()()mmH:g- 76()mmH:g气压下保持 30- 4()min,然后减压蒸干乙酸 溶液; 向反应腔中加入巨藻粉重量的 3- 5倍的乙醇溶液, 搅拌 30- 60分钟, 过滤,滤渣烘干后加入 4- 6倍的水于 60 C下提取 4()分钟, 过滤; 重复上述提 取过程一次, 合并两次滤液, 用氫氧化钠溶液中和至中性, 浓縮至提取 液体积的 1/5, 然后加入乙醇至溶液中乙醇含量达到 35%, 静置 4 8小时, 过滤, 滤饼用无水乙醇及乙醚洗涤后烘干, 得到多糖 A,继续向滤液中添 加乙醇至溶液中乙醇含量达到 65%, 静置 4- 8小时, 过滤, 滤饼用无水乙 醇及乙醚洗涤后烘干, 得到多糖: B ; 继续向滤液中补加乙醇至溶液中乙醇 含量达到 85%, 静置 4- 8小时, 过滤, 滤饼经无水乙醇和乙醚洗涤后烘干, 得到多糖 C; 上述水提后的巨藻滤渣中加入碳酸钠溶液在 35 60°C温度进 行碱消化反应 40 60分钟, 过滤, 滤液用盐酸调节 pH值至中性, 浓缩后醇 沉, 得到多糖 D ;
其中多糖 A为富含甘露糖醛酸 (富 M) 的褐藻酸钠, 多糖 B为褐藻糖 胶, 多糖 C为褐藻淀粉, 多糖 D为富含古洛糖醛酸 (富 G) 的褐藻酸钠。
24. 一种褐藻多糖, 其特征在于, 所述褐藻多糖采用权利要求 1-23 任一所述方法制备而得。
25. 根据权利要求 24 所述的褐藻多糖、 其特征在予, 所述褐藻多糖 为采用权利要求 1-23任一方法制备而得的富含古洛糖醛酸片段的褐藻胶 或富含甘露糖醛酸片段褐藻胶。
26. 根据权利要求 25 所述的褐藻多糖、 其特征在予, 所述富含古洛 糖醛酸片段的褐藻胶为富含古洛糖醛酸片段的海带褐藻胶、 羊栖菜褐藻 胶、 岩藻褐藻胶、 鹿角菜褐藻胶、 裙带菜褐藻胶或巨藻褐藻胶。
27. 根据权利要求 25所述的褐藻多糖、 其特征在于, 所述富含甘露 糖醛酸片段的褐藻胶为富含甘露糖醛酸 段褐藻胶的海带褐藻胶、 羊栖 菜褐藻胶、 岩藻褐藻胶、 鹿角菜褐藻胶、 裙带菜褐藻胶或巨藻褐藻胶。
28. 一种富含甘露糖醛酸片段褐藻酸钠的制备方法, 其特征在于, 采用权利要求 1-25、27任一所述的富含甘露糖醛酸片段褐藻胶加入碳酸钠 转化 ; 得富含甘露糖醛酸片段褐藻酸納。
29. —种权利要求 28所述方法制备的富含甘露糖醛酸片段的褐藻酸 钠。
PCT/CN2012/083932 2011-11-07 2012-11-01 一种微波化学法提取褐藻多糖的方法 WO2013067896A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014539227A JP5878241B2 (ja) 2011-11-07 2012-11-01 マイクロ波化学法による褐藻多糖類の抽出方法
BR112014010922-2A BR112014010922B1 (pt) 2011-11-07 2012-11-01 Processo de extração de polissacarídeos de algas castanhas
EP12848103.3A EP2778178B1 (en) 2011-11-07 2012-11-01 Method for extracting brown algae polysaccharide via microwave chemical process
US14/355,535 US9447199B2 (en) 2011-11-07 2012-11-01 Method for extracting brown algae polysaccharide via microwave chemical process
KR1020147014850A KR101605065B1 (ko) 2011-11-07 2012-11-01 마이크로파 화학법을 통한 갈조류 다당류의 추출과정

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011103482426A CN102417549B (zh) 2011-11-07 2011-11-07 一种基于微波化学的褐藻活性多糖的提取方法
CN201110348242.6 2011-11-07

Publications (1)

Publication Number Publication Date
WO2013067896A1 true WO2013067896A1 (zh) 2013-05-16

Family

ID=45942207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083932 WO2013067896A1 (zh) 2011-11-07 2012-11-01 一种微波化学法提取褐藻多糖的方法

Country Status (7)

Country Link
US (1) US9447199B2 (zh)
EP (1) EP2778178B1 (zh)
JP (1) JP5878241B2 (zh)
KR (1) KR101605065B1 (zh)
CN (1) CN102417549B (zh)
BR (1) BR112014010922B1 (zh)
WO (1) WO2013067896A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111116771A (zh) * 2019-12-26 2020-05-08 浙江工业大学 裙带菜提取多糖及其在制备α-葡萄糖苷酶活性抑制药物中的应用
CN111285939A (zh) * 2020-03-19 2020-06-16 华南理工大学 一种具有抗氧化和调节肠道菌群功效的海蒿子多糖及其制备方法与应用
CN111424055A (zh) * 2020-01-13 2020-07-17 福建农林大学 一种厌氧转化海藻酸钠生产废水为甲烷和有机酸的方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102417549B (zh) 2011-11-07 2013-07-24 沈阳科思高科技有限公司 一种基于微波化学的褐藻活性多糖的提取方法
CN103183742B (zh) * 2013-03-15 2015-08-12 中国海洋大学 一种含有高分子量聚古罗糖醛酸的褐藻胶及其应用
CN104098711B (zh) * 2013-04-15 2016-08-31 黄俊勇 海藻多糖之褐藻糖胶萃取方法
JP6223742B2 (ja) * 2013-08-06 2017-11-01 日本メナード化粧品株式会社 皮膚外用剤、美白剤及びメラノサイト分化誘導抑制剤
CN103961365B (zh) * 2014-03-25 2016-06-29 青岛海洋生物医药研究院股份有限公司 低聚甘露糖醛酸盐在制备防治肝损伤和各种肝炎、肝纤维化或肝硬化药物的应用
US20150328268A1 (en) * 2014-05-14 2015-11-19 Basf Corporation Marine Plants Extract for Wound Healing
CN105273104A (zh) * 2015-10-24 2016-01-27 山东好当家海洋发展股份有限公司 一种利用海黍子提取褐藻多糖硫酸酯的方法
CN105330905B (zh) * 2015-11-03 2018-08-17 周福海 一种微波制备藻类塑料的方法
BR112018014245A2 (pt) * 2016-01-14 2018-12-11 Fmc Corp composição aglutinante de alginato de cátion multivalente e carragenina iota
CN105601762B (zh) * 2016-03-07 2017-10-10 温州大学 一种提取羊栖菜多糖的方法
CN106190347B (zh) * 2016-08-18 2018-04-13 华南理工大学 一种利用高压脉冲电场和超声波辅助提取生物燃料的方法
CN106619851A (zh) * 2017-02-04 2017-05-10 徐修山 一种用于治疗癌症的药物组合物、药物试剂盒及用途
CN106866834B (zh) * 2017-03-16 2018-01-30 山东省食品发酵工业研究设计院 一种制备高效定制分子量的褐藻糖胶的方法及其应用
RS20171030A1 (sr) 2017-10-12 2019-04-30 Pavlovic Bojan F-fukoidani, desulfonovani f-fukoidani i njihovi derivati, desulfonovane oligo-fukoze kao inhibitori gastrointestinalnih infekcija
AU2019217489B2 (en) * 2018-02-07 2023-11-23 Merck Patent Gmbh Process for the preparation of metformin
CN109156615B (zh) * 2018-09-18 2021-12-28 青岛农业大学 一种利用褐藻寡糖提高动物精液品质的方法
CN110687154B (zh) * 2019-10-22 2023-08-01 山东大学 一种基于褐藻胶裂解酶的褐藻胶寡糖测序方法及其应用
CN112375154A (zh) * 2020-11-02 2021-02-19 江苏泰德医药有限公司 一种褐藻多糖硫酸酯的提取方法
KR102552888B1 (ko) * 2020-12-10 2023-07-07 농업회사법인 주식회사 오션푸드코리아 알긴산 추출방법
CN113278088B (zh) * 2021-05-27 2022-12-16 华南理工大学 一种具有显著肠粘膜修复活性的羊栖菜多糖及其制备方法与应用
CN113527527A (zh) * 2021-06-09 2021-10-22 深圳职业技术学院 一种连续相变萃取海藻多糖的方法
CN113480670A (zh) * 2021-06-28 2021-10-08 华南理工大学 一种显著提高羊栖菜多糖益生活性的方法
GB202109772D0 (en) * 2021-07-06 2021-08-18 Alginor Asa Method
CN113603808B (zh) * 2021-08-10 2023-03-31 山东省科学院生物研究所 改性褐藻胶及制备方法与其在制备促进胃肠蠕动药物中的应用
CN114634583B (zh) * 2022-03-02 2022-12-16 华南理工大学 一种具有显著抗光老化活性的海藻酸及其制备方法与应用
CN115716763B (zh) * 2022-11-22 2024-02-13 青岛阿道姆农业科技有限公司 褐藻中生物活性成分的提取方法及褐藻提取液
CN116688222B (zh) * 2023-06-27 2024-05-07 暨南大学附属第一医院(广州华侨医院) 一种基于乏氧外泌体的智能响应水凝胶敷料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63316731A (ja) * 1987-06-18 1988-12-26 Kureha Chem Ind Co Ltd 抗ウイルス剤
CN101250232A (zh) * 2008-03-27 2008-08-27 钱国英 一种羊栖菜活性多糖的提取工艺
CN101993501A (zh) * 2009-08-26 2011-03-30 浙江科技学院 一种岩藻聚糖硫酸酯的制备方法
CN102180990A (zh) * 2011-04-15 2011-09-14 江南大学 一种从海带中制备高粘度褐藻酸钠的方法
CN102417549A (zh) * 2011-11-07 2012-04-18 沈阳科思高科技有限公司 一种基于微波化学的褐藻活性多糖的高效提取方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2768335B1 (fr) * 1997-09-12 2000-03-03 Sederma Sa Compositions a usage cosmetique ou dermopharmaceutique contenant une association d'extrait d'algue et d'exopolysaccharide
RU2240816C1 (ru) * 2003-07-28 2004-11-27 Тихоокеанский институт биоорганической химии Дальневосточного отделения РАН Способ комплексной переработки бурых водорослей с получением препаратов для медицины и косметологии
KR101486931B1 (ko) * 2007-02-23 2015-01-27 박스터 인터내쇼날 인코포레이티드 해조류 추출물로부터 푸코이단을 정제하는 방법
CN101811596B (zh) * 2009-09-18 2011-07-20 江南大学 一种可食性多糖-蛋白复合包装膜及其制备方法
CN101735394B (zh) * 2010-01-07 2011-06-22 福州大学 低单体残留龙须菜超强吸水剂及其微波辐射制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63316731A (ja) * 1987-06-18 1988-12-26 Kureha Chem Ind Co Ltd 抗ウイルス剤
CN101250232A (zh) * 2008-03-27 2008-08-27 钱国英 一种羊栖菜活性多糖的提取工艺
CN101993501A (zh) * 2009-08-26 2011-03-30 浙江科技学院 一种岩藻聚糖硫酸酯的制备方法
CN102180990A (zh) * 2011-04-15 2011-09-14 江南大学 一种从海带中制备高粘度褐藻酸钠的方法
CN102417549A (zh) * 2011-11-07 2012-04-18 沈阳科思高科技有限公司 一种基于微波化学的褐藻活性多糖的高效提取方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DIEGO A; NAVAROO, CARBOHYDRATEPOLYMERS, vol. 69, 2007, pages 742 - 747
JIANBO CONG; CHANGZHEN WANG; YAN LI: "Measurement of sulfate group content of brown algae sulfated polysaccharides - study of barium sulfate nephelometry", PHARMACEUTICAL JOURNAL OF CHINESE PEOPLE'S LIBERATION ARMY, vol. 19, no. 3, 2003, pages 181
MAHESH CHHATBAR, CARBOHYDRATEPOLYMERS, vol. 76, 2009, pages 650 - 656
WENJING TAI; GUANGLI YU; JIANDONG WU; XIA ZHAO: "Extract and physicochemical properties of four types of algae polysaccharides", JOURNAL OF OCEAN UNIVERSITY OF CHINA, vol. 40, no. 5, 2010, pages 23 - 26

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111116771A (zh) * 2019-12-26 2020-05-08 浙江工业大学 裙带菜提取多糖及其在制备α-葡萄糖苷酶活性抑制药物中的应用
CN111116771B (zh) * 2019-12-26 2022-01-14 浙江工业大学 裙带菜提取多糖及其在制备α-葡萄糖苷酶活性抑制药物中的应用
CN111424055A (zh) * 2020-01-13 2020-07-17 福建农林大学 一种厌氧转化海藻酸钠生产废水为甲烷和有机酸的方法
CN111424055B (zh) * 2020-01-13 2024-04-19 福建农林大学 一种厌氧转化海藻酸钠生产废水为甲烷和有机酸的方法
CN111285939A (zh) * 2020-03-19 2020-06-16 华南理工大学 一种具有抗氧化和调节肠道菌群功效的海蒿子多糖及其制备方法与应用
CN111285939B (zh) * 2020-03-19 2022-04-22 华南理工大学 一种具有抗氧化和调节肠道菌群功效的海蒿子多糖及其制备方法与应用

Also Published As

Publication number Publication date
CN102417549A (zh) 2012-04-18
US9447199B2 (en) 2016-09-20
KR101605065B1 (ko) 2016-03-21
BR112014010922B1 (pt) 2020-12-15
CN102417549B (zh) 2013-07-24
JP5878241B2 (ja) 2016-03-08
EP2778178B1 (en) 2018-08-08
EP2778178A4 (en) 2015-09-02
EP2778178A1 (en) 2014-09-17
US20140296496A1 (en) 2014-10-02
KR20140087052A (ko) 2014-07-08
JP2014532670A (ja) 2014-12-08
BR112014010922A2 (pt) 2017-05-16

Similar Documents

Publication Publication Date Title
WO2013067896A1 (zh) 一种微波化学法提取褐藻多糖的方法
CN102417548B (zh) 一种从褐藻中提取活性多糖的方法
CN107141369B (zh) 一种改性果胶的制备方法
KR101605068B1 (ko) 마이크로파 화학 처리에 기반한 고등식물 및 곰팡이 다당류의 추출 공정
CN101838343A (zh) 一种利用废弃剑麻渣制备果胶的方法
CN102757515B (zh) 一种从柑橘果皮中提取高纯度类黄酮和果胶的方法
CN112500530B (zh) 一种碳酸钙/甘蔗渣纤维素基高吸水树脂及其制备方法
CN107266609B (zh) 电解水提取石榴皮渣果胶的方法
CN103951722A (zh) 一种从柑橘皮中联合提取橙皮苷和果胶的方法
CN102936293B (zh) 一种岩藻聚糖硫酸酯的提取纯化方法
CN106866834B (zh) 一种制备高效定制分子量的褐藻糖胶的方法及其应用
CN104498564A (zh) 一种低分子量硫酸软骨素的制备方法
CN106349405A (zh) 一种采用酶解超声从柚子皮中提取果胶的方法
CN107011454B (zh) 一种低分子量高硫酸化的海参岩藻聚糖硫酸酯制备方法
WO2021042700A1 (zh) 一种大麻多糖的提取方法及其产品和应用
CN105249481B (zh) 一种由桑叶提取后残渣制取高溶胀性膳食纤维的方法
CN106632725B (zh) 一种从果胶原料漂洗液中分离水溶性果胶的方法
CN101375863B (zh) 一种提取海参煮汁中多糖等多种活性成分的方法
CN110283860B (zh) 超声波辅助复合酶解提取的细基江蓠多糖及其提取方法
CN105859916B (zh) 一种南菊芋9号菊芋菊粉的制备方法
CN106883311A (zh) 一种采用酶解超声从柚子皮中提取果胶的方法
CN106905442B (zh) 一种用于提高肝炎患者免疫力的小分子β-1,3-葡聚糖的制备方法
CN104432109A (zh) 一种挤压制备硫酸酯化水溶性膳食纤维的方法
CN114656578A (zh) 一种酶辅助法制备富含rg-i高酯果胶的方法
CN106832031A (zh) 车前子多糖提取物的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848103

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14355535

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014539227

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012848103

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147014850

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014010922

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014010922

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140506