WO2013065212A1 - 放射線検出器 - Google Patents

放射線検出器 Download PDF

Info

Publication number
WO2013065212A1
WO2013065212A1 PCT/JP2012/004366 JP2012004366W WO2013065212A1 WO 2013065212 A1 WO2013065212 A1 WO 2013065212A1 JP 2012004366 W JP2012004366 W JP 2012004366W WO 2013065212 A1 WO2013065212 A1 WO 2013065212A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
electrode
layer
ground layer
semiconductor layer
Prior art date
Application number
PCT/JP2012/004366
Other languages
English (en)
French (fr)
Inventor
貴弘 土岐
敏 徳田
弘之 岸原
正知 貝野
聖菜 吉松
吉牟田 利典
晃一 田邊
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Publication of WO2013065212A1 publication Critical patent/WO2013065212A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14659Direct radiation imagers structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14661X-ray, gamma-ray or corpuscular radiation imagers of the hybrid type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/30Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from X-rays

Definitions

  • the present invention relates to a radiation detector for detecting radiation (X-rays, ⁇ -rays, etc.) used for medical (diagnosis) and industrial purposes such as foreign body inspection.
  • FPD flat panel X-ray detector
  • the FPD includes an indirect conversion method and a direct conversion method (see, for example, Patent Documents 1 and 2).
  • An indirect conversion FPD is a phosphor layer such as CsI (cesium iodide) that converts X-rays to light, and a photoelectric conversion element (matrix shape) that is arranged immediately below the phosphor layer to convert light into charges.
  • Photodiode a capacitor for accumulating the charge converted by the photoelectric conversion element
  • TFT thin film transistor
  • Each pixel is composed of one photoelectric conversion element, a capacitor, and a TFT.
  • the FPD 101 of the direct conversion method is arranged in a matrix form immediately below the conversion layer 102 that is sensitive to X-rays and directly converts charges according to the incident dose, and is converted by the conversion layer 102.
  • the capacitor 111 for storing the generated charge and the TFT 112 as a switching element for reading the charge stored in the capacitor 111 are provided.
  • One pixel is composed of one capacitor 111 and one TFT 112, respectively.
  • a high-resistance semiconductor of a-Se (amorphous selenium), CdTe (cadmium telluride) or CdZnTe (cadmium zinc telluride) is used for the conversion layer 102.
  • the pixel electrode 125 is electrically connected to the capacitor electrode 127.
  • the capacitor 111 includes a capacitive electrode 127 and a ground layer 131.
  • a bias voltage is applied to the common electrode 106, and the charges converted by the X-ray incidence are sequentially transferred from the conversion layer 102 to the hole injection blocking layer 108, the counter electrode 109, the bump electrode 141, the pixel electrode 125, and the through hole.
  • 133 is stored in the capacitor 111.
  • the electric charge accumulated in the capacitor 111 is read from the capacitor 111 by the operation of the TFT 112.
  • such a conventional example has the following problems. That is, when the conversion layer 102 is made of CdTe or CdZnTe, the conversion layer 102 has high sensitivity. Thereby, for example, more charges are converted by X-ray incidence than the conversion layer 102 such as a-Se. In addition to the charges converted by the incidence of X-rays, more charges are generated due to leakage current when X-rays are not irradiated than the conversion layer 102 such as a-Se. That is, more charge is converted into the capacitor 111 due to X-ray incidence than the conversion layer 102 such as a-Se. For this reason, the capacity of the conventional capacitor 111 overflows during long-time shooting.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a radiation detector capable of accumulating a large amount of charge even when a highly sensitive conversion layer is employed.
  • the film thickness must be uniform. Further, the area S is affected by the pixel pitch, and its size is limited.
  • the radiation detector according to the present invention includes a semiconductor layer of a polycrystalline film of CdTe or CdZnTe that generates charges in response to incident radiation, and the semiconductor individually provided in a plurality of pixels configured in a matrix.
  • the semiconductor layer of the polycrystalline film of CdTe or CdZnTe generates charges in response to incident radiation, and the capacitor stores the charges generated in the semiconductor layer.
  • the switching element reads the electric charge accumulated in the capacitor.
  • the capacitor and the switching element are individually provided for a plurality of pixels configured in a matrix.
  • condenser is comprised by the capacity
  • a semiconductor layer of a polycrystalline film of CdTe or CdZnTe generates a lot of charges upon incidence of radiation and generates a lot of charges due to a leak current. Those charges can be stored in the capacitor.
  • the reset noise increases as the capacitance of the capacitor increases.
  • the influence on the S / N ratio can be suppressed by reducing the reset noise relative to the X-ray quantum noise that is relatively larger than the reset noise.
  • the capacitor includes a plurality of capacitor electrodes electrically connected to each other, a ground layer provided between the capacitor electrodes, and the capacitor electrode. And an inter-electrode insulating film provided between the first electrode and the ground layer.
  • the ground layer is provided by laminating a plurality of ground layers, and the plurality of ground layers are electrically connected to each other between the plurality of ground layers.
  • any one of the plurality of capacitive electrodes is provided.
  • it can be set as the laminated structure by which the some capacitive electrode and the some ground layer were arrange
  • the interelectrode insulating film of the capacitor is preferably composed of any one of Ta 2 O 5 , Al 2 O 3 , (Ba, Sr) TiO 2 , and SrTiO 3. .
  • the capacitance of the capacitor can be increased.
  • the semiconductor layer of the polycrystalline film of CdTe or CdZnTe generates charges in response to incident radiation, and the capacitor stores the charges generated in the semiconductor layer.
  • the switching element reads the electric charge accumulated in the capacitor.
  • the capacitor and the switching element are individually provided for a plurality of pixels configured in a matrix.
  • condenser is comprised by the capacity
  • a semiconductor layer of a polycrystalline film of CdTe or CdZnTe generates a lot of charges upon incidence of radiation and generates a lot of charges due to a leak current. Those charges can be stored in the capacitor.
  • the reset noise increases as the capacitance of the capacitor increases.
  • the influence on the S / N ratio can be suppressed by reducing the reset noise relative to the X-ray quantum noise that is relatively larger than the reset noise.
  • FIG. 1 is a longitudinal sectional view illustrating a configuration of a flat panel X-ray detector (FPD) according to Embodiment 1.
  • FIG. It is a longitudinal cross-sectional view which shows the structure of the opposing board
  • (A) to (c) are partial plan views showing an example of a first ground layer, a capacitor electrode, and first and second through holes as viewed from the direction A in FIG. It is the figure which compared the sensitivity and the amount of leak current of the flat panel type X-ray detector (FPD) using CdZnTe and a-Se for a semiconductor layer. It is a block diagram which shows the structure of a flat panel type X-ray detector (FPD).
  • FIG. It is a longitudinal cross-sectional view which shows the structure of the flat panel type
  • FIG. It is a longitudinal cross-sectional view which shows the structure of the flat panel type
  • FIG. 1 is a longitudinal sectional view showing the configuration of a flat panel X-ray detector (FPD) according to the first embodiment.
  • FIG. 2 is a longitudinal sectional view showing the configuration of the counter substrate of the flat panel X-ray detector (FPD).
  • FIGS. 3A to 3C are partial plan views showing examples of the first ground layer, the capacitor electrode, and the first and second through holes as viewed from the direction A in FIG. FIG.
  • FIG. 4 is a diagram comparing the sensitivity and the amount of leakage current of a flat panel X-ray detector (FPD) using CdZnTe and a-Se for the semiconductor layer.
  • FIG. 5 is a block diagram showing a configuration of a flat panel X-ray detector (FPD).
  • a flat panel X-ray detector (FPD) 1 includes a counter substrate (also referred to as a detection substrate) 3 having a semiconductor layer 2 that generates charges (electron-hole pair carriers) in response to incident X-rays, and a generation And an active matrix substrate 4 for reading out the accumulated charges.
  • the counter substrate 3 is formed in order from the X-ray incident direction (symbol x in FIGS. 1 and 2), and a support substrate 5 that is the basis of the semiconductor layer 2 and a bias voltage application formed on the lower surface of the support substrate 5.
  • Common electrode 6 electron injection blocking layer 7 for blocking charge (electron) injection into semiconductor layer 2, semiconductor layer 2, and hole injection blocking for blocking charge (hole) injection into semiconductor layer 2
  • the layer 8 and the counter electrode 9 for collecting charges are stacked.
  • the support substrate 5 preferably has a small X-ray absorption coefficient.
  • graphite, ceramic (Al 2 O 3 , AlN), silicon, or the like is used.
  • the common electrode 6 is made of a conductive material such as ITO (indium tin oxide), Au (gold), or Pt (platinum), and is formed on the support substrate 5 by vapor deposition or sputtering. When a conductive material such as graphite is used for the support substrate 5, the common electrode 6 may be omitted.
  • the electron injection blocking layer 7 is made of a p-type semiconductor such as ZnTe, Sb 2 S 3 , or Sb 2 Te 3 , and is formed on the common electrode 6 by a sublimation method, vapor deposition or sputtering, chemical deposition method, or electrodeposition method. It is formed.
  • the semiconductor layer 2 is made of a compound semiconductor such as CdTe or CdZnTe, and CdTe or CdZnTe is composed of a polycrystalline film.
  • the semiconductor layer 2 of CdTe or CdZnTe is formed by proximity sublimation. That is, in the semiconductor layer 2 of CdTe or CdZnTe, the support substrate 5 on which the common electrode 6 and the electron injection blocking layer 7 are formed is disposed close to the sintered body or the mixed sintered body and heated under reduced pressure. Formed by sublimation.
  • the sintered body or the mixed sintered body (also referred to as a source) is, for example, a sintered body of a CdTe powder material, a mixed sintered body of a CdTe powder material and a ZnTe powder material, or a CdZnTe powder material.
  • the sintered body is used.
  • the semiconductor layer 2 is formed to 600 to 700 ⁇ m by the proximity sublimation method and polished to a thickness of about 500 ⁇ m.
  • the hole injection blocking layer 8 is made of an n-type semiconductor such as CdS (cadmium sulfide), ZnS (zinc sulfide), ZnO (zinc oxide), or Sb 2 S 3 (antimony sulfide). It is formed by sputtering, chemical precipitation, or electrodeposition. The hole injection blocking layer 8 is formed separately for each pixel by patterning as necessary. However, if the hole injection blocking layer 8 has a high resistance and there is no harmful effect such as a decrease in spatial resolution due to adjacent pixel leakage, it may not be formed separately.
  • CdS cadmium sulfide
  • ZnS zinc sulfide
  • ZnO zinc oxide
  • Sb 2 S 3 antimony sulfide
  • the arrangement of the electron injection blocking layer 7 and the hole injection blocking layer 8 may be exchanged, and either the electron injection blocking layer 7 or the hole injection blocking layer 8 or It is good also as a structure which does not form both.
  • the counter electrode 9 is made of a conductive material such as ITO, Au, or Pt, like the common electrode 6, and is formed on the hole injection blocking layer 8 by vapor deposition or sputtering. In addition, it is good also as a structure which does not form the counter electrode 9 as needed.
  • the active matrix substrate 4 includes a capacitor 11 that stores the generated charge, a thin film transistor (TFT) 12 that reads the charge stored in the capacitor 11, and the like.
  • the capacitor 11, the TFT 12, etc. are formed on the insulating substrate 13.
  • the TFT 12 includes a first capacitor electrode 27 and an insulating film 15, which will be described later, a data line 17, a gate channel 19, and a gate line 21.
  • the insulating film 23 is formed as a protective film.
  • the TFT 12 corresponds to the switching element of the present invention.
  • the capacitor 11 includes a pixel electrode 25, a first capacitor electrode 27, a first ground layer 29, and a second ground layer 31 that are stacked in the thickness direction 24.
  • the pixel electrode 25 and the first capacitor electrode 27 are electrically connected to each other through the first through hole 33.
  • the first ground layer 29 and the second ground layer 31 are electrically connected to each other through the second through hole 35.
  • the first ground layer 29 and the second ground layer 31 are grounded or a predetermined voltage set in advance is applied.
  • an insulating film 37 is provided between the pixel electrode 25 and the first ground layer 29.
  • an insulating film 39 is provided between the first ground layer 29 and the first capacitor electrode 27, and an insulating film 15 is provided between the first capacitor electrode 27 and the second ground layer 31. ing.
  • FIG. 3 is a partial plan view as seen from the direction A in FIG. 1 (a) to (c).
  • the first through hole 33 is formed at a position where it does not overlap (does not connect) with the first ground layer 29, and the second through hole 35 also does not overlap with the first capacitor electrode 27. Is formed.
  • the first through hole 33 is inside the first ground layer 29 and is not connected to the first ground layer 29 as shown in FIG. 3B. It may be provided.
  • the first through hole 33 and the second through hole 35 may be provided at positions facing each other in plan view.
  • the capacitor 11 includes a pixel electrode 25, a first capacitor electrode 27, a first ground layer 29, a second ground layer 31, a first through hole 33, a second through hole 35, and insulating films 15, 37, and 39. Yes.
  • the pixel electrode 25 and the first capacitor electrode 27 correspond to the capacitor electrode of the present invention, and the first ground layer 29 and the second ground layer 31 correspond to the ground layer of the present invention.
  • the insulating films 15, 37 and 39 correspond to the interelectrode insulating film of the present invention.
  • the gate channel 19 is composed of, for example, an n + layer formed by depositing a-Si (amorphous silicon) or p-Si (polysilicon) by vapor deposition and diffusing impurities.
  • the data line 17, the gate line 21, the pixel electrode 25, the first capacitor electrode 27, the first ground layer 29, the second ground layer 31, the first through hole 33, and the second through hole 35 are Ta (tantalum), Al (Aluminum), Mo (molybdenum), Ti (titanium), etc. are comprised. These metal films are formed by vapor deposition or sputtering.
  • the insulating films 15, 23, 35 and 37 are made of Ta 2 O 5 (tantalum oxide), Al 2 O 3 (aluminum oxide), TiO 2 (titanium oxide), (Ba, Sr) TiO 2 (BST: barium strontium titanate). ), And SrTiO 3 (STO: strontium titanate). These high dielectric materials are formed by CVD or sputtering.
  • the insulating films 15, 23, 35, and 37 may be made of SiNx or SiOx. In this case, the insulating films 15, 23, 35, and 37 are formed by vapor deposition or the like. Further, the insulating films 15, 23, 35, and 37 may be made of acrylic or polyimide in addition to the inorganic film.
  • FIG. 4 is a diagram comparing FPD sensitivity and leakage current amount using CdZnTe and a-Se for the semiconductor layer 2.
  • the sensitivity is represented by a value indicating the number of electrons generated (converted) with respect to the X-ray irradiation dose per pixel.
  • a CdZnTe film has a sensitivity about 4 to 7 times that of an a-Se film.
  • the leakage current amount is about 100 times that of the a-Se film. Therefore, during long-time imaging, the capacitance of the capacitor 11 must be set in consideration of not only the charge generated (converted) by the X-ray incidence in the semiconductor layer 2 but also the charge due to the leak current.
  • the capacitance C of the capacitor 11 is preferably 5 pF or more.
  • the reset noise due to the on-resistance of the TFT 12 increases as the capacitance of the capacitor 11 increases.
  • the reset noise is noise that appears after the TFT 12 is turned off.
  • Reset noise is a random noise is irregular fluctuation component, of the random noise, it is less desirable than the larger X-ray quantum noise n x.
  • S / N ratio is deteriorated.
  • the reset noise is obtained by the equation (2), and the capacitance C s of the capacitor 11 is set so as to have a relationship as in the equation (3).
  • the reset noise n r and X-ray quantum noise n x is represented by the noise electron number.
  • n r ⁇ (2 ⁇ k ⁇ T ⁇ C s / q 2 ) (2) n r ⁇ n x (3)
  • the capacitor 11 is preferably configured with a capacitance of 5 pF to 30 pF.
  • the counter substrate 3 and the active matrix substrate 4 are bonded together by bonding the counter electrode 9 of the counter substrate 3 and the pixel electrode 25 of the active matrix substrate 4 with a bump electrode 41.
  • the bump electrode 41 is made of a conductive paste.
  • a conductive paste For example, an organic material is gradually volatilized and cured by leaving it at room temperature with a conductive material mainly composed of carbon on a base material mainly composed of rubber. Or a blend of a binder resin that cures by condensation with moisture in the air.
  • the electroconductive material contained in this electroconductive paste as long as it has electroconductivity, you may select a material suitably.
  • the main component of the base material is exemplified as rubber, but other polymer materials may be used.
  • binder resin it is not necessarily limited to resin, The mixture of the raw material which has adhesiveness and sclerosis
  • the conductive paste includes, for example, a material such as a binder resin that is cured by allowing the organic substance to volatilize gradually when left at room temperature, or to cure by condensation with moisture in the air.
  • a material such as a binder resin that is cured by allowing the organic substance to volatilize gradually when left at room temperature, or to cure by condensation with moisture in the air.
  • cures by giving a temperature change (to about 100 degreeC) may be contained.
  • the counter electrode 9 of the counter substrate 3 and the bump electrode 41 formed on the pixel electrode 25 of the active matrix substrate 4 are joined. Thereby, the counter substrate 3 and the active matrix substrate 4 are bonded together. Joining is performed by leaving at room temperature or applying heat as necessary while applying a predetermined pressure set in advance. Further, besides the bump electrode 41, an anisotropic conductive film (ACF) may be used for bonding (connection).
  • ACF anisotropic conductive film
  • FIG. 1 shows one X-ray detection element, and detection by the X-ray detection element corresponds to one pixel.
  • the X-ray detection elements DU are arranged in a two-dimensional matrix, and are composed of, for example, about 1500 ⁇ 1500 (about 230 ⁇ 230 mm).
  • the X-ray detection elements DU are composed of 3 ⁇ 3 for convenience of illustration. That is, the capacitor 11 and the TFT 12 are individually provided in a 3 ⁇ 3 X-ray detection element DU (pixel) configured in a matrix.
  • the gate line 21 is configured to be commonly connected by the X-ray detection elements DU in the row (X) direction, and the data line 17 is shared by the X-ray detection elements DU in the column (Y) direction. Configured to connect to.
  • the gate line 21 is connected to the gate drive unit 43, and the data line 17 is connected to the charge voltage conversion amplifier 45 and the multiplexer 47 in order.
  • the gate drive unit 43, the charge voltage conversion amplifier 45, and the multiplexer 47 are controlled by a drive control unit 49, and are driven by a signal from an external device (not shown), for example.
  • X-rays are irradiated from the X-ray tube toward the subject (both the X-ray tube and the subject are not shown), and the X-rays that have passed through the subject enter the FPD 1.
  • the semiconductor layer 2 electric charges are generated in the semiconductor layer 2 due to the photoconductive effect.
  • the capacitor 11 and the semiconductor layer 2 are connected in series by the hole injection blocking layer 8, the counter electrode 9 and the bump electrode 41. For this reason, when a bias voltage (Vh) is applied to the common electrode 6, charges generated in the semiconductor layer 2 move. The generated charges are collected by the counter electrode 9 and accumulated in the capacitor 11.
  • Vh bias voltage
  • the charge accumulated in the capacitor 11 is read out by the TFT 12.
  • the gate drive unit 43 applies a voltage sequentially from the upper gate line 21 of FIG. 5 one by one to transmit a signal, thereby turning the TFT 12 into a connected (ON) state, and the charge accumulated in the capacitor 11. Is read from the data line 17.
  • the charge-voltage conversion amplifier 45 converts the charge taken out through the data line 17 into a voltage and outputs it as a voltage signal.
  • the multiplexer 47 selects and outputs one voltage signal from the plurality of voltage signals. An X-ray image is acquired based on the voltage signal output in this way.
  • the CdTe or CdZnTe polycrystalline semiconductor layer 2 generates charges in response to incident X-rays, and the capacitor 11 generates charges generated in the semiconductor layer 2. accumulate.
  • the TFT 12 reads out the electric charge accumulated in the capacitor 11.
  • the capacitor 11 and the TFT 12 are individually provided in a plurality of pixels configured in a matrix.
  • condenser 11 is comprised by the capacity
  • the capacitor 11 includes a pixel electrode 25 and a first capacitor electrode 27 which are provided in a stacked manner and are electrically connected to each other, and a first ground layer 29 provided between the pixel electrode 25 and the first capacitor electrode 27. Insulating films 37 and 39 provided between the pixel electrode 25 and the first ground layer 29 and between the first ground layer 29 and the first capacitor electrode 27. As a result, the number of combinations of the capacitance electrode and the ground layer facing each other with the insulating films 37 and 39 interposed therebetween increases, and the area for forming the capacitance of the capacitor 11 (between the pixel electrode 25 and the first ground layer 29 and (Between the first ground layer 29 and the first capacitance electrode 27) can be increased, and the capacitance of the capacitor 11 can be increased. Therefore, even when the highly sensitive semiconductor layer 2 is employed, a large amount of charges can be accumulated, and the capacity of the capacitor 11 can be prevented from overflowing.
  • the first ground layer 29 and the second ground layer 31 are provided in a stacked manner, and the first ground layer 29 and the second ground layer 31 are electrically connected to each other.
  • a first capacitance electrode 27 is provided between the first ground layer 29 and the second ground layer 31.
  • the insulating films 15, 37, and 39 are made of any one of Ta 2 O 5 , Al 2 O 3 , (Ba, Sr) TiO 2 , and SrTiO 3 .
  • the capacitance of the capacitor 11 can be increased.
  • FIG. 6 is a longitudinal sectional view illustrating the configuration of a flat panel X-ray detector (FPD) according to the second embodiment.
  • FPD flat panel X-ray detector
  • description of the part which overlaps with each Example is abbreviate
  • the capacitor 61 of the second embodiment is formed by stacking more capacity electrodes and ground layers than the first embodiment.
  • the capacitor 61 of the FPD 60 includes a second capacitor electrode 63 and a third ground layer 65 between the second ground layer 31 and the insulating substrate 13.
  • the first capacitor electrode 27 and the second capacitor electrode 63 are electrically connected to each other through a third through hole 67.
  • the second ground layer 31 and the third ground layer 65 are electrically connected to each other through the fourth through hole 69.
  • An insulating film 71 is provided between the second ground layer 31 and the second capacitor electrode 63, and an insulating film 73 is provided between the second capacitor electrode 63 and the third ground layer 65. Yes.
  • the capacitor 61 includes the second capacitor electrode 63, the third ground layer 65, the third through hole 67, the fourth through hole 69, and the insulating films 71 and 73 in addition to the configuration of the capacitor 11 of the first embodiment.
  • the second capacitor electrode 63 corresponds to the capacitor electrode of the present invention
  • the third ground layer 65 corresponds to the ground layer of the present invention.
  • the insulating films 71 and 73 correspond to the interelectrode insulating film of the present invention.
  • the pixel electrode 25, the first capacitor electrode 27, the second capacitor electrode 63, the first through hole 33, and the third through hole 67 are the first to third ground layers 29, 31, 65, the second through hole 35, and the second through hole 35, respectively.
  • the 4-through hole 69 is not electrically connected.
  • the second capacitor electrode 63, the third ground layer 65, the third through hole 67, and the fourth through hole 69 are composed of a metal film such as Ta, Al, Mo, and Ti. . These metal films are formed by vapor deposition or sputtering.
  • the insulating films 71 and 73 are made of any one high dielectric material such as Ta 2 O 5 , Al 2 O 3 , TiO 2 , (Ba, Sr) TiO 2 , and SrTiO 3 . These high dielectric materials are formed by CVD or sputtering.
  • the TFT 12 is formed in the layers of the insulating films 15 and 39 so as to read out the electric charge accumulated in the capacitor 61 from the first capacitance electrode 27.
  • the TFT 12 may be formed in the layers of the insulating films 71 and 73 so as to read out the electric charge accumulated in the capacitor 61 from the second capacitance electrode 63.
  • the area for forming the capacitance of the capacitor 61 (further, between the second ground layer 31 and the second capacitor electrode 63, the second capacitor electrode 63 and the second capacitor electrode 63 3 ground layers 65) can be further increased. Therefore, the capacity of the capacitor 61 can be increased.
  • the present invention is not limited to the above embodiment, and can be modified as follows.
  • the capacitor electrode electrically connected to the second capacitor electrode 63 through the through hole between the third ground layer 65 and the insulating substrate 13, and the third ground layer 65 and the through-hole.
  • a ground layer electrically connected by a hole and an insulating film provided between the capacitor electrode and the ground layer may be provided.
  • the capacitor 11 (61) is composed of the same number of layers as the capacitance electrode and the ground layer.
  • the capacitor 81 includes three layers of the pixel electrode 25, the first capacitor electrode 27, and the second capacitor electrode 63 as the capacitor electrodes, and the first ground layer 29 and the first layers as the ground layers. Two layers of two ground layers 31 may be provided.
  • the capacitor 83 includes the pixel electrode 25, the first ground layer 29, the first through hole 33, and the second through hole in the capacitor 61 of FIG.
  • the hole 35 and the insulating films 37 and 39 may be omitted.
  • the first capacitor electrode 27 functions as the pixel electrode 25.
  • the semiconductor layer 2 is composed of a polycrystalline film of CdTe or CdZnTe, but is not limited thereto.
  • the semiconductor layer 2 can be applied as long as it is a highly sensitive material as compared with, for example, a-Se.
  • the semiconductor layer 2 that directly generates charges in response to incident X-rays is employed as the conversion layer.
  • the conversion layer may include a phosphor layer such as CsI (cesium iodide) that converts X-rays into light, and a photoelectric conversion element (photodiode) that converts light into charges.
  • the FPD 1 arranges the X-ray detection elements DU (pixels) in a two-dimensional matrix (array) form. It is configured to acquire an X-ray image. However, it may be configured to acquire a one-dimensional X-ray image.
  • the capacitor 111 in FIG. 9 may be used instead of the capacitor 11.
  • the insulating layer (interelectrode insulating film) 115 provided between the capacitor electrode 127 and the ground layer 131 includes Ta 2 O 5 , Al 2 O 3 , TiO 2 , (Ba, Sr) TiO 2 , and It is made of any one high dielectric material such as SrTiO 3 .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

 FPD1のコンデンサ11は、5pF以上30pF以下の容量で構成されている。CdTeまたはCdZnTeの多結晶膜の半導体層2によって、X線の入射で多くの電荷が生成され、また、リーク電流による多くの電荷が発生する。それらの電荷をコンデンサ11に蓄積することができる。すなわち、高感度の半導体層(変換層)2を採用した場合でも多くの電荷を蓄積することができ、コンデンサ11の容量がオーバーフローすることを防止することができる。また、コンデンサ11の容量の大きくするとリセットノイズが大きくなる。しかしながら、リセットノイズよりも比較的に大きなX線量子ノイズに対し、リセットノイズを小さくすることで、S/N比に与える影響を抑えることができる。

Description

放射線検出器
 本発明は、医用(診断用)および異物検査等の産業用に用いられる放射線(X線、γ線等)を検出する放射線検出器に関する。
 従来の放射線検出器として、例えば、被検体等を透過したX線を検出して2次元のX線画像を得るためのフラットパネル型X線検出器(以下適宜、「FPD」と略する)が挙げられる。FPDは、間接変換方式のものと、直接変換方式のものとがある(例えば、特許文献1および2参照)。
 間接変換方式のFPDは、X線を光に変換するCsI(ヨウ化セシウム)等の蛍光体層と、その直下に行列状(マトリクス状)に配置され、光を電荷に変換する光電変換素子(フォトダイオード)と、光電変換素子で変換された電荷を蓄積するコンデンサと、コンデンサに蓄積された電荷を読み出すスイッチング素子としての薄膜トランジスタ(以下適宜、「TFT」と略する)と、を備えている。1画素は、それぞれ1つの光電変換素子、コンデンサおよびTFTで構成されている。
 一方、直接変換方式のFPD101は、図9に示すように、X線に感応し入射線量に応じた電荷を直接変換する変換層102と、その直下に行列状に配置され、変換層102で変換された電荷を蓄積するコンデンサ111と、コンデンサ111に蓄積された電荷を読み出すスイッチング素子としてのTFT112と、を備えている。1画素は、それぞれ1つのコンデンサ111およびTFT112で構成されている。なお、変換層102には、a-Se(アモルファスセレン)、CdTe(テルル化カドミウム)またはCdZnTe(テルル化カドミウム亜鉛)の高抵抗半導体が用いられる。
 画素電極125は、容量電極127と電気的に接続されている。コンデンサ111は、容量電極127とグランド層131とを有する。共通電極106にはバイアス電圧が印加されており、X線入射により変換された電荷は、変換層102から順番に正孔注入阻止層108、対向電極109、バンプ電極141、画素電極125、スルーホール133を通過して、コンデンサ111に蓄積される。コンデンサ111に蓄積された電荷は、TFT112の動作によりコンデンサ111から読み出される。
特開2000-349269号公報 特開2006-211693号公報
 しかしながら、このような従来例の場合には、次のような問題がある。すなわち、変換層102が、CdTeまたはCdZnTeで構成される場合は、変換層102が高感度となる。これにより、例えばa-Se等の変換層102に比べ、X線入射により多くの電荷が変換される。また、X線入射により変換された電荷の他にも、a-Se等の変換層102に比べ、X線が照射されていないときのリーク電流による電荷も多く発生する。すなわち、X線入射により変換された電荷とリーク電流による電荷とがa-Se等の変換層102よりも多くコンデンサ111に蓄積される。そのため、従来のコンデンサ111では、長時間の撮影時にその容量がオーバーフローしてしまう。
 本発明は、このような事情に鑑みてなされたものであって、高感度の変換層を採用した場合でも多くの電荷を蓄積することが可能な放射線検出器を提供することを目的とする。
 本発明者は、上記の問題を解決するために鋭意研究した結果、次のような知見を得た。コンデンサの容量Cは、C=ε×(S/d)の式に示すように、εは誘電率、Sは面積、dは電極間距離によって設定される。そのため、コンデンサの容量Cを増やすためには、誘電率εを大きくする、面積Sを広くする、電極間距離dを短く(薄く)することの少なくともいずれかを行って容量Cを設定すればよい。しかしながら、電極間の絶縁膜を薄く形成するには、膜厚を均一しなければならない問題がある。また、面積Sは、画素ピッチに影響され、その大きさに制限がある。
 このような知見に基づく本発明は、次のような構成をとる。すなわち、本発明に係る放射線検出器は、入射した放射線に感応して電荷を生成するCdTeまたはCdZnTeの多結晶膜の半導体層と、マトリクス状に構成された複数の画素に個別に設けられる前記半導体層で生成された電荷を蓄積するコンデンサと、マトリクス状に構成された複数の画素に個別に設けられる前記コンデンサに蓄積された電荷を読み出すスイッチング素子と、を備え、前記コンデンサは、5pF以上30pF以下の容量で構成されることを特徴とするものである。
 本発明に係る放射線検出器によれば、CdTeまたはCdZnTeの多結晶膜の半導体層は、入射した放射線に感応して電荷を生成し、コンデンサは半導体層で生成された電荷を蓄積する。スイッチング素子はコンデンサに蓄積された電荷を読み出す。コンデンサおよびスイッチング素子は、マトリクス状に構成された複数の画素に個別に設けられている。そして、コンデンサは、5pF以上30pF以下の容量で構成されている。CdTeまたはCdZnTeの多結晶膜の半導体層によって、放射線の入射で多くの電荷が生成され、また、リーク電流による多くの電荷が発生する。それらの電荷をコンデンサに蓄積することができる。すなわち、高感度の変換層を採用した場合でも多くの電荷を蓄積することができ、コンデンサの容量がオーバーフローすることを防止することができる。また、コンデンサの容量の大きくするとリセットノイズが大きくなる。しかしながら、リセットノイズよりも比較的に大きなX線量子ノイズに対し、リセットノイズを小さくすることで、S/N比に与える影響を抑えることができる。
 また、本発明に係る放射線検出器において、前記コンデンサは、積層して設けられる互いに電気的に接続された複数の容量電極と、前記複数の容量電極の間に設けられるグランド層と、前記容量電極と前記グランド層との間に設けられる電極間絶縁膜とを有することが好ましい。これにより、電極間絶縁膜を挟んで対向する容量電極とグランド層との組合せが増えることになり、コンデンサの容量を形成する面積を増やすことができ、コンデンサの容量を大きくすることができる。そのため、高感度の変換層を採用した場合でも多くの電荷を蓄積することができ、コンデンサの容量がオーバーフローすることを防止することができる。
 また、本発明に係る放射線検出器において、前記グランド層は、複数のグランド層が積層して設けられ、前記複数のグランド層は、互いに電気的に接続され、前記複数のグランド層の間には、前記複数の容量電極のいずれか1つが設けられることが好ましい。これにより、複数の容量電極と複数のグランド層とが交互に配置された積層構造とすることができる。そのため、コンデンサの容量を形成する面積を増やすことができる。
 また、本発明に係る放射線検出器において、前記コンデンサの電極間絶縁膜は、Ta、Al、(Ba,Sr)TiO、SrTiOのいずれかで構成されることが好ましい。コンデンサの電極間絶縁膜に、高誘電体材料が用いられることにより、コンデンサの容量を大きくすることができる。
 本発明に係る放射線検出器によれば、CdTeまたはCdZnTeの多結晶膜の半導体層は、入射した放射線に感応して電荷を生成し、コンデンサは半導体層で生成された電荷を蓄積する。スイッチング素子はコンデンサに蓄積された電荷を読み出す。コンデンサおよびスイッチング素子は、マトリクス状に構成された複数の画素に個別に設けられている。そして、コンデンサは、5pF以上30pF以下の容量で構成されている。CdTeまたはCdZnTeの多結晶膜の半導体層によって、放射線の入射で多くの電荷が生成され、また、リーク電流による多くの電荷が発生する。それらの電荷をコンデンサに蓄積することができる。すなわち、高感度の変換層を採用した場合でも多くの電荷を蓄積することができ、コンデンサの容量がオーバーフローすることを防止することができる。また、コンデンサの容量の大きくするとリセットノイズが大きくなる。しかしながら、リセットノイズよりも比較的に大きなX線量子ノイズに対し、リセットノイズを小さくすることで、S/N比に与える影響を抑えることができる。
実施例1に係るフラットパネル型X線検出器(FPD)の構成を示す縦断面図である。 フラットパネル型X線検出器(FPD)の対向基板の構成を示す縦断面図である。 (a)~(c)は、図1中のA方向から見た、第1グランド層、容量電極および第1,第2スルーホールの一例を示す部分平面図である。 半導体層にCdZnTeとa-Seを用いたフラットパネル型X線検出器(FPD)の感度およびリーク電流量を比較した図である。 フラットパネル型X線検出器(FPD)の構成を示すブロック図である。 実施例2に係るフラットパネル型X線検出器(FPD)の構成を示す縦断面図である。 変形例に係るフラットパネル型X線検出器(FPD)の構成を示す縦断面図である。 変形例に係るフラットパネル型X線検出器(FPD)の構成を示す縦断面図である。 従来のフラットパネル型X線検出器(FPD)の構成を示す縦断面図である。
 以下、図面を参照して本発明の実施例1を説明する。本実施例では、フラットパネル型X線検出器(FPD)を放射線検出器の一例として説明する。なお、図1は、実施例1に係るフラットパネル型X線検出器(FPD)の構成を示す縦断面図である。図2は、フラットパネル型X線検出器(FPD)の対向基板の構成を示す縦断面図である。図3は、(a)~(c)は、図1中のA方向から見た、第1グランド層、容量電極および第1,第2スルーホールの一例を示す部分平面図である。図4は、半導体層にCdZnTeとa-Seを用いたフラットパネル型X線検出器(FPD)の感度およびリーク電流量を比較した図である。図5は、フラットパネル型X線検出器(FPD)の構成を示すブロック図である。
 図1および図2を参照する。フラットパネル型X線検出器(FPD)1は、入射したX線に感応して電荷(電子-正孔対キャリア)を生成する半導体層2を有する対向基板(検出基板ともいう)3と、生成された電荷を蓄積するとともに蓄積された電荷を読み出すアクティブマトリクス基板4とを備えている。
 <対向基板>
 対向基板3は、X線入射方向(図1および図2中の符号x)から順番に、半導体層2の基礎となる支持基板5と、支持基板5の下面に形成されるバイアス電圧印加用の共通電極6と、半導体層2への電荷(電子)の注入を阻止する電子注入阻止層7と、半導体層2と、半導体層2への電荷(正孔)の注入を阻止する正孔注入阻止層8と、電荷収集用の対向電極9と、が積層形成された構成となっている。
 支持基板5は、X線の吸収係数が小さなものが好ましく、例えば、グラファイトや、セラミック(Al、AlN)、シリコン等が用いられる。共通電極6は、ITO(酸化インジウムスズ)や、Au(金)、Pt(白金)などの導電材料から構成され、支持基板5上に蒸着法やスパッタリング等で形成される。支持基板5にグラファイトのような導電性材料を用いる場合は、共通電極6を省略してもよい。
 電子注入阻止層7は、ZnTe、Sb、またはSbTe等のp型半導体で構成され、共通電極6上に昇華法、蒸着もしくはスパッタリング、化学析出法、または電析法等によって形成される。
 半導体層2は、CdTeまたはCdZnTeといった化合物半導体が用いられ、CdTeまたはCdZnTeは、多結晶膜で構成される。CdTeまたはCdZnTeの半導体層2は、近接昇華法により形成される。すなわち、CdTeまたはCdZnTeの半導体層2は、共通電極6および電子注入阻止層7が形成された支持基板5を、焼結体または混合焼結体に対向して近接配置し、減圧下で加熱して昇華させることにより形成される。焼結体または混合焼結体(これらをソースとも言う)は、例えば、CdTeの粉末材料の焼結体や、CdTeの粉末材料とZnTeの粉末材料との混合焼結体や、CdZnTeの粉末材料の焼結体を用いる。半導体層2は、近接昇華法により600~700μmに形成され、500μm程の厚みに研磨される。
 正孔注入阻止層8は、CdS(硫化カドミウム)、ZnS(硫化亜鉛)、ZnO(酸化亜鉛)、またはSb(硫化アンチモン)等のn型半導体で構成され、昇華法、蒸着法、スパッタリング、化学析出法、または電析法等で形成される。正孔注入阻止層8は、必要に応じてパターニングして画素ごとに分離して形成する。但し、正孔注入阻止層8が高抵抗で隣接画素リークによる空間解像度低下などの弊害が無ければ、分離して形成しなくてもよい。
 なお、必要に応じて、電子注入阻止層7と正孔注入阻止層8との配置を交換した構成としてもよいし、また、電子注入阻止層7および正孔注入阻止層8のいずれか一方あるいは両方を形成しない構成としてもよい。
 対向電極9は、共通電極6と同様に、ITOや、Au、Ptなどの導電材料から構成され、正孔注入阻止層8上に蒸着法やスパッタリング等で形成される。なお、必要に応じて、対向電極9を形成しない構成としてもよい。
 <アクティブマトリクス基板>
 一方、アクティブマトリクス基板4は、生成された電荷を蓄積するコンデンサ11と、コンデンサ11に蓄積された電荷を読み出す薄膜トランジスタ(TFT)12などを備えている。コンデンサ11とTFT12等は、絶縁基板13上に形成される。TFT12は、後述する第1容量電極27および絶縁膜15、データ線17、ゲートチャネル19、ゲート線21で構成されている。なお、絶縁膜23は保護膜として形成される。また、TFT12は、本発明のスイッチング素子に相当する。
 コンデンサ11は、厚み方向24に積層して形成された、画素電極25、第1容量電極27、第1グランド層29、および第2グランド層31を有している。画素電極25と第1容量電極27は、第1スルーホール33によって、互いに電気的に接続されている。また、第1グランド層29と第2グランド層31は、第2スルーホール35によって、互いに電気的に接続されている。第1グランド層29と第2グランド層31は、アースされたり、予め設定された所定電圧が印加されていたりする。
 また、画素電極25と第1グランド層29との間には、絶縁膜37が設けられている。同様に、第1グランド層29と第1容量電極27との間には、絶縁膜39が設けられ、第1容量電極27と第2グランド層31との間には、絶縁膜15が設けられている。
 また、図3は、(a)~(c)は、図1中のA方向から見た部分平面図である。図3(a)に示すように、第1スルーホール33は、第1グランド層29と重ならない(接続しない)位置に形成され、第2スルーホール35も第1容量電極27と重ならない位置に形成されている。図3(a)に示す形態に限らず、図3(b)に示すように、第1スルーホール33は、第1グランド層29の内側であって、第1グランド層29と接続しないように設けてもよい。また、図3(c)に示すように、平面視で対向する位置に第1スルーホール33および第2スルーホール35を設けてもよい。
 図1に戻る。コンデンサ11は、画素電極25、第1容量電極27、第1グランド層29、第2グランド層31、第1スルーホール33、第2スルーホール35、および絶縁膜15,37,39を有している。なお、画素電極25および第1容量電極27は本発明の容量電極に相当し、第1グランド層29および第2グランド層31は本発明のグランド層に相当する。絶縁膜15,37,39が本発明の電極間絶縁膜に相当する。
 ゲートチャネル19は、a-Si(アモルファスシリコン)やp-Si(ポリシリコン)を蒸着法で形成し、不純物を拡散させて例えばn+層としたもので構成される。データ線17、ゲート線21、画素電極25、第1容量電極27、第1グランド層29、第2グランド層31、第1スルーホール33、および第2スルーホール35は、Ta(タンタル)、Al(アルミニウム)、Mo(モリブデン)、Ti(チタン)等の金属膜で構成される。これらの金属膜は、蒸着法またはスパッタリング等で形成される。
 絶縁膜15,23,35,37は、Ta(酸化タンタル)、Al(酸化アルミニウム)、TiO(酸化チタン)、(Ba,Sr)TiO(BST:チタン酸バリウムストロンチウム)、およびSrTiO(STO:チタン酸ストロンチウム)等のいずれか1つの高誘電体材料で構成される。これらの高誘電体材料は、CVD法またはスパッタリング等で形成される。また、絶縁膜15,23,35,37は、SiNxやSiOxで構成してもよい。この場合、絶縁膜15,23,35,37は蒸着法等で形成される。また、絶縁膜15,23,35,37は、無機膜の他にアクリルやポリイミド等で構成してもよい。
 次に、コンデンサ11の容量について説明する。図4は、半導体層2にCdZnTeとa-Seを用いたFPDの感度およびリーク電流量を比較した図である。なお、感度は、1画素当たりのX線照射線量に対する生成(変換)された電子数を示した値で表す。例えば、CdZnTe膜は、a-Se膜に対し、4~7倍程度の感度を示す。さらに、a-Se膜の100倍程度のリーク電流量を示す。そのため、長時間撮影時には、半導体層2でX線入射により生成(変換)された電荷のみならず、リーク電流による電荷を考慮してコンデンサ11の容量を設定しなければならない。
 コンデンサ11の容量は、まず、一般撮影の条件(例えば、腰椎、側面)でX線照射を行い、コンデンサ11に蓄積される電荷を求める。蓄積電荷Qは、半導体層2でX線入射により変換された電荷とリーク電流による電荷とを加算した電荷とで求められる。コンデンサ11に加わる電圧Vは、ゲート線21の入力電圧Vgl(-10V)の3~5分の1程度が好ましく、式(1)から求められる。この式(1)により、コンデンサ11の容量Cは、5pF以上であることが好ましい。
 Q/C=V<Vgl/(3~5)   …(1)
 また、TFT12のオン抵抗によるリセットノイズは、コンデンサ11の容量が大きいほど大きくなる。リセットノイズは、TFT12をOFFにした後に現れるノイズである。リセットノイズは、不規則なゆらぎ成分であるランダムノイズであり、このランダムノイズのうち、比較的大きいX線量子ノイズnよりも小さいことが望まれる。リセットノイズnがX線量子ノイズnよりも大きくなると、S/N比が悪くなる。リセットノイズは、式(2)により求められ、式(3)のような関係となるように、コンデンサ11の容量Cが設定される。なお、リセットノイズnおよびX線量子ノイズnは、ノイズ電子数で表される。また、kはボルツマン定数、Tは絶対温度、Cは容量、qは電荷素量を示す。これら式(2)および式(3)により、コンデンサ11の容量Cは、30pF未満であることが好ましい。
 n=√(2×k×T×C/q)   …(2)
 n<n   …(3)
 すなわち、コンデンサ11は、5pF以上30pF以下の容量で構成されることが好ましい。
 次に、対向基板3とアクティブマトリクス基板4との貼り合わせ等について説明する。対向基板3とアクティブマトリクス基板4は、図1に示すように、対向基板3の対向電極9とアクティブマトリクス基板4の画素電極25とがバンプ電極41で接合されることにより、貼り合わされている。
 バンプ電極41は、導電性ペーストで構成され、例えば、ゴムを主成分とした母材に、カーボンを主成分とした導電性材料と、常温で放置することにより有機物質が徐々に揮発して硬化する、あるいは空気中の水分と縮合反応して硬化するバインダー樹脂とを配合したもので構成される。この導電性ペーストに含まれる導電性材料については、導電性を有していれば、適宜材料を選択しても良い。また、例えば、母材の主成分をゴムと例示したが、その他の高分子材料でもよい。バインダー樹脂についても、必ずしも樹脂に限定されず、接着性および硬化性を有する素材の混合物であってもよい。
 また、導電性ペーストには、例えば、バインダー樹脂のように常温で放置することにより有機物質が徐々に揮発して硬化する、あるいは空気中の水分と縮合反応して硬化する素材が含まれていることが好ましいが、温度変化(100℃程度まで)を与えることにより硬化する物質が含まれていてもよい。
 対向基板3の対向電極9とアクティブマトリクス基板4の画素電極25上に形成されたバンプ電極41とを接合する。これにより、対向基板3とアクティブマトリクス基板4とが貼り合われる。接合は、予め設定された所定の圧力を加えながら、常温放置、あるいは必要に応じて加熱することにより行われる。また、バンプ電極41以外にも、異方導電性フィルム(ACF)を用いて接合(接続)してもよい。
 図1は、1つのX線検出素子を示しており、X線検出素子での検出が1画素に相当する。X線検出素子DUは、図5に示すように、2次元マトリクス状に配置され、例えば1500×1500個程度(230×230mm程度)で構成される。X線検出素子DUは、図示の便宜上3×3個で構成されている。すなわち、コンデンサ11およびTFT12は、マトリクス状に構成された3×3のX線検出素子DU(画素)に個別に設けられている。
 図5において、ゲート線21は、行(X)方向のX線検出素子DUで共通に接続するように構成されており、データ線17は、列(Y)方向のX線検出素子DUで共通に接続するように構成されている。また、ゲート線21は、ゲート駆動部43と接続しており、データ線17は、順番に電荷電圧変換アンプ45、マルチプレクサ47と接続している。ゲート駆動部43、電荷電圧変換アンプ45およびマルチプレクサ47は、駆動制御部49で制御されるようになっており、例えば図示しない外部装置からの信号で駆動される。
 次に、図1および図5を参照して、FPD1の動作を簡単に説明をする。X線管から被検体に向けてX線が照射され(X線管と被検体は共に図示しない)、被検体を透過したX線はFPD1に入射する。半導体層2にX線が入射すると、光導電効果により半導体層2で電荷が生成される。このとき、コンデンサ11と半導体層2は、正孔注入阻止層8、対向電極9およびバンプ電極41により直列に接続された構成となっている。そのため、共通電極6にバイアス電圧(Vh)を印加しておくと、半導体層2内で生成された電荷が移動する。そして、生成された電荷は、対向電極9で収集されてコンデンサ11に蓄積される。
 コンデンサ11に蓄積された電荷は、TFT12により読み出される。ゲート駆動部43は、例えば図5の上側のゲート線21から1行ずつ順番に電圧を印加して信号を送信することで、TFT12を接続(ON)の状態にし、コンデンサ11に蓄積された電荷をデータ線17から読み出す。電荷電圧変換アンプ45は、データ線17を通じて取り出された電荷を電圧に変換して電圧信号として出力する。マルチプレクサ47は、複数の電圧信号から1つの電圧信号を選択して出力する。このようにして出力された電圧信号に基づいてX線画像が取得される。
 上述した実施例1に係るFPD1によれば、CdTeまたはCdZnTeの多結晶膜の半導体層2は、入射したX線に感応して電荷を生成し、コンデンサ11は半導体層2で生成された電荷を蓄積する。TFT12はコンデンサ11に蓄積された電荷を読み出す。コンデンサ11およびTFT12は、マトリクス状に構成された複数の画素に個別に設けられている。そして、コンデンサ11は、5pF以上30pF以下の容量で構成されている。CdTeまたはCdZnTeの多結晶膜の半導体層2によって、X線の入射で多くの電荷が生成され、また、リーク電流による多くの電荷が発生する。しかしながら、それらの電荷をコンデンサ11に蓄積することができる。すなわち、高感度の半導体層(変換層)2を採用した場合でも多くの電荷を蓄積することができ、コンデンサ11の容量がオーバーフローすることを防止することができる。また、コンデンサ11の容量の大きくするとリセットノイズが大きくなる。しかしながら、リセットノイズよりも比較的に大きなX線量子ノイズに対し、リセットノイズを小さくすることで、S/N比に与える影響を抑えることができる。
 また、コンデンサ11は、積層して設けられる互いに電気的に接続された画素電極25および第1容量電極27と、画素電極25と第1容量電極27との間に設けられる第1グランド層29と、画素電極25と第1グランド層29との間、および第1グランド層29と第1容量電極27との間に設けられる絶縁膜37,39とを有している。これにより、絶縁膜37,39を挟んで対向する容量電極とグランド層との組合せが増えることになり、コンデンサ11の容量を形成する面積(画素電極25と第1グランド層29との間、および第1グランド層29と第1容量電極27との間)を増やすことができ、コンデンサ11の容量を大きくすることができる。そのため、高感度の半導体層2を採用した場合でも多くの電荷を蓄積することができ、コンデンサ11の容量がオーバーフローすることを防止することができる。
 また、第1グランド層29および第2グランド層31は積層して設けられ、第1グランド層29および第2グランド層31は互いに電気的に接続されている。第1グランド層29と第2グランド層31との間には、第1容量電極27が設けられている。これにより、画素電極25および第1容量電極27と、第1グランド層29および第2グランド層31とが交互に配置された積層構造とすることができる。そのため、コンデンサ11の容量を形成する面積(さらに第1容量電極27と第2グランド層31との間)を増やすことができる。
 また、絶縁膜15,37,39は、Ta、Al、(Ba,Sr)TiO、SrTiOのいずれかで構成されている。絶縁膜15,37,39に、高誘電体材料が用いられることにより、コンデンサ11の容量を大きくすることができる。
 次に、図面を参照して本発明の実施例2を説明する。図6は、実施例2に係るフラットパネル型X線検出器(FPD)の構成を示す縦断面図である。なお、各実施例と重複する部分の説明は省略する。実施例2のコンデンサ61は、実施例1よりも多く容量電極およびグランド層が積層して形成されている。
 図6を参照する。FPD60のコンデンサ61は、第2グランド層31と絶縁基板13との間に、第2容量電極63および第3グランド層65を備えている。第1容量電極27と第2容量電極63は、第3スルーホール67によって、互いに電気的に接続されている。また、第2グランド層31と第3グランド層65は、第4スルーホール69によって、互いに電気的に接続されている。また、第2グランド層31と第2容量電極63との間には、絶縁膜71が設けられ、第2容量電極63と第3グランド層65との間には、絶縁膜73が設けられている。
 すなわち、コンデンサ61は、実施例1のコンデンサ11の構成に加え、第2容量電極63、第3グランド層65、第3スルーホール67、第4スルーホール69および絶縁膜71,73を有している。なお、第2容量電極63は本発明の容量電極に相当し、第3グランド層65は本発明のグランド層に相当する。絶縁膜71,73は本発明の電極間絶縁膜に相当する。
 画素電極25、第1容量電極27、第2容量電極63、第1スルーホール33、および第3スルーホール67は、第1~第3グランド層29,31,65、第2スルーホール35および第4スルーホール69と、電気的に接続していない。
 また、実施例1と同様に、第2容量電極63、第3グランド層65、第3スルーホール67、および第4スルーホール69は、Ta、Al、Mo、Ti等の金属膜で構成される。これらの金属膜は、蒸着法またはスパッタリング等で形成される。絶縁膜71,73は、Ta、Al、TiO、(Ba,Sr)TiO、およびSrTiO等のいずれか1つの高誘電体材料で構成される。これらの高誘電体材料は、CVD法またはスパッタリング等で形成される。
 なお、TFT12は、第1容量電極27からコンデンサ61に蓄積された電荷を読み出すように絶縁膜15,39の層に形成されている。しかしながら、TFT12は、第2容量電極63からコンデンサ61に蓄積された電荷を読み出すように絶縁膜71,73の層に形成されてもよい。
 上述した実施例2に係るFPD60によれば、実施例1に対し、コンデンサ61の容量を形成する面積(さらに第2グランド層31と第2容量電極63との間、第2容量電極63と第3グランド層65との間)をさらに増やすことができる。そのため、コンデンサ61の容量を増やすことができる。
 本発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
 (1)上述した実施例2において、第3グランド層65と絶縁基板13との間に、第2容量電極63とスルーホールにより電気的に接続された容量電極と、第3グランド層65とスルーホールにより電気的に接続されたグランド層と、容量電極とグランド層との間に設けられた絶縁膜とを設けてもよい。これにより、さらに容量電極とグランド層とを多くすることができ、コンデンサの容量を増やすことができる。
 (2)上述した各実施例および変形例(1)において、コンデンサ11(61)は、容量電極とグランド層とが同数の層で構成されている。しかしながら、例えば、図7に示すように、コンデンサ81は、容量電極として、画素電極25、第1容量電極27および第2容量電極63の3層と、グランド層として、第1グランド層29および第2グランド層31の2層とを有するようにしてもよい。
 (3)上述した各実施例および各変形例において、図8に示すように、コンデンサ83は、図6のコンデンサ61における画素電極25、第1グランド層29、第1スルーホール33、第2スルーホール35、および絶縁膜37,39を省略する構成としてもよい。この場合、第1容量電極27が画素電極25として機能する。
 (4)上述した各実施例および各変形例において、半導体層2は、CdTeまたはCdZnTeの多結晶膜で構成されるが、これに限定されない。半導体層2は、例えばa-Seと比較して高感度な材料であれば適応可能である。
 (5)上述した各実施例および各変形例において、入射したX線に感応して直接電荷を生成する半導体層2を変換層として採用している。しかしながら、変換層は、X線を光に変換するCsI(ヨウ化セシウム)等の蛍光体層と、光を電荷に変換する光電変換素子(フォトダイオード)と、を備えるものでもよい。
 (6)上述した各実施例および各変形例において、図5に示すように、FPD1(60)は、X線検出素子DU(画素)を2次元マトリクス(アレイ)状に配置し、2次元のX線画像を取得するように構成される。しかしながら、1次元のX線画像を取得するように構成してもよい。
 (7)上述した各実施例および各変形例において、コンデンサ11に代えて、図9のコンデンサ111を用いてもよい。この場合、容量電極127とグランド層131との間に設けられた絶縁層(電極間絶縁膜)115は、Ta、Al、TiO、(Ba,Sr)TiO、およびSrTiO等のいずれか1つの高誘電体材料で構成される。
 1,60 … フラットパネル型X線検出器(FPD)
 2  … 半導体層
 11,61,81,83 … コンデンサ
 12 … 薄膜トランジスタ(TFT)
 15,23,37,39,71,73 … 絶縁膜
 25 … 画素電極
 27 … 第1容量電極
 29 … 第1グランド層
 31 … 第2グランド層
 33 … 第1スルーホール
 35 … 第2スルーホール
 63 … 第2容量電極
 65 … 第3グランド層
 67 … 第3スルーホール
 69 … 第4スルーホール

Claims (4)

  1.  入射した放射線に感応して電荷を生成するCdTeまたはCdZnTeの多結晶膜の半導体層と、
     マトリクス状に構成された複数の画素に個別に設けられる前記半導体層で生成された電荷を蓄積するコンデンサと、
     マトリクス状に構成された複数の画素に個別に設けられる前記コンデンサに蓄積された電荷を読み出すスイッチング素子と、を備え、
     前記コンデンサは、5pF以上30pF以下の容量で構成されることを特徴とする放射線検出器。
  2.  請求項1に記載の放射線検出器において、
     前記コンデンサは、積層して設けられる互いに電気的に接続された複数の容量電極と、前記複数の容量電極の間に設けられるグランド層と、前記容量電極と前記グランド層との間に設けられる電極間絶縁膜とを有することを特徴とする放射線検出器。
  3.  請求項2に記載の放射線検出器において、
     前記グランド層は、複数のグランド層が積層して設けられ、
     前記複数のグランド層は、互いに電気的に接続され、
     前記複数のグランド層の間には、前記複数の容量電極のいずれか1つが設けられることを特徴とする放射線検出器。
  4.  請求項1から3のいずれかに記載の放射線検出器において、
     前記コンデンサの電極間絶縁膜は、Ta、Al、(Ba,Sr)TiO、SrTiOのいずれかで構成されることを特徴とする放射線検出器。
PCT/JP2012/004366 2011-11-02 2012-07-05 放射線検出器 WO2013065212A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-241193 2011-11-02
JP2011241193 2011-11-02

Publications (1)

Publication Number Publication Date
WO2013065212A1 true WO2013065212A1 (ja) 2013-05-10

Family

ID=48191598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004366 WO2013065212A1 (ja) 2011-11-02 2012-07-05 放射線検出器

Country Status (2)

Country Link
JP (1) JPWO2013065212A1 (ja)
WO (1) WO2013065212A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2858113A1 (en) * 2013-10-02 2015-04-08 Rayence Co., Ltd. X-ray sensor and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255269A (ja) * 1991-02-07 1992-09-10 Hitachi Ltd 受光装置
JPH1187679A (ja) * 1997-09-01 1999-03-30 Nec Corp オンチップソースフォロアアンプを有する固体撮像素子
JP2001345440A (ja) * 2000-03-31 2001-12-14 Canon Inc 電磁波検出装置
JP2004209117A (ja) * 2003-01-08 2004-07-29 Hitachi Medical Corp 放射線検出装置およびその製造方法
JP2007170908A (ja) * 2005-12-20 2007-07-05 Shimadzu Corp 放射線検出器およびそれを用いた撮像装置
JP2010219339A (ja) * 2009-03-17 2010-09-30 Sony Corp 固体撮像装置、固体撮像装置の製造方法、固体撮像装置の駆動方法、及び電子機器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308365A (ja) * 1987-06-10 1988-12-15 Toshiba Corp 集積回路におけるコンデンサの製造方法
JP2696860B2 (ja) * 1987-11-11 1998-01-14 株式会社日立製作所 放射線検出素子
JP2686263B2 (ja) * 1987-11-19 1997-12-08 株式会社日立製作所 放射線検出素子
JP2006345330A (ja) * 2005-06-10 2006-12-21 Hitachi Medical Corp 撮像装置
JP4352057B2 (ja) * 2006-02-13 2009-10-28 キヤノン株式会社 撮像装置
JP2008243931A (ja) * 2007-03-26 2008-10-09 Taiyo Yuden Co Ltd 積層型薄膜コンデンサの製造方法及び積層型薄膜コンデンサ
JP2010182764A (ja) * 2009-02-04 2010-08-19 Sony Corp 半導体素子とその製造方法、及び電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255269A (ja) * 1991-02-07 1992-09-10 Hitachi Ltd 受光装置
JPH1187679A (ja) * 1997-09-01 1999-03-30 Nec Corp オンチップソースフォロアアンプを有する固体撮像素子
JP2001345440A (ja) * 2000-03-31 2001-12-14 Canon Inc 電磁波検出装置
JP2004209117A (ja) * 2003-01-08 2004-07-29 Hitachi Medical Corp 放射線検出装置およびその製造方法
JP2007170908A (ja) * 2005-12-20 2007-07-05 Shimadzu Corp 放射線検出器およびそれを用いた撮像装置
JP2010219339A (ja) * 2009-03-17 2010-09-30 Sony Corp 固体撮像装置、固体撮像装置の製造方法、固体撮像装置の駆動方法、及び電子機器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2858113A1 (en) * 2013-10-02 2015-04-08 Rayence Co., Ltd. X-ray sensor and method of manufacturing the same
US10163969B2 (en) 2013-10-02 2018-12-25 Rayence Co., Ltd. X-ray sensor and method of manufacturing the same

Also Published As

Publication number Publication date
JPWO2013065212A1 (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
US8384041B2 (en) Digital radiographic imaging arrays with reduced noise
US9395453B2 (en) Photodiode and other sensor structures in flat-panel x-ray imagers and method for improving topological uniformity of the photodiode and other sensor structures in flat-panel x-ray imagers based on thin-film electronics
US10816681B2 (en) Radiation detector and manufacturing method for radiation detector
JP5669882B2 (ja) 画像検出器
JP5489542B2 (ja) 放射線検出装置及び放射線撮像システム
US8253212B2 (en) Photodetector/imaging device with avalanche gain
US11504079B2 (en) Hybrid active matrix flat panel detector system and method
US20100051820A1 (en) X-ray detecting element
JP2013089869A (ja) 検出装置及び検出システム
WO2015186657A1 (ja) 半導体装置およびその製造方法
JP2013142578A (ja) 放射線検出器
US7233003B2 (en) Radiation detector
US8563940B2 (en) Radiation detector manufacturing method, a radiation detector, and a radiographic apparatus
US9348037B2 (en) X-ray pixels including double photoconductors and X-ray detectors including the X-ray pixels
WO2013065212A1 (ja) 放射線検出器
JP2006059901A (ja) 放射線検出器
JP5812112B2 (ja) 放射線検出器およびその製造方法
JP2007093257A (ja) 放射線検出器
JP6282363B2 (ja) 検出装置及び検出システム
Kuo et al. Direct-Conversion X-Ray Detector with 50-µm High-Gain Pixel Amplifiers for Low-X-Ray-Dose Digital Mammography
JP2002168958A (ja) 放射線検出器及び医用画像診断装置
JP5585733B2 (ja) 放射線検出器およびその製造方法
JP2007273576A (ja) X線検出器
JP2007012843A (ja) 光導電層および放射線撮像パネル
JP2005276975A (ja) 放射線撮像パネルを構成する光導電層の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845452

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541591

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12845452

Country of ref document: EP

Kind code of ref document: A1