WO2013065150A1 - 電力変換装置の駆動装置および電力変換装置の駆動方法 - Google Patents
電力変換装置の駆動装置および電力変換装置の駆動方法 Download PDFInfo
- Publication number
- WO2013065150A1 WO2013065150A1 PCT/JP2011/075320 JP2011075320W WO2013065150A1 WO 2013065150 A1 WO2013065150 A1 WO 2013065150A1 JP 2011075320 W JP2011075320 W JP 2011075320W WO 2013065150 A1 WO2013065150 A1 WO 2013065150A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switching element
- power conversion
- conversion device
- drive
- speed
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/04—Modifications for accelerating switching
- H03K17/041—Modifications for accelerating switching without feedback from the output circuit to the control circuit
- H03K17/0412—Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit
- H03K17/04123—Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit in field-effect transistor switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/16—Modifications for eliminating interference voltages or currents
- H03K17/161—Modifications for eliminating interference voltages or currents in field-effect transistor switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/16—Modifications for eliminating interference voltages or currents
- H03K17/161—Modifications for eliminating interference voltages or currents in field-effect transistor switches
- H03K17/162—Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
- H03K17/163—Soft switching
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0029—Circuits or arrangements for limiting the slope of switching signals, e.g. slew rate
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the present invention relates to a drive device for a power converter and a drive method for the power converter.
- the resistor of the gate drive circuit supplies a current commensurate with the conductivity modulation to the gate of the gate drive semiconductor element.
- the output voltage of the switching control circuit is appropriately divided and applied to the gate terminal of the semiconductor element, thereby realizing a gate drive circuit having a simple circuit configuration with a small number of components.
- JP 2010-511165 A Japanese Patent Laid-Open No. 2-179262 JP 2002-300016 A
- Patent Document 3 a technique for solving an increase in switching loss at turn-off by gradually increasing the gate voltage only at turn-on is disclosed.
- this technique is a solution for a silicon switching element which is a conventional material that does not require a high turn-off speed and does not generate ringing noise due to the equivalent capacitance of the switching element itself. For this reason, ringing noise cannot be reduced when using a switching element that needs to suppress ringing noise by performing high-speed switching, such as a wide band gap semiconductor.
- the present invention has been made in view of the above, and obtains a power converter drive device and a power converter drive method capable of suppressing ringing at turn-on and turn-off when performing high-speed switching. For the purpose.
- the present invention is a drive device for driving a power conversion device having a switching element formed of a wide band gap semiconductor, and driving the PWM switching device.
- a PWM signal output unit that generates a signal
- an on-speed reduction unit that reduces a change rate of the drive signal when the switching element is changed from off to on, and a case where the switching element is changed from on to off.
- an off-speed improving unit that sucks out charges from the switching element at a high speed and with a higher charge sucking ability than when changing from off to on.
- FIG. 1 is a diagram illustrating a configuration example of a drive device of a power conversion device according to the present invention.
- FIG. 2 is a diagram showing a comparison between a wide band gap semiconductor and a conventional silicon semiconductor.
- FIG. 3 is a diagram showing the concept of stray capacitance in a wide band gap semiconductor.
- FIG. 4 is a diagram illustrating an operation example of the embodiment.
- FIG. 5 is a diagram illustrating an example of a step response waveform when an LCR circuit is used as the on-speed reduction unit 13.
- FIG. 6 is a diagram illustrating a configuration example of an on-speed reduction unit that takes an AND of a predetermined waveform and a drive signal.
- FIG. 7 is a diagram illustrating an example of operation waveforms of the configuration example of FIG.
- FIG. 8 is a diagram illustrating another configuration example of the power conversion device.
- FIG. 9 is a diagram illustrating an example of a waveform of the switching element of the configuration example of FIG.
- FIG. 1 is a diagram illustrating a configuration example of a drive device of a power conversion device according to the present invention.
- the drive device (drive device) 15 of the power conversion device of the present embodiment drives the power conversion device 9.
- the power conversion device 9 includes a DC power source 1, a reactor 2, a switching element 3, a reverse blocking diode 4, a smoothing capacitor 5, a load 6, and resistors 7 and 8.
- the drive device 15 includes a PWM signal output unit 11, a gate drive unit 12, an on-speed reduction unit 13, and an off-speed improvement unit 14.
- the configuration of the power conversion device 9 is an example, and is not limited to the configuration of FIG. 1 as long as the configuration uses a wide bandgap semiconductor as a switching element.
- the power conversion device 9 and the drive device 15 of the present embodiment are used for a compressor in an air conditioner, for example.
- the load 6 is, for example, an inductive load.
- the power conversion device 9 and the drive device 15 of the present embodiment are not limited to this, and are applied to all home appliances such as refrigerators, dehumidifiers, heat pump water heaters, showcases, and vacuum cleaners, in addition to refrigerators and washing / drying machines. It can also be applied to fan motors, ventilation fans, hand dryers, induction heating electromagnetic cookers, and the like. Furthermore, it can be applied not only to home appliances but also to motor drives for industrial equipment such as elevators and escalators, motor drive inverters for factory equipment, electric railway inverters, electric cars and hybrid cars.
- the switching element 3 is composed of a semiconductor called a wide band gap semiconductor.
- the wide band gap semiconductor is formed of a material such as GaN (gallium nitride), SiC (silicon carbide), or diamond, for example. Wide band gap semiconductors are attracting attention as new semiconductor devices with features such as high-speed operation, low loss, and improved heat resistance.
- FIG. 2 is a diagram showing a comparison between a wide band gap semiconductor and a conventional silicon semiconductor.
- 2A shows an operation waveform when a conventional silicon semiconductor is used as a switching element
- FIG. 2B shows an operation waveform when a wide band gap semiconductor is used as a switching element.
- time is taken on the horizontal axis, and the voltage across the switching element, the switching element current, and the switching element driving current are shown in order from the top.
- a wide bandgap semiconductor is said to be a semiconductor suitable for high-frequency driving because it has a short transition time and does not generate switching loss even when driven at high frequency.
- wiring inductance components exist at points A, B, and C in FIG.
- This inductance component is designed to be as small as several nH, which is a level that does not cause a problem with a conventional silicon semiconductor.
- the wiring inductance is an L component, when the frequency increases, the impedance represented by j ⁇ L increases.
- FIG. 3 is a diagram showing the concept of stray capacitance in a wide band gap semiconductor. Capacitances 16-1 to 16-3 indicated by dotted lines in FIG. 3 indicate capacitances that are not in the circuit diagram that are stray capacitances.
- LC resonance due to this capacitance occurs as ringing at a higher frequency than in a power conversion device made up of a conventional silicon semiconductor as shown in FIG.
- a recovery current is generated due to the recovery delay of reverse blocking.
- reverse recovery is fast and no recovery current is generated, but the equivalent capacitance of the semiconductor increases and ringing occurs due to LC resonance.
- the ringing current superimposed on the current flowing through the switching element becomes a noise generation source, and this ringing radiates an electric field from the circuit or conducts it to an AC power source. For this reason, it is necessary to suppress noise by measures such as increasing the switching transition times T1 and T2 shown in FIG. 2. However, simply increasing the transition time makes it possible to achieve high-speed switching characteristics of a wide bandgap semiconductor. Can't be used.
- the DC power source 1 is generally a step-up DC (Direct Current) / DC power conversion device.
- the switching element 3 When the switching element 3 is turned on, the DC power source 1 is short-circuited via the reactor 2 and the switching element 3, and charges are stored in the reactor 2.
- the switching element 3 When the switching element 3 is turned off, the electric charge stored in the reactor 2 flows into the capacitor 5 through the reverse blocking diode 4 and the voltage across the capacitor 5 rises.
- the wide bandgap semiconductor switching element 3 When the wide bandgap semiconductor switching element 3 is turned on, a reverse current flows from the smoothing capacitor 5 through the reverse blocking diode 4. If the reverse blocking diode 4 is also a wide band gap semiconductor, the reverse blocking diode 4 is turned off with a small amount of the reverse current. Originally, since the diode 4 is turned off, there is no recovery current and no noise is generated, but LC resonance due to the equivalent capacitance and wiring inductance occurs particularly in the path where the current does not flow (point B in FIG. 1). .
- LC resonance occurs when there is an inductance between capacitors. Therefore, the equivalent capacitance of the reverse blocking diode 4 and the switching element 3 by the wide band gap semiconductor and the wiring inductance between them, the points B and C in FIG. 1, are the sources of LC resonance. Noise is generated by energy generated by ringing due to the LC resonance.
- the drive device 15 includes not only the PWM signal output unit 11 and the gate drive unit 12 but also the on-speed reduction unit 13. As described in Patent Document 1, switching is not performed gently for reverse recovery of a freewheeling diode or the like, but in this embodiment, switching is performed at a low on-speed so that LC resonance does not occur.
- FIG. 4 is a diagram illustrating an operation example of the present embodiment.
- the PWM signal output part 11 produces
- the upper part of FIG. 4 shows an example of a PWM signal (drive signal) output from the PWM signal output unit 11.
- the middle part of FIG. 4 shows the voltage between G (gate) and S (source) of the switching element 3, and the lower part of FIG. 4 shows the current of the switching element 3.
- the GS voltage of the switching element 3 changes corresponding to the rising edge indicating the ON timing of the drive signal of the switching element 3 output from the PWM signal output unit 11.
- the GS voltage is changed gently so as to draw an S shape only before and after the change from OFF to ON.
- the wide band gap semiconductor that operates at high speed also adopts a transistor structure, the current of the switching element 3 rises gently by applying a voltage to GS as shown in FIG. Furthermore, high-speed switching, which is a characteristic of wide bandgap semiconductors, is realized after start-up, and low switching loss can be maintained. Furthermore, by terminating the switching operation with a gradual change at the final stage of the switching transition time, the step change energy of the switching element 3 is suppressed and the step response energy causing the ringing is cut off. By configuring the driving device 15 that performs the turn-on operation as described above, ringing can be reduced, and generated noise that is a problem in the wide band gap semiconductor can be reduced.
- the on-speed reduction unit 13 shown in FIG. 1 is configured as a low-pass filter using LCR (coil L, capacitor C, resistor R).
- LCR coil L, capacitor C, resistor R
- FIG. 5 is a diagram illustrating an example of a step response waveform when an LCR circuit is used as the on-speed reduction unit.
- the configuration example of the on-speed reducing unit 13 shown in FIG. 1 implements the GS voltage shown in FIG. 4 using circuit hardware (H / W).
- the mounting method is not limited to the example of FIG. For example, it may be configured to take an AND of a predetermined waveform and a drive signal.
- FIG. 6 is a diagram illustrating a configuration example of the on-speed reduction unit 13a that takes an AND of a predetermined waveform and a drive signal
- FIG. 7 is a diagram illustrating an example of the operation waveform. The waveforms corresponding to the characters (D to H) in parentheses in FIG. 7 are indicated by the corresponding characters in FIG.
- a PWM signal (drive signal) is output from point D in FIG.
- the point E in FIG. 6 has the same waveform as the point D, and this waveform is (D) in FIG.
- the waveform generator 17 When transmitting from point E to point F in FIG. 6, there is a CR low-pass filter, and the rising edge changes to a waveform having a gentle curve as shown in FIG.
- the waveform generator 17 generates a predetermined waveform (here, a sawtooth wave) shown in FIG.
- the comparator 18 compares and outputs the sawtooth wave generated by the waveform generator 17 and the drive signal, and the AND circuit 19 obtains the result of ANDing the signal output from the comparator 18 and the drive signal (FIG. 7). (H)) is output.
- the waveform generated by the waveform generation unit 17 is not limited to a sawtooth wave, and may be any waveform as long as the same effect can be obtained.
- the waveform in FIG. 7 (H) may respond rapidly in the case of a wide band gap semiconductor, but the saw is fast enough to be smoothed by a filter based on the equivalent capacitance between the gate resistance 8 and the GS of the switching element 3. In this case, a gentle gate drive can be realized with a wave. Furthermore, there is no problem even if the PWM signal output unit 11 directly outputs to the AND circuit 19. By directly outputting from the PWM signal output unit 11 to the AND circuit 19, the S-shaped rising characteristic can be further set.
- the driving device 15a including the on-speed reducing unit 13a shown in FIG. 1 of FIG. 6 is used instead of the driving device 15 of FIG. Can do.
- the coil L can be reduced compared to the configuration example of FIG. 1, and the size can be reduced when packaging.
- the drive device 15 is required to have a higher current capacity at turn-off than turn-on.
- the turn-off operation is further performed using the off-speed improving unit 14 that draws charges from the switching element 3 at a high speed, thereby pulling out charges that can be said to be a source of ringing due to LC resonance from the equivalent capacitance of the switching elements. Suppress.
- the off-speed improving unit 14 in FIG. 1 configures a circuit that draws charges at high speed using, for example, a PNP transistor.
- the off-speed improving unit 14 can simultaneously realize not only switching loss but also noise reduction due to ringing.
- the PNP transistors of the gate drive unit 12 are connected in parallel only at the time of turn-off for drawing out charges, so that the switching element current at the turn-off is sharply reduced.
- the gate drive unit 12 can sufficiently extract charges, but when the gate drive unit 12 has a totem pole or C (Complementary) -MOS (Metal Oxide Semiconductor) structure, the performances of the upper and lower transistors are matched. It is necessary. Therefore, in this case, if the amount of charge supplied increases to the turn-on side, ringing at the time of turn-on increases. Therefore, it is appropriate for a wide bandgap semiconductor drive device to have a circuit that compensates for high speed only during turn-off, such as the off-speed improvement unit 14, and does not impair the characteristics of the wide bandgap, and does high-speed switching. The generation of noise due to can be suppressed.
- C Complementary
- MOS Metal Oxide Semiconductor
- FIG. 8 is a diagram illustrating another configuration example of the power conversion device.
- the power conversion apparatus shown in FIG. 8 includes an AC power supply 31, diodes 32-1 to 32-6, coils 33-1 and 33-2, switching elements 34 and 35, a smoothing capacitor 36, and a load 37. It is.
- the power conversion device of FIG. 8 can be used instead of the power conversion device 9 of FIG.
- FIG. 9A shows an example of a current waveform due to the operation of the switching element 34 in FIG. 8
- FIG. 9B shows an example of a current waveform due to the operation of the switching element 35
- FIG. 9C shows a combined current waveform of the waveform of FIG. 9A and the waveform of FIG. 9B.
- FIG. 8 shows two switching elements, the number of switching elements is not limited to two, but may be three or more. If the number of switching elements is n, it can be realized without departing from the above effect by operating with a phase difference of 360 / n.
- FIG. 10 is a diagram illustrating still another configuration example of the power conversion device.
- the power conversion device illustrated in FIG. 10 includes a power supply 41, a smoothing capacitor 42, a resistor 43, and a switching unit 44.
- the switching unit 44 is composed of six switching elements.
- noise can be reduced by driving using the driving device 15 without impairing the characteristics of the wide band gap semiconductor. This is because, when a wide band gap semiconductor is used, ringing is a cause of noise due to LC resonance between the equivalent capacitance of the wide band gap semiconductor and the wiring inductance. This is because the mechanism of noise generation is different.
- the on-speed reduction unit 13 that moderates the rise of the transition time at the turn-on of the drive signal and the change immediately before the end, the off-speed improvement unit 14 that draws charges at the time of turn-off, I was prepared to. For this reason, when driving a power converter that performs high-speed switching using a wide band gap semiconductor, ringing at turn-on and turn-off can be suppressed.
- the power conversion device drive device is a power conversion device to which a wide band gap semiconductor can be applied, so-called AC / DC conversion, DC / DC conversion, DC / AC conversion, AC / AC conversion, etc.
- the present invention provides a drive device that can be used for converters, inverters, and the like and can reduce noise generated by high-speed switching while realizing energy saving by applying a wide band gap semiconductor.
- home appliances such as air conditioners, refrigerators, washing dryers, refrigerators, dehumidifiers, heat pump water heaters, showcases, vacuum cleaners, fan motors, ventilation fans, hand dryers, induction heating electromagnetics
- Application to a cooking device is also possible.
- it can be applied not only to home appliances but also to motor drives for industrial equipment such as elevators and escalators, motor drive inverters for factory equipment, electric railway inverters, electric cars and hybrid cars.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Power Conversion In General (AREA)
- Inverter Devices (AREA)
- Electronic Switches (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
図1は、本発明にかかる電力変換装置の駆動装置の構成例を示す図である。本実施の形態の電力変換装置の駆動装置(駆動装置)15は、電力変換装置9を駆動する。電力変換装置9は、直流電源1、リアクタ2、スイッチング素子3、逆阻止ダイオード4、平滑コンデンサ5、負荷6および抵抗7,8を備える。駆動装置15は、PWM信号出力部11、ゲート駆動部12、オン速度低減部13およびオフ速度改善部14を備える。電力変換装置9の構成は一例であり、スイッチング素子としてワイドバンドギャップ半導体を用いる構成であれば図1の構成に限定されない。
2 リアクタ
3,34,35 スイッチング素子
4 逆阻止ダイオード
5,36,42 平滑コンデンサ
6,37 負荷
7,8,43,R 抵抗
11 PWM信号出力部
12 ゲート駆動部
13 オン速度低減部
14 オフ速度改善部
15 電力変換装置の駆動装置
16-1~16-3 キャパシタンス
17 波形生成部
18 比較器
19 AND回路
31 交流電源
32-1~32-6 ダイオード
33-1,33-2,L コイル
44 スイッチング部
C コンデンサ
21,22 波形
Claims (9)
- ワイドバンドギャップ半導体により形成されたスイッチング素子を有する電力変換装置を駆動する駆動装置であって、
前記スイッチング素子をPWM駆動する駆動信号を生成するPWM信号出力部と、
前記スイッチング素子をオフからオンへ変化させる場合に、前記駆動信号の変化率を低減させるオン速度低減部と、
前記スイッチング素子をオンからオフへ変化させる場合に、高速にかつオフからオンへの変化時よりも高い電荷吸出能力でスイッチング素子から電荷を吸出するオフ速度改善部と、
を備えることを特徴とする電力変換装置の駆動装置。 - 前記オン速度低減部は、前記スイッチング素子のオフからオンの動作遷移時間の開始直後と完了直前で前記駆動信号の変化率を低減させることを特徴とする請求項1に記載の電力変換装置の駆動装置。
- 前記オン速度低減部は、前記スイッチング素子の等価容量によるLC共振で発生するリンギングを抑制するよう前記変化率を低減させることを特徴とする請求項1に記載の電力変換装置の駆動装置。
- 前記オフ速度改善部は、前記スイッチング素子のオンからオフの変化に対し、前記スイッチング素子の等価容量に充電された電荷を放電させる、ことを特徴とする請求項1に記載の電力変換装置の駆動装置。
- 前記オフ速度改善部は、前記スイッチング素子のオンからオフの変化させる場合にオフからオンへの変化時よりも電荷移動量を多くするよう電荷を吸出する、ことを特徴とする請求項1に記載の電力変換装置の駆動装置。
- 前記電力変換装置は前記スイッチング素子を複数備え、複数の前記スイッチング素子はそれぞれ互いに位相を変えて駆動される、ことを特徴とする請求項1に記載の電力変換装置の駆動装置。
- 前記電力変換装置は、誘導性負荷を負荷として接続された直流交流電力変換装置であることを特徴とする請求項1に記載の電力変換装置の駆動装置。
- 前記電力変換装置は圧縮機を制御する、ことを特徴とする請求項7に記載の電力変換装置の駆動装置。
- ワイドバンドギャップ半導体により形成されたスイッチング素子を有する電力変換装置を駆動する駆動方法であって、
前記スイッチング素子をPWM駆動する駆動信号を生成するPWM信号出力ステップと、
前記スイッチング素子をオフからオンへ変化させる場合に、前記駆動信号の変化率を低減させるオン速度低減ステップと、
前記スイッチング素子をオンからオフへ変化させる場合に、高速にかつオフからオンへの変化時よりも高い電荷吸出能力でスイッチング素子から電荷を吸出するオフ速度改善ステップと、
を含むことを特徴とする電力変換装置の駆動方法。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/355,634 US9806594B2 (en) | 2011-11-02 | 2011-11-02 | Drive device for power converter and driving method of power converter |
IN3437CHN2014 IN2014CN03437A (ja) | 2011-11-02 | 2011-11-02 | |
EP11874969.6A EP2775595B1 (en) | 2011-11-02 | 2011-11-02 | Drive device for a power conversion device, and drive method for a power conversion device |
CN201180074522.0A CN103891115B (zh) | 2011-11-02 | 2011-11-02 | 电力转换装置的驱动装置及电力转换装置的驱动方法 |
BR112014009830-1A BR112014009830B1 (pt) | 2011-11-02 | 2011-11-02 | Dispositivo de acionamento para um conversor de potência, e, método de acionamento de um conversor de potência |
RU2014121931/07A RU2563966C1 (ru) | 2011-11-02 | 2011-11-02 | Устройство возбуждения для устройства преобразования мощности и способ возбуждения устройства преобразования мощности |
PCT/JP2011/075320 WO2013065150A1 (ja) | 2011-11-02 | 2011-11-02 | 電力変換装置の駆動装置および電力変換装置の駆動方法 |
JP2013541543A JP5753275B2 (ja) | 2011-11-02 | 2011-11-02 | 電力変換装置の駆動装置および電力変換装置の駆動方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/075320 WO2013065150A1 (ja) | 2011-11-02 | 2011-11-02 | 電力変換装置の駆動装置および電力変換装置の駆動方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013065150A1 true WO2013065150A1 (ja) | 2013-05-10 |
Family
ID=48191543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/075320 WO2013065150A1 (ja) | 2011-11-02 | 2011-11-02 | 電力変換装置の駆動装置および電力変換装置の駆動方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9806594B2 (ja) |
EP (1) | EP2775595B1 (ja) |
JP (1) | JP5753275B2 (ja) |
CN (1) | CN103891115B (ja) |
BR (1) | BR112014009830B1 (ja) |
IN (1) | IN2014CN03437A (ja) |
RU (1) | RU2563966C1 (ja) |
WO (1) | WO2013065150A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015033386A1 (ja) * | 2013-09-03 | 2015-03-12 | 三菱電機株式会社 | エレベータ制御装置 |
JP2016005364A (ja) * | 2014-06-17 | 2016-01-12 | 株式会社デンソー | 電気回路装置 |
JP2016090700A (ja) * | 2014-10-31 | 2016-05-23 | 株式会社沖データ | 電力制御装置及び画像形成装置 |
KR101748103B1 (ko) * | 2014-11-28 | 2017-06-15 | 미쓰비시덴키 가부시키가이샤 | 스위칭 소자의 구동 회로 |
RU2697503C1 (ru) * | 2016-06-02 | 2019-08-15 | Ниссан Мотор Ко., Лтд. | Устройство преобразования мощности |
US10658967B2 (en) | 2014-11-04 | 2020-05-19 | Mitsubishi Electric Corporation | Motor drive apparatus and air conditioner |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016027775A (ja) * | 2014-06-27 | 2016-02-18 | サンケン電気株式会社 | スイッチング電源装置 |
JP6282208B2 (ja) * | 2014-09-26 | 2018-02-21 | 三菱電機株式会社 | 室外機および空気調和装置 |
FR3029718B1 (fr) * | 2014-12-05 | 2018-12-07 | Valeo Systemes Thermiques | Circuit de pilotage pour systeme de chauffage et systeme de chauffage correspondant |
JP6905716B2 (ja) | 2016-03-08 | 2021-07-21 | 学校法人 芝浦工業大学 | 窒化アルミニウム膜の製造方法、および高耐圧部品の製造方法 |
CN109314509B (zh) * | 2016-06-17 | 2020-03-10 | 日产自动车株式会社 | 驱动装置 |
JP7019025B2 (ja) * | 2018-03-23 | 2022-02-14 | 三菱電機株式会社 | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ |
CN110808704B (zh) * | 2019-10-23 | 2021-04-27 | 东南大学溧阳研究院 | 一种高开关频率逆变器的低控制频率控制方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02179262A (ja) | 1988-09-16 | 1990-07-12 | Fuji Electric Co Ltd | 電圧駆動形半導体素子のゲート駆動回路 |
JP2002300016A (ja) | 2001-04-02 | 2002-10-11 | Toshiba Corp | ゲート駆動方法及びゲート駆動回路 |
JP2007282326A (ja) * | 2006-04-04 | 2007-10-25 | Fuji Electric Systems Co Ltd | ゲート駆動方式 |
JP2008086107A (ja) * | 2006-09-27 | 2008-04-10 | Matsushita Electric Ind Co Ltd | モータ駆動制御装置 |
WO2008155917A1 (ja) * | 2007-06-19 | 2008-12-24 | Panasonic Corporation | スイッチング素子駆動回路 |
JP2009159707A (ja) * | 2007-12-26 | 2009-07-16 | Shindengen Electric Mfg Co Ltd | ワイドバンドギャップショットキバリアダイオードを用いたスイッチング回路 |
JP2010051165A (ja) | 2008-07-24 | 2010-03-04 | Panasonic Corp | 半導体装置のゲート駆動回路及びそれを用いた電力変換装置 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2760590B2 (ja) | 1989-09-04 | 1998-06-04 | 株式会社東芝 | 電圧駆動形素子の駆動回路 |
US4967109A (en) | 1989-12-08 | 1990-10-30 | General Electric Company | High efficiency gate driver circuit for a high frequency converter |
JPH05161343A (ja) | 1991-11-28 | 1993-06-25 | Toshiba F Ee Syst Eng Kk | Mosゲートトランジスタの駆動回路 |
DE69311921T2 (de) * | 1992-02-03 | 1998-01-29 | Philips Electronics Nv | Anordnung zum Ein- und Ausschalten eines Leistungstransistors |
US6208535B1 (en) * | 1994-10-31 | 2001-03-27 | Texas Instruments Incorporated | Resonant gate driver |
US5736890A (en) * | 1996-04-03 | 1998-04-07 | Semi Technology Design, Inc. | Method and apparatus for controlling transistors as rectifiers |
US6094087A (en) * | 1997-07-30 | 2000-07-25 | Lucent Technologies Inc. | Gate drive circuit for isolated gate devices and method of operation thereof |
RU2208894C2 (ru) * | 2001-05-16 | 2003-07-20 | Открытое акционерное общество "АВТОВАЗ" | Устройство для формирования импульса управления силовым транзистором |
JP2004088886A (ja) | 2002-08-26 | 2004-03-18 | Toshiba Corp | 半導体装置 |
JP2004228768A (ja) * | 2003-01-21 | 2004-08-12 | Toshiba Corp | ゲート駆動回路 |
JP4113436B2 (ja) * | 2003-01-24 | 2008-07-09 | 三菱電機株式会社 | ゲートドライブ装置 |
JP2005312117A (ja) | 2004-04-19 | 2005-11-04 | Mitsubishi Electric Corp | 電力変換装置 |
AU2008204184B2 (en) | 2007-01-09 | 2010-05-27 | Daikin Industries, Ltd. | Inverter compressor operation method and compressor drive device |
JP4120693B1 (ja) | 2007-01-09 | 2008-07-16 | ダイキン工業株式会社 | インバータ圧縮機の運転方法及び圧縮機駆動装置 |
JP5348912B2 (ja) | 2008-03-19 | 2013-11-20 | 株式会社豊田中央研究所 | 半導体素子駆動回路 |
US8138819B2 (en) * | 2008-07-18 | 2012-03-20 | Denso Corporation | Driving transistor control circuit |
JP2010252451A (ja) | 2009-04-13 | 2010-11-04 | Fuji Electric Systems Co Ltd | 電力変換装置のスイッチング素子駆動回路 |
JP5197658B2 (ja) * | 2010-03-10 | 2013-05-15 | 株式会社東芝 | 駆動回路 |
JP5209084B2 (ja) | 2011-05-27 | 2013-06-12 | 日立オートモティブシステムズ株式会社 | インバータ装置およびインバータ制御装置 |
-
2011
- 2011-11-02 IN IN3437CHN2014 patent/IN2014CN03437A/en unknown
- 2011-11-02 EP EP11874969.6A patent/EP2775595B1/en active Active
- 2011-11-02 WO PCT/JP2011/075320 patent/WO2013065150A1/ja active Application Filing
- 2011-11-02 RU RU2014121931/07A patent/RU2563966C1/ru active
- 2011-11-02 US US14/355,634 patent/US9806594B2/en active Active
- 2011-11-02 JP JP2013541543A patent/JP5753275B2/ja active Active
- 2011-11-02 CN CN201180074522.0A patent/CN103891115B/zh active Active
- 2011-11-02 BR BR112014009830-1A patent/BR112014009830B1/pt active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02179262A (ja) | 1988-09-16 | 1990-07-12 | Fuji Electric Co Ltd | 電圧駆動形半導体素子のゲート駆動回路 |
JP2002300016A (ja) | 2001-04-02 | 2002-10-11 | Toshiba Corp | ゲート駆動方法及びゲート駆動回路 |
JP2007282326A (ja) * | 2006-04-04 | 2007-10-25 | Fuji Electric Systems Co Ltd | ゲート駆動方式 |
JP2008086107A (ja) * | 2006-09-27 | 2008-04-10 | Matsushita Electric Ind Co Ltd | モータ駆動制御装置 |
WO2008155917A1 (ja) * | 2007-06-19 | 2008-12-24 | Panasonic Corporation | スイッチング素子駆動回路 |
JP2009159707A (ja) * | 2007-12-26 | 2009-07-16 | Shindengen Electric Mfg Co Ltd | ワイドバンドギャップショットキバリアダイオードを用いたスイッチング回路 |
JP2010051165A (ja) | 2008-07-24 | 2010-03-04 | Panasonic Corp | 半導体装置のゲート駆動回路及びそれを用いた電力変換装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015033386A1 (ja) * | 2013-09-03 | 2015-03-12 | 三菱電機株式会社 | エレベータ制御装置 |
JPWO2015033386A1 (ja) * | 2013-09-03 | 2017-03-02 | 三菱電機株式会社 | エレベータ制御装置 |
JP2016005364A (ja) * | 2014-06-17 | 2016-01-12 | 株式会社デンソー | 電気回路装置 |
JP2016090700A (ja) * | 2014-10-31 | 2016-05-23 | 株式会社沖データ | 電力制御装置及び画像形成装置 |
US10658967B2 (en) | 2014-11-04 | 2020-05-19 | Mitsubishi Electric Corporation | Motor drive apparatus and air conditioner |
KR101748103B1 (ko) * | 2014-11-28 | 2017-06-15 | 미쓰비시덴키 가부시키가이샤 | 스위칭 소자의 구동 회로 |
RU2697503C1 (ru) * | 2016-06-02 | 2019-08-15 | Ниссан Мотор Ко., Лтд. | Устройство преобразования мощности |
Also Published As
Publication number | Publication date |
---|---|
EP2775595B1 (en) | 2019-10-02 |
CN103891115A (zh) | 2014-06-25 |
BR112014009830A2 (pt) | 2017-05-02 |
CN103891115B (zh) | 2017-02-15 |
EP2775595A4 (en) | 2015-07-22 |
IN2014CN03437A (ja) | 2015-07-03 |
BR112014009830B1 (pt) | 2020-03-31 |
RU2563966C1 (ru) | 2015-09-27 |
JP5753275B2 (ja) | 2015-07-22 |
JPWO2013065150A1 (ja) | 2015-04-02 |
US20140286069A1 (en) | 2014-09-25 |
US9806594B2 (en) | 2017-10-31 |
EP2775595A1 (en) | 2014-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5753275B2 (ja) | 電力変換装置の駆動装置および電力変換装置の駆動方法 | |
JP5289565B2 (ja) | ゲート駆動回路 | |
JP5677203B2 (ja) | 誘導加熱調理器 | |
EP0439586A4 (en) | Switching circuit employing an inductor and igbt devices | |
EP3182574B1 (en) | Converter unit, drive controller, motor, and compressor | |
US20160079904A1 (en) | Drive unit employing gallium nitride switches | |
JP2015171226A (ja) | インバータ装置及び空気調和機 | |
JP2012115134A (ja) | 低インダクタンス高効率のインダクションマシン及びその製作方法 | |
Zhou et al. | Elimination of overshoot and oscillation in the auxiliary branch of a SiC auxiliary resonant commutated pole inverter (ARCPI) | |
JP6254116B2 (ja) | 電力変換装置の駆動装置および電力変換装置の駆動方法 | |
JP5336309B2 (ja) | 直流電源装置 | |
EP1304792A1 (en) | Circuit device for driving an AC electric load | |
JP2015053746A (ja) | 共振型dc/dcコンバータ及び多相共振型dc/dcコンバータ | |
US6548983B2 (en) | PWM-pulse control system | |
JP6607018B2 (ja) | スイッチング電源装置 | |
JP4956637B2 (ja) | 電力変換装置及びその制御方法 | |
JP5550773B2 (ja) | 直流電源装置 | |
KR20160098667A (ko) | 게이트 구동 회로 및 전원 공급 장치 | |
Karthikeyan et al. | Resonant DC Link Inverter for Brushless DC Motor Drive System | |
JP5578231B2 (ja) | インバータ回路 | |
WO2024203552A1 (ja) | インバータ装置、およびそれを備えたモータ駆動装置並びに冷凍装置 | |
KR102375522B1 (ko) | 전력 공급 장치 및 이를 포함하는 공기조화기 | |
Hulibandi et al. | Hybridization of a Single-Phase Induction Motor | |
JP5729181B2 (ja) | インバータ装置 | |
CN115242134A (zh) | 电机控制系统、控制方法以及电机系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11874969 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013541543 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14355634 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011874969 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2014121931 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014009830 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014009830 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140424 |