WO2013062112A1 - フラワーペースト - Google Patents

フラワーペースト Download PDF

Info

Publication number
WO2013062112A1
WO2013062112A1 PCT/JP2012/077798 JP2012077798W WO2013062112A1 WO 2013062112 A1 WO2013062112 A1 WO 2013062112A1 JP 2012077798 W JP2012077798 W JP 2012077798W WO 2013062112 A1 WO2013062112 A1 WO 2013062112A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
oil
reaction
parts
fat
Prior art date
Application number
PCT/JP2012/077798
Other languages
English (en)
French (fr)
Inventor
晃生 榊
剛 宮川
章弘 菊田
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2013062112A1 publication Critical patent/WO2013062112A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/003Compositions other than spreads
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/02Other edible oils or fats, e.g. shortenings, cooking oils characterised by the production or working-up
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils

Definitions

  • the present invention relates to a flour paste used for confectionery and bread making.
  • flour paste with a starch gelatinized body is widely used as a topping and filling for breads and confectionery.
  • flour paste is obtained by mixing starch, such as wheat flour, cereal starch, and modified starch, milk, sugar, egg, water, fats and oils, and then gelatinizing by heating. It shows rich physical properties and texture (see Patent Document 1).
  • Patent Document 1 contains 2 to 10% by weight of starches, 8 to 45% by weight of fats and oils, and 8 to 30% by weight of sugars.
  • the fats and oils are 70% palm fraction soft fats and oils having an iodine value of 52 to 70.
  • a flower paste is disclosed.
  • the flour paste has a constant storage temperature and may be stored refrigerated or stored at room temperature. For this reason, when the liquidity of the fats and oils to be used is low, fats and oils will crystallize at the time of refrigeration storage, and the physical property of flour paste will deteriorate.
  • a highly liquid oil such as bean seed oil (soybean oil or rapeseed oil)
  • there has been no flour paste that can be used in a wide temperature range such as mainly using liquid oil such as rapeseed oil for refrigerated storage and mainly using palm oil or the like for normal temperature storage.
  • triglyceride having palmitic acid bonded to ⁇ -position (2nd position) is known to exhibit much higher absorbability than triglyceride having palmitic acid bonded to ⁇ -position (1,3rd position) (patent) Reference 2).
  • the solid fat and the liquid oil that are filtered out when producing a liquid oil using palm oil as a raw material have a large amount of palmitic acid as a constituent fatty acid, but most of them are bound at positions 1 and 3, It does not show high absorbency.
  • the present invention can be transported, stored and used over a wide temperature range for a long period of time.
  • the purpose is to provide.
  • a palm comprising a main oil based fat and oil, a SU2 / UUU weight ratio of 1.9 or less and an SSS content of 2% by weight or less, and 10-30% by weight of triglyceride bonded with palmitic acid at the 2-position in the whole liquid oil
  • oil-derived liquid oil in the flour paste we found that it is possible to solve the problems that it becomes harder during refrigerated storage and the workability deteriorates, and that flavor deterioration occurs during storage at room temperature, and the present invention is completed. I came to let you.
  • the present invention uses glyceride having a palm oil / fat as a main raw material, an SU2 / UUU weight ratio of 1.9 or less and an SSS content of 2% by weight or less, and palmitic acid bonded to the 2-position.
  • the present invention relates to a flour paste containing 8 to 45 wt% of a palm oil-derived liquid oil containing ⁇ 30 wt% in the entire flour paste.
  • a preferred embodiment relates to the above-described flour paste, wherein the cloud point of the palm oil-derived liquid oil is 0 to -12 ° C.
  • a preferred embodiment relates to the above-described flour paste, wherein the palm oil-derived liquid oil has a CDM value of 5 hours or more.
  • the present invention by using a new liquid oil derived from palm oil and having high liquidity and high oxidation stability as fats and oils, crystallization during refrigeration and freezing, deterioration of flavor due to oxidation at room temperature, etc. It is possible to provide an inexpensive flour paste that is less susceptible to changes in physical properties and flavor over a wide temperature range. Furthermore, the liquid oil of the flour paste has good absorbability.
  • the flour paste according to the present invention comprises palm oil and fat as a main raw material, a palm oil containing a specific amount of glyceride having a SU2 / UUU weight ratio of a specific value and a specific amount of SSS, and palmitic acid bonded to the 2-position. It is characterized by containing a specific amount of derived liquid oil in the whole flour paste, suppresses flavor deterioration due to crystallization during refrigeration or oxidation at room temperature, etc., and it is difficult to change physical properties and flavor over a wide temperature range. Highly absorbable.
  • the flour paste of the present invention can be obtained by, for example, a known composition and production method such as the flour paste described in Patent Document 1 except that the palm oil-derived liquid oil is used as the fat. Accordingly, the flour paste of the present invention preferably contains 2 to 10% by weight of starches, 8 to 45% by weight of fats and oils, and 8 to 30% by weight of sugars.
  • modified wheat starch obtained from various starches can be used in addition to common wheat flour and corn starch.
  • the starch content is preferably 2 to 10% by weight, more preferably 2.5 to 8% by weight, based on the whole flour paste. If the starch content is less than 2% by weight, it may be liquid and may not be sufficiently pasted, and if it exceeds 10% by weight, it may be hard and poorly melted in the mouth.
  • glyceride containing palm oil and fat as a main raw material having a SU2 / UUU weight ratio of 1.9 or less and an SSS content of 2% by weight or less and having palmitic acid bonded to the 2-position is 10-30.
  • Palm oil-derived liquid oil containing by weight is used.
  • other fats and oils can also be used together as fats and oils in a flour paste.
  • Oils and fats other than palm oil-derived liquid oil are not particularly limited as long as they are edible, and vegetable oils, animal oils, edible refined processed oils and the like can be used.
  • the content of fats and oils in the whole flour paste of the present invention is preferably 8 to 45% by weight, more preferably 15 to 45% by weight, including the content of the liquid oil derived from palm oil. If the fat content is less than 8% by weight, a flour paste having good emulsification stability during refrigeration and freezing, and good spreadability and extensibility may not be obtained. On the other hand, if it exceeds 45% by weight, the emulsification stability during refrigeration and freezing deteriorates, and stickiness is likely to occur. In addition to the oil being easily separated, problems such as poor mouth melting may occur.
  • the content of the palm oil-derived liquid oil in the total fat and oil of the flour paste is preferably 50 to 100% by weight, more preferably 70 to 100% by weight.
  • the palm oil-derived liquid oil is less than 50% by weight in the oil or fat, the intended stability of physical properties in a wide temperature range may not be obtained.
  • saccharide used in the flour paste of the present invention examples include sucrose, granulated sugar, powdered sugar, liquid sugar, glucose, fructose, sucrose, maltose, lactose, enzyme saccharified starch syrup, reduced starch saccharified product, and isomerized liquid sugar.
  • Sucrose-linked starch syrup oligosaccharide, reducing sugar polydextrose, reduced lactose, sorbitol, trehalose, xylose, xylitol, maltitol, erythritol, mannitol, fructooligosaccharide, soybean oligosaccharide, galactooligosaccharide, dairy oligosaccharide, raffinose, lactulose And palatinose oligosaccharides. At least one of these can be used.
  • the sugar content is preferably 8 to 30% by weight, more preferably 10 to 27% by weight, and still more preferably 10 to 25% by weight in the whole flour paste.
  • the saccharide content is less than 8% by weight, the effect of improving spreadability and extensibility cannot be obtained, the texture is hard, and aging tends to occur. On the other hand, if it exceeds 30% by weight, the effect of improving spreadability and extensibility cannot be obtained, and stickiness tends to occur.
  • the flour paste of the present invention can contain 0.01 to 10% by weight thickening polysaccharide in the whole flour paste. Moreover, a well-known emulsifier can also be added to the flour paste of this invention. Furthermore, in addition to these, other ingredients that can be used as a raw material of the flour paste in addition to these, for example, non-fat milk solids, salt, coloring agents, flavoring agents, preservatives, oxidation stability Agents, eggs and the like can also be contained.
  • thickening polysaccharide examples include guar gum, xanthan gum, agar, pectin, sodium alginate, carrageenan, gellan gum, locust bean gum, gum arabic, and carboxymethyl cellulose. At least one selected from these groups can be used.
  • the emulsifier is not particularly limited as long as it is an emulsifier for food.
  • esters At least one selected from these groups can be used.
  • the non-fat milk solid content used in the flour paste of the present invention refers to a component obtained by subtracting milk fat from the total solid content in milk.
  • the non-fat milk solids source include milk, skim milk, fresh cream, concentrated milk, sugar-free condensed milk, sweetened condensed milk, whole milk powder, skim milk powder, butter milk powder, whey protein, casein, and casein sodium. Etc. At least one selected from these groups can be used.
  • salt, coloring agents, flavoring agents, preservatives, oxidation stabilizers, eggs and the like are not particularly limited as long as they are for foods, but can be used as necessary.
  • the fatty acid composition of triglyceride in the present invention is abbreviated as follows.
  • S saturated fatty acid
  • U unsaturated fatty acid
  • SSS trisaturated fatty acid glyceride
  • SU2 monosaturated fatty acid diunsaturated fatty acid glyceride
  • S2U disaturated fatty acid monounsaturated fatty acid glyceride
  • UUU triunsaturated fatty acid glyceride
  • the method for measuring each triglyceride content is as follows. ⁇ Measurement of each triglyceride content in fats and oils> Each triglyceride content in fats and oils is determined using AOCS Official using HPLC. It was measured according to Method Ce 5c-93 and calculated from the retention time and area ratio of each peak. The analysis conditions are described below. Eluent: Acetonitrile: Acetone (70:30, volume ratio) Flow rate: 0.9 ml / min Column: ODS Column temperature: 36 ° C Detector: Differential refractometer
  • the method for measuring the fatty acid composition in the fat is as follows. ⁇ Measurement of fatty acid composition in fats and oils>
  • the fatty acid composition in the fat / oil can be measured by the FID constant temperature gas chromatograph method.
  • the FID constant temperature gas chromatograph method is a method described in “2.4.2.1 Fatty acid composition” of “Standard oil analysis test method” (issue year: 1996) edited by Japan Oil Chemistry Association.
  • the palm oil-derived liquid oil used in the present invention is made of palm oil and fat, preferably palm oil and fat having an iodine value of 55 or more as a main raw material, has a specific fatty acid composition, and has low liquidity and high oxidation stability.
  • Liquid oil is not particularly limited as long as it is derived from palm oil, and examples thereof include palm refined oil, unrefined crude oil, and fractionated oil and fat such as palm olein obtained by one or more fractionations. .
  • the palm oil-derived liquid oil used in the present invention can be produced by a direct transesterification reaction of palm oil.
  • the saturated fatty acid content in the total constituent fatty acids of the palm oil used as a raw material is preferably 70% by weight or less, more preferably 3 to 70% by weight, still more preferably 3 to 52% by weight, particularly preferably 30 to 52% by weight. If the saturated fatty acid content is more than 70% by weight, there will be too many hard parts during direct transesterification, making it difficult to obtain crystals with good separability, and obtaining a liquid oil with high liquidity in a high yield. It can be difficult. However, if the saturated fatty acid content is less than 3% by weight, the raw material becomes expensive, and the obtained liquid oil becomes expensive, which may increase the cost too much.
  • a preferred embodiment of palm oil is palm olein.
  • the said palm olein in this invention refers to the thing obtained by isolate
  • the content of fats and oils other than palm-based fats and oils is preferably as small as possible, preferably 50% by weight or less, more preferably 30% by weight or less, and still more preferably 10%. % By weight or less, most preferably 0% by weight. If the content of fats and oils other than palm-based fats and oils is more than 50% by weight, the raw material becomes expensive, and the obtained liquid oil becomes expensive, which may increase the cost too much.
  • the SU2 / UUU weight ratio in the finally obtained liquid oil is 1.9 or less, more preferably 1.1 or less, and the SSS content is There is no particular limitation as long as it is an edible oil and fat of 2% by weight or less.
  • Examples of such fats are soybean oil, rapeseed oil, sunflower oil, olive oil, sesame oil, canola oil, cottonseed oil, rice bran oil, safflower oil, palm oil, palm kernel oil, shea fat, monkey fat, lippe Fats, cacao butter, beef fat, pork fat, milk fat, fractionated fats and oils of these fats, hardened fats and oils, transesterified fats and the like, and the like.
  • soybean oil, rapeseed oil and the like in which the saturated fatty acid content in the total constituent fatty acids is less than 20% by weight are preferable because the effects of the present invention are easily exhibited.
  • the saturated fatty acid content in the entire constituent fatty acids of the fats and oils other than the palm-based fats and oils is preferably 70% by weight or less, more preferably 3 to 70% by weight, for the same reason as described for the palm-based fats and oils. More preferably, it is 3 to 52% by weight.
  • the triglyceride composition of the palm oil-derived liquid oil has a SU2 / UUU weight ratio of 1.9 or less. It is preferable that it is less than 1.3, more preferably 1.1 or less.
  • the SU2 / UUU weight ratio is preferably 1.0 or less, more preferably 0.95 or less, 0.9 or less, 0.8 or less, 0.7 or less, Hereinafter, the smaller the value, 0.5 or less, the more preferable.
  • the lower limit of the SU2 / UUU weight ratio is preferably 0.5 or more, more preferably 0.6 or more, still more preferably 0.65 or more, and 7 or more is particularly preferable.
  • the SU2 / UUU weight ratio is preferably in the range of 1.1 to 0.5, more preferably 1.0 to 0.6, and 0.95 to 0. .65 is more preferable, and 0.9 to 0.7 is most preferable.
  • the SSS content in the palm oil-derived liquid oil used in the present invention is preferably as small as possible, and the SSS content of the liquid oil is preferably 2% by weight or less, and 0.5% by weight or less. Is more preferably 0.3% by weight or less, particularly preferably 0.1% by weight or less, extremely preferably 0.05% by weight or less, and 0.03% by weight or less. Most preferred. When the SSS content of the liquid oil exceeds 2% by weight, the liquid oil may not be used as a substitute for a commonly used liquid oil.
  • the S2U content is preferably 0.5 to 10% by weight in the entire liquid oil.
  • the S2U content is more preferably 1.0 to 10.0% by weight, still more preferably 2.0 to 9.5% by weight, particularly preferably 3.0 to 9.0% by weight, and 4.0 to 8.%. 5% by weight is most preferred.
  • the UUU content is preferably 12% by weight or more, more preferably 25% by weight or more, further preferably 35% by weight or more, and 40% by weight or more. Is most preferred.
  • the palm oil-derived liquid oil used in the present invention has a higher content of glyceride bound to palmitic acid at the 2-position, considering that the crystals generated during refrigeration and freezing are finer and less likely to break emulsion and absorbability. The more preferable.
  • the reason for this is that, in the palm oil-derived liquid oil used in the present invention, the content of POP (1,3-dipalmitoyl-2-oleoylglycerin) is small when the content of glyceride bound with palmitic acid at the 2-position is large. This is because glyceride is structurally low in symmetry, so that it is difficult to form a coarse crystal and the absorbency is considered high.
  • the content of glyceride having palmitic acid bonded to the 2-position is preferably 10 to 30% by weight, more preferably 13 to 30% by weight, and further more preferably 16 to 30% by weight.
  • 16 to 25% by weight is particularly preferable, and 16 to 20% by weight is most preferable.
  • the content of polyunsaturated fatty acids in the palm oil-derived liquid oil used in the present invention is preferably as low as possible from the viewpoint of oxidation stability, preferably 22% by weight or less, more preferably 21% by weight or less, and 20% by weight or less. More preferred is 19% by weight or less, particularly preferred is 18% by weight or less, and most preferred is 17% by weight or less.
  • the timing for stopping the direct transesterification described later may be advanced or the fractionation temperature may be increased.
  • the cloud point of the palm oil-derived liquid oil used in the present invention is not particularly problematic as long as the liquid oil composition is satisfied, but is preferably 0 to ⁇ 12 ° C., from ⁇ 2 ° C. to ⁇ 12 ° C. is more preferable, ⁇ 2.5 ° C. to ⁇ 12 ° C. is further preferable, and 0 ° C. to ⁇ 10 ° C. is preferable and 0 ° C. to ⁇ 9 ° C. is more preferable from the viewpoints of ease of manufacture and oxidation stability.
  • the palm oil-derived liquid oil used in the present invention preferably has a CDM value of 5 hours or more, more preferably 6 hours or more, and even more preferably 7 hours or more (CDM: Conductometric Determination Method, “Reference Oil Analysis Test”. (See Law 2.5.1.2-1996 CDM test).
  • CDM Conductometric Determination Method, “Reference Oil Analysis Test”. (See Law 2.5.1.2-1996 CDM test).
  • the palm oil-derived liquid oil used in the present invention has a high CDM value as described above, and is excellent in oxidation stability.
  • the first production method is characterized in that the direct transesterification reaction is stopped in order to obtain a composition in which crystals with high separability are likely to be generated during crystallization.
  • the second production method is characterized in that crystals having good separability are produced during the direct transesterification reaction, and thereafter fractionation is performed without dissolving all the crystals.
  • the raw oil and fat is used, and as the SSS / S2U in the fat and oil increases, crystals with high separability are more likely to be generated and the separation efficiency increases, so that the SSS / S2U becomes 0.5 or more.
  • the direct transesterification reaction is performed until the reaction is stopped, and then the hard part is separated and removed.
  • SSS / S2U in the oil / fat is preferably as high as 0.75 or more, 1.0 or more, 1.25 or more, 1.5 or more, 1.75 or more, and SSS / S2U in the oil / fat becomes 2.0 or more. It is most preferable to carry out the direct transesterification reaction.
  • the direct transesterification reaction using palm-based fats and oils having a saturated fatty acid content of 70% by weight or less in the whole constituent fatty acids as a main raw material, and at least 31% by weight of the SSS content in the oil / fat composition during the reaction. It is preferable to carry out until the S2U content is 14% by weight or less and the reaction is stopped without exceeding. If the above is satisfied, any number of direct transesterification reactions may be performed. However, considering the cost, it is preferable to stop the transesterification immediately if the above is satisfied.
  • the direct transesterification reaction is performed while flowing the fats and oils by applying force from the outside, and then the solid fat content is separated without making it 1% or less. .
  • the direct transesterification reaction is performed until the SSS / S2U in the fat becomes 0.5 or more.
  • SSS / S2U in the oil / fat is preferably as high as 0.75 or more, 1.0 or more, 1.25 or more, 1.5 or more, 1.75 or more, and SSS / S2U in the oil / fat becomes 2.0 or more. It is most preferable to carry out the direct transesterification reaction.
  • the SSS content in the oil and fat composition during the direct transesterification reaction does not exceed 31% by weight, and it is even more preferable that the S2U content be 14% by weight or less.
  • crystallization is performed after the direct transesterification reaction and before the fractionation treatment.
  • the condition for raising the temperature is to prevent the solid fat content from becoming 1% by weight or less. If the temperature is raised until the solid fat content is 1% by weight or less, the heating cost increases, and the effect as a seed crystal may be lost when crystallization is performed.
  • the crystallization rate is preferably 0.01 ° C./min to 5 ° C./min, more preferably 0.1 ° C./min to 2 ° C./min. If the crystallization rate is out of the above range, the separation of the generated crystals may be poor.
  • the direct transesterification reaction in the present invention is a reaction in which transesterification is carried out while generating fat crystals under a catalyst having transesterification ability.
  • the direct transesterification method in the present invention may be either a batch type or a continuous type.
  • the direct transesterification reaction may be cyclic.
  • SSS and SS diglyceride composed of two saturated fatty acids precipitated in the palm oil and fat deposited in the raw material oil tank A adjusted to a specific temperature are precipitated, and the supernatant liquid is obtained.
  • the direct transesterification reaction is performed until the SSS / S2U in the fats and oils in the raw material oil tank A becomes 0.5 or more. More preferably, the SSS / S2U in the fat is 0.75 or more, 1.0 or more, 1.25 or more, 1.5 or more, 1.75 or more, most preferably, the SSS / S2U in the fat is 2 Direct transesterification reaction is carried out until it becomes 0 or more.
  • the direct transesterification reaction is carried out until the S2U content is 14% by weight or less without the SSS content in the oil or fat exceeding 31% by weight. Thereafter, the reaction fats and oils in the raw material oil tank A are separated into liquid oil (soft part) and solid fat (hard part).
  • the catalyst used for the direct transesterification reaction is not particularly limited, and any catalyst such as a chemical catalyst or an enzyme catalyst may be used as long as it has transesterification ability.
  • a chemical catalyst potassium sodium alloy is preferable because of its high activity at low temperatures, and sodium methylate is more preferable because of economy and ease of handling.
  • the amount of the chemical catalyst used is not particularly limited, and may be an amount used in ordinary transesterification, but is preferably 0.01 to 1 part by weight with respect to 100 parts by weight of the raw oil and fat in view of reaction efficiency and economy. .
  • Sodium methylate is preferably 0.05 to 0.5 parts by weight, preferably 0.1 to 0.3 parts by weight with respect to 100 parts by weight of the raw oil and fat, from the viewpoint of reaction efficiency and fractionation efficiency, and yield of liquid oil. Part by weight is more preferred.
  • the enzyme catalyst is not particularly limited as long as it is a lipase having transesterification ability, and may be a random transesterase having no positional specificity or a transesterase having 1,3-position specificity. However, depending on the desired amount of palmitic acid at the 2-position, it is preferable to use a random transesterification reaction or a regiospecific transesterification reaction.
  • the amount of the enzyme catalyst used is not particularly limited as long as the transesterification reaction proceeds, but is preferably 0.5 to 20 parts by weight with respect to 100 parts by weight of the raw material fats and oils from the viewpoint of reaction efficiency and economy.
  • the direct transesterification reaction temperature is not particularly limited as long as it is a temperature at which the high melting point glyceride is crystallized, but a temperature at which the catalytic activity is the highest is preferable in order to perform the reaction efficiently at the start of the reaction.
  • sodium methylate it is preferably 50 ° C to 120 ° C
  • potassium sodium alloy it is preferably 25 ° C to 270 ° C.
  • an enzyme catalyst it is preferably 50 ° C to 70 ° C.
  • the direct transesterification temperature is preferably 0 ° C. to 40 ° C., more preferably 10 ° C. to 40 ° C.
  • the direct transesterification reaction temperature is preferably 0 ° C. to 40 ° C., more preferably 10 ° C. to 40 ° C. 1 to 18 hours after the start of the reaction.
  • the final reaction temperature is the direct transesterification reaction temperature.
  • stirring it is preferable to perform stirring at a speed of 1000 rpm or less, more preferably 600 rpm or less, more preferably from the viewpoint of imparting fluidity to fats and oils and producing excellent separable crystals. Preferably, it is 300 rpm to 1 rpm.
  • the final amount of crystals after the direct transesterification reaction is preferably 3% by weight to 60% by weight, more preferably 5% by weight to 40% by weight, based on the entire reaction fat and oil, from the viewpoint of fractionation efficiency.
  • the amount of crystals may be controlled by the reaction time, and the direct transesterification reaction at 0 ° C. to 40 ° C., preferably 10 ° C. to 40 ° C. is used for 1 to 48 hours when a chemical catalyst is used. In this case, it is preferable to carry out for 3 to 120 hours.
  • the method for stopping the direct transesterification reaction is not particularly limited as long as the reaction is stopped, but if it is a chemical catalyst, water or citric acid can be added, and it is acidic from the viewpoint of preventing deterioration of the equipment during fractionation. It is preferable to stop neutralization with the substance.
  • the addition amount of the terminator is preferably from 0.1 to 5 parts by weight, more preferably from 0.2 to 1 part by weight, based on 100 parts by weight of the reaction fat and oil from the viewpoint of fractionation efficiency. When the amount is more than 5 parts by weight, the filtration efficiency at the time of fractionation may deteriorate, and the yield of liquid oil may decrease. On the other hand, when the addition amount of the terminator is less than 0.1 parts by weight, the color tone may deteriorate or the reaction may not stop.
  • the timing for stopping the direct transesterification reaction is preferably after the reaction is performed until the SSS content in the oil and fat composition during the reaction is 31% by weight or less and the S2U content is 14% by weight or less. . More preferably, from the viewpoint of the liquidity of the liquid oil, it is preferable that the reaction is performed until the SU2 / UUU (weight ratio) is 1.9 or less, more preferably 1.1 or less.
  • the reaction is more preferably terminated when the SSS content is between 1% and 31% by weight, particularly preferably between 1% and 25% by weight, very particularly preferably between 1% and 20% by weight, and between 1% and 15% by weight. % Is most preferred.
  • the S2U content in the oil and fat during the reaction decreases as the direct transesterification reaction is continued.
  • the S2U content in the oil and fat during the reaction is 14% by weight. It is preferable to stop after reacting until it becomes less than 10%, more preferably until 10% by weight or less, still more preferably until 7% by weight or less, and most preferably until 5% by weight or less.
  • the method of fractionating liquid oil after the direct transesterification is not limited to solvent fractionation or dry fractionation.
  • solvent fractionation requires equipment costs and running costs due to the use of solvent
  • dry fractionation without using a solvent is preferable.
  • hexane, acetone or the like can be used.
  • the fractionation temperature in the dry fractionation is preferably 0 ° C. to 45 ° C., preferably 30 ° C. or less, more preferably 20 ° C. or less, still more preferably 10 ° C. or less in order to obtain higher liquidity, and also the viewpoint of yield. Including 0 to 10 ° C is most preferable.
  • the flour paste of the present invention as described above can be obtained, for example, by homogenizing a raw material containing starches, fats and oils, sugars and other components by a known method, and then heating and cooling. it can.
  • the flour paste according to the present invention as described above is derived from palm oil, has high liquidity, and uses a new liquid oil with high oxidation stability, so that crystallization during refrigeration and oxidative degradation at room temperature can be suppressed. Therefore, there is almost no change in physical properties even after refrigerated storage for 3 months after production, workability is good, and flavor deterioration due to oxidation of fats and oils when stored for 3 months at 30 ° C. immediately after production It is a flour paste that has few physical properties and flavors in a wide temperature range.
  • the reaction solution was concentrated and then subjected to silica gel column chromatography (Model number: Silica gel 60 (0.063-0.200 mm) for column chromatography, manufactured by Merck Co., Ltd., separated into triglyceride, diglyceride, and monoglyceride components, removing triglyceride and diglyceride components that remain slightly unreacted, and monoglyceride component Was recovered.
  • silica gel column chromatography Model number: Silica gel 60 (0.063-0.200 mm
  • the glyceride content having palmitic acid at the second position was determined based on the retention time and peak area area of the organic phase by gas chromatography (model number: 6890N, manufactured by Agilent).
  • liquid oils obtained by the production methods of Production Examples 1 to 10 were analyzed for fatty acid composition, triglyceride composition, cloud point, iodine value, and CDM value, and the results are summarized in Table 1.
  • the oil and fat temperature after decolorization is 1 ° C / min (set value) until 40 ° C and from 40 ° C to 0.2 ° C / min (set value), and when it reaches 10 ° C, the temperature is maintained. Then, crystallization was performed until 24 hours in total from the start of temperature drop. After crystallization, 3200 parts by weight (yield: 64%) of liquid oil was obtained by filtering using a filter press (pressurized to 3 MPa).
  • Example 1 In a 10 L stainless beaker, 1250 parts by weight of maltose starch syrup (sugar concentration 75%, manufactured by Showa Sangyo Co., Ltd.), 1484 parts by weight of water, and 0.715 parts by weight of a carotene pigment preparation (manufactured by Saneigen FFI Co., Ltd.) While stirring with a chemi stirrer, 1.05 parts by weight of gardenia pigment (manufactured by Saneigen FFI Co., Ltd.), 50 parts by weight of glycine (manufactured by Organic Synthetic Chemical Industry Co., Ltd.), tamarind gum ( 10 parts by weight of DSP Gokyo Food & Chemical Co., Ltd., 3.5 parts by weight of xanthan gum (manufactured by Dainippon Sumitomo Pharma Co., Ltd.) and 6 parts by weight of potassium sorbate (manufactured by Ueno Pharmaceutical Co., Ltd.) Oita is added, and 200 parts by weight of
  • Example 2 A flour paste was obtained in the same manner as in Example 1 except that the palm oil-derived liquid oil (iodine value 87) of Production Example 16 was used instead of the palm oil-derived liquid oil of Production Example 3.
  • the flour paste of Comparative Example 1 produced using rapeseed oil has a poor flavor and a large deterioration in flavor during storage at room temperature.
  • the flour paste of Comparative Example 2 produced using palm oil had a good flavor and little deterioration in flavor during storage at room temperature, but the workability during storage under refrigeration deteriorated.
  • the flour pastes of Examples 1 and 2 of the present invention produced using palm oil-derived liquid oil have good flavor, little deterioration in flavor during storage at room temperature, and deterioration in workability during refrigeration storage. There was not.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Edible Oils And Fats (AREA)
  • Grain Derivatives (AREA)

Abstract

 パーム系油脂を主原料とし、SU2/UUU重量比が1.9以下且つSSS含量が2重量%以下であり、2位にパルミチン酸が結合したグリセライドを液状油全体中10~30重量%含有するパーム油由来液状油を、フラワーペースト全体中8~45重量%含有するフラワーペースト。

Description

フラワーペースト
 本発明は、製菓・製パンなどに使用されるフラワーペーストに関する。
 澱粉の糊化によるボディーを有するフラワーペーストは、パン類や菓子類のトッピング、フィリングとして広く利用されている。一般的に、フラワーペーストは、小麦粉や穀物澱粉、化工澱粉等の澱粉類、ミルク、砂糖、卵、水、油脂等を混合した後、加熱して糊化させることによって得られ、一般に粘弾性に富んだ物性と食感を示す(特許文献1参照)。
 例えば、特許文献1には、澱粉類2~10重量%、油脂8~45重量%、及び糖類8~30重量%を含有し、上記油脂は、ヨウ素価52~70のパーム分別軟部油脂を70重量%以上含む油脂配合物をエステル交換したエステル交換油脂5~45重量%(組成物基準)を含んでいることを特徴とする、乳化安定性が良好で、スプレッド性や伸展性も良好であるフラワーペーストが開示されている。
 しかしながら、フラワーペーストは、保存温度が一定でなく、冷蔵保存されることもあり、また常温保存されることもある。このため、使用する油脂の液状性が低いと冷蔵保存時に油脂が結晶化してしまい、フラワーペーストの物性が悪化してしまう。しかし、豆種油(大豆油やナタネ油)などの液状性の高い油を使用すると、酸化安定性が低いため常温保存時に風味の劣化が早いといった問題があった。そのため、冷蔵保存用にはナタネ油などの液油を主に使用し、常温保存用にはパーム油等を主に使用するなど、幅広い温度域で使用できるフラワーペーストはなかった。
 また、β位(2位)にパルミチン酸が結合したトリグリセライドは、α位(1,3位)にパルミチン酸が結合したトリグリセライドにくらべ、はるかに高い吸収性を示すことが知られている(特許文献2)。しかしながら、パ-ム油を原料として液状油を作製する際にろ別される固体脂及び該液状油は、構成脂肪酸としてパルミチン酸は多いものの、その殆どが1、3位に結合しており、高い吸収性を示すものではない。
特開2007-306839号公報 特開平6-70786号公報
 本発明は、上記のような従来のフラワーペーストにおける問題点に鑑み、幅広い温度域且つ長期間の輸送、保存、使用が可能であり、保存温度による原料油脂の使い分けが不要なフラワーペーストを安価に提供することを目的とする。
 本発明者らは上記課題を解決するために鋭意研究を重ねた結果、油脂として、パーム油由来で液状性が高く、且つ酸化安定性も高い新規液状油を用いること、更に詳細には、パーム系油脂を主原料とし、SU2/UUU重量比が1.9以下且つSSS含量が2重量%以下であり、2位にパルミチン酸が結合したトリグリセライドを液状油全体中10~30重量%含有するパーム油由来の液状油をフラワーペーストに使用することで、冷蔵保存時に硬くなり作業性が悪化する、常温保存時に風味の劣化がおきる、という問題を解決することが出来ることを見出し、本発明を完成させるに至った。
 即ち、本発明は、パーム系油脂を主原料とし、SU2/UUU重量比が1.9以下且つSSS含量が2重量%以下であり、2位にパルミチン酸が結合したグリセライドを液状油全体中10~30重量%含有するパーム油由来液状油を、フラワーペースト全体中8~45重量%含有するフラワーペーストに関する。好ましい実施態様は、前記パーム油由来液状油の曇点が0~-12℃である上記記載のフラワーペーストに関する。また、好ましい実施態様は、前記パーム油由来液状油のCDM値が5時間以上である上記記載のフラワーペーストに関する。
 本発明によれば、油脂として、パーム油由来で液状性が高く、酸化安定性の高い新規液状油を用いることで、冷蔵・冷凍時の結晶化や、常温時の酸化等による風味の劣化を抑え、幅広い温度域で物性と風味が変化しにくい安価なフラワーペーストを提供することができる。更に、前記フラワーペーストの液状油は吸収性が良い。
 本発明に係るフラワーペーストは、パーム系油脂を主原料とし、SU2/UUU重量比が特定値で且つSSS含量が特定量であり、2位にパルミチン酸が結合したグリセライドを特定量含有するパーム油由来液状油を、フラワーペースト全体中に特定量含有することを特徴とし、冷蔵時の結晶化や常温時の酸化等による風味劣化を抑え、幅広い温度域で物性と風味が変化しにくく、液状油の吸収性も高い。
 本発明のフラワーペーストは、油脂として前記パーム油由来液状油を用いる以外は、例えば、特許文献1に記載のフラワーペーストなどの公知の組成および製造法により得られる。従って、本発明のフラワーペーストは、澱粉類2~10重量%、油脂8~45重量%、及び糖類8~30重量%をそれぞれ含有することが好ましい。
 澱粉類としては、一般的な小麦粉、コーンスターチの他、各種澱粉から得られる化工澱粉を用いることができる。澱粉類の含有量は、フラワーペースト全体中、2~10重量%が好ましく、より好ましくは2.5~8重量%である。澱粉類の含有量が2重量%未満では液状となって十分にペースト化されない場合があり、また、10重量%を超えると、硬く口溶けの悪いものとなる場合がある。
 油脂としては、後述するが、パーム系油脂を主原料とし、SU2/UUU重量比が1.9以下且つSSS含量が2重量%以下であり、2位にパルミチン酸が結合したグリセライドを10~30重量%含有するパーム油由来液状油を使用する。本発明では、フラワーペースト中の油脂として、前記パーム油由来液状油に加え、それ以外の油脂も併用することができる。パーム油由来液状油以外の油脂は、食用であれば特に限定されず、植物性油脂、動物性油脂、食用精製加工油脂等を用いることができる。具体的にはあまに油、桐油、サフラワー油、かや油、胡桃油、芥子油、ひまわり油、ハイオレイックひまわり油、綿実油、ナタネ油、ハイオレイックナタネ油、大豆油、辛子油、カポック油、米糠油、胡麻油、玉蜀黍油、落花生油、オリーブ油、椿油、茶油、ひまし油、椰子油、パーム油、パーム核油、カカオ脂、シア脂、ボルネオ脂等の植物油脂や、魚油、鯨油、牛脂、豚脂、乳脂、羊脂等の動物油脂、またこれらの油脂を原料にエステル交換したものや、硬化油脂、分別油脂、混合油脂が挙げられ、これら油脂の群から選択される少なくとも1種を用いることができる。
 本発明のフラワーペースト全体中の油脂の含有量は、前記パーム油由来液状油の含有量もあわせて、8~45重量%が好ましく、より好ましくは15~45重量%である。該油脂の含有量が8重量%未満であると、冷蔵・冷凍時の良好な乳化安定性、良好なスプレッド性や伸展性を有するフラワーペーストが得られない場合がある。また、45重量%を超えると、冷蔵・冷凍時の乳化安定性が悪化し、べとつきやすく、油分が分離しやすくなることに加え、口溶けが悪くなる等の問題が生じる場合がある。
 また、フラワーペーストの全油脂中におけるパーム油由来液状油の含有量は、好ましくは50~100重量%、より好ましくは70~100重量%である。油脂中でパーム油由来液状油が50重量%未満であると、目的とする、幅広い温度域での物性の安定性が得られなくなる場合がある。
 本発明のフラワーペーストに使用する糖類としては、例えば、上白糖、グラニュー糖、粉糖、液糖、ブドウ糖、果糖、ショ糖、麦芽糖、乳糖、酵素糖化水飴、還元澱粉糖化物、異性化液糖、ショ糖結合水飴、オリゴ糖、還元糖ポリデキストロース、還元乳糖、ソルビトール、トレハロース、キシロース、キシリトール、マルチトール、エリスリトール、マンニトール、フラクトオリゴ糖、大豆オリゴ糖、ガラクトオリゴ糖、乳果オリゴ糖、ラフィノース、ラクチュロース、パラチノースオリゴ糖等が挙げられる。これらは、少なくとも1種を用いることができる。糖類の含有量は、フラワーペースト全体中、8~30重量%が好ましく、10~27重量%がより好ましく、10~25重量%が更に好ましい。糖類の含有量が8重量%未満では、スプレッド性や伸展性の向上効果が得られず、また食感も硬く、老化しやすいものとなる。また、30重量%を超えると、スプレッド性や伸展性の向上効果が得られないことに加え、べたつきやすくなる。
 本発明のフラワーペーストは、フラワーペースト全体中、好ましくは0.01~10重量%の増粘多糖類を含有することができる。また、本発明のフラワーペーストには、公知の乳化剤を添加することもできる。更に、本発明のフラワーペーストに、これらのほかに、通常、フラワーペーストの原料として使用し得るその他の成分としては、例えば、無脂乳固形分、食塩、着色料、香料、保存料、酸化安定剤、卵などを含有することもできる。
 増粘多糖類としては、例えばグアーガム、キサンタンガム、寒天、ペクチン、アルギン酸ナトリウム、カラギーナン、ジェランガム、ローカストビーンガム、アラビアガム、カルボキシメチルセルロース等が挙げられる。これらの群より選ばれる少なくとも1種を使用することができる。
 乳化剤としては、食品用の乳化剤であれば特に限定はないが、例えば、ショ糖脂肪酸エステル、レシチン、レシチン誘導体、グリセリン脂肪酸エステル、モノグリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル等が挙げられる。これらの群より選ばれる少なくとも1種を使用することができる。
 本発明のフラワーペーストに使用する無脂乳固形分とは、乳中の全固形分から乳脂肪を差引いた成分をいう。該無脂乳固形分の供給源としては、例えば、牛乳、脱脂乳、生クリーム、濃縮乳、無糖練乳、加糖練乳、全脂粉乳、脱脂粉乳、バターミルクパウダー、ホエー蛋白、カゼイン、カゼインナトリウム等が挙げられる。これらの群より選ばれる少なくとも1種を使用することができる。
 また、食塩、着色料、香料、保存料、酸化安定剤、卵などは、食品用であれば特に限定されないが、必要に応じて使用することができる。
 次に、前述した、本発明のフラワーペーストに用いるパーム油由来液状油について以下に説明する。
 先ず、本発明におけるトリグリセライドの脂肪酸組成は、以下のように略記する。
  S:飽和脂肪酸、U:不飽和脂肪酸
  SSS:トリ飽和脂肪酸グリセライド
  SU2:モノ飽和脂肪酸ジ不飽和脂肪酸グリセライド
  S2U:ジ飽和脂肪酸モノ不飽和脂肪酸グリセライド
  UUU:トリ不飽和脂肪酸グリセライド
 また、本発明において、前記各トリグリセライド含量を測定する方法は、以下のとおりである。
 <油脂中の各トリグリセライド含量の測定>
 油脂中の各トリグリセライド含量は、HPLCを用いて、AOCS Official
 Method Ce 5c-93に準拠して測定し、各ピークのリテンションタイムおよびエリア比から算出した。以下に、分析の条件を記す。
   溶離液  :アセトニトリル:アセトン(70:30、体積比)
   流速   :0.9ml/分
   カラム  :ODS
   カラム温度:36℃
   検出器  :示差屈折計
 更に、本発明において、油脂中の脂肪酸組成を測定する方法は、以下のとおりである。
<油脂中の脂肪酸組成の測定>
 油脂中の脂肪酸組成の測定は、FID恒温ガスクロマトグラフ法により行うことができる。FID恒温ガスクロマトグラフ法とは、社団法人日本油化学協会編「基準油脂分析試験法」(発行年:1996年)の「2.4.2.1 脂肪酸組成」に記載された方法である。
 本発明で用いるパーム油由来液状油は、パーム系油脂、好ましくはヨウ素価55以上のパーム系油脂を主原料とし、特定の脂肪酸組成を有し、高い液状性と酸化安定性を兼ね備えた安価な液状油である。前記パーム系油脂としては、パーム油由来であれば特に限定はなく、パーム精製油、未精製のクルード油、一回以上の分別によって得られたパームオレインなどの分画油脂、などが例示される。
 本発明で用いるパーム油由来液状油は、パーム系油脂のダイレクトエステル交換反応により製造することができる。
 原料として使用するパーム系油脂の構成脂肪酸全体中の飽和脂肪酸含量は70重量%以下であることが好ましく、より好ましくは3~70重量%、更に好ましくは3~52重量%、特に好ましくは30~52重量%である。飽和脂肪酸含量が70重量%より多いと、ダイレクトエステル交換中に硬質部が多くなり過ぎ、分離性の良い結晶を得ることが困難になり、液状性の高い液状油を高収率で得ることが困難な場合がある。しかし、飽和脂肪酸含量が3重量%より少ないと、原料が高価になり、得られた液状油も高価なものになるため、コストが上がりすぎる場合がある。パーム系油脂の好ましい実施態様はパームオレインである。本発明における前記パームオレインとは、パームの果肉から採取した油脂を分離して得られ、ヨウ素価が55以上のものを指す。
 本発明で用いるパーム油由来液状油を製造する際には、原料油脂として、パーム系油脂に加えて、パーム系油脂以外の油脂を更に用いても良い。但し、本発明の効果をより享受するためにはパーム系油脂以外の油脂の含有量は少ない程良く、原料油脂全体中50重量%以下が好ましく、より好ましくは30重量%以下、更に好ましくは10重量%以下、最も好ましくは0重量%である。パーム系油脂以外の油脂の含有量が50重量%より多いと、原料が高価になり、得られた液状油も高価なものになるため、コストが上がりすぎる場合がある。
 パーム油由来液状油の製造に用いるパーム系油脂以外の油脂としては、最終的に得られる液状油中のSU2/UUU重量比が1.9以下、より好ましくは1.1以下、且つSSS含量が2重量%以下となる食用油脂であれば特に限定はない。そのような油脂の例としては、大豆油、ナタネ油、ひまわり油、オリーブ油、ごま油、キャノーラ油、綿実油、こめ油、サフラワー油、やし油、パーム核油、シア脂、サル脂、イリッぺ脂、カカオ脂、牛脂、豚脂、乳脂、これらの油脂の分別油脂、硬化油脂、エステル交換油脂などが挙げられる。これらの中でも、構成脂肪酸全体中の飽和脂肪酸含量が20重量%よりも少ない大豆油、ナタネ油などが本発明の効果を発現し易いために好ましい。
 前記パーム系油脂以外の油脂の構成脂肪酸全体中の飽和脂肪酸含量は、パーム系油脂について述べたのと同様の理由により、70重量%以下であることが好ましく、より好ましくは3~70重量%、更に好ましくは3~52重量%である。
 本発明で用いるパーム油由来液状油は、液状性が高いほど冷蔵・冷凍時の乳化安定性が高いため、該パーム油由来液状油のトリグリセライド組成は、SU2/UUU重量比が1.9以下であることが好ましく、1.3未満がより好ましく、更に好ましくは1.1以下である。前記SU2/UUU重量比は、更に高い液状性を求めると、1.0以下がより好ましく、0.95以下が更に好ましく、0.9以下、0.8以下、0.7以下、0.6以下、0.5以下と、小さくなるほど好ましい。一方、製造のし易さと酸化安定性を考慮すると、前記SU2/UUU重量比の下限値は、0.5以上が好ましく、0.6以上がより好ましく、0.65以上が更に好ましく、0.7以上が特に好ましい。液状性と製造のし易さのバランスを考慮すると、前記SU2/UUU重量比は、1.1~0.5の範囲が好ましく、1.0~0.6がより好ましく、0.95~0.65が更に好ましく、0.9~0.7が最も好ましい。
 また、本発明で用いるパーム油由来液状油中におけるSSS含量をできるだけ少なくすることが好ましく、該液状油のSSS含量は、2重量%以下であることが好ましく、0.5重量%以下であることがより好ましく、0.3重量%以下であることが更に好ましく、0.1重量%以下であることが特に好ましく、0.05重量%以下であることが極めて好ましく、0.03重量%以下が最も好ましい。該液状油のSSS含量が2重量%を超えると、通常用いられている液油の代替として使用できない場合がある。
 更に、本発明で用いるパーム油由来液状油の液状性を維持するためには、S2U含量が液状油全体中0.5~10重量%であることが好ましい。S2U含有量は、1.0~10.0重量%がより好ましく、2.0~9.5重量%が更に好ましく、3.0~9.0重量%が特に好ましく、4.0~8.5重量%が最も好ましい。また、上記と同様の理由でUUU含量は12重量%以上であることが好ましく、25重量%以上であることがより好ましく、35重量%以上であることが更に好ましく、40重量%以上であることが最も好ましい。
 本発明で用いるパーム油由来液状油は、冷蔵、冷凍時に発生する結晶がより微細で、乳化破壊しにくくなる点、および吸収性を考慮すると、2位にパルミチン酸が結合したグリセライドの含量が多いほど好ましい。その理由は、本発明で用いるパーム油由来液状油においては、2位にパルミチン酸が結合したグリセライドの含量が多いと、POP(1,3-ジパルミトイル-2-オレオイルグリセリン)の含量が少なく、構造的にグリセライドの対称性が低いため、粗大結晶が出来にくく、且つ吸収性が高いと考えられるからである。前記パーム油由来液状油の液状性も考慮すると、2位にパルミチン酸が結合したグリセライドの含量は、10~30重量%が好ましく、13~30重量%がより好ましく、16~30重量%が更に好ましく、16~25重量%が特に好ましく、16~20重量%が最も好ましい。
 本発明で用いるパーム油由来液状油中の多価不飽和脂肪酸含量は、酸化安定性の観点からは少ないほど良く、22重量%以下が好ましく、21重量%以下がより好ましく、20重量%以下が更に好ましく、19重量%以下が特に好ましく、18重量%以下が極めて好ましく、17重量%以下が最も好ましい。多価不飽和脂肪酸量を減らすには、後述のダイレクトエステル交換反応を停止するタイミングを早めるか、分別温度を高くすればよい。
 また、本発明で用いるパーム油由来液状油の曇点は、前記液状油組成を満たしていれば特に問題はないが、液状性の観点からは0~-12℃が好ましく、-2℃~-12℃がより好ましく、-2.5℃~-12℃が更に好ましく、製造のし易さと酸化安定性の観点からは0℃~-10℃が好ましく、0℃~-9℃がより好ましい。
 また、本発明に使用するパーム油由来液状油は、CDM値が5時間以上が好ましく、より好ましくは6時間以上、更に好ましくは7時間以上である(CDM:Conductometric Determination Method、「基準油脂分析試験法 2.5.1.2-1996 CDM試験」参照。)。本発明に使用するパーム油由来液状油は、前記のようにCDM値が高く、酸化安定性に優れる。
 本発明で用いるパーム油由来液状油の製造方法としては2つある。第一の製造方法は、晶析時に分離性の高い結晶が発生しやすい組成にするためにダイレクトエステル交換反応をどこで停止させるかに特徴がある。また、第二の製造方法は、ダイレクトエステル交換反応中に分離性の良い結晶を生成させ、その後、その結晶を全て溶解させず分別を行なうことに特徴がある。
 第一の製造方法では、前記原料油脂を用い、油脂中のSSS/S2Uが大きくなるほど分離性の高い結晶が発生しやすくなり、分離効率が上がることから、SSS/S2Uが0.5以上になるまでダイレクトエステル交換反応を行い、反応を停止させた後、硬質部を分別除去する。前記油脂中のSSS/S2Uが0.75以上、1.0以上、1.25以上、1.5以上、1.75以上と大きくなるほど好ましく、油脂中のSSS/S2Uが2.0以上になるまでダイレクトエステル交換反応を行うことが最も好ましい。好ましい実施態様では、構成脂肪酸全体中の飽和脂肪酸含量が70重量%以下であるパーム系油脂を主原料としたダイレクトエステル交換反応を、少なくとも反応中の油脂組成物中のSSS含量が31重量%を超えることなく、S2U含量が14重量%以下になり、反応を停止させるまで行うことが好ましく、その後、分別する。前記を満たせば、ダイレクトエステル交換反応はどれだけ行っても良いが、コストを考え、前記を満たせば直ぐに停止させることが好ましい。
 また、第二の製造方法では、前記した原料油脂を用い、外部から力を加えることで油脂を流動させながらダイレクトエステル交換反応を行い、その後、固体脂含量を1%以下にすることなく分別する。好ましい実施態様では、油脂中のSSS/S2Uが0.5以上になるまでダイレクトエステル交換反応を行う。前記油脂中のSSS/S2Uが0.75以上、1.0以上、1.25以上、1.5以上、1.75以上と大きくなるほど好ましく、油脂中のSSS/S2Uが2.0以上になるまでダイレクトエステル交換反応を行うことが最も好ましい。また、ダイレクトエステル交換反応中の油脂組成中のSSS含量が31重量%を超えないことがより好ましく、且つ、S2U含量が14重量%以下になることが更に好ましい。
 外部から力を加えて油脂を流動させるためには、攪拌する、反応管などにポンプなどの外圧で油脂を通す、高所から自然落下させるなど、各種の方法を採用しうる。具体的には、撹拌するには、攪拌翼を有しているタンクやピンマシンなどの装置を用いることにより、反応させる油脂を流動させる。反応管などにポンプなどの外圧で油脂を通すには、スタティックミキサーなどの手段により、反応させる油脂を流動させることができる。もし、反応開始時や途中で撹拌などによる外部からの力を加えず、油脂を流動させないでダイレクトエステル交換反応を行うと、分離性の悪い結晶が生成し、反応中の油脂が固形状になってしまい、分別が困難となる場合がある。
 前記外部から力を加えて油脂を流動させてダイレクトエステル交換反応を行う第二の製造方法において、更に液状性を高めるためには、ダイレクトエステル交換反応後、分別処理するまでに、晶析することが好ましく、収率を高めるためには昇温することが好ましい。但し、晶析せずに昇温のみする場合は液状性が低くなる場合がある。昇温する場合の条件は、固体脂含量が1重量%以下にならないようにすることである。もし、固体脂含量が1重量%以下になるまで昇温すると、加熱のためのコストが高くなり、また晶析も行う場合に種晶としての効果がなくなる場合がある。晶析速度は0.01℃/分~5℃/分が好ましく、0.1℃/分~2℃/分がより好ましい。晶析速度が前記範囲を外れると、生成する結晶の分離性が悪い場合がある。
 本発明における上記ダイレクトエステル交換反応とは、エステル交換能を有する触媒下で油脂結晶を発生させながらエステル交換を行う反応である。本発明におけるダイレクトエステル交換反応の方法は、バッチ式、連続式を問わない。更に、前記ダイレクトエステル交換反応は、循環式であってもよい。循環式のダイレクトエステル交換反応としては、例えば、特定の温度に調整した原料油タンクAで析出したパーム系油脂中のSSS及びSS(飽和脂肪酸2つで構成されるジグリセライド)を沈降させ、上澄み液をエステル交換装置Bに連続的に移送する工程(1)と、エステル交換装置Bにおいて、移送された上澄み液をリパーゼの至適温度でエステル交換反応し、その後、再び原料油タンクAに移送する工程(2)を繰り返すことで、原料油タンクAにある油脂中のSSS/S2Uが0.5以上になるまでダイレクトエステル交換反応を行う。より好ましくは、前記油脂中のSSS/S2Uが、0.75以上、1.0以上、1.25以上、1.5以上、1.75以上、最も好ましくは前記油脂中のSSS/S2Uが2.0以上になるまでダイレクトエステル交換反応を行う。更に好ましくは、油脂中のSSS含量が31重量%を超えることなく、S2U含量が14重量%以下になるまでダイレクトエステル交換反応を行う。その後、原料油タンクA中の反応油脂を液状油(軟質部)と固体脂(硬質部)とに分別する。
 前記ダイレクトエステル交換反応に使用する触媒は特に限定せず、エステル交換能を有していれば化学触媒、酵素触媒など何を使用しても良い。化学触媒の中でもカリウムナトリウム合金は低温での活性が高いことから好ましく、ナトリウムメチラートは経済性や扱い易さからより好ましい。化学触媒の使用量は特に限定されず、通常のエステル交換で使用される量で良いが、反応効率と経済性からは原料油脂100重量部に対して0.01重量部~1重量部が好ましい。ナトリウムメチラートでは、反応効率と分別効率、液状油の収率の観点から原料油脂100重量部に対して0.05重量部~0.5重量部が好ましく、0.1重量部~0.3重量部がより好ましい。
 酵素触媒は、エステル交換能を有するリパーゼであれば特に限定されず、位置特異性が全くないランダムエステル交換酵素でも、1,3位特異性を有するエステル交換酵素でも良い。但し、所望の2位のパルミチン酸量によっては、ランダムエステル交換反応を行うか、位置特異的エステル交換反応を行うかは、使い分けた方が好ましい。酵素触媒の使用量はエステル交換反応が進行する量であれば良く特に限定されないが、反応効率と経済性から原料油脂100重量部に対して0.5重量部~20重量部が好ましい。
 本発明において、ダイレクトエステル交換反応温度は、高融点グリセライドが結晶化する温度であれば特に限定されないが、反応開始時は効率良く反応を行なうために触媒活性が最も高くなる温度が好ましい。具体的には、ナトリウムメチラートを使用する場合は50℃~120℃が好ましく、カリウムナトリウム合金を使用する場合は25℃~270℃が好ましい。また、酵素触媒を使用する場合は50℃~70℃が好ましい。また、化学触媒を使用する場合は、反応開始から5~20分後に、ダイレクトエステル交換反応温度を0℃~40℃にすることが好ましく、10℃~40℃にすることがより好ましい。酵素触媒を使用する場合は、反応開始から1~18時間後に、ダイレクトエステル交換反応温度を0℃~40℃にすることが好ましく、10℃~40℃にすることがより好ましい。なお、本発明では、最終的な反応温度をダイレクトエステル交換反応温度とする。
 上記ダイレクトエステル交換反応において、攪拌する場合は、油脂に流動性を与え、また分離性の良い結晶を生成させる観点から、1000rpm以下の速度で攪拌を行うことが好ましく、より好ましくは600rpm以下、更に好ましくは300rpm~1rpmである。
 ダイレクトエステル交換反応後の最終的な結晶量は、分別効率の観点からは反応油脂全体中、3重量%~60重量%が好ましく、より好ましくは5重量%~40重量%である。前記結晶量は、反応時間でコントロールすれば良く、前記0℃~40℃、好ましくは10℃~40℃でのダイレクトエステル交換反応を、化学触媒使用の場合は1~48時間、酵素触媒使用の場合は3~120時間行うことが好ましい。
 ダイレクトエステル交換反応を停止する方法は、反応が停止しさえすれば特に問わないが、化学触媒であれば水やクエン酸水の添加などが挙げられ、分別時の機器の劣化を防ぐ観点から酸性物質で中和停止することが好ましい。停止剤の添加量は、分別効率の観点から反応油脂100重量部に対して0.1重量部~5重量部が好ましく、0.2重量部~1重量部がより好ましい。5重量部より多いと、分別時のろ過効率が悪くなる場合があり、液状油の収率が低下する場合がある。一方、停止剤の添加量が0.1重量部より少ないと、色調が悪くなったり、反応が停止しない場合がある。
 ダイレクトエステル交換反応を停止するタイミングは、液状油の収率の観点からは、反応中の油脂組成中のSSS含量が31重量%以下且つS2U含量が14重量%以下になるまで反応した後が好ましい。より好ましくは液状油の液状性の観点から、SU2/UUU(重量比)が1.9以下、更には1.1以下になるまで反応した後であることが好ましい。
 一方、ダイレクトエステル交換反応を続けるほど反応中の油脂中のSSS含量が増えてゆくため、反応系中に固体脂が増えすぎて分別しにくくなる。従って、分別効率の観点からは、反応中の油脂中のSSS含量が50重量%を超えることなく反応を停止することが好ましく、SSS含量が31重量%を超えることなく反応を停止することがより好ましく、SSS含量が1重量%~31重量%の間で反応を停止することが更に好ましく、1重量%~25重量%が特に好ましく、1~20重量%が極めて好ましく、1重量%~15重量%が最も好ましい。
 また、ダイレクトエステル交換反応を続けるほど反応中の油脂中のS2U含量が減ってゆき、反応後の分別で得られる液状油の液状性の観点からは、反応中の油脂中のS2U含量が14重量%以下になるまで反応させてから停止することが好ましく、10重量%以下になるまでがより好ましく、7重量%以下になるまでが更に好ましく、5重量%以下になるまでが最も好ましい。
 上記ダイレクトエステル交換後に液状油を分別する方法は、溶剤分別、乾式分別を問わないが、溶剤分別は溶剤の使用により設備費やランニングコストがかかるため、溶剤を使用しない乾式分別が好ましい。溶剤を使用する場合は、ヘキサン、アセトンなどを用いることができる。乾式分別の際の分別温度は、0℃~45℃が好ましく、より高い液状性を得るために30℃以下が好ましく、20℃以下がより好ましく、10℃以下が更に好ましく、収率の観点も含めると0℃~10℃が最も好ましい。
 以上のような本発明のフラワーペーストは、例えば、澱粉類、油脂、糖類及びその他の成分を含有する原料を、公知の方法により、均質化処理した後、加熱し、冷却することによって得ることができる。
 上記のような本発明に係るフラワーペーストは、パーム油由来で液状性が高く、且つ酸化安定性の高い新規液状油を用いることで、冷蔵時の結晶化や常温時の酸化劣化が抑えられることから、製造後、3ヶ月間冷蔵保存しても物性の変化がほとんどなく、作業性が良好であり、また製造直後から30℃で3ヶ月間保存した際の油脂の酸化等による風味の劣化も少なく、幅広い温度域で物性と風味が変化しにくいフラワーペーストである。
 以下に実施例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 <脂肪酸組成の測定>
 油脂中の脂肪酸組成は、既述の方法により測定した。
 <油脂中の各トリグリセライド含量の測定>
 油脂中の各トリグリセライド含量は、既述の方法により測定した。
 <2位にパルミチン酸を有するグリセライド含量の測定>
 分析対象の油脂7.5gとエタノール22.5gを混合しノボザイム435(ノボザイムズジャパン社製)を1.2g加えて30℃で4時間反応させ、反応液を濃縮後、シリカゲルカラムクロマトグラフィー(型番:シリカゲル60(0.063-0.200mm)カラムクロマトグラフィー用、メルク社製)によりトリグリセライド、ジグリセライド、モノグリセライドの各成分に分離し、若干未反応で残るトリグリセライド及びジグリセライド成分を除去し、モノグリセライド成分を回収した。そのモノグリセライド0.05gをイソオクタン5mlに溶解し、0.2mol/Lナトリウムメチラート/メタノール溶液1mlを加えて70℃で15分間反応させることによりメチルエステル化し、酢酸により反応液を中和した後に適量の水を加え、有機相をガスクロマトグラフ(型番:6890N、Agilent社製)によるリテンションタイム及びピークエリア面積により2位にパルミチン酸を有するグリセライド含有量を決定した。
 <曇点>
 基準油脂分析試験法「2.2.7-1996 曇り点」に準じて行なった。
 <CDM(Conductometric Determination Method)試験(酸化安定性)>
 基準油脂分析試験法「2.5.1.2-1996 CDM試験」に準じてCDM値を測定した。
 <ヨウ素価>
 基準油脂分析試験法「3.3.3-1996 ヨウ素価(ウィイス-シクロヘキサン法)」に準じて測定を行なった。
 (製造例1;液状油の作製)
 パームオレイン(ヨウ素価64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、30℃でダイレクトエステル交換反応を約8時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ18重量%、13.5重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後、加熱して全ての結晶を溶解し、70℃の温水を加え、静置して油層と水層を分離し、水を抜いて分離する温水洗浄を行った。分離した水層のpHが8以下になるまで温水洗浄を繰り返した後、油層の油脂を90℃に加熱し、真空脱水を行ない、白土を2重量部加え、20分間攪拌後、ろ過することで白土を除き、脱色を行なった。脱色後の温度を40℃までは1℃/分(設定値)、40℃から0.2℃/分(設定値)で下げ、10℃に到達したらその温度を保持し、降温開始時から計24時間になるまで晶析した。晶析後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、トリグリセライド組成中のSU2/UUU(重量比)が1.1の液状油を3200重量部(収率:64%)得た。
 (製造例2;液状油の作製)
 パームオレイン(ヨウ素価57)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、30℃でダイレクトエステル交換反応を約8時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ27重量%、11.6重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後は製造例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が1.1の液状油を2700重量部(収率:54%)得た。
 (製造例3;液状油の作製)
 パームオレイン(ヨウ素価64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で約8時間行った後、更に25℃で約24時間該反応を行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ22重量%、9.5重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後は製造例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が0.9の液状油を3100重量部(収率:62%)得た。
 (製造例4;液状油の作製)
 パームオレイン(ヨウ素価57)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で約8時間行った後、更に25℃で約24時間該反応を行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ30重量%、9.4重量%になったのを確認後、反応停止剤として水を50重量部添加して反応を停止した。その後は製造例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が0.9の液状油を2640重量部(収率:53%)得た。
 (製造例5;液状油の作製)
 パームオレイン(ヨウ素価64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で約8時間、27.5℃で約2時間、25℃で約12時間、22.5℃で約24時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ23重量%、10.6重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後は製造例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が0.7の液状油を3000重量部(収率:60%)得た。
 (製造例6;液状油の作製)
 パームオレイン(ヨウ素価57)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で約8時間、27.5℃で約2時間、25℃で約12時間、22.5℃で約24時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ30重量%、8.0重量%になったのを確認した後、反応停止剤として水を50重量部添加して反応を停止した。その後は製造例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が0.7の液状油を2600重量部(収率:52%)得た。
 (製造例7;液状油の作製)
 パームオレイン(ヨウ素価64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを10重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で約8時間、27.5℃で約2時間、25℃で約2時間、22.5℃で約5時間、18℃で約15時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ29重量%、3.8重量%になったのを確認後、反応停止剤として水を50重量部添加して反応を停止した。その後は製造例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が0.5の液状油を2700重量部(収率:54%)得た。
 (製造例8;液状油の作製)
 パームオレイン(ヨウ素価64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を36℃で約8時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ13重量%、16.5重量%になったのを確認後、反応停止剤として水を50重量部添加して反応を停止した。その後は製造例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が1.3の液状油を3200重量部(収率:64%)得た。
 (製造例9;液状油の作製)
 パーム油(ヨウ素価52)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で約8時間行った後、更に25℃で約24時間該反応を行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ33重量%、8.6重量%になったのを確認後、反応停止剤として水を50重量部添加して反応を停止した。その後は製造例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が0.9の液状油を1800重量部(収率:36%)得た。
 (製造例10;液状油の作製)
 パームオレイン(ヨウ素価57)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを10重量部加え、90℃で20分間保持した後、降温し、ダイレクトエステル交換反応を30℃で約8時間、27.5℃で約2時間、25℃で約2時間、22.5℃で約5時間、18℃で約15時間行い、SSS含量及びS2U含量が反応中の油脂全体中それぞれ37重量%、3.7重量%になったのを確認後、反応停止剤として水を50重量部添加して反応を停止した。その後は製造例1と同様にして、トリグリセライド組成中のSU2/UUU(重量比)が0.5の液状油を850重量部(収率:17%)得た。
 製造例1~10の製造方法で得られた液状油について、脂肪酸組成、トリグリセライド組成、曇点、ヨウ素価、CDM値について分析を行い、それらの結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
 (製造例11;液状油の作製)
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、34℃でダイレクトエステル交換反応を24時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ20重量%、10.5重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、0.2℃/分で降温し、10℃で16時間晶析した後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油を3200重量部(収率:64%)得た。
 (製造例12;液状油の作製)
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを10重量部加え、90℃で20分間保持した後、降温し、30℃到達後、トリパルミチン粉末(ナカライテスク社製)を25重量部加え、ダイレクトエステル交換反応を4時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ20重量%、11.5重量%になったのを確認した後、反応停止剤として25%クエン酸水を30重量部添加して反応を停止した。その後、0.2℃/分で降温し、10℃で16時間晶析した後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油を3200重量部(収率:64%)得た。
 (製造例13;液状油の作製)
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて300rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、34℃でダイレクトエステル交換反応を24時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ20重量%、10.5重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、0.2℃/分で降温し、10℃で16時間晶析した後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油を3200重量部(収率:64%)得た。
 (製造例14;液状油の作製)
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて600rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、34℃でダイレクトエステル交換反応を24時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ20重量%、10.5重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、0.2℃/分で降温し、10℃で16時間晶析した後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油を3150重量部(収率:63%)得た。
 (製造例15;液状油の作製)
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、38℃でダイレクトエステル交換反応を18時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ16重量%、13.0重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油を3850重量部(収率:77%)得た。
 (製造例16;液状油の作製)
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、32℃でダイレクトエステル交換反応を16時間行なった後、更に降温し、10℃でダイレクトエステル交換反応を18時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ22重量%、9.5重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油を3100重量部(収率:62%)得た。
 (製造例17;液状油の作製)
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、32℃でダイレクトエステル交換反応を16時間行なった後、更に降温し、10℃でダイレクトエステル交換反応を18時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ22重量%、9.5重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、30℃まで昇温し、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油を3350重量部(収率:67%)得た。
 (製造例18;液状油の作製)
 パームオレイン(ヨウ素価:57)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、32℃でダイレクトエステル交換反応を12時間行なった後、更に降温し、25℃でダイレクトエステル交換反応を20時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ30重量%、8.0重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、0.17℃/分で降温し、10℃で16時間晶析した後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油を2700重量部(収率:54%)得た。
 (製造例19;液状油の作製)
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、50℃に降温してリパーゼ(ノボザイムズ社製「Lipozyme TL IM」)を500重量部加え、50℃で4時間保持した後、降温し、36℃でダイレクトエステル交換反応を38時間行なった後、更に降温し、10℃で18時間ダイレクトエステル交換反応を行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ22重量%、9.5重量%になったのを確認した後、酵素を含んだまま10℃でフィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油を2850重量部(収率:57%)得た。
 (製造例20;液状油の作製)
 パームオレイン(ヨウ素価:64)5000重量部をセパラブルフラスコに入れて100rpmで攪拌しながら、90℃で真空脱水を行なった後、ナトリウムメチラートを5重量部加え、90℃で20分間保持した後、降温し、34℃でダイレクトエステル交換反応を24時間行なった。その時点で反応中の油脂全体中のSSS含量及びS2U含量がそれぞれ20重量%、10.5重量%になったのを確認した後、反応停止剤として25%クエン酸水を15重量部添加して反応を停止した。その後、加熱して全ての結晶を溶解し、70℃の温水を加えてから静置して油層と水層を分離し、水を抜いて分離する温水洗浄を行った。分離した水層のpHが8以下になるまで該温水洗浄を繰り返した後、油層の油脂を90℃に加熱し、真空脱水を行ない、白土を2重量部加えて20分間攪拌した後、ろ過することで白土を除いて脱色を行なった。脱色後の油脂温度を、40℃になるまでは1℃/分(設定値)で、40℃からは0.2℃/分(設定値)で降温し、10℃に到達したらその温度を保持し、降温開始時から計24時間になるまで晶析した。晶析後、フィルタープレス(3MPaまで加圧)を用いてろ別することで、液状油を3200重量部(収率:64%)得た。
 上記製造例11~20で得られた液状油の分析値を表2にまとめた。
Figure JPOXMLDOC01-appb-T000002
(実施例1)
 10Lステンレスビーカーにマルトース水飴(糖濃度75%、昭和産業(株)製)1250重量部と水1484重量部とカロチン色素製剤(三栄源エフ・エフ・アイ(株)製)0.715重量部を入れ、ケミスターラーで攪拌しながら、予め、クチナシ色素(三栄源エフ・エフ・アイ(株)製)1.05重量部、グリシン(有機合成薬品工業(株)製)50重量部、タマリンドガム(DSP五協フード&ケミカル(株)製)10重量部、キサンタンガム(大日本住友製薬(株)製)3.5重量部、ソルビン酸カリウム(上野製薬(株)製)6重量部を混合しておいたものを加え、更にバターミルクパウダー(よつ葉乳業(株)製)200重量部、WPC80(Warrnambool Cheese and 
Butter製)15重量部、乾燥卵黄(キューピータマゴ(株)製)10重量部、加工澱粉(松谷化学工業(株)製)180重量部、食塩2.5重量部、グラニュー糖(三井製糖(株)製)750重量部、35重量部の水に溶解したクエン酸(磐田化学工業(株)製)2.5重量部を順に加えて攪拌しながら、ウォーターバス(アドバンテック東洋(株)製)にて50℃に加温し、50℃になった時点で製造例3のパーム油由来液状油(ヨウ素価84)1000重量部を加え、10分間攪拌を行い、混合物を作製した。この混合物を、高圧ホモゲナイザー((株)イズミフードマシナリ)で10MPaにて均質化し、乳化物を得た。この乳化物を、掻き取り攪拌機付き加熱鍋((株)カジワラ製)にて攪拌しながら90℃に加温し、90℃で3分攪拌した後、水250重量部を加え、更に1分間攪拌した後、10℃の恒温槽にて一晩冷却し、フラワーペーストを得た。
 (実施例2)
 製造例3のパーム油由来液状油の代わりに、製造例16のパーム油由来液状油(ヨウ素価87)を使用した以外は、全て実施例1と同様にしてフラワーペーストを得た。
 (比較例1)
 製造例3のパーム油由来液状油の代わりに、ナタネ油を使用した以外は、全て実施例1と同様にしてフラワーペーストを得た。
 (比較例2)
 製造例3のパーム油由来液状油の代わりに、パーム油を使用した以外は、全て実施例1と同様にしてフラワーペーストを得た。
 <常温保存時の風味の変化>
 実施例1、2および比較例1、2で得られたフラワーペーストを、ポリプロピレン袋(「冷凍・耐湯バックM」、アズワン株式会社製)に300g充填し、30℃で保管し、経日的に酸化等により劣化した風味を、8人のパネラーにて、以下の基準により官能評価を行い、平均を評価点とした。結果を表3にまとめた。
 4点:酸化等による風味の劣化を全く感じない。
 3点:酸化等による風味の劣化をほとんど感じない。
 2点:酸化等による風味の劣化を少し感じる。
 1点:酸化等による風味の劣化を強く感じる。
 <冷蔵保存時の絞りやすさの変化>
 実施例1、2および比較例1、2で得られたフラワーペーストを10℃にて保管し、経時的に直径1cmの丸口の口金を付けた絞り袋に100g移し、8人のパネラーにて、ステンレス製のパットに絞り、以下の基準により絞りやすさを評価し、平均を評価点とした。結果を表3にまとめた。
 4点:非常に絞りやすい。
 3点:絞りやすい。
 2点:絞りにくい。
 1点:非常に絞りにくい。
Figure JPOXMLDOC01-appb-T000003
 表3に示すとおり、ナタネ油を用いて作製した比較例1のフラワーペーストは、風味が悪く、常温保存時の風味の劣化も大きい。一方、パーム油を用いて作製した比較例2のフラワーペーストは、風味が良く、常温保存時の風味の劣化も小さいが、冷蔵保存時の作業性が悪化した。これに対し、パーム油由来液状油を用いて作製した本発明の実施例1、2のフラワーペーストは、風味が良く、常温保存時の風味の劣化も小さく、しかも冷蔵保存時の作業性の悪化もなかった。

Claims (3)

  1.  パーム系油脂を主原料とし、SU2/UUU重量比が1.9以下且つSSS含量が2重量%以下であり、2位にパルミチン酸が結合したグリセライドを液状油全体中10~30重量%含有するパーム油由来液状油を、フラワーペースト全体中8~45重量%含有するフラワーペースト。
  2.  前記パーム油由来液状油の曇点が0~-12℃である請求項1に記載のフラワーペースト。
  3.  前記パーム油由来液状油のCDM値が5時間以上である請求項1又は2に記載のフラワーペースト。
PCT/JP2012/077798 2011-10-26 2012-10-26 フラワーペースト WO2013062112A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-235519 2011-10-26
JP2011235519A JP2015006131A (ja) 2011-10-26 2011-10-26 フラワーペースト

Publications (1)

Publication Number Publication Date
WO2013062112A1 true WO2013062112A1 (ja) 2013-05-02

Family

ID=48167936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077798 WO2013062112A1 (ja) 2011-10-26 2012-10-26 フラワーペースト

Country Status (2)

Country Link
JP (1) JP2015006131A (ja)
WO (1) WO2013062112A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016059669A1 (ja) * 2014-10-14 2016-04-21 オリエンタル酵母工業株式会社 フラワーペースト調製用粉体組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296096A (ja) * 1985-06-26 1986-12-26 キユーピー株式会社 食用油脂の製造方法
JPH0686636A (ja) * 1992-09-08 1994-03-29 Asahi Denka Kogyo Kk 製菓用油脂組成物の製造方法
JPH07135901A (ja) * 1993-11-18 1995-05-30 Asahi Denka Kogyo Kk 製菓用油脂組成物の製造方法
WO2011132734A1 (ja) * 2010-04-22 2011-10-27 株式会社カネカ 液状油脂とその製造法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296096A (ja) * 1985-06-26 1986-12-26 キユーピー株式会社 食用油脂の製造方法
JPH0686636A (ja) * 1992-09-08 1994-03-29 Asahi Denka Kogyo Kk 製菓用油脂組成物の製造方法
JPH07135901A (ja) * 1993-11-18 1995-05-30 Asahi Denka Kogyo Kk 製菓用油脂組成物の製造方法
WO2011132734A1 (ja) * 2010-04-22 2011-10-27 株式会社カネカ 液状油脂とその製造法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016059669A1 (ja) * 2014-10-14 2016-04-21 オリエンタル酵母工業株式会社 フラワーペースト調製用粉体組成物
JPWO2016059669A1 (ja) * 2014-10-14 2017-07-27 オリエンタル酵母工業株式会社 フラワーペースト調製用粉体組成物

Also Published As

Publication number Publication date
JP2015006131A (ja) 2015-01-15

Similar Documents

Publication Publication Date Title
AU2015247057B2 (en) Oils and fats-containing food
JP5306757B2 (ja) 起泡性水中油型乳化油脂組成物
JP6854679B2 (ja) 冷凍菓子用ミックスおよびそれを使用した冷凍菓子
JP4911815B2 (ja) 植物ステロール含有油脂組成物
WO2021182315A1 (ja) 練り込み用油中水型乳化組成物
WO2013062113A1 (ja) 可塑性油脂組成物
JP5960940B1 (ja) 高油分フィリング材
JP5043792B2 (ja) ベーカリー生地の製造方法
JP5640609B2 (ja) ホイップクリーム用油脂組成物
JP5982779B2 (ja) 濃縮乳様水中油型乳化油脂組成物
JP6246787B2 (ja) 乳化油脂組成物
JP4381362B2 (ja) 油中水型乳化組成物
WO2013062111A1 (ja) 酸性水中油型乳化油脂組成物
JP6507738B2 (ja) 新規なフィリング・トッピング用油中水型乳化油脂組成物
WO2013062112A1 (ja) フラワーペースト
JP6441625B2 (ja) 層状食品用油脂組成物とそれを用いた可塑性油脂、生地及び焼成品
JP6278649B2 (ja) 中鎖脂肪酸含有トリグリセリドを含む乳化組成物及びその製造方法
JP2018068173A (ja) シュー用油脂組成物とそれを用いたシュー生地およびシュー皮の製造方法
JP6810570B2 (ja) カカオ分高含有のフィリング
JP5460433B2 (ja) フラワーペースト類
WO2013062110A1 (ja) ホイップドクリーム用起泡性水中油型乳化油脂組成物
JP2020028238A (ja) 冷凍菓子用油脂組成物
JP2013090601A (ja) コーヒークリーム
JP6910707B2 (ja) 冷凍菓子用ミックスおよびそれを使用した冷凍菓子
JP2021132614A (ja) フィリング用油脂組成物、ならびに、それを含む冷菓用フィリングおよび複合冷菓

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12843506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP