WO2013061667A1 - 浸炭検知方法 - Google Patents

浸炭検知方法 Download PDF

Info

Publication number
WO2013061667A1
WO2013061667A1 PCT/JP2012/070159 JP2012070159W WO2013061667A1 WO 2013061667 A1 WO2013061667 A1 WO 2013061667A1 JP 2012070159 W JP2012070159 W JP 2012070159W WO 2013061667 A1 WO2013061667 A1 WO 2013061667A1
Authority
WO
WIPO (PCT)
Prior art keywords
carburization
coil
signal
value
excitation
Prior art date
Application number
PCT/JP2012/070159
Other languages
English (en)
French (fr)
Inventor
繁俊 兵藤
義一 滝本
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP12843672.2A priority Critical patent/EP2749877A4/en
Priority to CA2851333A priority patent/CA2851333C/en
Priority to CN201280052866.6A priority patent/CN103907019B/zh
Priority to KR1020147013176A priority patent/KR101604935B1/ko
Priority to US14/349,722 priority patent/US9304110B2/en
Publication of WO2013061667A1 publication Critical patent/WO2013061667A1/ja
Priority to ZA2014/02728A priority patent/ZA201402728B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces

Definitions

  • the present invention relates to a method for detecting the presence or absence of carburization on the inner surface of a pipe by an electromagnetic inspection method such as an electromagnetic induction inspection method or a leakage flux inspection method.
  • carburization occurs in austenitic stainless steel.
  • a cracking tube used for a pyrolysis reaction in an ethylene production process of a petrochemical plant is made of austenitic stainless steel, and carburization occurs on the inner surface when used for a long time.
  • carburization occurs by performing a heat treatment in a state where the degreasing failure of the lubricating oil is not performed. Since the occurrence of such carburization is a factor that greatly reduces the life of the cracking tube, it is desired to accurately detect the presence or absence of carburization.
  • the cracking tube installed in the plant is subjected to electromagnetic inspection such as electromagnetic induction inspection as a non-destructive inspection over the entire length of the cracking tube during periodic repair of the plant, and the output value is small or large.
  • electromagnetic inspection such as electromagnetic induction inspection as a non-destructive inspection over the entire length of the cracking tube during periodic repair of the plant, and the output value is small or large.
  • the presence or absence of carburization is detected.
  • the presence or absence of carburization is detected by performing an electromagnetic inspection over the entire length or by observing the microstructure by cutting both ends.
  • This invention is made in view of such a prior art, and makes it a subject to provide the carburization detection method which can also detect the fine carburization difficult to detect with the conventional carburization detection method.
  • the inventors of the present invention proposed a ferrite on the outer surface of a tube having fine carburization on the inner surface as described in Japanese Patent Application Laid-Open No. 2010-197222 proposed by the present inventors.
  • Meters were placed facing each other, and the magnetic strength (amount of ferrite) at the carburized site was measured with this ferrite meter, but an effective indication value was not obtained.
  • the magnetic strength was measured at 10 locations on the tube where it was confirmed by microstructural observation that fine carburization had occurred on the inner surface, and the indicated values of the ferrite meter were all 0.01 Fe% or less. It was. The reason why the magnetic strength is small in this way is presumed to be because the amount of magnetic oxide produced by carburization is small.
  • the present inventors first tried to detect fine carburization from the inner surface rather than from the outer surface of the pipe. Specifically, a test was conducted to confirm whether carburization detection was possible under the following conditions (1) to (3) using a general flaw-inspection insertion coil.
  • the detection signal (absolute value signal) output from the interpolation coil was amplified and synchronously detected to separate and extract the first signal component and the second signal component whose phases are different from each other by 90 °. Then, the phases of the first signal component and the second signal component are rotated (shifted) by the same predetermined amount, and the first signal component after the rotation is the X signal and the second signal component after the rotation is the Y signal.
  • the amount of rotation is such that when the X and Y signals are represented on the XY vector plane, the Y-axis direction of the XY vector plane corresponds to the lift-off fluctuation of the tube.
  • the axial direction was determined so as to correspond to the magnetic variation of the tube.
  • Inspected object 13 steel pipes with an outer diameter of 19 mm and an inner diameter of 17 mm with fine carburization on the inner surface
  • Interpolated coil outer diameter 16.5 mm, length 2 mm, impedance 50 ⁇ / 100 kHz
  • a magnetic tape having the number of turns of 2.5 turns and 6 turns is applied to the inner surface of the steel pipe of the same type as the object to be inspected and not carburized, and detection signals obtained from these magnetic tapes are also described above. And evaluated in the same manner.
  • FIG. 1 is a diagram showing the results of the above test (X signal and Y signal represented on the XY vector plane).
  • the data plotted with white diamonds is obtained from the carburized portion to be inspected, and the data plotted with black diamonds is obtained from magnetic tape.
  • the flaw inspection using the interpolated coil as in the above-described test detects a change in electrical resistance due to the flaw and is generally sensitive to magnetic fluctuations because a high-sensitivity inspection is performed.
  • the X signal becomes a negative value corresponding to the magnitude of the magnetic fluctuation (data is plotted in the negative direction of the X axis).
  • the data obtained from the carburized portion to be inspected has a positive value, and carburization cannot be detected.
  • the data indicated by the arrows A, B, and C in FIG. 1 are negative values, even the data indicating the negative value having the largest absolute value (data indicated by the arrow A) has 6 turns.
  • the data obtained from the magnetic tape and the X signal have the same magnitude and are only very weak magnetic fluctuations.
  • the excitation capability (magnetic field strength) used is weak. That is, the magnetization characteristic of the magnetic material is represented by a BH curve, and the initial permeability when the magnetic field strength is small is extremely small, and the magnetic permeability increases as the magnetic field strength increases. For this reason, it has been found that the interpolated coil used in general flaw inspection cannot detect fine carburization that causes only weak magnetic fluctuations. In order to detect minute magnetic fluctuations, it is preferable to employ a mutual induction method in which an excitation coil and a detection coil are separately provided. However, when using an insertion coil, the size of the coil inserted into the tube is limited.
  • the present inventors have reexamined a method for detecting the presence or absence of carburization on the inner surface of the pipe to be inspected. Specifically, first, using the method shown in FIG. 1 of the Japanese Patent Application Laid-Open No. 2010-197222 proposed by the present inventors (hereinafter referred to as the conventional method), the inner surface of the tube under the following conditions: The possibility of detecting magnetic tape affixed to the tape was examined. In addition, since the magnetic fluctuation
  • the magnetic strength (the amount of ferrite) of the magnetic tape affixed to the inner surface of the tube was measured with a ferrite meter.
  • the conventional method could not detect a magnetic tape having 3 or fewer turns.
  • minute carburization cannot be detected because weak magnetic fluctuations cannot be detected under the above-described conditions. Therefore, the inventors of the present invention have a method for detecting the presence or absence of carburization on the inner surface of the tube from the outer surface of the tube, and the influence of excitation capability (magnetic field strength) and excitation frequency on the detection capability of fine carburization (weak magnetic fluctuation). Further studies were conducted as follows.
  • the magnetic field strength is further increased, the magnetic flux density is saturated and the magnetic permeability is decreased. For this reason, it is difficult to detect a weak magnetic fluctuation unless an appropriate magnetic field strength is given.
  • the magnetic permeability is small, the change in the output signal (output voltage) of the detection coil accompanying the magnetic fluctuation is small, so that the weak magnetic fluctuation cannot be detected.
  • the detection capability of fine carburization depends on the excitation capability (magnetic field strength) in terms of maximizing the magnetic permeability.
  • the penetration depth has a generally positive correlation with the excitation frequency of ⁇ 1 ⁇ 2 power, and the sensitivity (electric noise) of the signal processing unit has a negative correlation with the excitation frequency (in other words, Therefore, it was found that the detection capability of fine carburization depends on the -3/2 power of the excitation frequency.
  • the present inventors have determined that the current value of the excitation current flowing through the excitation coil is I (A), the length of the excitation coil is L (mm), the number of turns of the excitation coil is N, and the excitation When the frequency of the exciting current flowing through the coil is F (kHz), the parameter K represented by the following equation (1) is considered to be an index of carburization detection capability.
  • K (I ⁇ N / L) ⁇ F -3/2 (1)
  • FIG. 2 is a diagram showing an example of test results obtained by investigating the relationship between the detection signal obtained from the magnetic tape attached to the inner surface of the pipe where carburization has not occurred and the parameter K using the mutual induction method.
  • the horizontal axis in FIG. 2 indicates the parameter K, and the vertical axis indicates the detection signal.
  • the value of the parameter K was changed by changing the conditions (excitation current, etc.) of the exciting coil 11 using the eddy current inspection apparatus 100 described later with reference to FIG.
  • a detection signal (specifically, an absolute value signal output from the detection coil 12 is obtained by signal processing corresponding to the value of each parameter K and obtained from a magnetic tape having one and three turns.
  • the value of the (X-axis signal) was evaluated. As shown in FIG.
  • the parameter K can be an index of carburization detection capability.
  • the inventors have found that fine carburization can be detected by appropriately adjusting the value of the parameter K.
  • the present invention has been completed based on the above findings of the present inventors. That is, the present invention includes the following first step and second step.
  • First step A carburizing material known to be carburized on the inner surface of the tube is inserted into the exciting coil and the detecting coil, and the current value of the exciting current energized to the exciting coil is set to I (A), When the length of the exciting coil is L (mm), the number of turns of the exciting coil is N, and the frequency of the exciting current energized to the exciting coil is F (kHz), the carburizing is performed based on the output signal of the detecting coil.
  • the value of the parameter K represented by the following formula (1) is determined so that carburization occurring in the material can be detected.
  • Second step After setting the conditions of the exciting coil so that the value of the determined parameter K is obtained, the tube to be inspected is inserted into the exciting coil and the detecting coil, and the detecting coil The presence / absence of carburization on the inner surface of the pipe is detected based on the output signal.
  • the value of the parameter K is determined so that carburization of the carburized material can be detected.
  • the parameter K is proportional to the magnetic field strength (I ⁇ N / L) and proportional to the ⁇ 3/2 power of the excitation frequency F.
  • the parameter K expressed by the equation (1) is an index representing the carburization detection capability. I can say that. Therefore, in order to detect fine carburization, prepare a carburized material that has undergone fine carburization, determine the value of parameter K so that this carburization can be detected, that is, adjust the carburization detection capability. Good.
  • the second step after setting the excitation coil conditions so that the value of the parameter K determined in the first step is obtained, the presence or absence of carburization on the inner surface of the tube to be inspected is determined. Detected.
  • the condition to be inspected is set after setting the excitation coil conditions so that the value of the parameter K is obtained. If the pipe is inspected, it can be expected that the carburization equivalent to the carburization occurring in the carburized material used for determining the value of the parameter K can be detected.
  • the value of the parameter K is preferably set to 4 ⁇ K ⁇ 8. That is, in the second step, it is preferable to set the excitation coil condition so that the value of the parameter K satisfies 4 ⁇ K ⁇ 8.
  • the carburization detection method it is possible to detect fine carburization that is difficult to detect by the conventional carburization detection method.
  • FIG. 1 is a diagram showing the results of a test conducted by the present invention using an insertion coil.
  • FIG. 2 is a diagram showing an example of test results obtained by investigating the relationship between the detection signal obtained from the magnetic tape attached to the inner surface of the pipe where carburization has not occurred and the parameter K using the mutual induction method.
  • FIG. 3 is a schematic diagram showing a schematic configuration of an eddy current inspection apparatus used in the carburization detection method according to the embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the X and Y signals output from the phase rotator provided in the eddy current inspection apparatus shown in FIG. 3 on the XY vector plane.
  • FIG. 1 is a diagram showing the results of a test conducted by the present invention using an insertion coil.
  • FIG. 2 is a diagram showing an example of test results obtained by investigating the relationship between the detection signal obtained from the magnetic tape attached to the inner surface of the pipe where carburization has not occurred and the parameter K using the mutual induction method.
  • FIG. 3
  • FIG. 5 is a diagram showing an example of test results obtained by investigating the relationship between detection signals obtained from a plurality of carburized materials and the parameter K using the eddy current inspection apparatus shown in FIG.
  • FIG. 6A is a diagram showing the results of examining the relationship between the detection signal and the carburization depth by extracting data of 4 ⁇ K ⁇ 8 from the data shown in FIG.
  • FIG. 3 is a schematic diagram showing a schematic configuration of an eddy current inspection apparatus used in the carburization detection method according to the embodiment of the present invention.
  • the eddy current inspection apparatus 100 of this embodiment includes a detection sensor 1 and a signal processing unit 2.
  • the detection sensor 1 is shown in cross section.
  • the detection sensor 1 is configured to induce an eddy current by applying an alternating magnetic field to the steel pipe P and to detect an eddy current induced in the steel pipe P.
  • the detection sensor 1 of the present embodiment is a single detection that detects an excitation coil 11 that applies an alternating magnetic field to the inserted steel pipe P and an eddy current induced in the inserted steel pipe P.
  • a coil 12 is a single detection that detects an excitation coil 11 that applies an alternating magnetic field to the inserted steel pipe P and an eddy current induced in the inserted steel pipe P.
  • the signal processing unit 2 energizes the detection sensor 1 with an alternating excitation current, and detects the presence or absence of carburization on the inner surface of the steel pipe P based on the detection signal (absolute value signal) output from the detection sensor 1. It is configured. Specifically, the signal processing unit 2 of the present embodiment includes an oscillator 21, an amplifier 22, a synchronous detector 23, a phase rotator 24, an A / D converter 26, and a determination unit 27.
  • the oscillator 21 supplies an alternating excitation current to the detection sensor 1 (specifically, the excitation coil 11 of the detection sensor 1). Thereby, as described above, an alternating magnetic field acts on the steel pipe P, and an eddy current is induced in the steel pipe P.
  • the absolute value signal output from the detection sensor 1 (specifically, the detection coil 12 of the detection sensor 1) is amplified by the amplifier 22 and then output to the synchronous detector 23.
  • the synchronous detector 23 synchronously detects the output signal of the amplifier 22 based on the reference signal output from the oscillator 21. More specifically, the first reference signal having the same frequency as the excitation current supplied to the detection sensor 1 from the oscillator 21 toward the synchronous detector 23 and the phase of the first reference signal are expressed as follows. A second reference signal shifted by 90 ° is output. Then, the synchronous detector 23 determines from the output signal of the amplifier 22 a signal component having the same phase as the phase of the first reference signal (first signal component) and a signal component having the same phase as the phase of the second reference signal (second signal). Component). The separated first signal component and second signal component are output to the phase rotator 24, respectively.
  • the phase rotator 24 rotates (phase shifts) the phases of the first signal component and the second signal component output from the synchronous detector 23 by the same predetermined amount, for example, the first signal component is the X signal,
  • the two signal components are output to the A / D converter 26 as Y signals.
  • the X and Y signals output from the phase rotator 24 are called so-called Lissajous waveforms used for flaw inspection or the like on the XY vector plane represented by two axes (X axis and Y axis) orthogonal to each other.
  • Signal waveform that is, the absolute value signal waveform of the detection sensor 1 expressed in polar coordinates (Z, ⁇ ) where the amplitude is Z and the phase is ⁇ (more precisely, the absolute value signal waveform after being amplified by the amplifier 22)
  • Z, ⁇ the absolute value signal waveform of the detection sensor 1 expressed in polar coordinates (Z, ⁇ ) where the amplitude is Z and the phase is ⁇ (more precisely, the absolute value signal waveform after being amplified by the amplifier 22)
  • FIG. 4 is a schematic diagram showing the X and Y signals output from the phase rotator 24 on the XY vector plane.
  • the reference material is inserted into the detection sensor 1 and stopped so that the X signal is 0 and the Y signal is at a predetermined voltage (for example, 4 V) (the tip of the vector is positioned at the reference point shown in FIG. 4).
  • a predetermined voltage for example, 4 V
  • the amplification factor of the amplifier 22 and the phase rotation amount of the phase rotator 24 are adjusted.
  • the steel pipe P to be inspected is moved in the axial direction and inserted into the detection sensor 1, whereby the X signal and the Y signal are acquired.
  • the A / D converter 26 A / D converts the output signal of the phase rotator 24 and outputs it to the determination unit 27.
  • the determination unit 27 is based on the output data of the A / D converter 26 (that is, digital data obtained by A / D converting the X signal and the Y signal, hereinafter referred to as X signal data and Y signal data). Detects the presence or absence of carburizing. As shown in FIG. 3, the position of the tip of the vector fluctuates according to the magnetic fluctuation of the steel pipe P, but the fluctuation amount is larger in the X-axis direction than in the Y-axis direction. For this reason, the determination part 27 of this embodiment detects the presence or absence of carburization using X signal data among the input X signal data and Y signal data.
  • the determination unit 27 of the present embodiment compares the input X signal data with a threshold value determined and stored in advance, and if the X signal data exceeds the threshold value, It is determined that carburization has occurred on the inner surface of the steel pipe P. If the X signal data is within the threshold value, it is determined that carburization has not occurred on the inner surface of the steel pipe P.
  • the carburizing material P0 which is known to have fine carburization on the inner surface, is previously applied to the exciting coil 11 and The detection coil 12 is inserted (see FIG. 3). Then, the value of the parameter K expressed by the following equation (1) is set so that carburization occurring in the carburized material P0 can be detected based on the output signal from the detection coil 12 (specifically, X signal data). Make a decision.
  • I is the current value (A) of the exciting current that is passed through the exciting coil 11
  • L is the length (mm) of the exciting coil 11
  • N is the number of turns of the exciting coil 11
  • F is the exciting coil.
  • 11 means the frequency of the excitation current energized to (kHz).
  • the conditions of the exciting coil 11 (current value of exciting current, length of exciting coil, number of turns of exciting coil, frequency of exciting current) are set so that the value of the parameter K determined as described above can be obtained.
  • the steel pipe P to be inspected is inserted into the excitation coil 11 and the detection coil 12, and the presence or absence of carburization on the inner surface of the steel pipe P is detected based on the output signal (specifically, X signal data) from the detection coil 12. To do.
  • FIG. 5 is a diagram showing an example of a test result obtained by investigating the relationship between the detection signal obtained from the plurality of carburized materials P0 and the parameter K using the eddy current inspection apparatus 100 under the following test conditions.
  • the horizontal axis indicates the parameter K
  • the vertical axis indicates the detection signal.
  • the value of the parameter K was changed by changing the conditions of the exciting coil 11 of the eddy current inspection apparatus 100.
  • detection signals specifically, X-axis signals obtained by performing signal processing on the absolute value signals output from the detection coil 12
  • the value was evaluated.
  • FIG. 5 is a diagram showing an example of a test result obtained by investigating the relationship between the detection signal obtained from the plurality of carburized materials P0 and the parameter K using the eddy current inspection apparatus 100 under the following test conditions.
  • the horizontal axis indicates the parameter K
  • the vertical axis indicates the detection signal.
  • the X signal has a negative value, so that it is possible to detect magnetic fluctuations caused by the carburized portion on the inner surface of the carburized material P0.
  • the magnetic field strength on the inner surface of the carburized material P0 becomes small because the current value of the exciting current is small, or because the exciting frequency is high and the penetration depth is shallow.
  • the magnetic permeability of the carburized material P0 becomes small, and the magnetic fluctuation accompanying carburization cannot be detected with high accuracy.
  • the threshold value stored in the determination unit 27 is set to 0, for example, and then the steel pipe P to be inspected is inspected, the steel pipe P It can be said that the presence or absence of carburization on the inner surface can be detected.
  • FIG. 6 (a) is a diagram showing the result of examining the relationship between the detection signal and the carburization depth by extracting data of 4 ⁇ K ⁇ 8 from the data shown in FIG.
  • data plotted with the same symbol is data having the same K value.
  • the detection signal and the carburization depth show a relatively good correlation. Therefore, the carburization depth can be predicted to some extent from the magnitude of the detection signal.
  • K 8
  • the absolute value of the detection signal may be small (data surrounded by a dotted line in FIG. 6A), so that 4 ⁇ K as shown in FIG. 6B. ⁇ 6 is preferable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

【課題】従来の浸炭検知方法では検知困難な微細な浸炭をも検知可能な浸炭検知方法を提供する。 【解決手段】本発明は、管内面に浸炭の生じていることが既知である浸炭材P0を励磁コイル11及び検出コイル12に内挿させ、励磁コイルに通電する励磁電流の電流値をI(A)、励磁コイルの長さをL(mm)、励磁コイルの巻き数をN、励磁コイルに通電する励磁電流の周波数をF(kHz)とした場合に、検出コイルからの出力信号に基づき浸炭材に生じている浸炭を検知できるように、下記の式(1)で表されるパラメータKの値を決定した後、このパラメータKの値が得られるように励磁コイルの条件を設定した後、被検査対象である管内面における浸炭の有無を検知することを特徴とする。 K=(I・N/L)・F-3/2 ・・・(1)

Description

浸炭検知方法
 本発明は、電磁誘導検査法や漏洩磁束検査法などの電磁気検査法によって、管内面における浸炭の有無を検知する方法に関する。
 各種の鉄鋼材料のうち、オーステナイト系ステンレス鋼には浸炭が生じることが知られている。例えば、石油化学プラントのエチレン製造工程での熱分解反応に用いられるクラッキングチューブは、オーステナイト系ステンレス鋼からなり、長時間使用されると内面に浸炭が生じる。また、クラッキングチューブの製造工程では、潤滑油脂の脱脂不良の状態で熱処理を行うことにより浸炭が生じる。斯かる浸炭の発生は、クラッキングチューブの寿命を大きく低減する要因となるため、浸炭の有無を精度良く検知することが望まれている。
 このため、従来より、プラントに設置されたクラッキングチューブについては、プラントの定期修理の際に、クラッキングチューブの全長に亘る非破壊検査として、電磁誘導検査等の電磁気検査を行い、その出力値の大小により浸炭の有無を検知している。また、クラッキングチューブの製造工程においても、全長に亘る電磁気検査を行ったり、或いは、両端部を切断してミクロ組織観察を行うことにより、浸炭の有無を検知している。
 一般に、継目無管の製造工程において抽伸加工を施した場合には、管の内面粗さが小さくなるため、内面に付着する潤滑油脂の量が少なくなる。その結果、脱脂不良の状態で熱処理を行うことで生じる浸炭は微細なものとなる。特に、高圧容器内で抽伸加工を施す場合には、管内面が鏡面に近いものとなるため、脱脂不良に起因する浸炭は極めて微細なものとなる。
 浸炭の有無を検知する方法としては、実用化されていないものを含めて各種の方法(例えば、特許文献1~7参照)が提案されているものの、何れの方法も上述したような微細な浸炭を検知できるものではない。
日本国特開平3-253555号公報 日本国特開昭62-6153号公報 日本国特開平4-145358号公報 日本国特開平6-88807号公報 日本国特開2000-266727号公報 日本国特開2004-279054号公報 日本国特開2004-279055号公報
 本発明は、斯かる従来技術に鑑みなされたものであり、従来の浸炭検知方法では検知困難な微細な浸炭をも検知可能な浸炭検知方法を提供することを課題とする。
 前記課題を解決するに際し、まず本発明者らは、本発明者らが提案した日本国特開2010-197222号公報に記載のように、内面に微細な浸炭が生じている管の外面にフェライトメータを対向配置し、このフェライトメータによって浸炭部位の磁性強度(フェライト量)を測定したが、有効な指示値が得られなかった。具体的には、内面に微細な浸炭が生じていることをミクロ組織観察で確認した管の10箇所について磁性強度を測定したが、フェライトメータの指示値は、いずれも0.01Fe%以下であった。このように磁性強度が小さいのは、浸炭によって生じる磁性酸化物の生成量が少ないためと推定される。
 上記の結果を踏まえて、本発明者らは、微細な浸炭を管の外面から検知するのではなく、内面から検知することをまず最初に試みた。具体的には、一般的なきず検査用の内挿コイルを用い、下記の(1)~(3)の条件で浸炭検知の可否を確認する試験を行った。評価に際しては、内挿コイルから出力された検出信号(絶対値信号)を増幅後に同期検波して、互いに位相が90°異なる第1信号成分及び第2信号成分を分離・抽出した。そして、第1信号成分及び第2信号成分の位相を互いに同一の所定量だけ回転(移相)し、回転後の第1信号成分をX信号、回転後の第2信号成分をY信号とした。なお、上記の回転量(移相量)は、X信号及びY信号をX-Yベクトル平面上に表したときに、X-Yベクトル平面のY軸方向が管のリフトオフ変動に対応し、X軸方向が管の磁性変動に対応するように決定した。
 (1)被検査対象:内面に微細な浸炭を有する外径19mm、内径17mmの鋼管13本
 (2)内挿コイル:外径16.5mm、長さ2mm、インピーダンス50Ω/100kHz
 (3)励磁周波数(検査周波数):25kHz
 また、上記の被検査対象と同種の鋼管であって浸炭していないものの内面に、巻き数がそれぞれ2.5ターン、6ターンの磁気テープを貼り付け、これら磁気テープから得られる検出信号も上記と同様に評価した。
 図1は、上記試験の結果を示す図(X信号及びY信号をX-Yベクトル平面上に表した図)である。図1において白抜きの菱形でプロットしたデータは被検査対象の浸炭部位から得られたものを、黒の菱形でプロットしたデータは磁気テープから得られたものを示す。
 上記試験のような内挿コイルを用いたきず検査は、きずによる電気抵抗変化を検知するものであり、一般的に高感度の検査が行われるため、磁性変動には敏感である。そして、磁性変動が生じている場合、X信号は磁性変動の大きさに応じた負の値になる(X軸の負の方向にデータがプロットされる)。しかしながら、図1に矢符A、B、Cで示すデータを除き、被検査対象の浸炭部位から得られたデータは正の値となり、浸炭を検知できない結果となった。図1に矢符A、B、Cで示すデータは負の値ではあるものの、最も絶対値の大きな負の値を示すデータ(矢符Aで示すデータ)であっても、巻き数6ターンの磁気テープから得られるデータとX信号の大きさは同程度であり、極めて微弱な磁性変動でしかない。
 一般的なきず検査用の内挿コイルを用いて微細な浸炭を検知することが困難であるのは、使用される励磁能力(磁場強度)が微弱なことが原因である。つまり、磁性材の磁化特性はB-H曲線で表され、磁場強度が小さい場合の初透磁率は極めて小さく、磁場強度の増加と共に透磁率が大きくなる特性を示す。このため、一般的なきず検査で用いられる内挿コイルでは、微弱な磁性変動しか生じない微細な浸炭を検知できないことが判明した。
 微細な磁性変動を検知するには、励磁コイルと検出コイルとを別体に設ける相互誘導法を採用することが好ましいものの、内挿コイルを用いる場合には、管内に挿入するコイル寸法の制約から、大きな励磁コイルを用いる相互誘導法を採用することが困難である。また、磁場強度を高めるには、大きな励磁電流を通電するために、励磁コイルの巻線径と、励磁コイルに励磁電流を供給する数10m程度の長さを有する電気ケーブルの径とを大きくすることが必要になるが、管の内径の制約を受ける。また、電気ケーブルの径を大きくしても、励磁電流を増加させると、励磁コイル自体の発熱が大きくなるため、検出コイルに温度変動が生じ、安定した検出信号(絶対値信号)を得ることが困難になるおそれもある。
 さらに、内挿コイルを管内で走行させることになるため、高速走行が困難であると共に、管内に挿入した内挿コイルの引き戻しが必要となるため、管の製造ラインでの自動検査を行うには不向きである。
 本発明者らは、上記試験の結果を踏まえ、被検査対象である管の外面から当該管の内面における浸炭の有無を検知する方法を再び検討した。具体的には、まず最初に、本発明者らが提案した日本国特開2010-197222号公報の図1に示す方法(以下、従来方法という)を用いて、下記の条件で、管の内面に貼り付けた磁気テープの検出可否を検討した。なお、実際に検知すべき微細な浸炭による磁性変動が微弱であることから、磁気テープとしては、巻き数が1ターン、3ターン、5ターンのものを用いた。また、管内面に貼り付けた磁気テープの磁性強度(フェライト量)をフェライトメータによって測定した。
 (1)励磁周波数(検査周波数):500Hz
 (2)励磁電流:0.01A                  
 (3)励磁コイルの巻き数:200ターン
 (4)励磁コイルの長さ:70mm
 上記試験の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、従来法では、巻き数が3ターン以下の磁気テープを検出できなかった。換言すれば、前述した条件では微弱な磁性変動を検知できないため、微細な浸炭を検知できないと考えられる。
 そこで、本発明者らは、管の外面から当該管の内面における浸炭の有無を検知する方法において、微細な浸炭(微弱な磁性変動)の検知能力に対する励磁能力(磁場強度)と励磁周波数の影響について、以下のように更に鋭意検討を行った。
 (1)励磁能力(磁場強度)の影響
 励磁コイルと検出コイルとを別体に設ける相互誘導法を採用する場合、磁場強度(励磁電流と単位長さ当たりの励磁コイルの巻き数との積)を大きくすると、これに応じて検出コイルに誘起される電圧も大きくなる。このため、検出コイルの出力信号を処理する信号処理部の感度(信号処理部が具備する増幅器のゲイン)を低くすることができ、電気的ノイズを抑制できる点で有利である。しかしながら、前述のように、磁性材の磁化特性はB-H曲線で表され、磁場強度が小さい場合の初透磁率は極めて小さく、磁場強度の増加に伴って透磁率が増加して最大値を示し、更に磁場強度を増加させると磁束密度が飽和して透磁率は小さくなる。このため、適正な磁場強度を与えなければ、微弱な磁性変動を検知することが困難となる。換言すれば、透磁率が小さい場合には、磁性変動に伴う検出コイルの出力信号(出力電圧)の変化が小さいため、微弱な磁性変動を検知できなくなる。これを信号処理部の感度を高めて補正する場合には、電気的ノイズが増加し、適正な検査ができなくなるおそれがある。
 従って、微細な浸炭(微弱な磁性変動)の検知能力は、透磁率を最大化するという点で、励磁能力(磁場強度)に依存するといえる。
 (2)励磁周波数の影響
 管の内面の浸炭により生じる磁性変動を管の外面から検知する場合、表皮効果の影響を軽減して浸透深さを深くするには、励磁周波数を低周波に設定する必要がある。一方、相互誘導法を採用する場合、励磁周波数を過度に低周波にすると、検出コイルに誘起される電圧が小さくなるため、検出コイルの出力信号を処理する信号処理部の感度(信号処理部が具備する増幅器のゲイン)を高める必要がある。このため、電気的なノイズが増加し、適正な検査ができなくなるおそれがある。
 従って、微細な浸炭の検知能力は、励磁周波数に依存する。具体的には、浸透深さが励磁周波数の-1/2乗と概ね正の相関を有することと、信号処理部の感度(電気ノイズ)が励磁周波数と負の相関を有する(換言すれば、励磁周波数の-1乗と正の相関を有する)と考えられることから、微細な浸炭の検知能力は、励磁周波数の-3/2乗に依存することを見出した。
 本発明者らは、上記の検討の結果に基づき、励磁コイルに通電する励磁電流の電流値をI(A)、励磁コイルの長さをL(mm)、励磁コイルの巻き数をN、励磁コイルに通電する励磁電流の周波数をF(kHz)とした場合に、下記の式(1)で表されるパラメータKが、浸炭検知能力の指標になり得ると考えた。
 K=(I・N/L)・F-3/2 ・・・(1)
 図2は、相互誘導法を用いて浸炭が生じていない管の内面に貼り付けた磁気テープから得られた検出信号と、パラメータKとの関係を調査した試験結果の一例を示す図である。図2の横軸はパラメータKを、縦軸は検出信号を示す。具体的には、本試験では、後述する図3に記載の渦流検査装置100を用いて、励磁コイル11の条件(励磁電流等)を変えることによりパラメータKの値を変更した。そして、各パラメータKの値に対応する、巻き数1ターン及び3ターンの磁気テープから得られる検出信号(具体的には、検出コイル12から出力された絶対値信号を信号処理することによる得られるX軸信号)の値を評価した。
 図2に示すように、パラメータKの値を増加させると、各磁気テープから得られる検出信号(X軸信号)の絶対値も増加し(換言すれば、浸炭検知能力が高まり)、両者は比較的良好な相関関係を有していることがわかる。この結果より、本発明者らは、パラメータKが浸炭検知能力の指標になり得ることを確認した。そして、本発明者らは、パラメータKの値を適切に調整することにより、微細な浸炭を検知できることを見出した。
 本発明は、本発明者らの上記知見に基づき完成したものである。
 すなわち、本発明は、以下の第1ステップ及び第2ステップを含むことを特徴とする。
 (1)第1ステップ
 管内面に浸炭の生じていることが既知である浸炭材を励磁コイル及び検出コイルに内挿させ、前記励磁コイルに通電する励磁電流の電流値をI(A)、前記励磁コイルの長さをL(mm)、前記励磁コイルの巻き数をN、前記励磁コイルに通電する励磁電流の周波数をF(kHz)とした場合に、前記検出コイルの出力信号に基づき前記浸炭材に生じている浸炭を検知できるように、下記の式(1)で表されるパラメータKの値を決定する。
 K=(I・N/L)・F-3/2 ・・・(1)
 (2)第2ステップ
 前記決定したパラメータKの値が得られるように前記励磁コイルの条件を設定した後、被検査対象である管を前記励磁コイル及び前記検出コイルに内挿させ、前記検出コイルの出力信号に基づき前記管内面における浸炭の有無を検知する。
 本発明によれば、第1ステップにおいて、浸炭材の浸炭を検知できるようにパラメータKの値を決定することになる。このパラメータKは、式(1)から明らかなように、磁場強度(I・N/L)に比例すると共に、励磁周波数Fの-3/2乗に比例する。前述のように、浸炭検知能力は、磁場強度と励磁周波数の-3/2乗とに依存すると考えられるため、式(1)で表されるパラメータKは、浸炭検知能力を表す指標であるといえる。従って、微細な浸炭を検知するには、浸炭材として微細な浸炭の生じているものを用意し、この浸炭を検知できるようにパラメータKの値を決定する、すなわち、浸炭検知能力を調整すればよい。
 次に、本発明によれば、第2ステップにおいて、第1ステップで決定したパラメータKの値が得られるように励磁コイルの条件を設定した後、被検査対象である管内面における浸炭の有無が検知される。前述のように、第1ステップにおいて浸炭材の浸炭を検知できるようにパラメータKの値が決定されているため、このパラメータKの値が得られるように励磁コイルの条件を設定した後に被検査対象である管を検査すれば、当該管についても、パラメータKの値を決定するために用いた浸炭材に生じている浸炭と同等程度の浸炭を検知可能であることが期待できる。
 本発明者らが微細な浸炭を検知するために検討したところ、具体的には、パラメータKの値を4≦K≦8に設定することが好ましいことがわかった。
 すなわち、前記第2ステップにおいて、前記パラメータKの値が4≦K≦8を満足するように前記励磁コイルの条件を設定することが好ましい。
 本発明に係る浸炭検知方法によれば、従来の浸炭検知方法では検知困難な微細な浸炭をも検知可能である。
図1は、本発明らが内挿コイルを用いて行った試験の結果を示す図である。 図2は、相互誘導法を用いて浸炭が生じていない管の内面に貼り付けた磁気テープから得られた検出信号と、パラメータKとの関係を調査した試験結果の一例を示す図である。 図3は、本発明の一実施形態に係る浸炭検知方法に用いる渦流検査装置の概略構成を示す模式図である。 図4は、図3に示す渦流検査装置が備える位相回転器から出力されるX信号及びY信号をX-Yベクトル平面上に表した模式図である。 図5は、図3に示す渦流検査装置を用いて複数の浸炭材から得られた検出信号と、パラメータKとの関係を調査した試験結果の一例を示す図である。 図6(a)は、図5に示すデータの中から4≦K≦8のデータを抜き出して、検出信号と浸炭深さとの関係を調査した結果を示す図である。図6(b)は、図6(a)に示すデータからK=8のデータを除外して(除外後は4≦K≦6)プロットした図である。
 以下、添付図面を参照しつつ、本発明の一実施形態について、管が鋼管であり、電磁気検査として渦流検査を行う場合を例に挙げて説明する。
 図3は、本発明の一実施形態に係る浸炭検知方法に用いる渦流検査装置の概略構成を示す模式図である。
 図3に示すように、本実施形態の渦流検査装置100は、検出センサ1と、信号処理部2とを備えている。図3において、検出センサ1は断面で図示されている。
 検出センサ1は、鋼管Pに交流磁界を作用させて渦電流を誘起すると共に、鋼管Pに誘起された渦電流を検出するように構成されている。具体的には、本実施形態の検出センサ1は、内挿された鋼管Pに交流磁界を作用させる励磁コイル11と、内挿された鋼管Pに誘起された渦電流を検出する単一の検出コイル12とを備える。
 信号処理部2は、検出センサ1に交流の励磁電流を通電すると共に、検出センサ1から出力された検出信号(絶対値信号)に基づいて、鋼管Pの内面における浸炭の有無を検知するように構成されている。具体的には、本実施形態の信号処理部2は、発振器21、増幅器22、同期検波器23、位相回転器24、A/D変換器26及び判定部27を備える。
 発振器21は、検出センサ1(具体的には、検出センサ1の励磁コイル11)に交流の励磁電流を供給する。これにより、前述のように、鋼管Pに交流磁界が作用し、鋼管Pに渦電流が誘起される。
 検出センサ1(具体的には、検出センサ1の検出コイル12)から出力された絶対値信号は、増幅器22によって増幅された後、同期検波器23に出力される。
 同期検波器23は、発振器21から出力される参照信号に基づき、増幅器22の出力信号を同期検波する。具体的に説明すれば、発振器21から同期検波器23に向けて、検出センサ1に供給する励磁電流と同一の周波数で同一の位相を有する第1参照信号と、該第1参照信号の位相を90°だけ移相した第2参照信号とが出力される。そして、同期検波器23は、増幅器22の出力信号から、第1参照信号の位相と同位相の信号成分(第1信号成分)及び第2参照信号の位相と同位相の信号成分(第2信号成分)を分離・抽出する。分離・抽出された第1信号成分及び第2信号成分は、それぞれ位相回転器24に出力される。
 位相回転器24は、同期検波器23から出力された第1信号成分及び第2信号成分の位相を互いに同一の所定量だけ回転(移相)し、例えば、第1信号成分をX信号、第2信号成分をY信号として、A/D変換器26に出力する。なお、位相回転器24から出力されるX信号及びY信号は、互いに直交する2軸(X軸、Y軸)で表されるX-Yベクトル平面において、きず検査等で用いるいわゆるリサージュ波形と称される信号波形(すなわち、振幅をZ、位相をθとして極座標(Z、θ)で表した検出センサ1の絶対値信号波形(正確には、増幅器22によって増幅した後の絶対値信号波形))を、X軸及びY軸にそれぞれ投影した成分に相当することになる。
 図4は、位相回転器24から出力されるX信号及びY信号をX-Yベクトル平面上に表した模式図である。
 まず、内面に浸炭の生じていない鋼管(以下、基準材という)を検出センサ1に挿入しない状態で、X信号及びY信号が0となるように(X信号及びY信号をそれぞれX軸成分及びY軸成分とするベクトルの先端に相当するスポットが図4に示すバランス点(原点)に位置するように)、増幅器22の前段に配置されたバランス回路(図示せず)のバランス量を調整して、同期検波器23から出力される第1信号成分及び第2信号成分をそれぞれ0とする。
 次に、基準材を検出センサ1に挿入し停止させて、X信号が0で、Y信号が所定の電圧(例えば、4V)となるように(ベクトルの先端が図4に示す基準点に位置するように)、増幅器22の増幅率及び位相回転器24の位相回転量を調整する。
 上記の調整を事前に行った後、被検査対象である鋼管Pを軸方向に移動させて検出センサ1に挿入することにより、X信号及びY信号が取得されることになる。
 A/D変換器26は、位相回転器24の出力信号をA/D変換し、判定部27に出力する。
 判定部27は、A/D変換器26の出力データ(すなわち、X信号及びY信号をA/D変換したデジタルデータ。以下、X信号データ及びY信号データという)に基づいて、鋼管Pの内面における浸炭の有無を検知する。図3に示すように、鋼管Pの磁性変動に応じて、ベクトルの先端位置は変動するが、その変動量はY軸方向よりもX軸方向に大きい。このため、本実施形態の判定部27は、入力されたX信号データ及びY信号データのうち、X信号データを用いて浸炭の有無を検知している。具体的には、本実施形態の判定部27は、入力されたX信号データと、予め決定され記憶されたしきい値とを比較し、X信号データが前記しきい値を越えていれば、鋼管Pの内面に浸炭が生じていると判定し、X信号データがしきい値前記以内であれば、鋼管Pの内面に浸炭が生じていないと判定する。
 以上に説明した構成を有する渦流検査装置100を用いて鋼管P内面の浸炭を検知するに際しては、事前に、内面に微細な浸炭の生じていることが既知である浸炭材P0を励磁コイル11及び検出コイル12に内挿させる(図3参照)。そして、検出コイル12からの出力信号(具体的には、X信号データ)に基づき浸炭材P0に生じている浸炭を検知できるように、下記の式(1)で表されるパラメータKの値を決定しておく。
 K=(I・N/L)・F-3/2 ・・・(1)
 上記式(1)において、Iは励磁コイル11に通電する励磁電流の電流値(A)を、Lは励磁コイル11の長さ(mm)、Nは励磁コイル11の巻き数、Fは励磁コイル11に通電する励磁電流の周波数を(kHz)を意味する。
 そして、上記のようにして決定したパラメータKの値が得られるように励磁コイル11の条件(励磁電流の電流値、励磁コイルの長さ、励磁コイルの巻き数、励磁電流の周波数)を設定した後、被検査対象である鋼管Pを励磁コイル11及び検出コイル12に内挿させ、検出コイル12からの出力信号(具体的には、X信号データ)に基づき鋼管P内面における浸炭の有無を検知する。
 図5は、下記の試験条件の下、渦流検査装置100を用いて複数の浸炭材P0から得られた検出信号と、パラメータKとの関係を調査した試験結果の一例を示す図である。図5の横軸はパラメータKを、縦軸は検出信号を示す。具体的には、本試験では、渦流検査装置100の励磁コイル11の条件を変えることによりパラメータKの値を変更した。そして、各パラメータKの値に対応する、複数の浸炭材P0から得られる検出信号(具体的には、検出コイル12から出力された絶対値信号を信号処理することによる得られるX軸信号)の値を評価した。なお、図5において、同一の記号でプロットされたデータは、同一の浸炭材P0から得られたものである。なお、各浸炭材P0の浸炭部位の磁性強度(フェライト量)は、全て0.01Fe%以下であった。
 <試験条件>
 (1)励磁電流の周波数F:0.3~1kHz
 (2)励磁電流の電流値I:0.1~1A
 (3)励磁コイルの長さL:70mm
 (4)励磁コイルの巻き数N:200ターン
 (5)浸炭材の材質:高Niオーステナイト系ステンレス鋼
 (6)浸炭材の外径:φ15~25mm
 (7)浸炭材の肉厚:0.9~1.25mm
 (8)浸炭材の浸炭深さ:27~46μm
 図5に示すように、4≦K≦8のときには、X信号が負の値となることから、浸炭材P0内面の浸炭部位によって生じる磁性変動を検知可能である。
 なお、4>Kのときには、励磁電流の電流値が小さいため、あるいは、励磁周波数が高く浸透深さが浅いため、浸炭材P0内面における磁場強度が小さくなる。その結果、浸炭材P0の透磁率が小さくなり、浸炭に伴う磁性変動を精度良く検知できない。一方、8<Kのときには、励磁電流の周波数が低周波であるため、浸透深さは深くなるものの、検出コイル12に誘起される電圧が低下して信号処理部2の感度(増幅器22のゲイン)が高くなる。このため、磁性変動に比べて導電率変動の影響が大きくなる。この結果、X信号が正の値になるものと考えられる。
 従って、4≦K≦8となるように励磁コイル11の条件を設定し、判定部27に記憶するしきい値を例えば0とした後、被検査対象である鋼管Pを検査すれば、鋼管P内面における浸炭の有無を検知可能であるといえる。
 図6(a)は、図5に示すデータの中から4≦K≦8のデータを抜き出して、検出信号と浸炭深さとの関係を調査した結果を示す図である。図6(b)は、図6(a)に示すデータからK=8のデータを除外して(除外後は4≦K≦6)プロットした図である。なお、図6(a)、(b)において、同一の記号でプロットされたデータは、同一のKの値を有するデータである。
 図6(a)に示すように、検出信号と浸炭深さとは比較的良好な相関を示している。従って、検出信号の大きさから浸炭深さをある程度予測可能である。ただし、K=8の場合には、検出信号の絶対値が小さくなる場合がある(図6(a)中に点線で囲ったデータ)ため、図6(b)に示すように、4≦K≦6とすることが好ましい。
1・・・検出センサ
2・・・信号処理部
11・・・励磁コイル
12・・・励磁コイル
21・・・発振器
22・・・増幅器
23・・・同期検波器
24・・・位相回転器
26・・・A/D変換器
27・・・判定部
100・・・渦流検査装置
P・・・鋼管
P0・・・浸炭材

Claims (2)

  1.  電磁気検査によって管内面における浸炭の有無を検知する方法であって、
     管内面に浸炭の生じていることが既知である浸炭材を励磁コイル及び検出コイルに内挿させ、前記励磁コイルに通電する励磁電流の電流値をI(A)、前記励磁コイルの長さをL(mm)、前記励磁コイルの巻き数をN、前記励磁コイルに通電する励磁電流の周波数をF(kHz)とした場合に、前記検出コイルからの出力信号に基づき前記浸炭材に生じている浸炭を検知できるように、下記の式(1)で表されるパラメータKの値を決定する第1ステップと、
     前記決定したパラメータKの値が得られるように前記励磁コイルの条件を設定した後、被検査対象である管を前記励磁コイル及び前記検出コイルに内挿させ、前記検出コイルからの出力信号に基づき前記管内面における浸炭の有無を検知する第2ステップと、
     を含むことを特徴とする管内面の浸炭検知方法。
     K=(I・N/L)・F-3/2 ・・・(1)
  2.  前記第2ステップにおいて、前記パラメータKの値が4≦K≦8を満足するように前記励磁コイルの条件を設定することを特徴とする請求項1に記載の管内面の浸炭検知方法。
PCT/JP2012/070159 2011-10-25 2012-08-08 浸炭検知方法 WO2013061667A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12843672.2A EP2749877A4 (en) 2011-10-25 2012-08-08 AUFKOHLUNGSMESSVERFAHREN
CA2851333A CA2851333C (en) 2011-10-25 2012-08-08 Carburization sensing method
CN201280052866.6A CN103907019B (zh) 2011-10-25 2012-08-08 渗碳检测方法
KR1020147013176A KR101604935B1 (ko) 2011-10-25 2012-08-08 침탄 검지 방법
US14/349,722 US9304110B2 (en) 2011-10-25 2012-08-08 Carburization sensing method
ZA2014/02728A ZA201402728B (en) 2011-10-25 2014-04-14 Carburizing sensing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-233881 2011-10-25
JP2011233881A JP5299800B2 (ja) 2011-10-25 2011-10-25 浸炭検知方法

Publications (1)

Publication Number Publication Date
WO2013061667A1 true WO2013061667A1 (ja) 2013-05-02

Family

ID=48167510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070159 WO2013061667A1 (ja) 2011-10-25 2012-08-08 浸炭検知方法

Country Status (8)

Country Link
US (1) US9304110B2 (ja)
EP (1) EP2749877A4 (ja)
JP (1) JP5299800B2 (ja)
KR (1) KR101604935B1 (ja)
CN (1) CN103907019B (ja)
CA (1) CA2851333C (ja)
WO (1) WO2013061667A1 (ja)
ZA (1) ZA201402728B (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2524610B (en) * 2014-03-28 2016-09-21 Technical Software Consultants Ltd A.C. Field measurement system
JP6562490B2 (ja) * 2016-06-20 2019-08-21 株式会社小松精機工作所 土壌分析装置及び土壌分析方法
CN109187731B (zh) * 2018-08-13 2021-08-31 合肥通用机械研究院有限公司 一种制氢转化炉管加强接头的渗碳检测方法
KR102509957B1 (ko) * 2021-05-18 2023-03-15 한국수력원자력 주식회사 오스테나이트 스테인레스강 관제품의 표면에 생성되는 응력 유기 준안정 마르텐사이트 측정 시스템 및 측정 평가 방법
CN117128845B (zh) * 2023-10-27 2023-12-29 铸新科技(苏州)有限责任公司 渗碳炉管的渗碳层厚度定量评估方法及装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62853A (ja) * 1985-06-26 1987-01-06 Mitsubishi Motors Corp 硬度測定方法
JPS626153A (ja) 1985-07-02 1987-01-13 Kubota Ltd 浸炭計測用プル−ブ
JPH03253555A (ja) 1990-03-02 1991-11-12 Kubota Corp 鋳鋼管の浸炭度検査方法
JPH04145358A (ja) 1990-10-08 1992-05-19 Kubota Corp 浸炭部の測定方法
JPH0552815A (ja) * 1991-08-27 1993-03-02 Sumitomo Chem Co Ltd 応力腐食割れ深さの測定方法
JPH0688807A (ja) 1992-09-07 1994-03-29 Kubota Corp 浸炭計測装置
JPH11223539A (ja) * 1998-02-06 1999-08-17 Yamatake Corp 電磁流量計
JP2000266727A (ja) 1999-03-19 2000-09-29 Sumitomo Metal Ind Ltd 浸炭深さ計測方法
JP2004279054A (ja) 2003-03-12 2004-10-07 Sumitomo Metal Ind Ltd 鋼管内面の浸炭深さ測定方法及び装置
JP2004279055A (ja) 2003-03-12 2004-10-07 Sumitomo Metal Ind Ltd 鋼管内面の浸炭深さ測定方法及び装置
JP2007040865A (ja) * 2005-08-04 2007-02-15 Ntn Corp 硬化層深さ・未焼入れ・異材判定の非破壊測定法
JP2010197222A (ja) 2009-02-25 2010-09-09 Sumitomo Metal Ind Ltd 浸炭検知方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154071U (ja) 1982-04-09 1983-10-14 株式会社小山鉄工所 オイルフイルタ−離脱具
JPH01254857A (ja) * 1988-04-05 1989-10-11 Hitachi Ltd 渦流探傷器
CN88205463U (zh) * 1988-05-16 1988-12-07 大连理工大学 数字式裂解管渗碳层厚度测定仪
US5270647A (en) * 1992-01-08 1993-12-14 Osaka Gas Company, Ltd. Pipe electromagnetic field simulation apparatus using Born's approximation rule
JP2697467B2 (ja) * 1992-02-24 1998-01-14 住友金属工業株式会社 漏洩磁束探傷法
JP2963818B2 (ja) 1992-06-19 1999-10-18 東芝機器株式会社 温風機
JP3765188B2 (ja) * 1998-07-28 2006-04-12 住友化学株式会社 浸炭測定方法
JP2001318080A (ja) * 2000-05-09 2001-11-16 Kaisei Engineer Kk 検出コイルとこの検出コイルを用いた検査装置
US6734670B2 (en) * 2002-02-26 2004-05-11 Shell Oil Company Determining a surface profile of an object
JP4349012B2 (ja) * 2003-06-30 2009-10-21 Jfeスチール株式会社 強磁性体の磁気探傷方法
WO2009119529A1 (en) * 2008-03-27 2009-10-01 Honda Motor Co., Ltd. Nondestructive testing system for steel workpiece
CN101403601B (zh) * 2008-11-13 2011-04-06 南京工业大学 一种检测裂解炉管渗碳层厚度的方法及其装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62853A (ja) * 1985-06-26 1987-01-06 Mitsubishi Motors Corp 硬度測定方法
JPS626153A (ja) 1985-07-02 1987-01-13 Kubota Ltd 浸炭計測用プル−ブ
JPH03253555A (ja) 1990-03-02 1991-11-12 Kubota Corp 鋳鋼管の浸炭度検査方法
JPH04145358A (ja) 1990-10-08 1992-05-19 Kubota Corp 浸炭部の測定方法
JPH0552815A (ja) * 1991-08-27 1993-03-02 Sumitomo Chem Co Ltd 応力腐食割れ深さの測定方法
JPH0688807A (ja) 1992-09-07 1994-03-29 Kubota Corp 浸炭計測装置
JPH11223539A (ja) * 1998-02-06 1999-08-17 Yamatake Corp 電磁流量計
JP2000266727A (ja) 1999-03-19 2000-09-29 Sumitomo Metal Ind Ltd 浸炭深さ計測方法
JP2004279054A (ja) 2003-03-12 2004-10-07 Sumitomo Metal Ind Ltd 鋼管内面の浸炭深さ測定方法及び装置
JP2004279055A (ja) 2003-03-12 2004-10-07 Sumitomo Metal Ind Ltd 鋼管内面の浸炭深さ測定方法及び装置
JP2007040865A (ja) * 2005-08-04 2007-02-15 Ntn Corp 硬化層深さ・未焼入れ・異材判定の非破壊測定法
JP2010197222A (ja) 2009-02-25 2010-09-09 Sumitomo Metal Ind Ltd 浸炭検知方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2749877A4 *

Also Published As

Publication number Publication date
CN103907019B (zh) 2017-04-26
KR101604935B1 (ko) 2016-03-18
JP2013092418A (ja) 2013-05-16
US20140239944A1 (en) 2014-08-28
JP5299800B2 (ja) 2013-09-25
CA2851333A1 (en) 2013-05-02
CN103907019A (zh) 2014-07-02
EP2749877A1 (en) 2014-07-02
US9304110B2 (en) 2016-04-05
EP2749877A4 (en) 2015-04-29
KR20140089378A (ko) 2014-07-14
ZA201402728B (en) 2015-04-29
CA2851333C (en) 2016-09-06

Similar Documents

Publication Publication Date Title
JP5168663B2 (ja) 浸炭検知方法
US8269488B2 (en) Eddy current testing method, steel pipe or tube tested by the eddy current testing method, and eddy current testing apparatus for carrying out the eddy current testing method
JP4998821B2 (ja) 渦流検査方法及び該渦流検査方法を実施するための渦流検査装置
JP5299800B2 (ja) 浸炭検知方法
KR102504193B1 (ko) 강재의 표면 특성 평가 장치 및 표면 특성 평가 방법
JP4756409B1 (ja) 交番磁場を利用した非破壊検査装置および非破壊検査方法
KR102503235B1 (ko) 강재의 표면 특성 평가 방법
KR20200020939A (ko) 표면 특성 평가 방법, 표면 특성 평가 장치 및 표면 특성 평가 시스템
JP2013160739A (ja) 磁性体の探傷方法及び探傷装置
JP2013170910A (ja) 浸炭深さ測定方法及び装置
WO2012021034A2 (ko) 이중코아를 이용한 도체두께 탐상장치
JP2009031224A (ja) 渦電流センサ、焼き入れ深さ検査装置、および焼入れ深さ検査方法
JPH01235846A (ja) 管の渦流探傷方法及び装置
Rebello Materials characterization by electromagnetic nde focusing on the petrochemical industry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843672

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012843672

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012843672

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14349722

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2851333

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147013176

Country of ref document: KR

Kind code of ref document: A