WO2013060915A1 - Stent - Google Patents

Stent Download PDF

Info

Publication number
WO2013060915A1
WO2013060915A1 PCT/ES2012/070721 ES2012070721W WO2013060915A1 WO 2013060915 A1 WO2013060915 A1 WO 2013060915A1 ES 2012070721 W ES2012070721 W ES 2012070721W WO 2013060915 A1 WO2013060915 A1 WO 2013060915A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
rings
tubular structure
longitudinal sections
tubular
Prior art date
Application number
PCT/ES2012/070721
Other languages
English (en)
French (fr)
Other versions
WO2013060915A8 (es
Inventor
Javier Gallastegui Goiburu
Alberto FERNÁNDEZ-MONTENEGRO IGLESIAS
Original Assignee
Javier Gallastegui Goiburu
Fernandez-Montenegro Iglesias Alberto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Javier Gallastegui Goiburu, Fernandez-Montenegro Iglesias Alberto filed Critical Javier Gallastegui Goiburu
Publication of WO2013060915A1 publication Critical patent/WO2013060915A1/es
Publication of WO2013060915A8 publication Critical patent/WO2013060915A8/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/825Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having longitudinal struts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0073Quadric-shaped
    • A61F2230/0078Quadric-shaped hyperboloidal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body

Definitions

  • the present invention refers to a stent consisting of a device for dilating the diameters of blood vessels, ureters, urethra, bile ducts, bronchial tree, aneurysms, tear duct, upper airways and in general any other tubular duct of the body of a human or animal being.
  • a tubular structure that is introduced contracted in a folded position and then expands, unfolding in a known way in a certain area of such a tubular conduit, such as a narrowing of the body orifice where it will be introduced previously in order to get such narrowing to recover its normal passage or diameter, staying the same after the stent deployment.
  • the stent is a prosthesis for animal and human use that serves to expand any tube or channel that needs to increase its diameters, either because it reduced them in a natural way (poisoning among others), for a damage produced in said tube or simply because its dilation is required.
  • these devices are called stents, an Anglo-Saxon term, generally having a spring shape, while their use is universally extended to treat lesions that mainly narrow the coronary arteries. The procedure of dilating them is called percutaneous angioplasty.
  • This prosthesis is also applicable to any other tube or canal that needs to be dilated without discarding its use for other dilations and other non-tubular systems.
  • the essential objective of the invention is to dilate a duct by minimizing the aggression that occurs with the current stents on the internal surface of such duct by expanding or deploying said stent into the corresponding tubular duct.
  • stents manufactured from a mesh of plastic, metal, cloth or new materials are known, so that once armed or shaped, they have a tubular structure with perforated wall, basically classified into three groups.
  • a first group whose tubular structure is obtained from a mesh that expands.
  • a second group in which the stent has the application of releasing drugs is coated with a series of substances that act on the walls in contact with the mesh avoiding adverse reactions of the same, either directly with cell proliferation, etc., or indirect.
  • the most frequent is thrombosis due to excitation of the platelet system or coagulation activation, but, like other coronary stents, it is permanently left in the artery.
  • a third group corresponds to the resorbable stents, which once placed are reabsorbed until they disappear.
  • the deployment or expansion of the stent is done by a balloon or deflated balloon located inside the Folded prosthesis itself, so that when it reaches the narrowing where it should be installed, the balloon is previously inflated, previously deflated inside the stent in a folded position, until the required diameter of the deployed stent that will form a frame that ensures the diameter is achieved Optimum of this area of the tubular duct preventing it from contracting. At a later stage, the balloon is removed by deflating it previously.
  • the dilation with the balloon and the placement of the frame are synchronous, that is, the frame is shrunk on the balloon and when the balloon is dilated it dilates and seats the frame on the inside of the stent.
  • the pressure exerted on the interior of said stent can reach up to 20 atmospheres and the expansion of the frame, at that pressure can cause the tear of the patient's tubular duct.
  • a deflated balloon is introduced that is covered by a mesh-like frame, so that when the balloon is inflated the artery and the frame widen, then being stretched definitively, preventing the constriction of the artery, to finally extract the deflated balloon, as previously mentioned.
  • stents are made of any biocompatible material (that is, tolerated by living beings or without adverse reactions), since the characteristics of the material give the system different physical properties in terms of hardness, flexibility, ability to dilation, among others.
  • the first two points indicated are given by the way of weaving the thread of the mesh, that is, by the mesh of the mesh and the third point by the section of the round or flat thread, or as in this case of the invention that we It occupies a characteristic curved-convex curvature.
  • the fourth point mentioned in relation to the longitudinal shape and taking into account that the arteries are becoming increasingly smaller as a horn, the new configuration of the invention that we occupies is the one that best suits.
  • the conventional stent has a circular shape and adapts to the cross section of the artery, they are longitudinally cylindrical and do not adapt to the progressive narrowing of an artery, for example.
  • the thread of the mesh armor is so thin that its surface is sharp. In this case the contact area is minimal and by expanding the stent over the inner surface of the tubular duct where it is installed at 20 atmospheres of pressure, tissue tears are caused.
  • the geometry of the mesh that defines the capacity of expansion, navigability and retraction.
  • the mesh of current designs has many recesses that further injure the wall of the tubular duct. Welding or bonding between the different rings or Hoops causes the stent to expand even further, causing greater damage to the internal surface of the dilated duct.
  • the endothelium formed by cells that line the inside of all blood vessels is damaged.
  • stents correspond to the Invention Patents with publication number in Spain 2223096, 2144657, 2119537 and 2243274.
  • the invention proposes a stent that in principle comprises a tubular structure formed by a wrapping wall defined by a mesh reinforcement and which delimits a first minor space in a folded position and a second larger space in an unfolded position in which such tubular structure is within a weakened area of a tubular conduit of a human or animal body, such tubular structure having been previously introduced in the folded position along the conduit tubular until reaching the weakened area where it is deployed by inflating a balloon located inside the stent itself in the folded position.
  • the tubular structure comprises a trunk-conical configuration at least in the deployed position.
  • the tubular structure integrates corresponding longitudinal sections with the generatrices of the aforementioned truncated conical configuration, and at least two circumferential trajectory rings of different diameter joined to the longitudinal sections.
  • the circumferential trajectory rings integrate, in the folded position, folds contained in the envelope surface of the tubular structure
  • Circumferential path rings are characterized in turn because they comprise several curved sections delimited between the crossing points of the longitudinal sections with respect to said rings of the tubular structure, also characterized in that such curved sections integrate two folds in the folded position of tubular structure
  • Each of the folds of the circumferential path rings comprises at least one pair of facing larger enveloping folds, joined by one of their ends by means of a central curved path fold, while the free ends of such larger wrapping folds extend by about minor folds in opposition that are continuation of extreme portions of the curved sections forming the rings.
  • the tubular structure comprises a conical trunk configuration also in the folded position.
  • Another feature of the invention is that the folds of the rings of the tubular structure are fully stretched in the deployed position, while the longitudinal sections always maintain their initial length.
  • the longitudinal sections and rings of the tubular structure integrate a characteristic arched configuration section that progressively narrows from a central area towards its lateral ends.
  • Such an arcuate configuration section comprises an inner face and a curved-convex outer face that is in contact with the inner surface of the tubular conduit in the deployed position of the stent tubular structure.
  • the extreme areas of the curved-convex outer face comprise terminal portions of reduced curvature at whose ends converge the end of the inner face of the rings and longitudinal sections of the tubular structure.
  • the inner face of the longitudinal sections and rings of the tubular structure comprises such an inner face a curved-concave plane.
  • such an internal face has a flat surface.
  • the width of the arched configuration section of the longitudinal sections and rings of the tubular structure is such width substantially greater than the thickness of the central area of such arched configuration.
  • the longitudinal sections and rings comprise a porous structure that has a fractal configuration.
  • the porous structure of the stent facilitates the absorption of the medicament in a liquid state as a sponge, soaking up such a liquid medicine, whereby the transport of the medicine together with the stent is extremely simple and practical.
  • liquid medicine will occupy the multitude of cavities of such porous structure.
  • the advantages of the new stent are the following:
  • the shape given to the mesh structure is based on minimizing the harmful path of the thread (longitudinal sections and rings of the tubular structure) on the surface to be expanded.
  • Figure 1 Shows a perspective view of the stent in folded position, object of the invention. It has a characteristic tubular structure with a truncated conical configuration, whose wall also includes a characteristic mesh, from which the stent is obtained. A tubular conduit with a narrowing is also shown where the stent will be installed.
  • Figure 2. Shows a perspective view of the stent in the unfolded position, in which it occupies a volume substantially greater than in the folded position.
  • Figure 3a Shows a view of the mesh in the folded position, from which the stent of the invention is obtained.
  • Figure 3b Shows a view similar to the previous one, with another different embodiment.
  • Figure 4.- Shows a front view of the stent in the deployed position.
  • Figure 5. Shows a view of the characteristic section that has a thread, from which the mesh is manufactured to then form the stent of the invention.
  • the stent contemplates the following nomenclature used in the description:
  • tubular structure 1 with a truncated-conical configuration that facilitates its introduction in a folded position inside a tubular duct 2 where it is to be installed, also facilitating such truncated-conical configuration its navigability along such a tubular duct 2 until reaching the area concrete placement, such as for example a narrowing 2 '.
  • the leading end of the stent that is leading the way during its advance through the inside of the tubular duct 2 is the smaller diameter end.
  • the stent could comprise a different configuration than the conical trunk in the folded position, such as a cylindrical configuration.
  • the tubular structure 1 of the stent is formed from a mesh reinforcement and is made up of several longitudinal sections 3 corresponding to the generatrices of the trunk-conical configuration and at least two circumferential path rings 4 attached to the aforementioned Longitudinal sections 3. These are straight path.
  • the mesh reinforcement is formed by threads joined at their crossing points 14, made of a nitinol material composed of 50% nickel and titanium, without discarding other materials, such as stainless steel.
  • the circumferential path rings 4 comprise several curved sections 5 delimited between the crossing points 14 of the longitudinal sections 3 with respect to said rings 4 of the tubular structure 1.
  • the curved portions 5 of the rings 4 comprise two folds 6, each formed by at least one pair of larger wrapping folds 7 facing each other, joined at one end by a central fold 8 of curved path, while the free ends of each of such larger wrapping folds 7 extend into other smaller folds 9 in opposition that are continuation of end portions 10 of the curved sections 5 forming the rings 4 belonging to the tubular structure 1 stent
  • the stent Once the stent is located in the narrowing 2 'of the tubular duct 2 where it is desired to be installed, it is conventionally deployed through an inflatable element (balloon) that will be previously introduced into the reduced interior space of the stent in folded position .
  • an inflatable element balloon
  • Such an inflatable element is not represented in the figures because it is not considered necessary.
  • the stent structure in the deployed position also adopts a truncated-conical configuration, which facilitates the circulation of the fluid stream that advances along said tubular conduit 2 where it has been installed, fluid that can be blood or other fluids For this, the direction of the fluid flow will be from the larger diameter of the stent to its smaller diameter. This advantage can be very beneficial for patients in order to get a better solution to their medical problem.
  • the folds 6 of the different rings are deployed in a controlled manner stretching progressively until reaching the volume or required size of the stent to recover the diameter required in the narrowing 2 'of the tubular duct 2 where it has been installed.
  • the larger size of the stent will correspond to the full stretches of the folds 6 integrated in the different circumferential trajectory rings 4, this embodiment being preferred.
  • the folds 6 of the rings 4 when stretched during deployment sweep an area substantially smaller than any other conventional stent, thereby minimizing friction and tear damage on the tissue of the patient's tubular duct 2 as the stent
  • the section of the different rings 4 and longitudinal sections 3 of the stent has an arcuate structure that integrates an outer curved-convex face 11 and an inner face 12 selected from a curved path -concave as seen in the aforementioned figure 5 and a flat path.
  • the longitudinal sections 3 and rings 4 of the tubular structure integrate an arcuate configuration section that progressively narrows from a central area towards its lateral ends.
  • the new stent structure of the invention provides good longitudinal stability and lateral flexibility, which results in good navigability.
  • the end zones of the curved-convex outer faces 11 comprise terminal portions 13 'with a curvature less than the rest of such curved-convex outer faces 11.
  • the threads of the conventional stents have a support against the inner face of the tubular duct on a reduced surface, and therefore, when such conventional stents are deployed, the expansive force causes the concentrated point pressure of such threads to be embedded in the dilated structure of the respective tubular duct tearing it apart and causing extreme gravity damage in some cases.
  • the curved-convex configuration of the outer faces of the mesh structure of the stent of the invention avoids exposing a cutting surface on the wall, which offers a high resistance and that sticks into the structure to be dilated, as is the case with The current threads.
  • the wire of which the stent mesh reinforcement of the invention is composed has the following advantages:
  • the stent of the invention it is possible to increase the length of the rings 4 by sweeping the minimum possible area of the internal surface 13 of the tubular conduit 2.
  • the stent will have as many larger enveloping folds 7 as needed to increase the diameter of the stent until it reaches the necessary circumferential length according to the inside diameter of the tubular conduit 2 where the stent is to be installed.
  • the circumferential perimeter of the stent should increase substantially from the folded position to the unfolded position, so that the circumferential length of the stent will increase substantially so that the increase of such circumferential contour can be multiplied by thirty times.
  • the length of the stent rings 4 will be proportional to the pairs of larger enveloping folds 7. Therefore, as many pairs of larger enveloping folds can be incorporated as necessary to pass, for example, 0.8 mm of circumferential contour of the stent up to 27 mm of circumferential contour of the stent in deployed or expanded position, thus being able to apply the stent of the invention to very narrow lesions of tubular ducts that until now were unapproachable.
  • each millimeter of travel with the stent of the invention supposes triple the circumferential length, that is, so that each pair of larger enveloping folds can multiply its length by triple the same, to which it is necessary to add the length of the central fold 8 and minor folds 9 of the rings.
  • conventional stents have a cylindrical configuration, that is, they have at their two ends the same diameter unlike the stent of the Invention Patent that concerns us that has a trunk-conical configuration so that its shape adapts to the diameters of those tubular ducts whose light is reduced as it moves along its channel, as per example in the case of coronary arteries.
  • the diameter is reduced 1 mm every 2 cm with a deviation of 15% while for the right coronary it is 1 mm every 4 cm in length with a deviation of 15%.
  • the arteries have a trunk-conical configuration adapting perfectly to the interior of them the stent of the invention.
  • the stent of the invention has the following advantages:
  • the folding of the wire of the mesh reinforcement allows to increase the area of the circumference above the current stents.
  • the wire of the mesh being asymmetric and not circular or flattened as conventional threads, has two opposite faces of large surface, as a delta wing.
  • the material of the stent is known, nitinol being preferably, with a characteristic structural section defined above, highlighting the curved-convex and fractal exterior face 11 (semi-geometric object whose fragmented or irregular basic structure is repeated, at different scales). It should be noted that fractal also means broken or fractured.
  • the design of the rings 4 arranged in transverse planes allows a large expansion of the stent, so that the swept area is minimal, thus reducing the erosive damage produced during such expansion.
  • the design of the rings 4 arranged in transverse planes allows a large expansion of the stent by increasing the length of such rings 4 during deployment, so that the swept area is minimal, thereby reducing the erosive damage produced during deformation of the hoops during the expansion or deployment of the stent.
  • the wire of the mesh reinforcement provides a greater contact surface without a cutting edge reducing friction and with an expansion of less resistance in its displacement.
  • the geometric configuration of the stent of the invention adapts perfectly to the real anatomy of the coronary arteries with a reduction in its diameter around 25% for the coronary right and around 33% for the left coronary.
  • the longitudinal sections 3 and rings 4 comprise a porous structure that has a fractal configuration.
  • the porous structure of the stent facilitates the absorption of the medicament in a liquid state as a sponge, soaking up such a liquid medicine, whereby the transport of the medicine together with the stent is extremely simple and practical.
  • liquid medicine will occupy the multitude of cavities of the porous structure, and then be released into the human or animal body.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Prostheses (AREA)

Abstract

Comprende en principio una estructura tubular conformada por una pared envolvente definida por una armadura de malla pudiendo adoptar una posición plegada para introducirse dentro de un conducto tubular y una segunda posición desplegada para instalarse dentro de tal conducto tubular. Se caracteriza porque: la estructura tubular comprende una configuración tronco-cónica al menos en la posición desplegada; la estructura tubular integra unos tramos longitudinales (3) correspondientes con las generatrices de la citada configuración tronco- cónica, y al menos dos anillos (4) de trayectoria circunferencial de diferente diámetro unidos a los tramos longitudinales (3); los anillos (4) de trayectoria circunferencial integran en la posición plegada, unos dobleces (6) contenidos en la superficie envolvente de la estructura tubular (1).

Description

STENT
OBJE TO DE LA INVENCION
La presente invención, tal y como se expresa en el enunciado de esta memoria descriptiva, se refiere a un stent que consiste en un dispositivo para dilatar los diámetros de vasos sanguíneos, uréteres, uretra, conductos biliares, árbol bronquial, aneurismas, conducto lagrimal, vías respiratorias altas y en general cualquier otro conducto tubular del cuerpo de un ser humano o animal.
Comprende en principio una estructura tubular que se introduce contraída en posición plegada y se dilata después desplegándose de forma conocida en una zona determinada de tal conducto tubular, tal como un estrechamiento del orificio corporal donde será introducido previamente a fin de conseguir que tal estrechamiento recupere su paso o diámetro normal, manteniéndose el mismo después gracias al desplegado del stent.
Así pues, el stent es una prótesis para uso animal y humano que sirve para expandir cualquier tubo o canal que precise aumentar sus diámetros, bien porque los redujo de forma natural (enve ecimiento entre otros), por un daño producido en dicho tubo o simplemente porque se precisa su dilatación. En la jerga médica, a estos dispositivos se les denomina stent, término anglosajón, teniendo en general una forma de muelle, a la vez que su uso está extendido universalmente para tratar las lesiones que estrechan las arterias coronarias principalmente. Al procedimiento de dilatarlas, se denomina angioplastia percutanea.
Al emplearse en seres vivos debe ser biocompatible, es decir, asumible por el receptor sin que provoque efectos secundarios, y como se dijo, la imagen más parecida es la de un resorte muelle de un bolígrafo que se introduce torsionándolo para reducir sus diámetros y así poder pasar por la estrechez. Una vez situado en el sitio adecuado, se expande mediante el inflado de un balón o globo situado en su interior. Este pequeño tubo stent, está hecho de un hilo entrelazado en forma de malla que se deja fijo en la lesión en posición desplegada, como si fuera un andamio o armadura para evitar que de nuevo se estreche.
Esta prótesis también es aplicable a cualquier otro tubo o canal que precise dilatarse sin descartar su uso para otras dilataciones y en otros sistemas no tubulares.
Partiendo de esta premisa, el objetivo esencial de la invención consiste en conseguir dilatar un conducto disminuyendo al máximo la agresión que se produce con los actuales stents sobre la superficie interna de tal conducto al expandir o desplegar el citado stent dentro del conducto tubular correspondiente.
ANTECEDENTES DE LA INVENCION
En la actualidad, son conocidos los stents fabricados a partir de una malla de plástico, metal, tela o nuevos materiales, de manera que una vez armados o conformados, presentan una estructura tubular de pared perforada, clasificándose fundamentalmente en tres grupos.
Un primer grupo cuya estructura tubular se obtiene a partir de una malla que se dilata.
Un segundo grupo en el que el stent tiene la aplicación de liberar fármacos. Para ello, la estructura tubular del dispositivo es rebozada con una serie de sustancias que actúan sobre las paredes en contacto con la malla evitando reacciones adversas de la misma, bien sea directa con la proliferación celular, etc, o indirectas. Entre éstas, la más frecuente es la trombosis por excitación del sistema plaquetario o activación de la coagulación pero, al igual que otros stents coronarios, éste se deja permanentemente en la arteria.
Un tercer grupo se corresponde con los stents reabsorbibles , los cuales una vez colocados se van reabsorbiendo hasta desaparecer.
El desplegado o expansión del stent se realiza mediante un globo o balón desinflado ubicado dentro de la propia prótesis plegada, de manera que cuando la misma alcanza el estrechamiento donde se debe instalar, se procede al inflado del globo colocado previamente desinflado dentro del stent en posición plegada, hasta conseguir el diámetro requerido del stent desplegado que conformará un armazón que asegura el diámetro óptimo de esta zona del conducto tubular evitando que se contraiga. En una fase posterior se procede a extraer el globo desinflándolo previamente.
La dilatación con el globo y la colocación del armazón son sincrónicos, es decir, el armazón va encogido sobre el globo y al dilatar el globo se dilata y asienta el armazón por la parte interna del stent. La presión que se ejerce sobre el interior del citado stent pueden llegar hasta las 20 atmósferas y la expansión del armazón, a esa presión puede provocar el desgarro del conducto tubular del paciente .
Es decir, cuando hay una estrechez, por ejemplo de una arteria, se introduce un balón desinflado que va cubierto por un armazón a modo de malla, de manera que cuando el balón se infla se ensancha la arteria y el armazón, quedando luego éste estirado de forma definitiva, impidiendo la constricción de la arteria, para finalmente extraer el balón desinflado, tal y como se ha referido anteriormente.
Esta forma de dilatar a tal presión ejerce un daño sobre la estructura que se dilata produciendo desgarros, y hasta ahora no se contempla disminuir la agresividad de dicho procedimiento.
Se establece que la fabricación de los stents está hecha en cualquier material biocompatible (es decir, tolerado por los seres vivos o sin reacciones adversas), ya que las características del material dan al sistema propiedades físicas diferentes en cuanto a dureza, flexibilidad, capacidad de dilatación, entre otras.
Todos los diseños actuales de stents, se fabrican en forma de malla expansible y en la actualidad existen varias formas de entramado de las mallas pero ninguna de ellas contempla que el área de barrido que recorre el hilo de la malla durante su expansión sea el mínimo como ocurre en la invención que nos ocupa. Esto quiere decir que al expandir la malla a tanta presión el hilo tiene necesariamente que rasgar un área de la superficie en la que apoya provocando una lesión.
Por otro lado, las características y propiedades más importantes de un stent son las siguientes:
Que sean fáciles de introducir, es decir que se puedan llevar al lugar de la lesión mediante un fácil desplazamiento a través de los conductos previos a las lesiones, definiéndose esta propiedad en la jerga médica como navegación a lo largo del conducto en el que se introduce la prótesis (stent ) .
Que después del desplegado o expansión del stent, éste no se retraiga, de manera que cuanto menos se retraiga el efecto curativo será mayor.
Que dañen lo menos posible la superficie sobre la que están en contacto. Al expandirlo se ejerce una fuerte presión sobre la superficie que se aplica y se debe tener en cuenta que el desgarro producido por el hilo de la malla es importante.
Que se adapte al conducto lo mejor posible. Los dos primeros puntos indicados son dados por la forma de tejer el hilo de la malla, es decir, por el entramado de la malla y el tercer punto por la sección del hilo redondo o plano, o como en este caso de la invención que nos ocupa que presenta una característica curvatura curvo-convexa . En cuanto al cuarto punto citado, en relación con la forma longitudinal y teniendo en cuenta que las arterias se van haciendo cada vez más pequeñas a modo de cuerno, la nueva configuración de la invención que nos ocupa es la que mejor se adapta.
Por otro lado también cabe señalar que desde que los stents comenzaron su andadura los beneficios obtenidos son elevados, guiándose la fabricación de los mismos por patrones económicos fundamentalmente, una loca carrera por las ventas sin que se hiciese ningún estudio serio de la geometría, anatomía, capacidad de adaptación, capacidad de integración, agresividad y eficacia, entre otros.
A las promesas de los fabricantes de los stents les siguen problemas reales, como por ejemplo que en algunos casos fue necesario extraer los stents una vez implantados, con los consiguientes daños provocados al paciente, existiendo otros casos en los que no fue posible su extracción ni retirada.
Todos los stents actuales presentan una configuración cilindrica tanto en su posición plegada como en su posición desplegada, generando entre otros, los siguientes problemas :
En cuanto a su forma, mientras que transversalmente el stent convencional presenta una forma circular y se adapta a la sección transversal de la arteria, longitudinalmente son cilindricos y no se adaptan al estrechamiento progresivo de una arteria, por ej emplo .
El hilo de la armadura de malla es tan fino que su superficie es cortante. En este caso la zona de contacto es mínima y al expandir el stent sobre la superficie interna del conducto tubular donde se instala a 20 atmósferas de presión, se provocan desgarros del tejido.
La geometría de la malla que define la capacidad de expansión, navegabilidad y retracción. La malla de los diseños actuales tiene muchos recovecos que lesionan aún más la pared del conducto tubular. La soldadura o unión entre los distintos anillos o aros hace que al expandirse el stent se refuerce aún más produciendo un mayor daño a la superficie interna del conducto que se dilata.
Se daña el endotelio formado por unas células que recubren el interior de todos los vasos sanguíneos.
Algunos ejemplos de stents se corresponden con las Patentes de Invención con número de publicación en España 2223096, 2144657, 2119537 y 2243274.
DESCRIPCION DE LA INVENCION
Con el fin de alcanzar los objetivos y evitar los inconvenientes mencionados en los apartados anteriores, la invención propone un stent que comprende en principio una estructura tubular conformada por una pared envolvente definida por una armadura de malla y la cual delimita un primer espacio menor en una posición plegada y un segundo espacio mayor en una posición desplegada en la que tal estructura tubular se encuentra dentro de una zona debilitada de un conducto tubular de un cuerpo humano o animal, habiéndose introducido previamente tal estructura tubular en la posición plegada a lo largo del conducto tubular hasta alcanzar la zona debilitada donde se procede al desplegado mediante el inflado de un globo ubicado por dentro del propio stent en la posición plegada.
Se caracteriza porque:
- La estructura tubular comprende una configuración tronco-cónica al menos en la posición desplegada. La estructura tubular integra unos tramos longitudinales correspondientes con las generatrices de la citada configuración tronco- cónica, y al menos dos anillos de trayectoria circunferencial de diferente diámetro unidos a los tramos longitudinales.
Los anillos de trayectoria circunferencial integran, en la posición plegada, unos dobleces contenidos en la superficie envolvente de la estructura tubular.
Los anillos de trayectoria circunferencial se caracterizan a su vez porque comprenden varios tramos curvados delimitados entre los puntos de cruce de los tramos longitudinales con respecto a los citados anillos de la estructura tubular, caracterizándose también porque tales tramos curvados integran sendos dobleces en la posición plegada de la estructura tubular.
Cada uno de los dobleces de los anillos de trayectoria circunferencial comprende al menos un par de pliegues envolventes mayores enfrentados, unidos por uno de sus extremos mediante un pliegue central de trayectoria curvada, mientras que los extremos libres de tales pliegues envolventes mayores se prolongan en unos pliegues menores en oposición que son continuación de unas porciones extremas de los tramos curvados conformantes de los anillos .
En una realización preferente, la estructura tubular comprende una configuración tronco-cónica también en la posición plegada.
Otra característica de la invención es que los dobleces de los anillos de la estructura tubular se estiran completamente en la posición desplegada, mientras que los tramos longitudinales mantienen en todo momento su longitud inicial.
Los tramos longitudinales y anillos de la estructura tubular integran una característica sección de configuración arqueada que se estrecha progresivamente desde una zona central hacia sus extremos laterales.
Tal sección de configuración arqueada comprende una cara interna y una cara exterior curvo-convexa que está en contacto con la superficie interna del conducto tubular en la posición desplegada de la estructura tubular del stent.
Las zonas extremas de la cara exterior curvo-convexa comprenden unas porciones terminales de curvatura reducida en cuyos extremos convergen el final de la cara interna de los anillos y tramos longitudinales de la estructura tubular .
Otra característica de la invención es que la cara interna de los tramos longitudinales y anillos de la estructura tubular comprende tal cara interna un plano curvo-cóncavo .
En otra realización tal cara interna presenta una superficie plana.
La anchura de la sección de configuración arqueada de los tramos longitudinales y anillos de la estructura tubular, es tal anchura sustancialmente mayor que el grosor de la zona central de tal configuración arqueada.
Otra característica de la invención es que los tramos longitudinales y anillos comprenden una estructura porosa que tiene una configuración fractal.
La estructura porosa del stent facilita la absorción del medicamento en estado líquido a modo de esponja, empapándose de tal medicamento líquido, con lo cual el transporte del medicamento junto con el stent resulta sumamente sencillo y práctico. Así pues, tal medicamento líquido ocupará la multitud de cavidades de tal estructura porosa .
Entre otras, las ventajas que presenta el nuevo stent son las siguientes:
- Su diseño de estructura de malla al expandirse la misma hasta alcanzar la posición desplegada del stent, recorre una menor área de barrido sobre la superficie a dilatar, lo que implica una minimización de la agresión sobre el tejido, mayor protección, reducción de la herida o desgarro.
La forma que se le da a la estructura de malla está basada en reducir al máximo el recorrido dañino del hilo (tramos longitudinales y anillos de la estructura tubular) sobre la superficie a expandir. A continuación para facilitar una mejor comprensión de esta memoria descriptiva y formando parte integrante de la misma se acompañan unas figuras en las que con carácter ilustrativo y no limitativo se ha representado el objeto de la invención.
BREVE DESCRIPCION DE LOS DIBUJOS
Figura 1.- Muestra una vista en perspectiva del stent en posición plegada, objeto de la invención. Presenta una característica estructura tubular de configuración tronco- cónica, cuya pared comprende también una característica malla, a partir de la cual se obtiene el stent. También se muestra un conducto tubular con un estrechamiento donde se instalará el stent.
Figura 2.- Muestra una vista en perspectiva del stent en posición desplegada, en la que ocupa un volumen sustancialmente mayor que en la posición plegada.
Figura 3a.- Muestra una vista de la malla en posición plegada, a partir de la cual se obtiene el stent de la invención .
Figura 3b.- Muestra una vista similar a la anterior, con otra realización diferente.
Figura 4.- Muestra una vista frontal del stent en posición desplegada.
Figura 5.- Muestra una vista de la característica sección que presenta un hilo, a partir del cual se fabrica la malla para conformar después el stent de la invención.
DESCRIPCION DE UN EJEMPLO DE REALIZACION DE LA INVENCION
Considerando la numeración adoptada en las figuras, el stent contempla la siguiente nomenclatura empleada en la descripción :
1. - Estructura tubular.
2. - Conducto tubular.
2'.- Estrechamiento.
3. - Tramos longitudinales.
4. - Anillos.
5. - Tramos curvados. 6. - Dobleces.
7. - Pliegues envolventes mayores.
8. - Pliegue central.
9. - Pliegues menores.
10.- Porciones extremas.
11. - Cara exterior curvo-convexa .
12. - Cara interna.
13. - Superficie interna.
13'.- Porciones terminales.
14.- Puntos de cruce.
Comprende una estructura tubular 1 de configuración tronco-cónica que facilita su introducción en posición plegada dentro de un conducto tubular 2 donde se vaya a instalar, facilitando también tal configuración tronco- cónica su navegabilidad a lo largo de tal conducto tubular 2 hasta alcanzar la zona concreta de colocación, tal como por ejemplo un estrechamiento 2'. Evidentemente el extremo delantero del stent que va en cabeza durante su avance por el interior del conducto tubular 2 es el extremo de menor diámetro.
No obstante, en otra realización menos ventajosa, el stent podría comprender una configuración diferente a la tronco-cónica en la posición plegada, como por ejemplo una configuración cilindrica.
A su vez, la estructura tubular 1 del stent se conforma a partir de una armadura de malla y está conformada por varios tramos longitudinales 3 correspondientes con las generatrices de la configuración tronco-cónica y al menos dos anillos 4 de trayectoria circunferencial unidos a los citados tramos longitudinales 3. Estos son de trayectoria recta.
En una realización, la armadura de malla está formada por hilos unidos en sus puntos de cruce 14, fabricados mediante un material de nitinol compuesto por níquel y titanio al 50%, sin descartar otros materiales, como por ejemplo un acero inoxidable. Los anillos 4 de trayectoria circunferencial comprenden varios tramos curvados 5 delimitados entre los puntos de cruce 14 de los tramos longitudinales 3 con respecto a los citados anillos 4 de la estructura tubular 1.
Al menos en la posición plegada del stent, las porciones curvadas 5 de los anillos 4 integran sendos dobleces 6, formado cada uno de ellos por al menos un par de pliegues envolventes mayores 7 enfrentados, unidos por uno de sus extremos mediante un pliegue central 8 de trayectoria curvada, mientras que los extremos libres de cada uno de tales pliegues envolventes mayores 7 se prolongan en otros pliegues menores 9 en oposición que son continuación de unas porciones extremas 10 de los tramos curvados 5 conformantes de los anillos 4 pertenecientes a la estructura tubular 1 del stent.
Una vez situado el stent en el estrechamiento 2' del conducto tubular 2 donde se desea instalar, se procede a su desplegado de forma convencional a través de un elemento inflable (globo) que será introducido previamente dentro del reducido espacio interior del stent en posición plegada. Tal elemento inflable no está representado en las figuras por no considerarse necesario.
La estructura del stent en posición desplegada adopta también una configuración tronco-cónica, con lo cual, se facilita la circulación de la corriente de fluido que avanza a lo largo del citado conducto tubular 2 donde se ha instalado, fluido que puede ser sangre u otros fluidos. Para ello, el sentido de la corriente del fluido será desde el diámetro mayor del stent hacia su diámetro menor. Esta ventaja puede ser muy beneficiosa para los pacientes a fin de conseguir una mejor solución a su problema médico.
Durante el proceso de desplegado del stent mediante el inflado del globo incorporado, los dobleces 6 de los distintos anillos se despliegan de forma controlada estirándose progresivamente hasta alcanzar el volumen o tamaño requerido del stent para recuperar asi el diámetro requerido en el estrechamiento 2' del conducto tubular 2 donde se ha instalado.
En cambio, los tramos longitudinales 3 del stent en la posición desplegada mantienen la misma longitud que en la posición plegada.
Evidentemente, el tamaño mayor del stent se corresponderá con los estiramientos completos de los dobleces 6 integrados en los distintos anillos 4 de trayectoria circunferencial, siendo esta realización la preferente .
Los dobleces 6 de los anillos 4 cuando se estiran durante el desplegado barren un área sustancialmente menor que cualquier otro stent convencional, con lo cual, se minimizan al máximo los daños por rozamiento y desgarro sobre el tejido del conducto tubular 2 del paciente al expandirse el stent.
Por otro lado, la sección de los distintos anillos 4 y tramos longitudinales 3 del stent, tal como se muestra en la figura 5, presenta una estructura arqueada que integra una cara exterior 11 curvo-convexa y una cara interna 12 seleccionada entre una trayectoria curvo-cóncava como se aprecia en la citada figura 5 y una trayectoria plana.
Los tramos longitudinales 3 y anillos 4 de la estructura tubular integran una sección de configuración arqueada que se estrecha progresivamente desde una zona central hacia sus extremos laterales.
La nueva estructura del stent de la invención proporciona una buena estabilidad longitudinal y flexibilidad lateral, que se traduce en una buena navegabilidad .
Las caras exteriores curvo-convexas 11 del stent que contactan con la superficie interna 13 del conducto tubular 2 donde se ha instalado tal stent, ejercen una presión sustancialmente menor que en el caso de los stents convencionales, ya que tal presión disminuye proporcionalmente a la superficie de contacto, distribuyéndose las fuerzas en el desplegado o expansión del stent en una superficie de contacto mayor en la invención que nos ocupa con respecto a los stents convencionales en los que la superficie de contacto es muy reducida .
Las zonas extremas de las caras exteriores curvo- convexas 11 comprenden unas porciones terminales 13' con una curvatura menor que el resto de tales caras exteriores curvo-convexas 11.
Los hilos de los stents convencionales tienen un apoyo contra la cara interna del conducto tubular en una reducida superficie, y por lo tanto, al desplegarse tales stents convencionales, la fuerza expansiva provoca que la presión puntual concentrada de tales hilos se incruste en la estructura dilatada del conducto tubular respectivo desgarrando el mismo y provocando daños de extrema gravedad en algunos casos.
Por otro lado, la configuración curvo-convexa de las caras exteriores de la estructura de malla del stent de la invención evita exponer sobre la pared una superficie cortante, que ofrece una alta resistencia y que se clava en la estructura a dilatar, como ocurre con los actuales hilos. El hilo del que está compuesta la armadura de malla del stent de la invención presenta las siguientes ventajas:
Facilita el deslizamiento del stent disminuyendo la resistencia .
Aumenta la superficie de contacto.
Disminuye la agresión y erosión al expandirse el stent.
Disminuye la presión sobre la estructura a dilatar. Con la característica estructura geométrica que presenta el stent de la invención es posible aumentar la longitud de los anillos 4 barriendo el mínimo de área posible de la superficie interna 13 del conducto tubular 2. El stent tendrá tantos pliegues envolventes mayores 7 como se necesite para aumentar el diámetro del stent hasta alcanzar la longitud circunferencial necesaria acorde con el diámetro interior del conducto tubular 2 donde se vaya a instalar el stent.
Tanto mayor es el diámetro basal del stent menor dificultad se tendrá en el diseño, pues los distintos pliegues envolventes mayores 7 pueden ser solamente dos. El problema surge cuando el diámetro del que partimos es mínimo, como por ejemplo 0,5 mm y se debe aumentar hasta alcanzar los 3 mm acorde con la posición desplegada del stent en el interior del conducto tubular 2 correspondiente. En este caso el perímetro circunferencial del stent deberá aumentar de forma sustancial desde la posición plegada a la posición desplegada, de manera que la longitud circunferencial del stent aumentará de forma sustancial pudiéndose multiplicar por treinta veces el aumento de tal contorno circunferencial.
La longitud de los anillos 4 del stent será proporcional a los pares de pliegues envolventes mayores 7. Por lo tanto se pueden incorporar tantos pares de pliegues envolventes mayores como sean necesarios para pasar, por ejemplo, de 0,8 mm de contorno circunferencial del stent hasta los 27 mm de contorno circunferencial del stent en posición desplegada o expandida, pudiéndose aplicar así el stent de la invención a lesiones estrechísimas de conductos tubulares que hasta ahora eran inabordables.
Así pues, cada milímetro de recorrido con el stent de la invención, supone el triple de longitud circunferencial, es decir, de manera que cada par de pliegues envolventes mayores pueden multiplicar su longitud por el triple de la misma, a lo que hay que añadir la longitud del pliegue central 8 y pliegues menores 9 de los anillos.
En la actualidad los stents convencionales, tal como se ha referido anteriormente presentan una configuración cilindrica, es decir, que tienen en sus dos extremos el mismo diámetro a diferencia del stent de la Patente de Invención que nos ocupa que presenta una configuración tronco-cónica de manera que su forma se adapta a los diámetros de aquellos conductos tubulares cuya luz se reduce a medida que se avanza por su cauce, como por ejemplo en el caso de las arterias coronarias.
Los stents actuales tienen un diámetro inicial y un diámetro final idénticos, con lo que se adapta como un guante a su dedo, lo que provoca una desigual dilatación, una desigual presión y altera asi la normal anatomía del tubo arterial coronario, por ejemplo.
Así, por ejemplo, para la coronaria izquierda el diámetro se reduce 1 mm cada 2 cm con una desviación del 15% mientras que para la coronaria derecha es 1 mm cada 4 cm de longitud con una desviación del 15%.
Las arterias presentan una configuración tronco-cónica adaptándose al interior de las mismas perfectamente el stent de la invención.
Así pues, para diseñar con exactitud y precisión el stent de la invención para adaptarlo a las coronarias se deberá tener en cuenta que en el caso de la coronaria derecha la reducción del diámetro es de 1 mm cada 4 cm de longitud mientras que para la coronaria izquierda será de 1 mm cada 2 cm.
Resumiendo pues el stent de la invención presenta las siguientes ventajas:
Al presentar una configuración tronco-cónica frente a la configuración cilindrica de los stents convencionales, el plegado del hilo de la armadura de malla permite aumentar el área de la circunferencia por encima de los stents actuales. El hilo de la malla al ser asimétrico y no circular o aplanado como los hilos convencionales, tiene dos caras opuestas de gran superficie, a modo de un ala delta. El material del stent es conocido, siendo preferentemente el nitinol, con una característica sección estructural definida anteriormente, destacándose la cara exterior 11 curvo-convexa y fractal (objeto semigeométrico cuya estructura básica fragmentada o irregular, se repite, a diferentes escalas) . Cabe señalar que fractal significa también quebrado o fracturado.
Se disminuye al máximo la agresión que se produce con el stent de la invención con respecto a los actuales stents.
Mayor capacidad de transporte de sustancias (geometría fractal) .
Adaptación a la anatomía cónica de la arteria.
Se obtiene mayor capacidad de dilatación.
El diseño de los anillos 4 dispuestos en planos transversales permite una gran expansión del stent, de manera que el área barrida es mínima, reduciéndose de esta forma el daño erosivo producido durante tal expansión.
El diseño de los anillos 4 dispuestos en planos transversales permite una gran expansión del stent al aumentar la longitud de tales anillos 4 durante el desplegado, de manera que el área barrida es mínima, reduciéndose de esta forma el daño erosivo producido durante la deformación de los aros mientras dura la expansión o desplegado del stent. El hilo de la armadura de malla proporciona una mayor superficie de contacto sin un borde cortante reduciéndose la fricción y con una expansión de menor resistencia en su desplazamiento.
La configuración geométrica del stent de la invención se adapta perfectamente a la anatomía real de las arterias coronarias con una reducción en su diámetro en torno al 25% para la coronaria derecha y en torno al 33% para la coronaria izquierda .
Los tramos longitudinales 3 y anillos 4 comprenden una estructura porosa que tiene una configuración fractal.
La estructura porosa del stent facilita la absorción del medicamento en estado liquido a modo de esponja, empapándose de tal medicamento liquido, con lo cual el transporte del medicamento junto con el stent resulta sumamente sencillo y práctico. Asi pues, tal medicamento liquido ocupará la multitud de cavidades de la estructura porosa, para después liberarse dentro del cuerpo humano o animal .

Claims

RE IVINDICACIONES :
1 . - STENT , que comprende una estructura tubular conformada por una pared envolvente definida por una armadura de malla y la cual delimita un primer espacio menor en una posición plegada y un segundo espacio mayor en una posición desplegada en la que tal estructura tubular se encuentra dentro de una zona debilitada, tal como un estrechamiento, de un conducto tubular de un cuerpo humano o animal, habiéndose introducido previamente tal estructura tubular en la posición plegada a lo largo del conducto tubular hasta alcanzar la zona debilitada donde se procede al desplegado, caracterizado por que:
la estructura tubular (1) comprende una configuración tronco-cónica al menos en la posición desplegada;
la estructura tubular (1) integra unos tramos longitudinales (3) correspondientes con las generatrices de la citada configuración tronco- cónica, y al menos dos anillos (4) de trayectoria circunferencial de diferente diámetro que están unidos a los tramos longitudinales (3);
los anillos (4) de trayectoria circunferencial integran, en la posición plegada, unos dobleces (6) contenidos en la superficie envolvente de la estructura tubular (1) .
2 . - STENT , según la reivindicación 1, caracterizado por que:
los anillos (4) de trayectoria circunferencial comprenden varios tramos curvados (5) delimitados entre los puntos de cruce (14) de los tramos longitudinales (3) con respecto a lo citados anillos (4) de la estructura tubular ( 1 ) ;
los tramos curvados (5) integran sendos dobleces (6) en la posición plegada de la estructura tubular (1) .
3 . - STENT , según la reivindicación 2, caracterizado por que:
cada uno de los dobleces (6) de los anillos (4) de trayectoria circunferencial comprende al menos un par de pliegues envolventes mayores (7) enfrentados, unidos por uno de sus extremos mediante un pliegue central (8) de trayectoria curvada;
los extremos libres de tales pliegues envolventes mayores (7) se prolongan en unos pliegues menores
(9) en oposición que son continuación de unas porciones extremas (10) de los tramos curvados (5) conformantes de los anillos (4) .
4 . - STENT , según una cualquiera de las reivindicaciones anteriores, caracterizado por que la estructura tubular (1) comprende una configuración tronco- cónica en la posición plegada.
5 . - STENT , según una cualquiera de las reivindicaciones anteriores, caracterizado por que los dobleces (6) de los anillos (4) de la estructura tubular (1) se estiran completamente en la posición desplegada, mientras que los tramos longitudinales (3) mantienen en todo momento su longitud inicial.
6 . - STENT , según una cualquiera de las reivindicaciones anteriores, caracterizado por que:
los tramos longitudinales (3) y los anillos (4) de la estructura tubular (1) integran una sección de configuración arqueada que se estrecha progresivamente desde una zona central hacia sus extremos laterales;
la sección de configuración arqueada comprende una cara interna (12) y una cara exterior curvo-convexa (11) que está en contacto con la superficie interna (13) del conducto tubular (2) en la posición desplegada de la estructura tubular (1) del stent; las zonas extremas de la cara exterior curvo- convexa (11) comprenden unas porciones terminales (13') de curvatura reducida donde convergen los extremos de la cara interna (12) .
7 . - STENT , según la reivindicación 6, caracterizado por que la cara interna (12) de los tramos longitudinales (3) y anillos (4) de la estructura tubular (1), está definida tal cara interna (12) por un plano curvo-cóncavo.
8 . - STENT , según una cualquiera de las reivindicaciones 6 ó 7, caracterizado por que la anchura de la sección de configuración arqueada de los tramos longitudinales (3) y anillos (4) de la estructura tubular (1), es sustancialmente mayor que el grosor de la zona central de tal configuración arqueada.
9 . - STENT , según una cualquiera de las reivindicaciones anteriores, caracterizado por que los tramos longitudinales (3) y anillos (4) comprenden una estructura porosa.
10 . - STENT , según la reivindicación 9, caracterizado por que la estructura porosa de los tramos longitudinales (3) y anillos (4) tiene una configuración fractal.
11 . - STENT , según la reivindicación 1, caracterizado por que los tramos longitudinales (3) de la estructura tubular (1) comprenden una trayectoria recta.
PCT/ES2012/070721 2011-10-27 2012-10-17 Stent WO2013060915A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201131735A ES2374382B2 (es) 2011-10-27 2011-10-27 Stent.
ESP201131735 2011-10-27

Publications (2)

Publication Number Publication Date
WO2013060915A1 true WO2013060915A1 (es) 2013-05-02
WO2013060915A8 WO2013060915A8 (es) 2014-04-17

Family

ID=45540590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070721 WO2013060915A1 (es) 2011-10-27 2012-10-17 Stent

Country Status (2)

Country Link
ES (1) ES2374382B2 (es)
WO (1) WO2013060915A1 (es)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998020927A1 (en) * 1996-11-12 1998-05-22 Valerian Voinov The optimum expandable stent mechanical model and its application
EP0800800B1 (de) 1996-04-10 1998-07-15 Variomed AG Stent zur transluminalen Implantation in Hohlorgane
WO1999017680A1 (en) * 1997-10-03 1999-04-15 Localmed, Inc. Radially expansible vessel scaffold having beams and expansion joints
WO1999018888A1 (en) * 1997-10-09 1999-04-22 Scimed Life Systems, Inc. Improved stent configurations
EP0730848B1 (de) 1995-03-06 2000-04-12 Willy Rüsch Ag Stent zum Anordnen in einer Körperröhre
WO2000042946A1 (en) * 1999-01-22 2000-07-27 Al Saadon Khalid Expandable intravascular tubular stents
US6685737B1 (en) * 2000-10-31 2004-02-03 Advanced Cardiovascular Systems, Inc. Endoluminal stent cross section for optimum biocompatibility
EP0897698B1 (en) 1997-08-22 2004-06-09 Nozomu Kanesaka Stent with different mesh patterns
EP1194079B1 (en) 1999-07-02 2005-06-01 Endotex Interventional Systems, Inc. Flexible, stretchable coiled-sheet stent
WO2008098923A2 (en) * 2007-02-13 2008-08-21 Cinvention Ag Porous stent
US20080243113A1 (en) * 2006-11-08 2008-10-02 Shastri V Prasad Modification of stent surfaces to impart functionality

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010530A (en) * 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
AU760179B2 (en) * 1998-09-08 2003-05-08 Interventional Technologies Inc. Low pressure stent
CN1287478A (zh) * 1998-11-12 2001-03-14 先进心血管系统公司 具有非均匀结构的扩张装置
US6569193B1 (en) * 1999-07-22 2003-05-27 Advanced Cardiovascular Systems, Inc. Tapered self-expanding stent
US20100004733A1 (en) * 2008-07-02 2010-01-07 Boston Scientific Scimed, Inc. Implants Including Fractal Structures

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730848B1 (de) 1995-03-06 2000-04-12 Willy Rüsch Ag Stent zum Anordnen in einer Körperröhre
ES2144657T3 (es) 1995-03-06 2000-06-16 Ruesch Willy Ag Dispositivo de stent para su colocacion en un conducto tubular corporal.
EP0800800B1 (de) 1996-04-10 1998-07-15 Variomed AG Stent zur transluminalen Implantation in Hohlorgane
ES2119537T3 (es) 1996-04-10 1998-10-01 Variomed Ag Dispositivo stent para la implantacion transluminal en organos huecos.
WO1998020927A1 (en) * 1996-11-12 1998-05-22 Valerian Voinov The optimum expandable stent mechanical model and its application
EP0897698B1 (en) 1997-08-22 2004-06-09 Nozomu Kanesaka Stent with different mesh patterns
ES2223096T3 (es) 1997-08-22 2005-02-16 Bolton Medical Inc. Stent con diseños de malla diferentes.
WO1999017680A1 (en) * 1997-10-03 1999-04-15 Localmed, Inc. Radially expansible vessel scaffold having beams and expansion joints
WO1999018888A1 (en) * 1997-10-09 1999-04-22 Scimed Life Systems, Inc. Improved stent configurations
WO2000042946A1 (en) * 1999-01-22 2000-07-27 Al Saadon Khalid Expandable intravascular tubular stents
EP1194079B1 (en) 1999-07-02 2005-06-01 Endotex Interventional Systems, Inc. Flexible, stretchable coiled-sheet stent
ES2243274T3 (es) 1999-07-02 2005-12-01 Endotex Interventional Systems, Inc. Stent flexible y estirable en forma de hoja.
US6685737B1 (en) * 2000-10-31 2004-02-03 Advanced Cardiovascular Systems, Inc. Endoluminal stent cross section for optimum biocompatibility
US20080243113A1 (en) * 2006-11-08 2008-10-02 Shastri V Prasad Modification of stent surfaces to impart functionality
WO2008098923A2 (en) * 2007-02-13 2008-08-21 Cinvention Ag Porous stent

Also Published As

Publication number Publication date
ES2374382B2 (es) 2012-12-05
WO2013060915A8 (es) 2014-04-17
ES2374382A1 (es) 2012-02-16

Similar Documents

Publication Publication Date Title
ES2282116T3 (es) Dispositivo de control de flujo e introductor.
ES2365208T3 (es) Catéter con globo rigidizado para dilatación e implantación de prótesis endovasculares.
ES2324659T3 (es) Implante vascular de diametro variable y globo.
ES2547490T3 (es) Aparato de catéter y procedimientos para tratar vasos sanguíneos
ES2477879T3 (es) Medios de inmovilización entre una malla y unos medios de despliegue de malla especialmente útiles para cirugías de reparación de hernias
ES2407136T3 (es) Sistema vascular para aposición de valvas valvulares
ES2343002T3 (es) Implante de estrechamiento.
ES2295112T3 (es) Stent helicoidal con extremidades planas.
ES2370388T3 (es) Catéter con cuerpo principal dilatable radialmente.
ES2561054T3 (es) Fibra obtenida por aposición para uso en el despliegue endoluminal de dispositivos expandibles en anatomías tortuosas
ES2684405T3 (es) Sistema de suministro de implante
ES2208929T3 (es) Cateter de balon.
JP5657637B2 (ja) 圧潰可能な端部を有する分岐ステント
ES2335651T3 (es) Conjunto que permite la colocacion de una valvula protesica en un conducto corporal.
ES2374899T3 (es) Sistemas de balón de catéter.
ES2314425T3 (es) Un sistema para mejorar la funcion cardiaca.
ES2238813T3 (es) Implante intraluminal medico en forma de fuelle y aparato para su utilizacion.
ES2651890T3 (es) Dispositivo de contacto de área de superficie mínima para la sujeción de una placa a una pared de los vasos sanguíneos
ES2253449T3 (es) Dispositivo vascular con valvula para aproximar paredes vasculares.
EP3634259B1 (en) Flow control stent
ES2743929T3 (es) Cierre hermético con anillo pivotante
US20110077730A1 (en) Bifurcated balloon stent
ES2540736T3 (es) Catéter de administración de dispositivo que tiene una punta distal curvada
JP2007518450A5 (es)
JP2005501655A5 (es)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12791217

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12791217

Country of ref document: EP

Kind code of ref document: A1