WO2013057785A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2013057785A1
WO2013057785A1 PCT/JP2011/073885 JP2011073885W WO2013057785A1 WO 2013057785 A1 WO2013057785 A1 WO 2013057785A1 JP 2011073885 W JP2011073885 W JP 2011073885W WO 2013057785 A1 WO2013057785 A1 WO 2013057785A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
island
conductivity type
type high
silicon layer
Prior art date
Application number
PCT/JP2011/073885
Other languages
English (en)
French (fr)
Inventor
舛岡 富士雄
広記 中村
紳太郎 新井
Original Assignee
ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニサンティス エレクトロニクス シンガポール プライベート リミテッド filed Critical ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority to JP2013518033A priority Critical patent/JP5486735B2/ja
Priority to KR1020137009906A priority patent/KR20130099108A/ko
Priority to PCT/JP2011/073885 priority patent/WO2013057785A1/ja
Priority to CN2011800502708A priority patent/CN103250239A/zh
Priority to TW101137659A priority patent/TW201318110A/zh
Publication of WO2013057785A1 publication Critical patent/WO2013057785A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element
    • H10B10/125Static random access memory [SRAM] devices comprising a MOSFET load element the MOSFET being a thin film transistor [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a semiconductor device.
  • MOS transistors Semiconductor integrated circuits, in particular, integrated circuits using MOS transistors, are becoming increasingly highly integrated. Along with this high integration, the MOS transistors used therein have been miniaturized to the nano-range.
  • the basic circuit of a digital circuit is an inverter circuit.
  • MOS transistors that make up this inverter circuit are miniaturized, it is difficult to suppress leakage current, resulting in reduced reliability due to the hot carrier effect. There is a problem that the occupied area of the circuit cannot be made small because of a demand for securing a sufficient amount of current.
  • Non-patent Document 1 In a static memory cell, it is known to ensure operational stability by setting the current driving capability of a driver transistor to be twice that of an access transistor (Non-patent Document 1).
  • the gate width should be reduced if the current driving capability of the driver transistor is to be twice that of the access transistor in order to ensure operational stability. Since it must be doubled, two driver transistors are used. That is, the memory cell area increases. Alternatively, in order to double the gate width, the silicon pillar diameter must be doubled or quadrilateral and the long side doubled, which increases the area occupied by the driver transistor, which also increases the memory cell area. Increase.
  • the static memory cell of the present invention includes: A first island-like semiconductor layer; A first first-conductivity-type high-concentration semiconductor layer formed on the first island-shaped semiconductor layer; A second first-conductivity-type high-concentration semiconductor layer formed under the first island-shaped semiconductor layer; A first second conductivity type semiconductor layer formed between the first first conductivity type high concentration semiconductor layer and the second first conductivity type high concentration semiconductor layer; A first gate insulating film formed around the first second conductivity type semiconductor layer; A first gate electrode made of at least metal and formed around the first gate insulating film; A first driver transistor comprising: A second island-like semiconductor layer; A third first-conductivity-type high-concentration semiconductor layer formed on the second island-shaped semiconductor layer; A fourth first-conductivity-type high-concentration semiconductor layer formed under the second island-shaped semiconductor layer; A second second conductive semiconductor layer formed between the third first conductive high concentration semiconductor layer and the fourth first conductive high concentration semiconductor layer; A second gate insulating film formed around the second second conductivity type
  • the semiconductor memory device is A fourth island-shaped semiconductor layer; A sixth first-conductivity type high-concentration semiconductor layer formed on the fourth island-shaped semiconductor layer; A seventh first conductivity type high-concentration semiconductor layer formed under the fourth island-shaped semiconductor layer; A fifth second conductivity type semiconductor layer formed between the sixth first conductivity type high concentration semiconductor layer and the seventh first conductivity type high concentration semiconductor layer; A fourth gate insulating film formed around the fifth second conductivity type semiconductor layer; A fourth gate electrode made of at least metal and formed around the fourth gate insulating film; A first pass transistor configured with: The seventh first conductivity type high-concentration semiconductor layer and the first gate wiring are connected by wiring; A power supply voltage is applied to the sixth first conductivity type high concentration semiconductor layer.
  • the semiconductor memory device is A fourth island-shaped semiconductor layer; A sixth first-conductivity type high-concentration semiconductor layer formed on the fourth island-shaped semiconductor layer; A seventh first conductivity type high-concentration semiconductor layer formed under the fourth island-shaped semiconductor layer; A fifth second conductivity type semiconductor layer formed between the sixth first conductivity type high concentration semiconductor layer and the seventh first conductivity type high concentration semiconductor layer; A fourth gate insulating film formed around the fifth second conductivity type semiconductor layer; A fourth gate electrode made of at least metal and formed around the fourth gate insulating film; A first pass transistor configured with: The sixth first-conductivity type high-concentration semiconductor layer and the first gate wiring are connected by wiring; A power supply voltage is applied to the seventh first conductivity type high concentration semiconductor layer.
  • the voltage applied to the fourth gate electrode is the power supply voltage.
  • the gate width of the driver transistor is less than twice the gate width of the selection transistor
  • the voltage applied to the gate of the selection transistor is reduced and high integration is achieved. It is possible to provide a static memory cell that ensures operational stability.
  • the voltage applied to the first gate line can be lowered by the threshold voltage of SGT. Therefore, the area for the step-down circuit can be reduced, and can be realized only by the area occupied by the SGT. That is, it is possible to provide a static memory cell that is highly integrated and ensures operational stability.
  • the threshold voltage does not increase due to the back bias effect in principle.
  • a constant threshold voltage can always be set, and when SGT is used as a pass transistor, a static memory cell that ensures operational stability can be provided.
  • bulk MOSFETs, SOI MOSFETs, double gate MOSFETs, and trigate MOSFETs have a body that is not completely surrounded by a gate, so that in principle the threshold voltage increases due to the back bias effect. That is, when a bulk MOSFET, SOI MOSFET, double gate MOSFET, or trigate MOSFET is used for the pass transistor of the present invention, the threshold voltage changes depending on the source voltage, so that the operation stability is impaired.
  • FIG. 1 is a bird's eye view of a static memory cell according to the present invention.
  • FIG. 2 is a cross-sectional view of the static memory cell according to the present invention taken along the line X1-X1 'in FIG.
  • FIG. 3 is a cross-sectional view of the static memory cell according to the present invention taken along the line X2-X2 'in FIG.
  • FIG. 4 is a circuit diagram of a static memory cell according to the present invention.
  • FIG. 5 is a circuit diagram of a static memory cell according to the present invention.
  • FIG. 6 is a circuit diagram of a pass transistor according to the present invention.
  • FIG. 7 is a circuit diagram of a static memory cell and a pass transistor according to the present invention.
  • FIG. 1 is a bird's eye view of a static memory cell according to the present invention.
  • FIG. 2 is a cross-sectional view of the static memory cell according to the present invention taken along the line X1-X1 'in
  • FIG. 8 is a circuit diagram of a pass transistor according to the present invention.
  • FIG. 9 is a bird's-eye view of the selection transistor and the pass transistor according to the present invention.
  • 10 is a z cross-sectional view of the pass transistor according to the present invention in FIG.
  • FIG. 1 shows a bird's-eye view of a static memory cell according to the present invention
  • FIG. 2 is a cross-sectional view of the static memory cell according to the present invention taken along the line X1-X1 ′ in FIG.
  • FIG. 3 is a cross-sectional view of the static memory cell according to the present invention taken along the line X2-X2 ′ in FIG.
  • a gate wiring 131 connected to the first gate electrode 125 and the third gate electrode 126;
  • a wiring 141 for connecting the second n + silicon layer 135, the fourth n + silicon layer 137, and the fourth p + silicon layer 136 is provided.
  • the wiring 141 is preferably made of silicon or a compound of metal and silicon.
  • a gate wiring 134 connected to the gate electrode 129 and the gate electrode 130, A wiring 142 for connecting the n + silicon layer 140, the n + silicon layer 138, and the p + silicon layer 139 is provided.
  • the wiring 142 is preferably silicon or a compound of metal and silicon.
  • the peripheral length W1 of the first island-shaped silicon layer 107 is less than twice the peripheral length W2 of the second island-shaped silicon layer 109, so that an increase in the area occupied by the driver transistor is suppressed and the memory cell The increase in area is suppressed.
  • W1 W2 is particularly desirable. This is because the area occupied by the driver transistor is the same as the area occupied by the selection transistor, and high integration can be achieved.
  • the current driving capability of the selection transistor is reduced, and the operation is highly integrated. It is possible to provide a static memory cell that ensures stability.
  • FIG. 4 shows a circuit diagram of a static memory cell according to the present invention.
  • the gate wiring 131 and the wiring 142 are connected by a wiring or a contact 143
  • the gate wiring 134 and the wiring 141 are connected by a wiring or a contact 144
  • a GND line 145 is connected to the n + silicon layer 119
  • a power line 146 is connected to the p + silicon layer 120
  • a bit line 147 is connected to the n + silicon layer 121
  • a GND line 149 is connected to the n + silicon layer 124
  • a power line 146 is connected to the p + silicon layer 123
  • Bit line 148 is connected to n + silicon layer 122.
  • FIG. 5 shows a circuit diagram of a static memory cell according to the present invention.
  • FIG. 4 shows applied voltages at the time of data reading according to the present invention.
  • a VDD-B voltage is applied to the gate wiring 132 and the gate electrode 127.
  • VDD is a power supply voltage.
  • B is a positive number.
  • a power supply voltage VDD is applied to the bit line. Therefore, by applying a voltage lower than the voltage applied to the third n + silicon layer 121 of the selection transistor to the second gate electrode 127 of the selection transistor, the current driving capability of the selection transistor is reduced, and the operation is highly integrated. It is possible to provide a static memory cell that ensures stability.
  • FIG. 6 is a circuit diagram of a pass transistor according to the present invention.
  • the pass transistor When the power supply voltage VDD is input to the drain and the power supply voltage VDD is input to the gate, the pass transistor outputs a value obtained by subtracting the threshold voltage (Vth0 + A) from the power supply voltage VDD to the source.
  • Vth0 is a threshold voltage when the source is 0V
  • A is an increase of the threshold voltage increased by the back bias effect.
  • FIG. 7 is a circuit diagram of a static memory cell and a pass transistor according to the present invention.
  • This pass transistor is not required for each static memory cell, but may be provided at the end of the word line, and may be provided at the end of the static memory cell array. That is, since at least one word line is required, the area for the step-down circuit can be reduced.
  • the pass transistor When the power supply voltage VDD is input to the drain and the power supply voltage VDD is input to the gate, the pass transistor outputs a value obtained by subtracting the threshold voltage (Vth0 + A) from the power supply voltage VDD to the source.
  • Vth0 is a threshold voltage when the source is 0V
  • A is an increase of the threshold voltage increased by the back bias effect. Therefore, the increase A of the threshold voltage increased by the back bias effect changes due to the back bias.
  • FIG. 8 is a circuit diagram of a pass transistor according to the present invention.
  • the increment A of the threshold voltage increased by the back bias effect is a positive number. That is, when a bulk MOSFET, SOI MOSFET, double gate MOSFET, or trigate MOSFET is used for the pass transistor of the present invention, the threshold voltage changes depending on the source voltage, so that the operation stability is impaired.
  • the threshold voltage since the body of the SGT is completely surrounded by the gate, the threshold voltage does not increase due to the back bias effect in principle.
  • the increment A of the threshold voltage increased by the back bias effect is zero. In other words, a constant threshold voltage can always be set, and when SGT is used as a pass transistor, a static memory cell that ensures operational stability can be provided.
  • FIG. 9 is a bird's-eye view of the selection transistor and the pass transistor according to the present invention.
  • 10 is a z cross-sectional view of the pass transistor according to the present invention in FIG.
  • the SGT pass transistor is not required for each static memory cell, but may be provided at the end of the word line and may be provided at the end of the static memory cell array. That is, since at least one word line is required, the area for the step-down circuit can be reduced. Further, since the body of the SGT is completely surrounded by the gate, the threshold voltage does not increase due to the back bias effect in principle. The increment A of the threshold voltage increased by the back bias effect is zero. In other words, a constant threshold voltage can always be set, and when SGT is used as a pass transistor, a static memory cell that ensures operational stability can be provided.
  • n + silicon layer 153 and the first gate wiring 132 are connected by wiring, A power supply voltage may be applied to the seventh n + silicon layer 152. Since the electrode used as the gate electrode of the SGT pass transistor determines the threshold voltage of the transistor by the work function, at least a metal or a metal compound is preferable. Further, when the current driving capability of the SGT pass transistor is insufficient, there may be a plurality of SGT pass transistors.

Abstract

 SGTを用いた高集積で動作安定性を確保したスタティック型メモリセルを提供することを課題とする。 第1のゲート絶縁膜の周囲に形成された少なくとも金属からなる第1のゲート電極と、 で構成されたSGTからなる第1のドライバトランジスタと、 第2のゲート絶縁膜の周囲に形成された少なくとも金属からなる第2のゲート電極と、 で構成されたSGTからなる第1の選択トランジスタと、 第3のゲート絶縁膜の周囲に形成された少なくとも金属からなる第3のゲート電極と、 で構成されたSGTからなる第1のロードトランジスタと、 前記第2のゲート電極に接続される第1のゲート配線と、 を含む6トランジスタSRAMセルであって、 前記ドライバトランジスタの島状半導体層の周囲長は、選択トランジスタの島状半導体層の周囲長の二倍未満であることを特徴とし、 第2のゲート電極に印加される電圧は、 選択トランジスタの島状半導体層上部の第1導電型高濃度半導体層に印加される電圧より低いことを特徴とすることにより上記課題を解決する。

Description

半導体装置
この発明は、半導体装置に関するものである。
半導体集積回路、なかでもMOSトランジスタを用いた集積回路は、高集積化の一途を辿っている。この高集積化に伴って、その中で用いられているMOSトランジスタはナノ領域まで微細化が進んでいる。デジタル回路の基本回路は、インバータ回路であるが、このインバータ回路を構成するMOSトランジスタの微細化が進むと、リーク電流の抑制が困難であり、ホットキャリア効果による信頼性の低下が生じ、また必要な電流量確保の要請から回路の占有面積をなかなか小さくできない、といった問題があった。この様な問題を解決するために、基板に対してソース、ゲート、ドレインが垂直方向に配置され、ゲートが島状半導体層を取り囲む構造のSurrounding Gate Transistor(SGT)が提案された(例えば、特許文献1、特許文献2、特許文献3)。
スタティック型メモリセルにおいて、ドライバトランジスタの電流駆動力を、アクセストランジスタの電流駆動力の二倍とすることにより、動作安定性を確保することが知られている(非特許文献1)。
上記SGTでスタティック型メモリセルを構成しようとすると、動作安定性を確保するためにドライバトランジスタの電流駆動力を、アクセストランジスタの電流駆動力の二倍とすることを実現しようとすると、ゲート幅を2倍にしなければならないため、ドライバトランジスタを2本使用することとなる。すなわち、メモリセル面積の増大となってしまう。もしくは、ゲート幅を二倍にするために、シリコン柱の直径を二倍、もしくは四辺形とし長辺を二倍にしなければならないため、ドライバトランジスタの占有面積の増大となり、これもまたメモリセル面積の増大となる。
特開平2-71556 特開平2-188966 特開平3-145761
H. Kawasaki, M. Khater, M. Guillorn, N. Fuller, J. Chang, S. Kanakasabapathy, L. Chang, R. Muralidhar, K. Babich, Q. Yang, J. Ott, D. Klaus, E. Kratschmer, E. Sikorski, R. Miller, R. Viswanathan, Y. Zhang, J. Silverman, Q. Ouyang, A. Yagishita, M. Takayanagi, W. Haensch, and K. Ishimaru, "Demonstration of Highly Scaled FinFET SRAM Cells with High- κ /Metal Gate and Investigation of Characteristic Variability for the 32 nm node and beyond", IEDM, pp.237-240, 2008.
そこで、SGTを用いた高集積で動作安定性を確保したスタティック型メモリセルを提供することを課題とする。
上記目的を達成するために、本発明のスタティック型メモリセルは、
第1の島状半導体層と、
前記第1の島状半導体層の上部に形成された第1の第1導電型高濃度半導体層と、
前記第1の島状半導体層の下部に形成された第2の第1導電型高濃度半導体層と、
前記第1の第1導電型高濃度半導体層と前記第2の第1導電型高濃度半導体層との間に形成された第1の第2導電型半導体層と、
前記第1の第2導電型半導体層の周囲に形成された第1のゲート絶縁膜と、
前記第1のゲート絶縁膜の周囲に形成された少なくとも金属からなる第1のゲート電極と、
で構成された第1のドライバトランジスタと、
第2の島状半導体層と、
前記第2の島状半導体層の上部に形成された第3の第1導電型高濃度半導体層と、
前記第2の島状半導体層の下部に形成された第4の第1導電型高濃度半導体層と、
前記第3の第1導電型高濃度半導体層と前記第4の第1導電型高濃度半導体層との間に形成された第2の第2導電型半導体層と、
前記第2の第2導電型半導体層の周囲に形成された第2のゲート絶縁膜と、
前記第2のゲート絶縁膜の周囲に形成された少なくとも金属からなる第2のゲート電極と、
で構成された第1の選択トランジスタと、
第3の島状半導体層と、
前記第3の島状半導体層の上部に形成された第3の第2導電型高濃度半導体層と、
前記第3の島状半導体層の下部に形成された第4の第2導電型高濃度半導体層と、
前記第3の第2導電型高濃度半導体層と前記第4の第2導電型高濃度半導体層との間に形成された第5の第1導電型半導体層と、
前記第5の第1導電型半導体層の周囲に形成された第3のゲート絶縁膜と、
前記第3のゲート絶縁膜の周囲に形成された少なくとも金属からなる第3のゲート電極と、
で構成された第1のロードトランジスタと、
前記第2のゲート電極に接続される第1のゲート配線と、
を含む6トランジスタSRAMセルであって、
前記第1の島状半導体層の周囲長は、前記第2の島状半導体層の周囲長の二倍未満であることを特徴とし、
前記第2のゲート電極に印加される電圧は、
前記第3の第1導電型高濃度半導体層に印加される電圧より低いことを特徴とする。
また、本発明に係る半導体記憶装置は、
第4の島状半導体層と、
前記第4の島状半導体層の上部に形成された第6の第1導電型高濃度半導体層と、
前記第4の島状半導体層の下部に形成された第7の第1導電型高濃度半導体層と、
前記第6の第1導電型高濃度半導体層と前記第7の第1導電型高濃度半導体層との間に形成された第5の第2導電型半導体層と、
前記第5の第2導電型半導体層の周囲に形成された第4のゲート絶縁膜と、
前記第4のゲート絶縁膜の周囲に形成された少なくとも金属からなる第4のゲート電極と、
で構成された第1のパストランジスタと、をさらに有し、
前記第7の第1導電型高濃度半導体層と前記第1のゲート配線とが配線により接続され、
第6の第1導電型高濃度半導体層に電源電圧が印加されることを特徴とする。
また、本発明に係る半導体記憶装置は、
第4の島状半導体層と、
前記第4の島状半導体層の上部に形成された第6の第1導電型高濃度半導体層と、
前記第4の島状半導体層の下部に形成された第7の第1導電型高濃度半導体層と、
前記第6の第1導電型高濃度半導体層と前記第7の第1導電型高濃度半導体層との間に形成された第5の第2導電型半導体層と、
前記第5の第2導電型半導体層の周囲に形成された第4のゲート絶縁膜と、
前記第4のゲート絶縁膜の周囲に形成された少なくとも金属からなる第4のゲート電極と、
で構成された第1のパストランジスタと、をさらに有し、
前記第6の第1導電型高濃度半導体層と前記第1のゲート配線とが配線により接続され、
第7の第1導電型高濃度半導体層に電源電圧が印加されることを特徴とする。
また、本発明に係る半導体記憶装置は、前記第4のゲート電極に印加される電圧は、前記電源電圧であることを特徴とする。
 本発明によれば、ドライバトランジスタのゲート幅が、選択トランジスタのゲート幅の二倍未満のとき、選択トランジスタのゲートに印加する電圧を下げることにより、選択トランジスタの電流駆動力を下げ、高集積で動作安定性を確保したスタティック型メモリセルを提供することができる。また、第1のゲート配線と電源線との間にSGTのパストランジスタを加えることにより、第1のゲート配線に印加する電圧を、SGTのしきい値電圧分の電圧を降下させることができる。従って、降圧回路のための面積を減少させ、SGTの占有面積のみで実現できる。すなわち、高集積で動作安定性を確保したスタティック型メモリセルを提供することができる。
 SGTはボディがゲートにより完全に囲われているため原理的にバックバイアス効果によりしきい値電圧が増加することはない。すなわち常に一定のしきい値電圧とすることができ、SGTをパストランジスタとして用いると、動作安定性を確保したスタティック型メモリセルを提供することができる。
 一方、バルクMOSFET、SOI MOSFET、Double Gate MOSFET、Tri gate MOSFETは、ボディがゲートにより完全に囲われていないため、原理的にバックバイアス効果によりしきい値電圧が増加する。すなわち、バルクMOSFET、SOI MOSFET、Double Gate MOSFET、Tri gate MOSFETを本発明のパストランジスタに使用したときには、ソース電圧によりしきい値電圧が変化するため、動作安定性を損なう。
図1は、本発明に係るスタティック型メモリセルの鳥瞰図である。 図2は、本発明に係るスタティック型メモリセルの、図1におけるX1-X1’断面図である。 図3は、本発明に係るスタティック型メモリセルの、図1におけるX2-X2’断面図である。 図4は、本発明に係るスタティック型メモリセルの回路図である。 図5は、本発明に係るスタティック型メモリセルの回路図である。 図6は、本発明に係るパストランジスタの回路図である。 図7は、本発明に係るスタティック型メモリセルとパストランジスタの回路図である。 図8は、本発明に係るパストランジスタの回路図である。 図9は、本発明に係る選択トランジスタとパストランジスタの鳥瞰図である。 図10は、本発明に係るパストランジスタの、図9におけるz断面図である。
以下、本発明の実施の形態を図面を参照しながら説明する。なお、本発明は、以下に示す実施の形態によって限定されるものではない。
図1に本発明に係るスタティック型メモリセルの鳥瞰図を示し、
図2に本発明に係るスタティック型メモリセルの、図1におけるX1-X1’断面図を示し、
図3に本発明に係るスタティック型メモリセルの、図1におけるX2-X2’断面図を示す。
第1の島状シリコン層107と、
前記第1の島状シリコン層107の上部に形成された第1のn+シリコン層119と、
前記第1の島状シリコン層107の下部に形成された第2のn+シリコン層135と、
前記第1のn+シリコン層119と前記第2のn+シリコン層135との間に形成された第1のpシリコン層160と、
前記第1のpシリコン層160の周囲に形成された第1のゲート絶縁膜113と、
前記第1のゲート絶縁膜113の周囲に形成された少なくとも金属からなる第1のゲート電極125と、
で構成された第1のドライバトランジスタ101を含む。
第2の島状シリコン層109と、
前記第2の島状シリコン層109の上部に形成された第3のn+シリコン層121と、
前記第2の島状シリコン層109の下部に形成された第4のn+シリコン層137と、
前記第3のn+シリコン層121と前記第4のn+シリコン層137との間に形成された第2のpシリコン層162と、
前記第2のpシリコン層162の周囲に形成された第2のゲート絶縁膜115と、
前記第2のゲート絶縁膜115の周囲に形成された少なくとも金属からなる第2のゲート電極127と、
で構成された第1の選択トランジスタ103を含む。
第3の島状シリコン層108と、
前記第3の島状シリコン層108の上部に形成された第3のp+シリコン層120と、
前記第3の島状シリコン層108の下部に形成された第4のp+シリコン層136と、
前記第3のp+シリコン層120と前記第4のp+シリコン層136との間に形成された第5のnシリコン層161と、
前記第5のnシリコン層161の周囲に形成された第3のゲート絶縁膜114と、
前記第3のゲート絶縁膜114の周囲に形成された少なくとも金属からなる第3のゲート電極126と、
で構成された第1のロードトランジスタ102と、
前記第2のゲート電極127に接続される第1のゲート配線132とを含む。
ゲート電極に使用される電極は、仕事関数によりトランジスタのしきい値電圧を決めるのであるから、少なくとも金属もしくは金属化合物がよい。
加えて、第1のゲート電極125と第3のゲート電極126とに接続されるゲート配線131と、
第2のn+シリコン層135と第4のn+シリコン層137と第4のp+シリコン層136とを接続する配線141を持つ。
配線141は、シリコンもしくは金属とシリコンの化合物が好ましい。
また、
島状シリコン層112と、
前記島状シリコン層112の上部に形成されたn+シリコン層124と、
前記島状シリコン層112の下部に形成されたn+シリコン層140と、
前記n+シリコン層124と前記n+シリコン層140との間に形成されたpシリコン層165と、
前記pシリコン層165の周囲に形成されたゲート絶縁膜118と、
前記ゲート絶縁膜118の周囲に形成された少なくとも金属からなるゲート電極130と、
で構成されたドライバトランジスタ106を含む。
島状シリコン層110と、
前記島状シリコン層110の上部に形成されたn+シリコン層122と、
前記島状シリコン層110の下部に形成されたn+シリコン層138と、
前記n+シリコン層122と前記n+シリコン層138との間に形成されたpシリコン層163と、
前記pシリコン層163の周囲に形成されたゲート絶縁膜116と、
前記ゲート絶縁膜116の周囲に形成された少なくとも金属からなるゲート電極128と、
で構成された選択トランジスタ104を含む。
島状シリコン層111と、
前記島状シリコン層111の上部に形成されたp+シリコン層123と、
前記島状シリコン層111の下部に形成されたp+シリコン層139と、
前記p+シリコン層123と前記p+シリコン層139との間に形成されたnシリコン層164と、
前記nシリコン層164の周囲に形成されたゲート絶縁膜117と、
前記ゲート絶縁膜117の周囲に形成された少なくとも金属からなるゲート電極129と、
で構成されたロードトランジスタ105と、
 前記ゲート電極128に接続されるゲート配線133とを含む。
ゲート電極に使用される電極は、仕事関数によりトランジスタのしきい値電圧を決めるのであるから、少なくとも金属もしくは金属化合物がよい。
 加えて、ゲート電極129とゲート電極130とに接続されるゲート配線134と、
 n+シリコン層140とn+シリコン層138とp+シリコン層139とを接続する配線142を持つ。
配線142は、シリコンもしくは金属とシリコンの化合物が好ましい。
このとき、
 前記第1の島状シリコン層107の周囲長W1は、前記第2の島状シリコン層109の周囲長W2の二倍未満であることを特徴とし、
 前記第2のゲート電極127に印加される電圧は、
前記第3のn+シリコン層121に印加される電圧より低い。
 前記第1の島状シリコン層107の周囲長W1は、前記第2の島状シリコン層109の周囲長W2の二倍未満とすることにより、ドライバトランジスタの占有面積の増大を抑制し、メモリセル面積の増大を抑制する。二倍未満と記載したが、特にW1=W2が望ましい。このとき、ドライバトランジスタの占有面積は選択トランジスタの占有面積と同じとなり、高集積化を行うことができるからである。
 また、選択トランジスタの第2のゲート電極127に、選択トランジスタの第3のn+シリコン層121に印加される電圧より低い電圧を印加することで、選択トランジスタの電流駆動力を下げ、高集積で動作安定性を確保したスタティック型メモリセルを提供することができる。
 図4に、本発明に係るスタティック型メモリセルの回路図を示す。
ゲート配線131と配線142とが配線もしくはコンタクト143により接続され、
ゲート配線134と配線141とが配線もしくはコンタクト144により接続され、
n+シリコン層119にGND線145が接続され、
p+シリコン層120に電源線146が接続され、
n+シリコン層121にビット線147が接続され、
n+シリコン層124にGND線149が接続され、
p+シリコン層123に電源線146が接続され、
n+シリコン層122にビット線148が接続される。
 図5に、本発明に係るスタティック型メモリセルの回路図を示す。
 図4に本発明のデータ読み出し時の印加電圧を記載したものである。ゲート配線132、ゲート電極127にVDD-Bの電圧が印加される。VDDは電源電圧である。Bは正の数である。ビットラインには電源電圧VDDが印加される。従って、選択トランジスタの第2のゲート電極127に、選択トランジスタの第3のn+シリコン層121に印加される電圧より低い電圧を印加することで、選択トランジスタの電流駆動力を下げ、高集積で動作安定性を確保したスタティック型メモリセルを提供することができる。
 このとき、VDD-Bの電圧を作成するのに降圧回路を必要とする。もし降圧回路の面積が大きいと、かえって高集積ではなくなる可能性がある。従って、最小の面積で降圧を行うことができる回路構成が必要となる。図6は、本発明に係るパストランジスタの回路図である。パストランジスタは、ドレインに電源電圧VDD、ゲートに電源電圧VDDを入力すると、ソースに電源電圧VDDからしきい値電圧(Vth0+A)を引いた値を出力する。ただし、Vth0は、ソースが0Vのときのしきい値電圧であり、Aはバックバイアス効果により増加したしきい値電圧の増加分である。
 このパストランジスタを本発明に係るスタティック型メモリに加える。図7は、本発明に係るスタティック型メモリセルとパストランジスタの回路図である。このパストランジスタは、スタティック型メモリセル毎に必要ではなく、ワード線の端にあればよく、スタティック型メモリセルアレイの端にあればよい。すなわち、ワード線一本あたり少なくとも一つあればいいので、降圧回路のための面積を減少させることができる。
 パストランジスタは、ドレインに電源電圧VDD、ゲートに電源電圧VDDを入力すると、ソースに電源電圧VDDからしきい値電圧(Vth0+A)を引いた値を出力する。ただし、Vth0は、ソースが0Vのときのしきい値電圧であり、Aはバックバイアス効果により増加したしきい値電圧の増加分である。従って、バックバイアス効果により増加したしきい値電圧の増加分Aは、バックバイアスにより変化する。
 図8は、本発明に係るパストランジスタの回路図である。
 バルクMOSFET、SOI MOSFET、Double Gate MOSFET、Tri gate MOSFETは、ボディがゲートにより完全に囲われていないため、原理的にバックバイアス効果によりしきい値電圧が増加する。バックバイアス効果により増加したしきい値電圧の増加分Aは正の数となる。すなわち、バルクMOSFET、SOI MOSFET、Double Gate MOSFET、Tri gate MOSFETを本発明のパストランジスタに使用したときには、ソース電圧によりしきい値電圧が変化するため、動作安定性を損なう。
 一方、SGTは、ボディがゲートにより完全に囲われているため原理的にバックバイアス効果によりしきい値電圧が増加することはない。バックバイアス効果により増加したしきい値電圧の増加分Aは0となる。すなわち常に一定のしきい値電圧とすることができ、SGTをパストランジスタとして用いると、動作安定性を確保したスタティック型メモリセルを提供することができる。
 そこで、SGTをパストランジスタとして使用する。
図9は、本発明に係る選択トランジスタとパストランジスタの鳥瞰図である。
図10は、本発明に係るパストランジスタの、図9におけるz断面図である。
第4の島状シリコン層154と、
前記第4の島状シリコン層154の上部に形成された第6のn+シリコン層153と、
前記第4の島状シリコン層154の下部に形成された第7のn+シリコン層152と、
前記第6のn+シリコン層153と前記第7のn+シリコン層152との間に形成された第5のpシリコン層166と、
前記第5のpシリコン層166の周囲に形成された第4のゲート絶縁膜155と、
前記第4のゲート絶縁膜155の周囲に形成された少なくとも金属からなる第4のゲート電極151と、
で構成された第1のパストランジスタ150と、をさらに有し、
前記第7のn+シリコン層152と前記第1のゲート配線132とが配線156、コンタクト157、配線159、コンタクト158を介して接続され、
第6のn+シリコン層153に電源電圧が印加される。
 このSGTパストランジスタは、スタティック型メモリセル毎に必要ではなく、ワード線の端にあればよく、スタティック型メモリセルアレイの端にあればよい。すなわち、ワード線一本あたり少なくとも一つあればいいので、降圧回路のための面積を減少させることができる。
 また、SGTは、ボディがゲートにより完全に囲われているため原理的にバックバイアス効果によりしきい値電圧が増加することはない。バックバイアス効果により増加したしきい値電圧の増加分Aは0となる。すなわち常に一定のしきい値電圧とすることができ、SGTをパストランジスタとして用いると、動作安定性を確保したスタティック型メモリセルを提供することができる。
 また、前記第6のn+シリコン層153と前記第1のゲート配線132とを配線により接続し、
第7のn+シリコン層152に電源電圧を印加してもよい。
 このSGTパストランジスタのゲート電極に使用される電極は、仕事関数によりトランジスタのしきい値電圧を決めるのであるから、少なくとも金属もしくは金属化合物がよい。
 また、SGTパストランジスタの電流駆動力が足りない場合は、SGTパストランジスタは複数あってもよい。
 なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明の一実施例を説明するためのものであり、上述の実施形態によって本発明の技術的範囲が限定されるものではない。また、上記において、p型(p+型を含む)とn型(n+型を含む)をそれぞれ逆の導電型にしたものも本発明の技術的範囲に含まれることは、当業者には自明である。
101.ドライバトランジスタ
102.ロードトランジスタ
103.選択トランジスタ
104.選択トランジスタ
105.ロードトランジスタ
106.ドライバトランジスタ
107.島状シリコン層
108.島状シリコン層
109.島状シリコン層
110.島状シリコン層
111.島状シリコン層
112.島状シリコン層
113.ゲート絶縁膜
114.ゲート絶縁膜
115.ゲート絶縁膜
116.ゲート絶縁膜
117.ゲート絶縁膜
118.ゲート絶縁膜
119.n+シリコン層
120.p+シリコン層
121.n+シリコン層
122.n+シリコン層
123.p+シリコン層
124.n+シリコン層
125.ゲート電極
126.ゲート電極
127.ゲート電極
128.ゲート電極
129.ゲート電極
130.ゲート電極
131.ゲート配線
132.ゲート配線
133.ゲート配線
134.ゲート配線
135.n+シリコン層
136.p+シリコン層
137.n+シリコン層
138.n+シリコン層
139.p+シリコン層
140.n+シリコン層
141.配線
142.配線
143.配線もしくはコンタクト
144.配線もしくはコンタクト
145.GND線
146.電源線
147.ビット線
148.ビット線
149.GND線
150.パストランジスタ
151.ゲート電極
152.n+シリコン層
153.n+シリコン層
154.島状シリコン層
155.ゲート絶縁膜
156.配線
157.コンタクト
158.コンタクト
159.配線
160.pシリコン層
161.nシリコン層
162.pシリコン層
163.pシリコン層
164.nシリコン層
165.pシリコン層
166.pシリコン層

Claims (4)

  1. 第1の島状半導体層と、
    前記第1の島状半導体層の上部に形成された第1の第1導電型高濃度半導体層と、
    前記第1の島状半導体層の下部に形成された第2の第1導電型高濃度半導体層と、
    前記第1の第1導電型高濃度半導体層と前記第2の第1導電型高濃度半導体層との間に形成された第1の第2導電型半導体層と、
    前記第1の第2導電型半導体層の周囲に形成された第1のゲート絶縁膜と、
    前記第1のゲート絶縁膜の周囲に形成された少なくとも金属からなる第1のゲート電極と、
    で構成された第1のドライバトランジスタと、
    第2の島状半導体層と、
    前記第2の島状半導体層の上部に形成された第3の第1導電型高濃度半導体層と、
    前記第2の島状半導体層の下部に形成された第4の第1導電型高濃度半導体層と、
    前記第3の第1導電型高濃度半導体層と前記第4の第1導電型高濃度半導体層との間に形成された第2の第2導電型半導体層と、
    前記第2の第2導電型半導体層の周囲に形成された第2のゲート絶縁膜と、
    前記第2のゲート絶縁膜の周囲に形成された少なくとも金属からなる第2のゲート電極と、
    で構成された第1の選択トランジスタと、
    第3の島状半導体層と、
    前記第3の島状半導体層の上部に形成された第3の第2導電型高濃度半導体層と、
    前記第3の島状半導体層の下部に形成された第4の第2導電型高濃度半導体層と、
    前記第3の第2導電型高濃度半導体層と前記第4の第2導電型高濃度半導体層との間に形成された第5の第1導電型半導体層と、
    前記第5の第1導電型半導体層の周囲に形成された第3のゲート絶縁膜と、
    前記第3のゲート絶縁膜の周囲に形成された少なくとも金属からなる第3のゲート電極と、
    で構成された第1のロードトランジスタと、
    前記第2のゲート電極に接続される第1のゲート配線と、
    を含む6トランジスタSRAMセルであって、
    前記第1の島状半導体層の周囲長は、前記第2の島状半導体層の周囲長の二倍未満であることを特徴とし、
    前記第2のゲート電極に印加される電圧は、
    前記第3の第1導電型高濃度半導体層に印加される電圧より低いことを特徴とする半導体装置。
  2. 第4の島状半導体層と、
    前記第4の島状半導体層の上部に形成された第6の第1導電型高濃度半導体層と、
    前記第4の島状半導体層の下部に形成された第7の第1導電型高濃度半導体層と、
    前記第6の第1導電型高濃度半導体層と前記第7の第1導電型高濃度半導体層との間に形成された第5の第2導電型半導体層と、
    前記第5の第2導電型半導体層の周囲に形成された第4のゲート絶縁膜と、
    前記第4のゲート絶縁膜の周囲に形成された少なくとも金属からなる第4のゲート電極と、
    で構成された第1のパストランジスタと、をさらに有し、
    前記第7の第1導電型高濃度半導体層と前記第1のゲート配線とが配線により接続され、
    第6の第1導電型高濃度半導体層に電源電圧が印加されることを特徴とする請求項1に記載の半導体装置。
  3. 第4の島状半導体層と、
    前記第4の島状半導体層の上部に形成された第6の第1導電型高濃度半導体層と、
    前記第4の島状半導体層の下部に形成された第7の第1導電型高濃度半導体層と、
    前記第6の第1導電型高濃度半導体層と前記第7の第1導電型高濃度半導体層との間に形成された第5の第2導電型半導体層と、
    前記第5の第2導電型半導体層の周囲に形成された第4のゲート絶縁膜と、
    前記第4のゲート絶縁膜の周囲に形成された少なくとも金属からなる第4のゲート電極と、
    で構成された第1のパストランジスタと、をさらに有し、
    前記第6の第1導電型高濃度半導体層と前記第1のゲート配線とが配線により接続され、
    第7の第1導電型高濃度半導体層に電源電圧が印加されることを特徴とする請求項1に記載の半導体装置。
  4. 前記第4のゲート電極に印加される電圧は、前記電源電圧であることを特徴とする請求項2および3に記載の半導体装置。
PCT/JP2011/073885 2011-10-18 2011-10-18 半導体装置 WO2013057785A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013518033A JP5486735B2 (ja) 2011-10-18 2011-10-18 半導体装置
KR1020137009906A KR20130099108A (ko) 2011-10-18 2011-10-18 반도체 장치
PCT/JP2011/073885 WO2013057785A1 (ja) 2011-10-18 2011-10-18 半導体装置
CN2011800502708A CN103250239A (zh) 2011-10-18 2011-10-18 半导体器件
TW101137659A TW201318110A (zh) 2011-10-18 2012-10-12 半導體裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/073885 WO2013057785A1 (ja) 2011-10-18 2011-10-18 半導体装置

Publications (1)

Publication Number Publication Date
WO2013057785A1 true WO2013057785A1 (ja) 2013-04-25

Family

ID=48140463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073885 WO2013057785A1 (ja) 2011-10-18 2011-10-18 半導体装置

Country Status (5)

Country Link
JP (1) JP5486735B2 (ja)
KR (1) KR20130099108A (ja)
CN (1) CN103250239A (ja)
TW (1) TW201318110A (ja)
WO (1) WO2013057785A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0951042A (ja) * 1995-06-02 1997-02-18 Hitachi Ltd 半導体装置
JP2005038557A (ja) * 2003-07-18 2005-02-10 Semiconductor Energy Lab Co Ltd メモリ回路およびメモリ回路を有する表示装置
JP2007066493A (ja) * 2005-08-02 2007-03-15 Renesas Technology Corp 半導体記憶装置
JP2008065968A (ja) * 2006-08-10 2008-03-21 Renesas Technology Corp 半導体記憶装置
JP2008205168A (ja) * 2007-02-20 2008-09-04 Fujitsu Ltd 半導体装置及びその製造方法
WO2009060934A1 (ja) * 2007-11-07 2009-05-14 Nec Corporation 半導体装置及びその製造方法
WO2009096465A1 (ja) * 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. 半導体記憶装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2662800B2 (ja) * 1987-09-07 1997-10-15 三菱電機株式会社 半導体記憶装置
WO2009128450A1 (ja) * 2008-04-16 2009-10-22 日本電気株式会社 半導体記憶装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0951042A (ja) * 1995-06-02 1997-02-18 Hitachi Ltd 半導体装置
JP2005038557A (ja) * 2003-07-18 2005-02-10 Semiconductor Energy Lab Co Ltd メモリ回路およびメモリ回路を有する表示装置
JP2007066493A (ja) * 2005-08-02 2007-03-15 Renesas Technology Corp 半導体記憶装置
JP2008065968A (ja) * 2006-08-10 2008-03-21 Renesas Technology Corp 半導体記憶装置
JP2008205168A (ja) * 2007-02-20 2008-09-04 Fujitsu Ltd 半導体装置及びその製造方法
WO2009060934A1 (ja) * 2007-11-07 2009-05-14 Nec Corporation 半導体装置及びその製造方法
WO2009096465A1 (ja) * 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. 半導体記憶装置

Also Published As

Publication number Publication date
CN103250239A (zh) 2013-08-14
KR20130099108A (ko) 2013-09-05
JP5486735B2 (ja) 2014-05-07
JPWO2013057785A1 (ja) 2015-04-02
TW201318110A (zh) 2013-05-01

Similar Documents

Publication Publication Date Title
US8754481B2 (en) Semiconductor device
US10522554B2 (en) SRAM cells with vertical gate-all-around MOSFETs
JP5701831B2 (ja) パスゲートを備えた半導体記憶装置
JP2007042730A (ja) 半導体装置およびそれを用いた半導体集積回路
JP2005142289A (ja) 半導体記憶装置
US10756095B2 (en) SRAM cell with T-shaped contact
US20070146008A1 (en) Semiconductor circuit comprising vertical transistor
JP5364125B2 (ja) 半導体装置
US20180175047A1 (en) Semiconductor device
US7651905B2 (en) Apparatus and method for reducing gate leakage in deep sub-micron MOS transistors using semi-rectifying contacts
US9455273B2 (en) Semiconductor device
US20140191327A1 (en) Semiconductor memory device
US11062739B2 (en) Semiconductor chip having memory and logic cells
JP5486735B2 (ja) 半導体装置
US20160049187A1 (en) Semiconductor device
US20120091537A1 (en) Semiconductor device
JP2010097059A (ja) 表示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013518033

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20137009906

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874329

Country of ref document: EP

Kind code of ref document: A1