WO2013054852A1 - 窒化珪素基板および窒化珪素基板の製造方法 - Google Patents

窒化珪素基板および窒化珪素基板の製造方法 Download PDF

Info

Publication number
WO2013054852A1
WO2013054852A1 PCT/JP2012/076339 JP2012076339W WO2013054852A1 WO 2013054852 A1 WO2013054852 A1 WO 2013054852A1 JP 2012076339 W JP2012076339 W JP 2012076339W WO 2013054852 A1 WO2013054852 A1 WO 2013054852A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
substrate
nitride substrate
boron
powder
Prior art date
Application number
PCT/JP2012/076339
Other languages
English (en)
French (fr)
Inventor
加賀 洋一郎
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US14/241,789 priority Critical patent/US9655237B2/en
Priority to JP2013538571A priority patent/JP5673847B2/ja
Priority to EP12840162.7A priority patent/EP2767524B1/en
Priority to CN201280043278.6A priority patent/CN103781742B/zh
Publication of WO2013054852A1 publication Critical patent/WO2013054852A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/721Carbon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/788Aspect ratio of the grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/361Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0175Inorganic, non-metallic layer, e.g. resist or dielectric for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1126Firing, i.e. heating a powder or paste above the melting temperature of at least one of its constituents
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1131Sintering, i.e. fusing of metal particles to achieve or improve electrical conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24421Silicon containing

Definitions

  • the present invention relates to a silicon nitride substrate and a method for manufacturing a silicon nitride substrate.
  • ceramic substrates which are ceramic sintered bodies
  • insulating substrates which are members constituting circuit boards.
  • a circuit board for a semiconductor module that mounts a semiconductor element that generates a large amount of electricity and generates a large amount of heat requires high mechanical strength, thermal conductivity, and electrical insulation.
  • a ceramic substrate which is a bonded body is widely used.
  • a metal substrate as a circuit board on which a semiconductor is mounted is bonded to one surface of a ceramic substrate, and a metal substrate as a heat dissipation plate connected to a heat dissipation member or the like is bonded to the other surface.
  • the ceramic substrate and the metal substrate are bonded by a direct bonding method (DBC) or a brazing material bonding method (AMB).
  • DBC direct bonding method
  • AMB brazing material bonding method
  • Patent Document 1 states that “a ceramic green sheet is molded, and a release agent containing BN powder having an oxygen content of 3% by weight or less and an average particle size of 20 ⁇ m or less is formed on the surface thereof by a roll coater. After coating 0.3 to 3 mg / cm 2 , stack multiple sheets, degrease, and then press the top and bottom surfaces of the laminate with a BN setter and place it in a sealed container made of the same material as the setter.
  • a ceramic sintered body manufacturing method characterized in that it is housed and sintered, and a plate-like aluminum nitride sintered body having a flatness of 100 ⁇ m or less formed by the manufacturing method are disclosed.
  • a plurality of silicon nitride sintered bodies are obtained by separating and then laminating and sintering a plurality of green sheets via a separating material
  • the coefficient of variation Cv indicating the distribution of B amount derived from BN remaining on the surface of the silicon nitride substrate is 1.0 or less
  • the silicon nitride Waviness Wa of the substrate surface is 1.5 ⁇ m or less (However, the waviness is measured by using a surface roughness meter to measure the waviness center line waviness, and the arithmetic mean waviness Wa, that is, the arithmetic mean of the absolute value of the deviation from the mean value of the surface height.
  • the measurement conditions are an evaluation length of 30 mm, a measurement speed of 0.3 mm / s, a cutoff value ( ⁇ c) of 0.25 mm, a cutoff value ( ⁇ f) of 8.0 mm), and a relative density of A silicon nitride substrate characterized by being 98% or more "is disclosed.
  • the green sheets which are plate-like ceramic molded bodies, are laminated and then laminated when sintered.
  • the average particle size, oxygen content, coating amount, and other various conditions of the boron nitride particles constituting the separation layer interposed between the green sheets it is possible to suppress adhesion between the sintered ceramic substrates and Waviness on the surface of the substrate can be suppressed.
  • the ceramic substrate is a silicon nitride substrate that is a sintered body composed of a main phase composed of silicon nitride particles and a grain boundary phase composed of a sintering aid, and has a thickness of 0.20.
  • a silicon nitride substrate as thin as ⁇ 0.80 mm, it is still possible to obtain a silicon nitride substrate with a predetermined yield strength, thermal conductivity, and bondability to a metal plate with a stable yield with a surface waviness of 1.00 ⁇ m or less. It was difficult.
  • the surface waviness refers to the arithmetic average waviness Wa obtained by measuring the filtered centerline waviness using a surface roughness meter.
  • an amount that is an arithmetic average of absolute values of deviation from the average value of the surface height is used, and measurement conditions are an evaluation length of 30 mm, a measurement speed of 0.3 mm / s, and a cutoff value ( ⁇ c).
  • the cut-off value ( ⁇ f) is 8.0 mm.
  • the present invention has been made in view of such prior art, and is composed of a main phase made of silicon nitride particles and a grain boundary phase made of a sintering aid, which are as thin as 0.20 to 0.80 mm.
  • the silicon nitride substrate which is a sintered body
  • the surface waviness is 1 ⁇ m or less
  • the silicon nitride substrate having desired bending strength, thermal conductivity, and bondability with a metal plate, and a plurality of layers are laminated after sintering. It is an object of the present invention to provide a manufacturing method capable of forming a silicon nitride substrate with high separability when the individual ceramic substrates are separated from the ceramic substrate in a state without damaging the ceramic substrates.
  • one embodiment of the present invention is a method of manufacturing a silicon nitride substrate having a thickness t of 0.20 to 0.80 mm, wherein the silicon nitride substrate is a main phase mainly composed of silicon nitride particles. And a grain boundary phase formed mainly from a sintering aid, and using a boron nitride paste containing boron nitride powder / organic binder and organic solvent, silicon nitride powder / sintering aid powder and organic
  • a separation layer forming step for forming a separation layer on the surface of the plate-shaped molded body containing the binder, and after the separation layer forming step, at a temperature higher by 15 to 450 ° C.
  • said boron nitride contains 0.01 to 0.5% by mass of oxygen (O) and 0.001 to 0.5% by mass of carbon (C) in the boron nitride powder, and carbon is added to the separation layer after the degreasing step.
  • the content (% by mass) of oxygen contained in the boron nitride powder of the boron nitride paste is c, and the carbon content (C) contained in the separation layer after the degreasing step
  • the content (mass%) is a
  • c / a is in the range of 0.02 to 10.00
  • the separation layer formed on the molded body in the separation layer forming step is 0.2 to It is comprised so that 3.5 mg / cm ⁇ 2 > hexagonal boron nitride powder may be included.
  • the range of the ratio of the fluorescent X-ray intensity (B / Si) of boron (B) and silicon (Si) at an arbitrary position on the surface of the silicon nitride substrate is 7. It is preferably 0 ⁇ 10 ⁇ 5 to 250 ⁇ 10 ⁇ 5 and B / C, which is the ratio of boron (B) to carbon (C), is 0.080 to 3.000. .
  • the boron nitride paste contains the organic binder with respect to 100 parts by mass of boron nitride powder having an average particle size d50 of 4.0 to 20.0 ⁇ m, d10 of 0.5 to 7.0 ⁇ m, and d90 of 8 to 40 ⁇ m. It is preferable to contain 8.75 to 44 parts by mass.
  • the boron nitride paste has a viscosity of 1000 to 50000 cP at 25 to 27 ° C. and a thixotropy of 1.02 to 4.00, and the separation layer forming step preferably forms the separation layer by screen printing. It is.
  • thixotropy is a value defined by the ratio of the viscosity of 10 rpm to 100 rpm (viscosity of 10 rpm) / (viscosity of 100 rpm) measured with a rotational viscometer.
  • the boron nitride paste preferably contains 8.75 to 44 parts by mass of the organic binder and 80 to 750 parts by mass of an organic solvent with respect to 100 parts by mass of hexagonal boron nitride powder.
  • the separation layer formed on the molded body in the separation layer forming step contains 0.5 to 1.4 mg / cm 2 of hexagonal boron nitride powder, and at any place on the surface of the molded body after the degreasing step.
  • the ratio (B / Si) of the characteristic X-ray intensities (B / Si) of boron (B) and silicon (Si) obtained by line analysis using an electron beam microanalyzer (EPMA) having a measurement length of 20 mm any 10. It is preferable that g / f is 0.2 to 7.0, where f is the average value of the 0 mm section and g is the average value of the 0.2 mm section included in the 10.0 mm section. .
  • the exothermic peak temperature of the organic binder contained in the boron nitride paste measured by differential thermal analysis is preferably 5 ° C. or more higher than the exothermic peak temperature of the organic binder of the molded body.
  • the boron nitride paste is prepared by blending 8.75 to 44 parts by mass of an organic binder and 80 to 750 parts by mass of an organic solvent with 100 parts by mass of boron nitride powder and stirring for 0.2 to 10 hours. It is preferable to do this.
  • Another aspect of the present invention is a silicon nitride substrate, the silicon nitride substrate including a main phase mainly composed of silicon nitride particles and a grain boundary phase mainly formed of a sintering aid.
  • the main phase is a first silicon nitride particle having a major axis length divided by a minor axis length of 3.0 or less and a major axis length of 5.0 ⁇ m or less on the substrate surface.
  • a second silicon nitride particle having a major axis length and an aspect ratio both exceeding the first silicon nitride particle, and the first silicon nitride particle has a side set at an arbitrary position on the substrate surface.
  • the range of the ratio of the fluorescent X-ray intensity (B / Si) of boron (B) and silicon (Si) at an arbitrary position on the substrate surface is 7.0 ⁇ . is 10 -5 ⁇ 250 ⁇ 10 -5, which is the ratio of boron (B) and carbon (C) B / There is from 0.080 to 3.000, further, waviness of the surface is not more than 1.00 .mu.m, in addition thickness t is equal to or is 0.20 ⁇ 0.80 mm.
  • the waviness of the substrate surface is measured by measuring the filtered center line waviness using a surface roughness meter, and the arithmetic average waviness Wa, that is, the arithmetic average of the absolute value of the deviation from the average value of the surface height.
  • the measurement conditions are an evaluation length of 30 mm, a measurement speed of 0.3 mm / s, a cutoff value ( ⁇ c) of 0.25 mm, and a cutoff value ( ⁇ f) of 8.0 mm.
  • the silicon nitride substrate includes 40 or less of the first silicon nitride particles in a square region having a side of 10 ⁇ m set at an arbitrary position in the surface layer having a depth of 20 ⁇ m from the substrate surface, It is preferable that 30 or less of the first silicon nitride particles are contained in a square region having a side of 10 ⁇ m set at an arbitrary position in the inner layer whose depth from the outer layer is in a range other than the surface layer.
  • the silicon nitride substrate has an aspect ratio of 5.0 to 20.0 in a square region with a side of 10 ⁇ m set at an arbitrary position on the surface layer having a depth of 20 ⁇ m from the substrate surface, It is preferable that the second silicon nitride particles having an axial length of 6.0 to 30.0 ⁇ m are included in an area ratio of 1.0 to 30.0%.
  • the silicon nitride substrate includes an agglomerated portion having a maximum diameter of 25 ⁇ m or less formed by agglomerating the first silicon nitride particles in a surface layer having a depth of 20 ⁇ m from the substrate surface. Is preferred.
  • the silicon nitride substrate includes 25 or less aggregated portions in a square region having a side of 100 ⁇ m set at an arbitrary position on the surface layer having a depth of 20 ⁇ m from the substrate surface.
  • the silicon nitride substrate includes 25 or less aggregated portions in a square region having a side of 100 ⁇ m set at an arbitrary position on the surface layer having a depth of 20 ⁇ m from the substrate surface, and has a depth from the substrate surface. It is preferable that 20 or less of the aggregated portions are included in a square region having a side of 100 ⁇ m set at an arbitrary position in the inner layer having a length other than the surface layer.
  • the maximum diameter of pores formed in the grain boundary phase around the first silicon nitride particles is 10 ⁇ m or less in the surface layer having a depth of 20 ⁇ m from the substrate surface. Is preferred.
  • the silicon nitride substrate includes 20 or less pores in a square region having a side of 100 ⁇ m set at an arbitrary position on the surface layer having a depth of 20 ⁇ m from the substrate surface.
  • the silicon nitride substrate preferably has a variation coefficient of the characteristic X-ray intensity of boron (B) on the substrate surface measured by an electron beam microanalyzer (EPMA) under the following conditions of 1.0 or less.
  • the measurement condition of the electron microanalyzer is that the range of 1 mm with a beam diameter of 1 ⁇ m is scanned, and the standard deviation is divided by the average value from the value of the fluorescent X-ray intensity of boron (B) measured at intervals of 2 ⁇ m. Is the value obtained by
  • the object of the present invention can be achieved.
  • the inventors of the present application first studied the prior art in order to improve the undulation of the silicon nitride substrate. As a result, it has been found that the problem of surface waviness cannot be solved in the silicon nitride substrate formed by the conventional technique. The reason why this surface undulation problem is not solved is not clear, but it was estimated that the following phenomenon might be one factor.
  • boron nitride contained in a separation layer formed on the surface of the green sheet may be referred to as a boron compound containing oxygen (hereinafter referred to as B compound). .) May be formed.
  • B compound include diboron trioxide (B 2 O 3 ).
  • the distribution of BN particles in the separation layer formed on the green sheet is sparse, and the B compound in the portion where the BN particles are densely arranged is heated when the green sheet is heated in the sintering process.
  • a normal glass that acts on the sintering aid present in the grain boundary between the silicon nitride particles contained in the surface layer of the steel lowers the melting point of the sintering aid, and as a result, the sintering aid forms A grain boundary phase composed of a glass containing boron having a lower melting point (hereinafter sometimes referred to as boron glass for the sake of convenience) (hereinafter referred to as an abnormal phase for convenience of understanding). There is a possibility of forming an abnormal region having.
  • Boron (B) has a relatively small ionic radius, so it is easy to diffuse. Since the edge of the abnormal region cannot be distinguished from the normal region, a clear boundary line cannot be drawn, but the concentration of boron (B) is normal. It is estimated that the portion clearly higher than the region is an abnormal region.
  • the abnormal phase contained in the abnormal region on the surface layer of the green sheet has a low melting point, it melts earlier than other normal grain boundary phases, and the ⁇ -type granular silicon nitride particles 9c contained in the abnormal region are Initiate rearrangement. Since the silicon nitride particles are rearranged so that the pores included in the abnormal region that has melted and become a liquid phase disappear, the abnormal region contracts. As described above, the distribution of BN particles contained in the separation layer is sparse and dense, and when the green sheet is viewed in plan, it is estimated that a plurality of abnormal regions having different areas are scattered.
  • a grain boundary phase made of normal glass formed of a sintering aid that does not act on the B compound (hereinafter, for the sake of convenience, this grain boundary phase is set to normal.
  • the normal region having a phase may also be melted, and the ⁇ -type granular silicon nitride particles contained in the normal region also start to rearrange and contract.
  • a time difference occurs in the rearrangement of the silicon nitride particles due to a difference in melting point of the grain boundary phase contained in both, and a time difference also occurs in the contraction timing of both. That is, it is considered that a phenomenon occurs in which the shrinkage of the normal region where the B compound does not act starts after the shrinkage of the abnormal region including the boron glass on which the B compound acts.
  • silicon nitride particles grow into particles having a long major axis length by the coexistence of a rare earth oxide such as Y 2 O 3 which is a sintering aid.
  • a rare earth oxide such as Y 2 O 3 which is a sintering aid.
  • boron glass having a low melting temperature is mainly present. Therefore, the boron glass is dissolved before the silicon nitride particles grow, and silicon nitride particles grow.
  • the space for filling is filled with liquid (referred to as densification).
  • densification liquid
  • the granular silicon nitride particles contained in the abnormal region are unlikely to progress, and may become silicon nitride particles having a low aspect ratio and a short major axis.
  • the granular silicon nitride particles contained in the normal region have no growth inhibiting factor, they grow and become columnar silicon nitride particles having a large aspect ratio and a long major axis. Then, it is considered that the abnormal region is pushed out by the normal region including the columnar silicon nitride particles that contract thereafter and deforms so as to protrude from the surface of the normal region.
  • the inventors of the present application have found that deformation generated in a minute region by the mechanism assumed as described above causes excessive undulation when viewed as the entire surface of the silicon nitride substrate WB, and the thickness is 0.20 to 0.80 mm.
  • a thin silicon nitride substrate it is presumed that it is extremely difficult to make the surface waviness (Wa) 1 ⁇ m or less, and the present invention has been completed based on this. That is, a silicon nitride substrate having a reduced surface waviness could be obtained by producing a silicon nitride substrate by making the distribution of the B compound uniform on the substrate surface and reducing the concentration of the B compound.
  • One embodiment of the present invention is a silicon nitride substrate that is a sintered body including a main phase mainly composed of silicon nitride particles and a grain boundary phase mainly formed from a sintering aid, wherein the main phase Is a first silicon nitride particle having a major axis length divided by a minor axis length of 3.0 or less and a major axis length of 5.0 ⁇ m or less on the substrate surface, and the first silicon nitride Second silicon nitride particles having a major axis length and an aspect ratio that exceed both of the grains, and the first silicon nitride particles are 40 in a square region having a side of 10 ⁇ m set at an arbitrary position on the substrate surface.
  • the ratio of the fluorescent X-ray intensity ratios (B / Si) of boron (B) and silicon (Si) at any location on the substrate surface is 7.0 ⁇ 10 ⁇ 5 to 250 ⁇ 10 ⁇ 5, and are each fluorescent X-ray intensity ratio of B / C of boron (B) and carbon (C) .080 ⁇ is 3.000, further, waviness of the surface is not more than 1.00 .mu.m, a silicon nitride substrate, wherein the thickness t is 0.20 ⁇ 0.80 mm in addition.
  • the ratio of the fluorescent X-ray intensity (B / Si) of boron (B) and silicon (Si) at an arbitrary position on the surface is 7.0 ⁇ 10 as described above. ⁇ 5 to 250 ⁇ 10 ⁇ 5 .
  • This value of B / Si is that of boron (B) contained in each of BN constituting the separation layer existing on the surface of the silicon nitride substrate and boron glass existing in the abnormal region of the surface layer of the silicon nitride substrate as described above. Although the sum of the amounts is reflected, the amount of boron (B) contained in the abnormal region is indirectly shown.
  • the surface of the silicon nitride substrate contains many abnormal phases containing boron glass, and by extension, the BN powder constituting the separation layer formed on one surface of the green sheet. It is considered that many B compounds were contained therein.
  • the reason why the range of B / Si is set to 7.0 ⁇ 10 ⁇ 5 to 250 ⁇ 10 ⁇ 5 is as follows. That is, when B / Si is less than 7.0 ⁇ 10 ⁇ 5 , the amount of BN powder constituting the separation layer is small in the first place, and after sintering, a plurality of stacked silicon nitride substrates are combined.
  • B / C which is the ratio of the fluorescent X-ray intensity of each of boron (B) and carbon (C) is 0.080 to 3.000 as described above. That is, the silicon nitride substrate of this embodiment has an appropriate amount of carbon (C) on its surface.
  • This carbon (C) is a residue of carbon (C) which is reduced to harmless boron (B) by reducing oxygen (O) of the B compound contained in the separation layer as described above.
  • B / C is less than 0.080, the amount of carbon (C) remaining on the surface becomes excessive, reducing the strength of the silicon nitride substrate and degrading the bondability between the metal substrate and the silicon nitride substrate.
  • the main phase is such that the major surface length is 3.0 or less and the major axis length is 5.0 ⁇ m or less on the substrate surface.
  • First silicon nitride particles and second silicon nitride particles having a major axis length and an aspect ratio that exceed both of the first silicon nitride particles are included. From the value of B / Si and the value of B / C on the surface of the silicon nitride substrate, there is a possibility that the B compound contained in the separation layer is reduced by C and made harmless.
  • the boron in the B compound contained in the separation layer is reduced by carbon (C), and the B compound is reduced, whereby boron formed by the action of the B compound.
  • C carbon
  • the aspect ratio obtained by dividing the major axis length by the minor axis length is 3.0 or less, and the major axis length is 5.0 ⁇ m or less.
  • the first silicon nitride particles are reduced. Specifically, 40 or less first silicon nitride particles are present in a square region having a side of 10 ⁇ m set at an arbitrary position on the surface.
  • B / Si on the surface thereof is 7.0 ⁇ 10 ⁇ 5 to 250 ⁇ 10 ⁇ 5
  • B / C is 0.080 to 3.000
  • the undulation of the substrate surface can be 1 ⁇ m or less.
  • a surface roughness meter is used to measure the filtered center line waviness, and the arithmetic average waviness Wa, that is, the arithmetic operation of the absolute value of the deviation from the average value of the surface height.
  • the average amount is used, and the measurement conditions are an evaluation length of 30 mm, a measurement speed of 0.3 mm / s, a cutoff value ( ⁇ c) of 0.25 mm, and a cutoff value ( ⁇ f) of 8.0 mm.
  • the silicon nitride substrate of the above-described embodiment 40 or less of the first silicon nitride particles are included in a square region having a side of 10 ⁇ m set at an arbitrary position in the surface layer whose depth from the surface is 20 ⁇ m.
  • the inner layer whose depth from the surface is in a range other than the surface layer it is preferable that 30 squares or less of the first silicon nitride particles are contained in a square region having a side of 10 ⁇ m set at an arbitrary position.
  • the first silicon nitride particles when a large number of the first silicon nitride particles are present in the silicon nitride substrate, it is assumed that a large number of abnormal phases exist around the first silicon nitride particles.
  • the boron glass contained in the abnormal phase has a lower strength than the glass constituting the normal phase, and cracks are likely to occur when stress is applied to the silicon nitride substrate.
  • the first silicon nitride particles have a granular form with an aspect ratio of 3.0 or less with respect to the columnar second silicon nitride particles, the fracture toughness is low and cracks tend to progress.
  • the first silicon nitride particles are arranged in a square region having a side of 10 ⁇ m set at an arbitrary position on the surface layer having a depth from the surface of 20 ⁇ m. Therefore, the occurrence of cracks in the surface layer of the silicon nitride substrate is suppressed even when stress is applied.
  • the inner layer whose depth from the surface of the silicon nitride substrate is in a range other than the surface layer 30 squares or less of the first silicon nitride particles are included in a square region having a side of 10 ⁇ m set at an arbitrary position.
  • the inner layer has higher fracture toughness than the surface layer, and even when a crack occurs in the surface layer, the progress of the crack is suppressed, and the silicon nitride substrate can be prevented from being broken.
  • the first silicon nitride particles contained in the silicon nitride substrate and the abnormal phase that is considered to be present around the first silicon nitride particles are related to the characteristics of the silicon nitride substrate such as strength, fracture toughness, thermal conductivity, and withstand voltage. Negative impact.
  • the first silicon nitride particles satisfy the above conditions, granular first silicon nitride particles having a small aspect ratio and a short major axis length are formed between the columnar second silicon nitride particles.
  • the silicon nitride substrate When appropriately present in the region to be formed, high filling of silicon nitride particles is brought about in the silicon nitride substrate, the density of the silicon nitride substrate is improved, and the strength and thermal conductivity can be further improved.
  • the condition is that in the surface layer whose depth from the substrate surface is in the range of 20 ⁇ m, the aspect ratio is 5.0 to 20.0 in a square region with a side of 10 ⁇ m set at an arbitrary position, and the major axis length is The second silicon nitride particles of 6.0 to 30.0 ⁇ m are included in an area ratio of 1.0 to 30.0%.
  • the aspect ratio of the second silicon nitride particles is less than 5.0 or the major axis length is less than 6.0, a region of an appropriate size is not formed between the second silicon nitride particles, and the first There is no room for the silicon nitride powder to be disposed in the region, and there is no effect.
  • the aspect ratio is 20.0 or the major axis length exceeds 30.0 ⁇ m, the presence of coarse silicon nitride particles causes coarse defects even when the first silicon nitride particles are present. It tends to occur and the strength decreases.
  • the cross-sectional area ratio of the second silicon nitride particles is less than 1.0%, the amount of the first silicon nitride particles disposed in the region between the second silicon nitride particles is too large. As a result, coarse aggregated portions are formed, and various characteristics of the silicon nitride substrate cannot be realized.
  • the cross-sectional area ratio of the second silicon nitride particles exceeds 30.0%, there is no room for the first silicon nitride particles to be disposed, and the density of the silicon nitride substrate is not improved.
  • the surface layer having a depth from the substrate surface in the range of 20 ⁇ m includes an agglomerated portion formed by agglomeration of the first silicon nitride particles and having a maximum diameter of 25 ⁇ m or less. desirable.
  • the agglomerated portion formed by agglomeration of the first silicon nitride particles is large, the size of the abnormal region, which is necessarily a collection of abnormal phases having low strength existing around it, also increases, and the strength of the silicon nitride substrate and Fracture toughness will be reduced. Therefore, it is desirable that the maximum diameter of the aggregated portion is 25 ⁇ m or less.
  • the surface layer having a depth from the substrate surface in a range of 20 ⁇ m is configured to include 25 or less of the agglomerated portions in a square region having a side of 100 ⁇ m set at an arbitrary position. It is desirable.
  • a silicon nitride substrate having desired strength and fracture toughness can be formed by setting the maximum diameter of the agglomerated portion to 25 ⁇ m or less.
  • the silicon nitride substrate includes many agglomerated portions, There is a possibility that the thermal conductivity is lowered.
  • a silicon nitride substrate which is a sintered body composed of a main phase composed of silicon nitride particles and a grain boundary phase composed of a sintering aid
  • heat conduction is performed by phonons.
  • the thermal conductivity of the sintered body is the thermal conductivity of the silicon nitride particles constituting the main phase
  • the thermal conductivity of the grain boundary phase that is, the thermal conductivity inherent to the grain boundary phase, the volume of the grain boundary phase, It is governed by thickness.
  • the second silicon nitride particles release the impurities in the grains during the grain growth process and become particles with few impurities, whereas the first silicon nitride particles do not progress in the grain growth. Contains many impurities.
  • thermal conductivity decreases due to phonon scattering.
  • the first silicon nitride particles are in a granular form with an aspect ratio of 3.0 or less, and the major axis length is as small as 5.0 ⁇ m or less. For this reason, when compared with the same volume, the surface area of the first silicon nitride particles is larger than that of the second silicon nitride particles, and there are many abnormal phases around the first silicon nitride particles. Is inhibited in the abnormal phase.
  • the abnormal phase contains boron glass having a low thermal conductivity, and when a large number of agglomerated portions are present on the silicon nitride substrate, the thermal conductivity is lowered. Therefore, in order to construct a silicon nitride substrate having a high thermal conductivity, preferably having a thermal conductivity of 80 (W / m ⁇ K) or more, any surface layer having a depth of 20 ⁇ m from the substrate surface may be used. It is preferable that 25 or less of the agglomerated parts are included in a square region having a side of 100 ⁇ m.
  • the surface layer whose depth from the substrate surface is in the range of 20 ⁇ m includes a 25 ⁇ m or less of the agglomerated portion in a square region set at an arbitrary position on a surface of 100 ⁇ m from the surface. It is desirable that the inner layer whose depth is in a range other than the surface layer includes 20 or less aggregated portions in a square region having a side of 100 ⁇ m set at an arbitrary position.
  • the silicon nitride substrate when there are many agglomerated parts included in a predetermined area in the silicon nitride substrate, it is presumed that many abnormal regions that are a collection of abnormal phases including the agglomerated parts also exist.
  • the abnormal phase included in this abnormal region has lower strength than the normal phase, and cracks are likely to occur when stress is applied to the silicon nitride substrate.
  • the first silicon nitride particles forming the agglomerated portion are in a granular form with an aspect ratio of 3.0 or less, the fracture toughness is low and cracks tend to progress.
  • the silicon nitride substrate of the preferred embodiment 25 or less of the aggregated portions are included in a square region having a side of 100 ⁇ m set at an arbitrary position in the surface layer whose depth from the substrate surface is in the range of 20 ⁇ m.
  • the inner layer whose depth from the surface of the silicon nitride substrate is in a range other than the above surface layer is configured to include 20 or less agglomerated portions in a square region having a side set at an arbitrary position of 100 ⁇ m.
  • the inner layer has higher fracture toughness than the surface layer, and even when a crack occurs in the surface layer, the progress of the crack is suppressed, and the silicon nitride substrate can be prevented from being broken.
  • the maximum diameter of pores formed in the grain boundary phase around the first silicon nitride particles is 10 ⁇ m in the surface layer whose depth from the substrate surface is in the range of 20 ⁇ m.
  • the following is desirable.
  • the abnormal phase and the normal phase have a time difference in the contraction start time due to the difference in melting point between them, pores are likely to be generated near the boundary between the two.
  • the pores contained in the silicon nitride substrate serve as a starting point of cracks when stress is applied, and cause the silicon nitride substrate to be destroyed, and lower the thermal conductivity and the withstand voltage.
  • the silicon nitride substrate of the above aspect by setting the maximum diameter of the pores to 10 ⁇ m or less, it is possible to further increase the strength and thermal conductivity of the silicon nitride substrate and improve the dielectric strength. . For the same reason, it is more desirable that 20 or less pores exist in a square region of 100 ⁇ m on one side set at an arbitrary position in the surface layer having a depth of 20 ⁇ m from the substrate surface.
  • the coefficient of variation of the characteristic X-ray intensity of boron (B) measured with an electron beam microanalyzer (EPMA) under the following conditions is preferably 1.0 or less.
  • the electron beam microanalyzer was scanned under a 1 mm range with a beam diameter of 1 ⁇ m.
  • the coefficient of variation is a value obtained by dividing the standard deviation by the average value from the characteristic X-ray intensity value of boron (B) measured at intervals of 2 ⁇ m under the above measurement conditions.
  • the relationship between the coefficient of variation and the surface waviness of the silicon nitride substrate was inferred as follows.
  • the value of boron (B) measured by EPMA is the value of boron (B) contained in each of BN existing on the surface of the silicon nitride substrate and boron glass existing in the abnormal region of the surface layer of the silicon nitride substrate. Although it is considered that the amount is a sum, the amount of boron (B) contained in the abnormal region is estimated.
  • the distribution of BN remaining on the surface of the silicon nitride substrate is dense, when the silicon nitride substrate and the metal substrate are bonded to form a circuit board, the bonding property between the two is inhibited at the unevenly distributed portion of BN, Voids are likely to occur at the bonding interface.
  • the silicon nitride substrate of this aspect since the variation coefficient of boron (B) is 1.0 or less, the BN distribution is suppressed and the uneven distribution portion is small, so that the silicon nitride substrate and the metal substrate are joined. Can increase the sex.
  • the variation coefficient of boron (B) is 1 Since it is 0.0 or less, the density of the abnormal region distribution is suppressed, the unevenly distributed portion thereof is small, and the undulation of the surface of the silicon nitride substrate can be further reduced.
  • the silicon nitride substrate of the present embodiment is configured as described above, a silicon nitride substrate having a bending strength of 600 (MPa) or more can be provided, and the thermal conductivity is 80 (W / m ⁇ k).
  • the silicon nitride substrate as described above can be provided.
  • the silicon nitride substrate of the present embodiment since it is configured as described above, it is high when a bonded body formed by bonding a metal substrate to the silicon nitride substrate is subjected to a heat cycle test.
  • a silicon nitride substrate having a pass rate can be provided. Specifically, a copper plate having a thickness of 0.5 mm, a length of 37 mm, and a width of 26 mm is formed on the surface of the silicon nitride substrate having a thickness of 0.20 to 0.80 mm, a length of 40 mm, and a width of 30 mm.
  • a plurality of joined bodies are prepared by joining a copper plate having a thickness of 0.5 mm, a length of 37 mm, and a width of 27 mm to the back surface through brazing material layers each formed of a brazing material and having a thickness of 20 ⁇ m.
  • a silicon nitride substrate including 90% or more of joined bodies that do not break at a cycle number of 3000 or more can be provided.
  • the brazing material is Ag: 70% by mass, In: 5% by mass, oxygen content of 0.1% by mass or less, and 100 parts by mass of alloy powder having an average particle diameter of 20 ⁇ m composed of the balance Cu and inevitable impurities.
  • a brazing material having a melting point of 770 ° C. mixed with a hydride is composed of 5% by mass of an acrylic resin as a binder, 10% by mass of ⁇ -terpineol as a solvent, and a low molecular anionic compound as a dispersant.
  • the silicon nitride substrate of the present embodiment since it is configured as described above, it is high when a bonded body formed by bonding a metal substrate to the silicon nitride substrate is subjected to an insulation test.
  • a silicon nitride substrate having a pass rate can be provided.
  • a silicon nitride substrate having a thickness t of 0.20 to 0.80 mm, which includes a main phase mainly composed of silicon nitride particles and a grain boundary phase mainly formed of a sintering aid.
  • a boron nitride paste containing boron nitride powder / organic binder and an organic solvent is used, and a separation layer is formed on the surface of a plate-like molded body containing silicon nitride powder / sintering aid powder and organic binder.
  • the separation layer and the molded body are heated at a temperature 15 to 450 ° C. higher than the exothermic peak temperature of the organic binder of the molded body.
  • the boron nitride paste is a boron nitride powder Oxygen (O) inside .01 to 0.5 mass% and carbon (C) in an amount of 0.001 to 0.5 mass%, and the carbon component (C) remains in the separation layer after the degreasing step.
  • the separation layer formed on the molded body in the separation layer forming step is made of 0.2 to 3.5 mg / cm 2 of hexagonal boron nitride powder. It is a manufacturing method of the silicon nitride board
  • Examples of the organic binder mixed with the silicon nitride powder include polyvinyl butyral and methyl methacrylate resin, and examples of the organic binder used for the boron nitride paste include polyvinyl butyral and ethyl cellulose.
  • Examples of the organic solvent used in the boron nitride paste include ethanol, butanol, ⁇ -terpineol, and the like.
  • Examples of the sintering aid include Y 2 O 3 and MgO.
  • the silicon nitride powder, the sintering aid powder and the organic powder formed by using a doctor blade method or other known forming method in the separation layer forming step.
  • a separation layer is formed on the surface of a plate-shaped molded body (green sheet) containing a binder using boron nitride (BN) powder / boron nitride (BN) paste containing an organic binder and an organic solvent.
  • BN boron nitride
  • BN boron nitride
  • BN paste is degreased on the surface of the green sheet that has undergone the degreasing step, and BN powder from which the organic binder and organic solvent have been removed and the carbon content (C) that is the residue of the organic binder as described later remain.
  • a layer (hereinafter, the separation layer after the degreasing step may be referred to as a BN layer for convenience) is formed.
  • a plurality of the green sheets on which the BN layer is formed are stacked through the BN layer, sintered in the sintering process, and formed mainly from a main phase mainly composed of silicon nitride particles and a sintering aid.
  • a silicon nitride substrate including a grain boundary phase is formed.
  • the BN paste used in the separation layer forming step contains 0 (O) in the BN powder. 0.01 to 0.5 mass% and carbon (C) 0.001 to 0.5 mass%, the oxygen content (mass%) contained in the BN powder of the BN paste is c, and the organic binder of the green sheet When the content of carbon (c) remaining in the BN layer after the degreasing step of degreasing the green sheet at a temperature 15 to 450 ° C. higher than the exothermic peak temperature of Is configured to be 0.02 to 10.00.
  • the ratio of carbon (C) after the degreasing process is completed with respect to the ratio of oxygen (O) in the BN powder, the degreasing temperature in the degreasing process, and the ratio of oxygen (O) contained in the BN powder.
  • the reason for the definition will be described below.
  • the proportion of oxygen (O) in the BN powder is determined by the bonding force between the BN particles constituting the BN powder and the green sheet in the sintering process, and the melting point of the glass formed by melting the sintering aid contained in the green sheet. , From both perspectives. That is, when the proportion of oxygen (O) contained in the BN powder is less than 0.01% by mass, the reaction between the BN particles and the surface of the green sheet in contact with the BN particles is difficult to occur. The adhesion of BN particles to the surface is reduced.
  • BN particles that move on the surface of the green sheet in the sintering process are generated, and the distribution of the BN powder is sparse in the sintering process, so that the separability of the sintered silicon nitride substrate is reduced. At the same time, the waviness of the surface may increase.
  • the proportion of oxygen (O) contained in the BN powder is more than 0.5% by mass, excessive oxygen (O) acts on the sintering aid and lowers its melting point. In the process, the green sheet does not sufficiently shrink, and as a result, the density of the silicon nitride substrate does not increase, and a silicon nitride substrate having high strength and heat transfer rate cannot be obtained.
  • the degreasing temperature is determined from the viewpoints of both the amount of carbon (C), which is the residue of the organic binder contained in the green sheet after the degreasing step, and the fact that the silicon nitride particles contained in the green sheet are not altered. That is, when the green sheet is degreased at a temperature of less than 15 ° C.
  • the carbon content (C) reduces the silicon nitride particles, so that the growth of the silicon nitride particles is inhibited and the fracture toughness of the silicon nitride substrate is lowered.
  • the green sheet is degreased at a temperature exceeding 450 ° C.
  • the silicon nitride particles contained in the green sheet are oxidized, As a result, the density of the silicon nitride substrate does not increase, and a silicon nitride substrate having high strength and heat transfer rate cannot be obtained.
  • the temperature corresponding to the peak appearing on the highest temperature side may be set as the exothermic peak temperature.
  • the proportion of oxygen (O) in the BN powder is the same as that of the BN particles constituting the BN layer and the green in the sintering process. It is determined from the viewpoints of both the adhesive strength to the sheet and the melting point of the glass formed by melting the sintering aid contained in the green sheet.
  • the value indicating the ratio of oxygen (O) contained in the BN powder is the value of oxygen (O) of the B compound formed on the surface of the BN particles constituting the BN powder.
  • the BN paste used in the method of manufacturing the silicon nitride substrate of the present embodiment is included in the B compound that forms an abnormal phase containing boron glass as described above, that is, the BN layer that is a separation layer that has undergone a degreasing process.
  • the B compound is reduced by the carbon component (C) in the sintering process and rendered harmless. That is, the BN paste of the present embodiment is degreased within the above degreasing temperature range, and then the carbon content (C) that is the residue of the organic binder remains in the BN layer in an appropriate amount.
  • the carbon content (C) contained is configured to increase more than the amount of carbon (C) contained in the BN particles themselves contained in the BN paste.
  • c / a is 10.
  • the B compound cannot be sufficiently reduced, and an abnormal phase exceeding the allowable level is formed, and as a result, the density of the first silicon nitride particles existing in the silicon nitride substrate is increased.
  • c / a is less than 0.02
  • the strength of the silicon nitride substrate is reduced due to excessive carbon content (C), and because of the carbon content (C) present on the surface of the silicon nitride substrate. Bondability with the metal substrate is hindered.
  • the carbon (C) originally contained in the BN powder forms a compound in the BN powder, and reduces the oxide of B compared to C remaining in the BN powder after the degreasing process. It is estimated that it is difficult to work effectively. For this reason, as described above, it is preferable that the carbon content (C) remains in an appropriate range in the BN powder after the degreasing step.
  • the reason why the separation layer formed on the molded body in the separation layer forming step in the method for manufacturing the silicon nitride substrate of the present embodiment is configured to include 0.2 to 3.5 mg / cm 2 of hexagonal BN powder is as follows. It is as follows. That is, when the amount of hexagonal BN powder exceeds 3.5 mg / cm 2 , excessive hexagonal BN powder grows in the course of firing the green sheet, and columnar silicon nitride grains exposed on the surface. This is because BN powder enters the concave portions of the formed irregularities and inhibits the uniform shrinkage of the green sheet, and as a result, the undulation of the surface of the obtained silicon nitride substrate tends to increase.
  • the amount of hexagonal BN powder is as small as less than 0.2 mg / cm 2, a portion with a small amount of hexagonal BN powder is formed, and a laminated silicon nitride substrate adheres in the sintering process, and the separability decreases. Because. From the same viewpoint, the amount of hexagonal BN powder contained in the separation layer is preferably 0.4 to 2.2 mg / cm 2 .
  • the fluorescent X-ray intensities of boron (B) and silicon (Si) at arbitrary locations on the surface of the silicon nitride substrate is 7.0 ⁇ 10 ⁇ 5 to 250 ⁇ 10 ⁇ 5 and B / C, which is the ratio of boron (B) to carbon (C), is 0.080 to 3.000. It is comprised so that.
  • the BN paste has an average particle diameter d50 of 4.0 to 20.0 ⁇ m, d10 of 0.5 to 7.0 ⁇ m, and d90 of 8 to 40 ⁇ m with respect to 100 parts by mass of boron nitride powder.
  • the organic binder can be formed by adjusting so as to include 8.75 to 44 parts by mass.
  • the average particle diameter d50 of the BN powder is set to 4.0 to 20.0 ⁇ m when the average particle diameter d50 is as small as less than 4.0 ⁇ m.
  • the BN powder enters the concave and convex portions formed by the exposed columnar silicon nitride grains to inhibit the uniform shrinkage of the green sheet, and as a result, the undulation of the surface of the obtained silicon nitride substrate tends to increase.
  • the average particle diameter d50 is larger than 20.0 ⁇ m, the adhesion of the BN powder to the surface of the green sheet is lowered, and the green sheet is easily peeled off during handling after lamination. .
  • the reason why the average particle diameter d10 is set to 0.5 to 7.0 ⁇ m is that when the average particle diameter d10 is as small as less than 0.5 ⁇ m, the ratio of the B compound contained in the BN layer is too large.
  • the ratio of the B compound contained in the BN layer is too small.
  • the ratio of the B compound formed on the surface of the BN particles is small, the reaction between the BN particles and the surface of the green sheet in contact with the BN particles is difficult to occur, and the adhesion of the BN particles to the surface of the green sheet is reduced. . Therefore, BN particles that move on the surface of the green sheet in the sintering process are generated, and the distribution of the BN powder is sparse in the sintering process, so that the separability of the sintered silicon nitride substrate is reduced. At the same time, the waviness of the surface may increase.
  • the reason why the average particle diameter d90 is set to 8 to 40 ⁇ m is that when the average particle diameter d90 is as small as less than 8 ⁇ m, the ratio of the B compound contained in the BN layer becomes too large.
  • the average particle size d90 is larger than 40 ⁇ m, the particle size of the BN particles in the BN layer becomes too large, and thus waviness due to the shape of coarse BN particles is generated on the surface of the silicon nitride substrate. Because it does.
  • the BN paste has a viscosity of 1000 to 50000 cP at 25 to 27 ° C. and a thixotropic property of 1.02 to 4.00
  • the separation layer forming step includes: It is desirable that the separation layer be formed by screen printing.
  • the thixotropy is a value defined by the ratio of the viscosity of 10 rpm to 100 rpm (viscosity of 10 rpm) / (viscosity of 100 rpm) measured with a rotational viscometer.
  • a BN paste is adjusted so that it contains 8.75 to 44 parts by mass of an organic binder and 80 to 750 parts by mass of an organic solvent with respect to 100 parts by mass of hexagonal BN powder. Can be formed.
  • the hexagonal BN powder can be used as the BN powder contained in the BN paste used in the method for manufacturing the silicon nitride substrate of the present embodiment.
  • the separation layer is formed by screen printing in the separation layer forming step. Is formed so that the flat surface of the hexagonal BN particles is substantially parallel to the surface of the green sheet, that is, the c-axis of the hexagonal BN particles is substantially perpendicular to the surface of the green sheet. Can be formed.
  • Such a separation layer and the green sheet on which the separation layer is formed are degreased together in the degreasing step, and then sintered in a state where a plurality of layers are laminated via the separation layer in the sintering step.
  • the hexagonal BN particles are uniformly arranged in the above posture in the separation layer separating the stacked green sheets, the frictional resistance between the green sheets shrinking in the sintering process is reduced.
  • the green sheet shrinks uniformly as a whole, it is possible to form a silicon nitride substrate with a further reduced surface waviness.
  • the viscosity of the BN paste is as low as less than 1000 cP, the shape retention of the separation layer, which is a printing pattern formed by screen printing, is poor, and the thickness distribution of the separation layer varies, and the separation layer The distribution of the hexagonal BN powder contained in the sparseness is generated.
  • it is higher than 50000 cP, defects such as blurring occur in the printed separation layer, and the distribution of the hexagonal BN powder similarly becomes dense.
  • the hexagonal BN powder is sparsely arranged with the part in contact with the densely arranged part. There is a part in contact with the part.
  • the thixotropy of the BN paste is as low as less than 1.02, it is difficult to arrange the hexagonal BN particles in the above posture because the viscosity of the BN paste is high when it is spread with a squeegee in screen printing. Thus, there is a possibility that the surface undulation of the silicon nitride substrate cannot be reduced.
  • the thixotropy exceeds 4.00, the viscosity of the BN paste is low when it is spread with a squeegee in screen printing, the shape retention of the separation layer after printing is poor, and the thickness of the separation layer is low. Since the distribution varies, the distribution of the hexagonal BN powder contained in the separation layer is sparse and dense, and thus it may not be possible to reduce the undulation of the surface of the silicon nitride substrate.
  • characteristic X-rays of boron (B) and silicon (Si) obtained by line analysis using an electron beam microanalyzer (EPMA) having a measurement length of 20 mm at an arbitrary position on the surface of the molded body after the degreasing step.
  • EPMA electron beam microanalyzer
  • the average value of an arbitrary 10.0 mm section is f
  • the average value of a 0.2 mm section included in the 10.0 mm section is g / g / It is desirable that f is 0.2 to 7.0.
  • each characteristic X of boron (B) and silicon (Si) obtained by line analysis with an electron beam microanalyzer (EPMA) having a measurement length of 20 mm at an arbitrary location on the surface of the molded body after the degreasing step.
  • EPMA electron beam microanalyzer
  • the index g / f macroscopically defines the density of the hexagonal BN powder contained in the separation layer formed on the surface of the compact, which affects the surface undulation of the silicon nitride substrate. It is.
  • each characteristic X of boron (B) and silicon (Si) obtained by line analysis using an electron beam microanalyzer (EPMA) having a measurement length of 20 mm at an arbitrary position on the surface of the molded body after the degreasing step.
  • the line intensity ratio (B / Si) is shown in FIG. As indicated by a solid line L1 in FIG.
  • the value of the B / Si ratio at each measurement position at a measurement length of 20 mm varies within a certain variation including a large mountain M1, a small mountain M2, and the like.
  • the density of the hexagonal BN powder can be defined by obtaining the dispersion of the fluctuating B / Si value.
  • the dispersion value does not directly affect the waviness on the surface of the silicon nitride substrate.
  • the value of a small mountain M2 that is irrelevant is also included and is not appropriate. Therefore, the inventors of the present application have conceived the above definition so that the mountain M1 having a large solid line L1 directly related to the undulation on the surface of the silicon nitride substrate can be appropriately evaluated.
  • B / Si values obtained by the electron beam microanalyzer (EPMA) having a measurement length of 20 mm as described above B / of an arbitrary section N1 of 10.0 mm is obtained.
  • An average value f of Si values is obtained. The reason for obtaining the average value f of the section N1 of 10.0 mm will be described later.
  • an average value g is obtained as the B / Si value in the 0.2 mm section N2 included in the 10.0 mm section N1.
  • the 0.2 mm section N2 may be set to an appropriate portion where the large mountain M1 exists in the 10.0 mm section N1, but for example, a plurality of arbitrarily selected sections in the 10.0 mm section N1
  • An average value g in a section of 0.2 mm may be obtained at a location, and an average value further obtained from the plurality of average values g or the maximum value may be adopted as the value “g” of the index g / f.
  • the average value g of the section N2 of 0.2 mm is the same as that in FIG. 1A, and only the average value g of the section N2 of 0.2 mm is obtained. It is not valid for evaluation. Therefore, the average value g in the section N2 of 0.2 mm is divided by the average value f in the section N1 of 10.0 mm, and the distribution of the hexagonal BN powder contained in the separation layer is expressed by the dimensionless index g / f. It evaluates sparseness.
  • the hexagonal BN powder there are parts that are in contact with the densely arranged parts and parts that are in contact with the sparsely arranged parts.
  • the shrinkage amount of each part of the green sheet is different due to the difference in frictional resistance due to the relative density of the hexagonal BN powder in the separation layer, Since the green sheet does not shrink uniformly as a whole, there is a possibility that the undulation of the surface of the silicon nitride substrate cannot be reduced.
  • the exothermic peak temperature of the organic binder contained in the BN paste is 5 ° C. or more higher than the organic binder contained in the green sheet. Is desirable.
  • the organic binder contained in the molded body is degreased after the organic binder contained in the BN paste, the BN powder disposed on the surface of the molded body after the degreasing of the BN paste is caused by degreasing the molded body. Due to the generated gas, there is a possibility that the density of the BN powder is formed. In order to suppress this phenomenon, the exothermic peak temperature of the organic binder contained in the BN paste is increased by 5 ° C.
  • the organic binder contained in the molded body is degreased first, It is preferable that the organic binder contained in the BN paste is subsequently degreased.
  • the BN paste of this embodiment 8.75 to 44 parts by mass of an organic binder and 80 to 750 parts by mass of an organic solvent are mixed with 100 parts by mass of boron nitride powder and stirred for 0.2 to 10 hours. Is preferable.
  • the viscosity of the BN paste may be 1000 cP and the thixotropy may be lower than 1.02.
  • the viscosity of the BN paste may exceed 50000 cP and the thixotropy may exceed 4.00.
  • the viscosity of the BN paste may exceed 50000 cP and the thixotropy may exceed 4.00.
  • the viscosity of the BN paste is 1000 cP and the thixo May be less than 1.02.
  • the circuit board W includes a metal substrate WA bonded to the upper surface (one surface) of the silicon nitride substrate WB via the brazing material layer M1, and the silicon nitride substrate WB. It has a flat metal substrate WC joined to the lower surface (other surface) via a brazing material layer M3.
  • the metal substrate WA bonded to the upper surface of the silicon nitride substrate WB functions as a circuit board on which a semiconductor element or the like is mounted, and the metal substrate WC bonded to the lower surface of the silicon nitride substrate WB functions as a heat sink. To do.
  • the length of the silicon nitride substrate WB (size in the horizontal direction in FIG. 2A) of the circuit substrate W formed in each of the following examples and comparative examples is 40 mm and the width (in FIG. 2A).
  • the size of the metal substrate WA is 0.5 mm in thickness, 36 mm in length, and 26 mm in width.
  • the dimensions of the metal substrate WA are 0.5 mm in thickness, 37 mm in length, and 27 mm in width. It is.
  • the brazing material layers M1 and M2 having substantially the same length and width as the metal substrates WA and WC have a thickness of 20 ⁇ m.
  • the metal substrate WA / WC can be joined with a brazing material, and is not particularly limited as long as its melting point is higher than that of the brazing material.
  • a brazing material for example, copper, copper alloy, aluminum, aluminum alloy, silver, silver alloy, nickel, nickel alloy, It is possible to use nickel plated molybdenum, nickel plated tungsten, nickel plated iron alloy, or the like.
  • copper is most preferably used as a metal member from the viewpoints of electrical resistance and stretchability, high thermal conductivity (low thermal resistance), and low migration.
  • the use of aluminum as a metal member has electrical resistance and high thermal conductivity (low thermal resistance), which is inferior to copper, but has the mounting reliability against the thermal cycle by utilizing the plastic deformability of aluminum. Is preferable.
  • the thermal expansion coefficient thereof is a silicon nitride substrate. Since it is close to WB, the thermal stress during bonding can be reduced, which is preferable.
  • circuit board W for every circuit board W, as shown to Fig.2 (a), (b).
  • a plurality of circuit boards W are arranged in parallel in the vertical and horizontal directions on the large-sized silicon nitride substrate WB. Individually formed and separated into individual pieces along a broken line CB shown in the figure.
  • each example and comparative example will be described by taking as an example the case of manufacturing a large silicon nitride substrate WB for forming 12 circuit boards W per sheet.
  • the silicon nitride substrate WB created in each of the examples and comparative examples is formed by joining the metal substrates WA and WC on both sides to form a circuit substrate W, and is subjected to a heat cycle test and an insulation resistance test.
  • the manufacturing process of the circuit board W performed after the manufacturing process of the silicon substrate WB will also be described.
  • the silicon nitride substrates of Examples 1 to 43 and Comparative Examples 1 to 7 were formed by the following method.
  • a silicon nitride powder blended so as to have the ratio shown in Table 1 and a mixed powder of MgO and Y 2 O 3 as sintering aids were prepared.
  • the average particle diameters (d50) of the silicon nitride powder and the MgO and Y 2 O 3 powders were 0.1 to 2 ⁇ m, 0.1 to 2 ⁇ m, and 0.1 to 2 ⁇ m, respectively.
  • the mixed powder and the silicon nitride balls as the grinding media were put into a resin pot of a ball mill filled with an ethanol / butanol solution (organic solvent), and wet mixed for 4 hours.
  • the types and proportions of organic binders shown in Table 1 were added to the mixed powder in the pot, and wet mixed for 12 hours to obtain a sheet-forming slurry.
  • the organic binder polyvinyl butyral and methyl methacrylate resin having various exothermic peak temperatures (A1) shown in Table 1 were used.
  • the exothermic peak temperature (A1) of the organic binder contained in the sheet forming slurry is a temperature corresponding to the peak appearing on the highest temperature side, as measured by differential thermal analysis.
  • Example 25 has a thickness of 1.3 mm
  • Example 38 has a thickness of 0.32 mm
  • Comparative Example 1 has a thickness of 1.6 mm
  • Comparative Example 2 has a thickness of 0.3 mm
  • Comparative Example 7 has a thickness of 0.48 mm. Formed.
  • a BN paste containing BN powder was prepared.
  • BN powder, an organic binder, and an organic solvent were blended in the composition shown in Table 2, and mixed using a planetary mixer to prepare a BN paste.
  • organic binder polyvinyl butyral and ethyl cellulose having various exothermic peak temperatures (A5) shown in Table 2 were used.
  • BN powder type, particle size distribution (d10, d50, d90), composition (A2), oxygen content (c), carbon content in BN powder (b), organic binder type and composition in each example and comparative example Table 2 shows the difference (A5-A1) in the exothermic peak temperature between the organic binder contained in (A4) and the organic binder contained in the compact and the composition of the organic solvent.
  • the mixing time of the BN pastes of Examples 1 to 41 and Comparative Examples 1 to 6 was 40 minutes, and the viscosity and thixotropy of the formed BN paste and the method for forming a separation layer using the BN paste are shown in Table 3. It is as follows.
  • the thixotropy is a value defined by the ratio of the viscosity of 10 rpm to 100 rpm (viscosity of 10 rpm) / (viscosity of 100 rpm) measured with a rotational viscometer.
  • the exothermic peak temperature (A5) of the organic binder contained in the BN paste is a temperature corresponding to the peak appearing on the highest temperature side as measured by differential thermal analysis, as described above.
  • the separation layer 1 was formed on the upper surface of the green sheet Wb as shown in FIG.
  • Table 4 shows the thickness of the separation layer of each Example and Comparative Example, the weight per unit area of the BN powder contained in the separation layer, the average value g in the 0.2 mm section by the above-described EPMA, and the average in the 10.0 mm section. The value f and their ratio g / f are indicated.
  • the thickness of the separation layer in Table 4 is a value after heating the green sheet on which the separation layer is formed at 120 ° C. to remove the organic solvent contained in the separation layer.
  • d50 average particle size
  • a brazing material paste m1 ⁇ m3 containing an Ag—Cu—In based active brazing material is applied on both sides of the silicon nitride substrate WB to a rectangular region with a thickness of 50 ⁇ m by screen printing. And drying in a 120 ° C. drying oven for 30 minutes to remove the solvent in the brazing paste.
  • the brazing material paste m1 ⁇ m3 used in each example and comparative example is Ag: 70% by mass, In: 5% by mass, oxygen content of 0.1% by mass or less, the average particle size of 20 ⁇ m consisting of the remainder Cu and inevitable impurities.
  • a copper substrate Wa.Wc which is a metal substrate having a slightly smaller vertical and horizontal dimensions than the silicon nitride substrate WB and having a thickness of 0.5 mm
  • Are disposed on both sides of the silicon nitride substrate WB heated in a non-oxidizing atmosphere with a degree of vacuum of 1 Pa or less at 820 ° C. for 1 hour, and then cooled by furnace cooling, whereby the copper substrate Wa. Wb was joined to obtain a joined body.
  • the brazing material paste m1 and m3 shown in FIG. 6D are indicated by broken lines.
  • Etching is performed on the joined body, and as shown in FIG. 7B, in the planar direction, the dimensions and shapes corresponding to the copper substrates WA and WC of the individual circuit boards W shown in FIG.
  • the gap S was formed by etching, and the copper substrates Wa and Wc (copper substrate Wc not shown) joined to the silicon nitride substrate WB were separated.
  • ferric chloride (FeCl 3) is applied to the surface of the copper substrate Wa by applying a UV curable etching resist in a predetermined pattern by a screen printing method, and then the temperature of the etching liquid is set to 50 ° C.
  • the joined body was immersed in the solution (46.5Be) to separate the copper substrates Wa and Wc.
  • brazing material removal process After removing the etching resist, unnecessary brazing material remaining around the copper substrates WA and WC was removed with a brazing material removing solution containing hydrogen peroxide and acidic ammonium fluoride.
  • Table 6 shows the density of the first silicon nitride particles on the surface and the surface layer, and the inner layer numbers in the silicon nitride substrates of Examples 1 to 43 and Comparative Examples 1 to 7 formed through the separation layer forming step to the firing step.
  • 1 shows the density of the silicon nitride particles, the maximum diameter of the agglomerated part where the first silicon nitride particles agglomerated, the density of the agglomerated part of the surface and the surface layer, and the density of the agglomerated part of the inner layer. For example, as shown in FIG.
  • these values are the surface layer in which the depth from the substrate surface of the silicon nitride substrate WB is 20 ⁇ m and the inner layer in which the depth from the substrate surface is in a range other than the surface layer. It was measured based on a structural photograph of an arbitrary cross section.
  • reference numeral 9j is the first silicon nitride particles
  • reference numeral 9k is the second silicon nitride particles
  • reference numeral 9L is an agglomerated portion where the first silicon nitride particles 9j are aggregated.
  • the first silicon nitride particles 9j are silicon nitride particles having an aspect ratio of 3.0 or less and a major axis length of 5.0 ⁇ m or less obtained by dividing the major axis length by the minor axis length.
  • the silicon nitride particles 9k are silicon nitride particles whose major axis length and aspect ratio exceed both of the first silicon nitride particles 9j.
  • the density of the first silicon nitride particles is the number of first silicon nitride particles in a 10 ⁇ m square region set at an arbitrary position on the surface or cross section. It is the number of aggregated portions of the first silicon nitride particles in a 100 ⁇ m square region set at an arbitrary position on the surface or cross section.
  • the surface layer of the silicon nitride substrate refers to a range whose depth from the surface is 20 ⁇ m
  • the inner phase refers to an internal range other than the surface layer.
  • the maximum diameter of the agglomerated part 9L is the diameter of the minimum circle L3 including the agglomerated part 9L as indicated by reference numeral 9m in the conceptual diagram of the agglomerated part 9L shown in FIG.
  • Table 7 shows that the aspect ratios of the silicon nitride substrates formed in Examples 1 to 43 and Comparative Examples 1 to 7 are 5.0 to 20.0 in the surface layer whose depth from the substrate surface is 20 ⁇ m.
  • the area ratio of the second silicon nitride particles having a major axis length of 6 to 30 ⁇ m, the maximum pore diameter and density, and the thickness of the silicon nitride substrate are shown.
  • the area ratio of the second silicon nitride particles having the predetermined aspect ratio and the long axis length was determined as an area ratio in a 10 ⁇ m square region set at an arbitrary position on the surface layer.
  • the maximum pore diameter is the diameter of the smallest circle L4 including the pores 9n as indicated by reference numeral 9o in the conceptual diagram of the pores 9n shown in FIG. 5 (b).
  • the pore density is the number of pores in a 10 ⁇ m square region set at an arbitrary position on the surface layer.
  • Table 8 shows the undulation of the surface of the silicon nitride substrate formed in Examples 1 to 43 and Comparative Examples 1 to 7, and the fluorescent X-ray intensity of each of boron (B) and silicon (Si) at any location on the surface.
  • the ratio (B / Si) value and the ratio (C / Si) of each fluorescent X-ray intensity of carbon (C) and silicon (Si) and the ratio B / C of both were measured with an electron beam microanalyzer (EPMA).
  • EPMA electron beam microanalyzer
  • the variation coefficient of boron (B) obtained by the electron beam microanalyzer was obtained by scanning the range of 1 mm with an acceleration voltage of 10 kV and a beam diameter of 1 ⁇ m, and measuring the fluorescent X-ray intensity of boron (B) measured at 2 ⁇ m intervals. It is a value obtained by dividing the standard deviation by the average value. Further, the surface waviness of the silicon nitride substrate is measured by measuring the filtered center line waviness using a surface roughness meter, and calculating the arithmetic average waviness Wa, that is, the absolute value of the deviation from the average value of the surface height.
  • Example 25 An amount that is an arithmetic average is used, and the measurement conditions are an evaluation length of 30 mm, a measurement speed of 0.3 mm / s, a cutoff value ( ⁇ c) of 0.25 mm, and a cutoff value ( ⁇ f) of 8.0 mm. Furthermore, in Example 25 and Comparative Examples 1 and 2, in order to obtain silicon nitride substrates having thicknesses of 0.8, 1.0, and 0.18 mm, respectively, thicknesses of 1.0, 1.25, and 0.23 mm were obtained. Green sheets were used.
  • Table 9 shows the separability, bending strength, and thermal conductivity of the silicon nitride substrates of Examples 1 to 43 and Comparative Examples 1 to 7.
  • the numerical value described in the column of separability of the silicon nitride substrate is the case where, in the firing process, 10 sets of silicon nitride substrates that are laminated and sintered per set, that is, 200 silicon nitride substrates are peeled off
  • the pass rate was that the silicon nitride substrate could be peeled off normally without being damaged.
  • the bending strength conforms to JISR1601, and the obtained silicon nitride substrate is processed into a width of 4 mm, set in a three-point bending jig having a distance between support rolls of 7 mm, and loaded at a crosshead speed of 0.5 mm / min. was calculated from the weight applied at the time of rupture. Furthermore, the thermal conductivity was obtained by a laser flash method in accordance with JIS R1611 after processing the above silicon nitride substrate into a 5 mm square and blackening the front and back surfaces with carbon spray.
  • Table 9 shows the results of the peel strength test, the thermal cycle test, and the insulation test of the circuit boards of Examples 1 to 43 and Comparative Examples 1 to 7 formed through the metal substrate bonding process to the separation process.
  • the numerical value shown in the column of a peel strength test result is a pass rate at the time of attaching a peel strength test to 100 test pieces described below.
  • the numerical value shown in the column of a thermal cycle test result and an insulation test result is a pass rate at the time of attaching
  • a test piece T is prepared in which a copper substrate WA is disposed so that one end protrudes 5 mm from the side surface of the silicon nitride substrate WB and bonded under the same bonding conditions as the circuit board.
  • the force per unit length required for pulling the protruding portion upward by 90 degrees was evaluated, and when the force was 20 kN / m or more, the test was accepted.
  • the cooling / heating cycle test a temperature rising / falling cycle with cooling at ⁇ 40 ° C. for 20 minutes, holding at room temperature for 10 minutes and heating at 125 ° C. for 20 minutes was set as one cycle, and this was repeated 3000 times.
  • thermal stress was applied to the circuit board and no crack was generated in the silicon nitride substrate. Furthermore, the insulation test was accepted when a voltage of 5 kV was applied to the circuit board for 1 minute and no crack was generated in the silicon nitride substrate.
  • the major axis length is the minor axis length.
  • first silicon nitride particle surfaces having a major axis length of 5.0 ⁇ m or less with an aspect ratio of 3.0 or less, and boron (B) and silicon
  • the ratio (B / Si) of each fluorescent X-ray intensity of Si) is a
  • the range is 7.0 ⁇ 10 ⁇ 5 to 250 ⁇ 10 ⁇ 5
  • B / C which is the ratio of boron (B) to carbon (C)
  • b is the ratio of each fluorescent X-ray intensity (C / Si)
  • each silicon nitride substrate had a thickness of 0.8 mm (Example 25) and the separation layer was formed by spray coating (Example 41).
  • the surface layer having a depth from the substrate surface in the range of 20 ⁇ m includes 40 or less first silicon nitride particles in a square region having a side of 10 ⁇ m set at an arbitrary position, and the depth from the substrate surface is
  • the bending strength of the silicon nitride substrate is 600 (MPa).
  • the aspect ratio is 5.0 to 20.0 in a square region with a side of 10 ⁇ m set at an arbitrary position on the substrate surface and a surface layer having a depth of 20 ⁇ m from the substrate surface.
  • a silicon nitride substrate containing 1.0 to 30.0% of the second silicon nitride particles having an area ratio of 6.0 to 30.0 ⁇ m the bending strength of the silicon nitride substrate is 600 (MPa) or more
  • the conductivity was 80 (W ⁇ mk) or higher, and the results of the heat cycle test and insulation resistance test using the circuit board using the silicon nitride substrate showed a high pass rate of 90% or higher.
  • the silicon nitride substrate having a maximum diameter of 25 ⁇ m or less formed by agglomeration of the first silicon nitride particles on the substrate surface and a surface layer having a depth of 20 ⁇ m from the substrate surface
  • the silicon nitride substrate The bending strength exceeded 600 (MPa)
  • the result of the heat cycle test with the circuit board using the silicon nitride substrate showed a high pass rate of 90% or more.
  • the area ratio of the second silicon nitride particles was 4 to 23% and the maximum diameter of the agglomerated part was 20 ⁇ m or less (other than Example 37), the effect was remarkable.
  • the silicon nitride substrate including 25 or less aggregated portions in a square region having a side of 100 ⁇ m set at an arbitrary position on the substrate surface and a surface layer having a depth of 20 ⁇ m from the substrate surface
  • the silicon nitride The thermal conductivity of each substrate exceeded 80 (W ⁇ mk), and the result of the heat cycle test using a circuit board using the silicon nitride substrate showed a high pass rate of 90% or more.
  • the area ratio of the second silicon nitride particles is 4 to 23% and the maximum diameter of the aggregated portion is 20 ⁇ m or less, the effect is remarkable.
  • a side of 100 ⁇ m includes 25 or less of the agglomerated parts, and the depth from the substrate surface is other than the surface layer.
  • the bending strength of the silicon nitride substrate is 600 (MPa) or more
  • the conductivity was 80 (W ⁇ mk) or more
  • the result of the heat cycle test with the circuit board using the silicon nitride substrate showed a high pass rate of 90% or more.
  • the area ratio of the second silicon nitride particles is 4 to 23% and the maximum diameter of the aggregated portion is 20 ⁇ m or less, the effect is remarkable.
  • the maximum diameter of pores formed in the grain boundary phase around the first silicon nitride particles is 10 ⁇ m or less, preferably the substrate surface
  • the bending strength of the silicon nitride substrate is 600 (MPa) or more
  • the thermal conductivity is 80 (W ⁇ mk) or more
  • the results of the heat cycle test and the insulation test by the circuit board using the silicon nitride substrate are both as high as 90% or higher.
  • the value is shown.
  • the area ratio of the second silicon nitride particles is 4 to 23% and the maximum diameter of the aggregated portion is 20 ⁇ m or less, the effect is remarkable.
  • the undulation of the surface of the silicon nitride substrate is It was also confirmed to be small, preferably 0.5 or less.
  • Comparative Example 1 where the thickness of the silicon nitride substrate is as thick as 1.0 mm, even when the B / C is as low as 0.05, that is, when the amount of residual carbon is small, the undulation of the surface is small, In a thick silicon nitride substrate, it has been confirmed that the present invention does not exhibit its effects.
  • Example 44 corresponds to Example 9
  • Example 45 corresponds to Example 6
  • Example 46 corresponds to Example 7
  • Example 47 corresponds to Example 8.
  • Tables 10 and 11 the mixing time is basically as shown in Tables 10 and 11.
  • a silicon nitride substrate and a circuit board were formed under the manufacturing conditions that were changed only. Further, the characteristics of the silicon nitride substrate and the characteristics of the circuit board were confirmed in the same manner as in Examples 1 to 43.
  • the viscosity and thixotropy of the BN paste are more than those of the corresponding examples.
  • the values are within an appropriate range (viscosity 1000 cP and thixotropy 1.02 in Example 9 are 3000 cP and thixotropy 1.1 in Example 44, and viscosity 47000 cP and thixotropy 3 in Example 6 are Examples.
  • the viscosity was 36000 cP and the thixotropy was 2.1.
  • Example 46 the viscosity was 48000 cP and the thixotropy was 3.2.
  • Example 46 the viscosity was 35,000 cP and the thixotropy was 2.1. In Example 8, the viscosity was 50000 cP and the thixotropy was 4. In Example 47, the viscosity is 34000 cP and the thixotropy is 2.
  • the undulation of the separation layer can be reduced when the separation layer is formed by applying and printing the BN paste on the surface of the green sheet. As a result, the silicon nitride substrate The swell can also be reduced.
  • the undulation of Example 44 is 0.40 ⁇ m
  • the undulation of Example 45 is 0.32 ⁇ m
  • the undulation of Example 46 is 0.32 ⁇ m
  • the undulation of Example 47 is 0.35 ⁇ m
  • the undulation is smaller than in the corresponding ninth and sixth to eighth embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

 窒化珪素粒子を主体とした主相と、主に焼結助剤から形成された粒界相とを含む窒化珪素基板の製造方法であって、窒化ホウ素粉末・有機バインダおよび有機溶剤を含む窒化ホウ素ペーストにより窒化珪素粉末・焼結助剤粉末および有機バインダを含む板状の成形体の表面に分離層を形成し、この分離層及び成形体を加熱し、分離層及び成形体から有機バインダを除去し、その後、分離層を介し複数枚積層された成形体を焼結する。上記窒化ホウ素ペーストは、酸素(O)を0.01~0.50質量%および炭素(C)を0.001~0.5質量%含み、前記窒化ホウ素ペーストの窒化ホウ素粉末中に含まれる酸素の含有率(質量%)をc、前記脱脂工程後の分離層に含まれる炭素分の含有率(質量%)をaとした場合に、c/aが0.02~10.00の範囲であり、さらに前記分離層形成工程において成形体に形成された分離層は0.2~3.5mg/cmの六方晶窒化ホウ素粉末を含むよう構成される。

Description

窒化珪素基板および窒化珪素基板の製造方法
 本発明は、窒化珪素基板および窒化珪素基板の製造方法に関する。
 近年、回路基板を構成する部材である絶縁基板として、セラミックス焼結体であるセラミックス基板が広く用いられている。例えば、大電力で発熱量の大きな半導体素子を実装する半導体モジュール用の回路基板には、高い機械的強度、熱伝導率および電気的絶縁性が要求されるため、窒化アルミニウムや窒化珪素等の焼結体であるセラミックス基板が広く用いられている。
 ここで、回路基板は、半導体が実装される回路板としての金属基板がセラミックス基板の一方の面に接合され、放熱部材等と接続される放熱板としての金属基板が他方の面に接合された構成となっており、セラミックス基板と金属基板とは、直接接合法(DBC)またはろう材接合法(AMB)により接合されるのが通例である。そして、いずれの接合方法においても、セラミックス基板の表面の過大なうねりは、セラミックス基板と金属基板との接合界面における空隙の発生や接合界面の強度低下その他接合品質の低下を招来し、引いては回路基板の機械的特性・熱的特性・電気的特性を低下させる。そこで、優れた特性を有する長寿命の回路基板を実現するため、セラミックス基板の表面うねりの低減が要請されている。特に、近年、回路基板の全体としての熱抵抗を低減するためセラミックス基板の厚みを1.0mm以下と薄くする傾向にあり、薄いセラミックス基板では焼結時の変形に伴い表面のうねりが生じやすいことから、その低減の要請が高まっていた。
 かかる要請に対応する技術の一例が、下記特許文献1・2に開示されている。すなわち、特許文献1には、「セラミックスのグリーンシートを成形し、その表面に、酸素量が3重量%以下で、平均粒径が20μm以下のBN粉を含む離型剤をロールコーターによりBN粉として0.3~3mg/cmを塗布した後、その複数枚を積層し、脱脂後、その積層体の上下面をBN製セッターで押さえ、そのままセッターと同一材質で製作された密閉容器内に収納し、焼結することを特徴とするセラミックス焼結体の製造方法」、およびその製造方法で形成された平面度が100μm以下の板状の窒化アルミニウム焼結体が開示されている。
 また、本願出願人の出願に係わる特許文献2には、「分離材を介して複数枚のグリーンシートを積層して焼結した後に分離することによって複数枚の窒化珪素焼結体を得て、該窒化珪素焼結体から窒化珪素基板を得る、窒化珪素基板の製造方法であって、前記分離材が酸素量0.01~0.5重量%、平均粒子径4~20μm、比表面積20m/g以下の窒化ホウ素(BN)粉であり、前記BN粉を0.05~1.4mg/cmの塗布量でグリーンシート表面に塗布することを特徴とする窒化珪素基板の製造方法」、および、「Siを主成分とする窒化珪素基板において、前記窒化珪素基板の表面に残留したBNに由来するB量の分布を示す変動係数Cvが1.0以下であり、前記窒化珪素基板表面のうねりWaが1.5μm以下であり(但し、うねりは、表面粗さ計を用いて、ろ波中心線うねりを測定して、その算術平均うねりWa、すなわち、表面高さの平均値からの偏差の絶対値の算術平均である量を用いるものとし、測定条件は評価長さ30mm、測定速度0.3mm/s、カットオフ値(λc)0.25mm、カットオフ値(λf)8.0mmとする)、相対密度が98%以上であることを特徴とする窒化珪素基板」、が開示されている。
特許3369819号公報 特開2011-178598号公報
 上記特許文献1・2に開示されたセラミックス焼結体の製造方法または窒化珪素基板によれば、いずれも板状のセラミックス成形体であるグリーンシートを積層し、その後焼結するに当たり、積層されるグリーンシートの間に介在させた分離層を構成する窒化ホウ素粒子の平均粒径・酸素量・塗布量その他各種条件を調整することにより、焼結後のセラミックス基板同士の固着を抑制するとともに、セラミックス基板の表面のうねりを抑制することができる。しかしながら、従来技術においては、セラミックス基板が、窒化珪素粒子からなる主相と、焼結助剤からなる粒界相とで構成された焼結体である窒化珪素基板であり、厚みが0.20~0.80mmと薄い窒化珪素基板では、表面うねりが1.00μm以下で、所定の曲げ強度、熱伝導率および金属板との接合性を有する窒化珪素基板を安定した歩留まりで得ることが、依然として困難であった。なお、表面うねりとは、表面粗さ計を用いて、ろ波中心線うねりを測定して得られた算術平均うねりWaを指す。具体的には、表面高さの平均値からの偏差の絶対値の算術平均である量を用いるものとし、測定条件は評価長さ30mm、測定速度0.3mm/s、カットオフ値(λc)0.25mm、カットオフ値(λf)8.0mmとする。加えて、上記従来技術においては、焼結時に複数枚積層された状態のセラミックス基板同士の固着が発生する場合があり、焼結後に個々のセラミックス基板を分離するに際し破損せずに剥離できるという分離性の点で未だ不十分であった。
 本発明は、かかる従来技術を鑑みてなされたものであり、厚みが0.20~0.80mmと薄い、窒化珪素粒子からなる主相と、焼結助剤からなる粒界相とで構成された焼結体である窒化珪素基板において、表面のうねりが1μm以下であり、所望の曲げ強度、熱伝導率および金属板との接合性を有する窒化珪素基板および焼結後、複数枚積層された状態のセラミックス基板から個々のセラミックス基板を分離するに際し、セラミックス基板が破損等することなく高い分離性で窒化珪素基板を形成可能な製造方法を提供することを目的としている。
 上記目的を達成するために、本発明の一態様は、厚みtが0.20~0.80mmの窒化珪素基板の製造方法であって、前記窒化珪素基板は窒化珪素粒子を主体とした主相と、主に焼結助剤から形成された粒界相とを含んでおり、窒化ホウ素粉末・有機バインダおよび有機溶剤を含む窒化ホウ素ペーストを使用し、窒化珪素粉末・焼結助剤粉末および有機バインダを含む板状の成形体の表面に、分離層を形成する分離層形成工程と、前記分離層形成工程の後に、成形体の有機バインダの発熱ピーク温度に加えて15~450℃高い温度で前記分離層及び成形体を加熱し、前記分離層及び成形体から有機バインダを除去する脱脂工程と、前記脱脂工程の後に、分離層を介し複数枚積層された成形体を焼結する焼結工程と、を含み、前記窒化ホウ素ペーストは、その窒化ホウ素粉末中に酸素(O)を0.01~0.5質量%および炭素(C)を0.001~0.5質量%含み、さらに前記脱脂工程後の分離層に炭素分(C)が残存するよう構成され、前記窒化ホウ素ペーストの窒化ホウ素粉末中に含まれる酸素の含有率(質量%)をc、前記脱脂工程後の分離層に含まれる炭素分(C)の含有率(質量%)をaとした場合に、c/aが0.02~10.00の範囲であり、加えて前記分離層形成工程において成形体に形成された分離層は0.2~3.5mg/cmの六方晶窒化ホウ素粉末を含むように構成されていることを特徴とする。
 また、前記焼結工程が完了した後に、窒化珪素基板の表面の任意の箇所における、ホウ素(B)とシリコン(Si)の各々の蛍光X線強度の比(B/Si)の範囲が7.0×10-5~250×10-5であり、ホウ素(B)と炭素(C)の比であるB/Cが0.080~3.000となるよう構成されているのが好適である。
 また、前記窒化ホウ素ペーストは、平均粒径d50が4.0~20.0μm、d10が0.5~7.0μm、d90が8~40μmの窒化ホウ素粉末100質量部に対し、前記有機バインダを8.75~44質量部含むのが好適である。
 また、前記窒化ホウ素ペーストは、25~27℃における粘度が1000~50000cP、チキソ性が1.02~4.00であり、前記分離層形成工程が、スクリーン印刷で分離層を形成するのが好適である。
 但し、チキソ性は、回転粘度計で測定した10rpmと100rpmの粘度の比(10rpmの粘度)/(100rpmの粘度)で定義される値である。
 また、前記窒化ホウ素ペーストは六方晶窒化ホウ素粉末100質量部に対し、前記有機バインダを8.75~44質量部含み、さらに有機溶剤を80~750質量部含むのが好適である。
 また、前記分離層形成工程において成形体に形成された分離層は0.5~1.4mg/cmの六方晶窒化ホウ素粉末を含み、前記脱脂工程後の成形体の表面の任意の箇所における測定長20mmの電子線マイクロアナライザー(EPMA)による線分析で得られた、ホウ素(B)とシリコン(Si)の各々の特性X線の強度の比(B/Si)のうち、任意の10.0mmの区間の平均値をf、その10.0mmの区間に含まれる0.2mmの区間の平均値をgとしたとき、g/fが0.2~7.0であるのが好適である。
 また、示差熱分析で計測された前記窒化ホウ素ペーストに含まれる有機バインダの発熱ピーク温度は、前記成形体の有機バインダの発熱ピーク温度よりも5℃以上高いのが好適である。
 また、前記窒化ホウ素ペーストは、窒化ホウ素粉末100質量部に対し、有機バインダを8.75~44質量部、有機溶剤を80~750質量部配合し、0.2~10時間攪拌することにより作製するのが好適である。
 また、本発明の他の態様は、窒化珪素基板であって、前記窒化珪素基板は窒化珪素粒子を主体とした主相と、主に焼結助剤から形成された粒界相とを含む焼結体であり、前記主相は、基板表面において、長軸長を短軸長で除したアスペクト比が3.0以下であり、かつ長軸長が5.0μm以下の第1の窒化珪素粒子と、前記第1の窒化珪素粒子に対し長軸長およびアスペクト比がともに超える第2の窒化珪素粒子とを含み、前記第1の窒化珪素粒子は、基板表面の任意の箇所に設定した一辺が10μmの正方領域に、40個以下存在し、基板表面の任意の箇所における、ホウ素(B)とシリコン(Si)の各々の蛍光X線強度の比(B/Si)の範囲が7.0×10-5~250×10-5であり、ホウ素(B)と炭素(C)の比であるB/Cが0.080~3.000であり、更に、表面のうねりが1.00μm以下であり、加えて厚みtが0.20~0.80mmであることを特徴とする。
 但し、基板表面のうねりは、表面粗さ計を用いて、ろ波中心線うねりを測定して、その算術平均うねりWa、すなわち、表面高さの平均値からの偏差の絶対値の算術平均である量を用いるものとし、測定条件は評価長さ30mm、測定速度0.3mm/s、カットオフ値(λc)0.25mm、カットオフ値(λf)8.0mmとする。
 また、前記窒化珪素基板は、基板表面からの深さが20μmの範囲である表層において任意の箇所に設定した一辺が10μmの正方領域に、前記第1の窒化珪素粒子を40個以下含み、表面からの深さが前記表層以外の範囲である内層において任意の箇所に設定した一辺が10μmの正方領域に、前記第1の窒化珪素粒子を30個以下含むのが好適である。
 また、前記窒化珪素基板は、基板表面からの深さが20μmの範囲である表層において任意の箇所に設定した一辺が10μmの正方領域に、アスペクト比が5.0~20.0であり、長軸長が6.0~30.0μmの第2の窒化珪素粒子を、面積比で1.0~30.0%含むのが好適である。
 また、前記窒化珪素基板は、基板表面からの深さが20μmの範囲である表層において、前記第1の窒化珪素粒子が凝集して形成された最大径が25μm以下である凝集部を含むのが好適である。
 また、前記窒化珪素基板は、基板表面からの深さが20μmの範囲である表層において任意の箇所に設定した一辺が100μmの正方領域に、前記凝集部を25個以下含むのが好適である。
 また、前記窒化珪素基板は、基板表面からの深さが20μmの範囲である表層において任意の箇所に設定した一辺が100μmの正方領域に、前記凝集部を25個以下含み、基板表面からの深さが前記表層以外の範囲である内層において任意の箇所に設定した一辺が100μmの正方領域に、前記凝集部を20個以下含むのが好適である。
 また、前記窒化珪素基板は、基板表面からの深さが20μmの範囲である表層において、前記第1の窒化珪素粒子の周囲の粒界相に形成された気孔の最大径は、10μm以下であるのが好適である。
 また、前記窒化珪素基板は、基板表面からの深さが20μmの範囲である表層において任意の箇所に設定した一辺が100μmの正方領域に、前記気孔を20個以下含むのが好適である。
 また、前記窒化珪素基板は、下記の条件にて電子線マイクロアナライザー(EPMA)で測定した基板表面におけるホウ素(B)の特性X線強度の変動係数が1.0以下であるのが好適である。
 但し、電子線マイクロアナライザーの測定条件は、ビーム径1μmで1mmの範囲を走査し、2μm間隔で測定したホウ素(B)の蛍光X線強度の値から、その標準偏差をその平均値で割ることによって求めた値である。
 本発明によれば、下記詳細に述べるように、本発明の目的を達成することができる。
EPMAで求めた指標g/fについて説明する図である。 本発明の一態様の窒化珪素基板が組み込まれた回路基板の概略構成図を説明する図である。 ピール試験に用いる試験片の概略構成を示す側面図である。 窒化珪素基板の表面の組織を示す図である。 凝集部および気孔の最大径の定義を説明する図である。 本発明に係る窒化珪素基板の製造方法を説明する図である。 本発明に係る窒化珪素基板の製造方法を説明する別の図である。
 以下、本発明を実施するための形態(以下、実施形態という)を、図面に従って説明する。
 本願発明者らは、窒化珪素基板のうねりを改善するために、まず従来技術に検討を加えた。その結果、従来技術により形成された窒化珪素基板においては、表面のうねりの問題が解消されないことを知見した。この表面のうねりの問題が解消されない原因は明確ではないが、下記の現象が一つの要因ではないかと推定した。
 すなわち、グリーンシートの表面に形成された分離層に含まれる窒化ホウ素(以下、BNと言う場合がある。)粒子の表面には、酸素を含むホウ素の化合物(以下、B化合物と言う場合がある。)が形成されている可能性がある。このB化合物としては、例えば三酸化二ホウ素(B)等が含まれる。
 また、グリーンシートに形成された分離層のBN粒子の分布には疎密があり、BN粒子が密に配置された部分のB化合物は、焼結工程においてグリーンシートを加熱していくと、グリーンシートの表層に含まれる、窒化珪素粒子の間の粒界に存在する焼結助剤に作用し、当該焼結助剤の融点を降下させ、結果的に当該焼結助剤が形成する正常なガラスよりも融点の低いホウ素を含むガラス(以下、理解のため便宜的にホウ素ガラスと言う場合がある。)からなる粒界相(以下、理解のため便宜的に、この粒界相を異常相と言う場合がある。)を有する異常領域を形成する可能性がある。なお、ホウ素(B)はイオン半径が比較的小さいため拡散しやすく、異常領域の辺縁は正常領域と区分できないため、明確な境界線を引くことはできないが、ホウ素(B)の濃度が正常領域より明確に高い部分が異常領域となっていると推定される。
 そして、グリーンシートの表層の異常領域に含まれる異常相は融点が低いため、他の正常な粒界相よりも早期に溶融し、異常領域に含まれるα型である粒状の窒化珪素粒子9cは再配列を開始する。窒化珪素粒子は、溶融して液相となった異常領域に含まれる気孔が消滅するように再配列するため、当該異常領域は収縮する。分離層に含まれるBN粒子は、上記の通り、その分布に疎密があるため、グリーンシートを平面的に見たときに、面積の異なる異常領域が複数点在する状態となっていると推定される。
 その後、グリーンシートの加熱温度を上げていくと、B化合物の作用しない焼結助剤で形成された正常なガラスからなる粒界相(以下、理解のため便宜的に、この粒界相を正常相と言う場合がある。)を有する正常領域も溶融し、正常領域に含まれるα型である粒状の窒化珪素粒子も再配列を開始し、収縮する。しかしながら、異常領域と正常領域とでは、両者に含まれる粒界相の融点の差により、窒化珪素粒子の再配列に時間差が生じ、両者の収縮の時期にも時間差が生じることとなる。すなわち、B化合物の作用したホウ素ガラスを含む異常領域の収縮の開始後に、B化合物の作用しない正常領域の収縮が開始するという現象が生じていると考えられる。
 ここで、窒化珪素粒子は、焼結助剤であるYなどの希土類酸化物の共存によって、長軸長の長い粒子に成長することが知られている。しかし、グリーンシートの表層に存在していた異常領域では、溶融温度の低いホウ素ガラスが主に存在するため、上記窒化珪素粒子が成長する前にホウ素ガラスが溶解して、窒化珪素粒子が成長するための空間が液体で充填されてしまう(緻密化という)。この結果、異常領域に含まれていた粒状の窒化珪素粒子は粒成長が進み難く、アスペクト比が低く長軸長が短い窒化珪素粒子となる可能性がある。一方で、正常領域に含まれていた粒状の窒化珪素粒子は、上記成長の阻害要因が無いので粒成長し、アスペクト比が大きく長軸長の長い柱状の窒化珪素粒子となる。そして、異常領域は、その後に収縮する柱状の窒化珪素粒子を含む正常領域により押し出され、正常領域の表面に対し突出するように変形すると考えられる。
本願発明者らは、上記のように想定したメカニズムにより微小な領域において生じる変形が、窒化珪素基板WBの表面全体として見た場合には過大なうねりとなり、厚みが0.20~0.80mmと薄い窒化珪素基板では、表面うねり(Wa)を1μm以下にすることが極めて困難であると推察し、これに基づき本発明を完成させたものである。すなわち、基板表面におけるB化合物の分布を均一化するとともに、B化合物の濃度を低減して窒化珪素基板を製造することにより、表面のうねりが低減された窒化珪素基板を得ることができた。
 本発明の一実施形態は、窒化珪素粒子を主体とした主相と、主に焼結助剤から形成された粒界相とを含む焼結体である窒化珪素基板であって、前記主相は、基板表面において、長軸長を短軸長で除したアスペクト比が3.0以下であり、かつ長軸長が5.0μm以下の第1の窒化珪素粒子と、前記第1の窒化珪素粒子に対し長軸長およびアスペクト比がともに超える第2の窒化珪素粒子とを含み、前記第1の窒化珪素粒子は、基板表面の任意の箇所に設定した一辺が10μmの正方領域に、40個以下存在し、基板表面の任意の箇所における、ホウ素(B)とシリコン(Si)の各々の蛍光X線強度の比(B/Si)の範囲が7.0×10-5~250×10-5であり、ホウ素(B)と炭素(C)の各々の蛍光X線強度の比であるB/Cが0.080~3.000であり、更に、表面のうねりが1.00μm以下であり、加えて厚みtが0.20~0.80mmであることを特徴とする窒化珪素基板である。
 本実施形態の窒化珪素基板は、その表面の任意の箇所における、ホウ素(B)とシリコン(Si)の各々の蛍光X線強度の比(B/Si)が、上述した通り7.0×10-5~250×10-5である。このB/Siという値は、窒化珪素基板の表面に存在する分離層を構成するBNと上記のように窒化珪素基板の表層の異常領域に存在するホウ素ガラスの各々に含まれるホウ素(B)の量を和した値を反映しているが、異常領域に含まれるホウ素(B)の量を間接的に示している。すなわち、B/Siが大きければ、窒化珪素基板の表面にホウ素ガラスを含む異常相が多く含まれていると推察され、引いてはグリーンシートの一面に形成された分離層を構成するBN粉末の中には多くのB化合物が含まれていたと考えられる。ここで、B/Siの範囲を7.0×10-5~250×10-5としたのは、次の理由による。すなわち、B/Siが7.0×10-5未満の場合には、そもそも分離層を構成していたBN粉末の量が少なく、焼結後、複数枚積層された状態の窒化珪素基板を一枚ずつに剥離する際に分離性が悪く、歩留まりが低下するためであり、B/Siが250×10-5を超える場合には、窒化珪素基板に金属基板を接合する際の接合性が過度なホウ素(B)により阻害されるためである。
 さらに、上記窒化珪素基板は、ホウ素(B)と炭素(C)の各々の蛍光X線強度の比であるB/Cが、上述した通り0.080~3.000となっている。すなわち、本実施形態の窒化珪素基板は、その表面に適量の炭素(C)が存在している。この炭素(C)は、上記のように分離層中に含まれるB化合物の酸素(O)を還元して無害なホウ素(B)とした炭素(C)の残分である。ここで、B/Cが0.080未満の場合には、表面に残存する炭素(C)の量が過多となり、窒化珪素基板の強度を低下させるとともに金属基板と窒化珪素基板の接合性を劣化させる。一方で、B/Cが3.000を超える場合には、分離層中に含まれていた炭素(C)の量が少なかったため、B化合物の還元作用が不十分であり、残存したB化合物の作用により窒化珪素基板の表面にホウ素ガラスを含む異常相が形成され、窒化珪素基板の表面のうねりが改善されないと考えられる。
 また、上述した通り上記窒化珪素基板において、その主相は、基板表面において、長軸長を短軸長で除したアスペクト比が3.0以下であり、かつ長軸長が5.0μm以下の第1の窒化珪素粒子と、前記第1の窒化珪素粒子に対し長軸長およびアスペクト比がともに超える第2の窒化珪素粒子とを含んでいる。上記窒化珪素基板の表面におけるB/Siという値、およびB/Cという値から、分離層に含まれるB化合物をCで還元して無害化した可能性がある。このように、本実施形態の窒化珪素基板は、分離層に含まれるB化合物中の酸素が炭素(C)で還元され、B化合物が減少することにより、B化合物が作用して形成されたホウ素ガラスを含む異常相が少なくなり、その結果、粒成長が進んでおらず、長軸長を短軸長で除したアスペクト比が3.0以下であり、かつ長軸長が5.0μm以下の第1の窒化珪素粒子が少なくなると推察される。具体的には、第1の窒化珪素粒子は、表面の任意の箇所に設定した一辺が10μmの正方領域に、40個以下存在する。
 このように、本実施形態に係る窒化珪素基板によれば、その表面における、B/Siを7.0×10-5~250×10-5、B/Cを0.080~3.000、および所定の正方領域における第1の窒化珪素粒子を40個以下とすることにより、その厚みが0.20~0.80mmである場合に、基板表面のうねりを1μm以下とすることができる。なお、この基板表面のうねりとしては、表面粗さ計を用いて、ろ波中心線うねりを測定して、その算術平均うねりWa、すなわち、表面高さの平均値からの偏差の絶対値の算術平均である量を用いるものとし、測定条件は評価長さ30mm、測定速度0.3mm/s、カットオフ値(λc)0.25mm、カットオフ値(λf)8.0mmとする。
 なお、上記実施形態の窒化珪素基板において、表面からの深さが20μmの範囲である表層において任意の箇所に設定した一辺が10μmの正方領域に、前記第1の窒化珪素粒子を40個以下含み、表面からの深さが前記表層以外の範囲である内層において、任意の箇所に設定した一辺が10μmの正方領域に、前記第1の窒化珪素粒子を30個以下含むことが好ましい。
 すなわち、窒化珪素基板において、第1の窒化珪素粒子が多数存在すると、第1の窒化珪素粒子の周囲には多数の異常相が存在することとなると推察される。この異常相に含まれるホウ素ガラスは、正常相を構成するガラスに比べて強度が低く、窒化珪素基板に応力が作用するとクラックが生じやすい。加えて、第1の窒化珪素粒子は、柱状の第2の窒化珪素粒子に対し、アスペクト比が3.0以下と粒状の形態をなしているので、破壊靭性が低く、クラックが進展し易い。ここで、上記好ましい態様の窒化珪素基板によれば、その表面からの深さが20μmの範囲である表層おいて任意の箇所に設定した一辺が10μmの正方領域に、前記第1の窒化珪素粒子を40個以下含むよう構成されているので、強度の低い異常相が少なく、応力が作用した場合でも窒化珪素基板の表層におけるクラックの発生が抑制される。加えて、窒化珪素基板の表面からの深さが上記表層以外の範囲である内層おいて、任意の箇所に設定した一辺が10μmの正方領域に、前記第1の窒化珪素粒子を30個以下含むよう構成されているので、内層は表層に比べ高い破壊靭性を有し、表層にクラックが生じた場合でも、当該クラックの進展が抑制され、窒化珪素基板の破壊を防止することができる。
 以上のように、窒化珪素基板中に含まれる第1の窒化珪素粒子およびその周囲に存在すると考えられる異常相は、窒化珪素基板の強度・破壊靭性・熱伝導率・絶縁耐圧等の特性に対して負の影響を与える。しかしながら、第1の窒化珪素粒子が上記条件を満たすことを前提とし、アスペクト比が小さく長軸長が短い粒状の第1の窒化珪素粒子が、柱状の第2の窒化珪素粒子の相互間に形成される領域の中に適切に存在する場合には、窒化珪素基板において窒化珪素粒子の高い充填をもたらし、窒化珪素基板の密度が向上し、その強度や熱伝導率をより向上することができる。その条件は、基板表面からの深さが20μmの範囲である表層において、任意の箇所に設定した一辺が10μmの正方領域に、アスペクト比が5.0~20.0であり、長軸長が6.0~30.0μmの第2の窒化珪素粒子を、断面積比で1.0~30.0%含むことである。第2の窒化珪素粒子のアスペクト比が5.0未満または長軸長が6.0未満の場合には、第2の窒化珪素粒子の間に適切な大きさの領域が形成されず、第1の窒化珪素粉末が当該領域に配置される余地がなく、効果が無い。一方で、アスペクト比が20.0または長軸長が30.0μmを超える場合には、粗大な窒化珪素粒子の存在することにより、第1の窒化珪素粒子が存在していても粗大な欠陥が生じやすく強度が低下する。さらに、第2の窒化珪素粒子の断面積比が1.0%未満の場合には、第2の窒化珪素粒子の相互間の領域に配置される第1の窒化珪素粒子の量が多すぎることになり、粗大な凝集部が形成されるため、窒化珪素基板の諸特性を実現することができない。一方で、第2の窒化珪素粒子の断面積比が30.0%を超える場合には、第1の窒化珪素粒子が配置される余地がなく、窒化珪素基板の密度は向上しない。
 上記態様の窒化珪素基板において、基板表面からの深さが20μmの範囲である表層において、前記第1の窒化珪素粒子が凝集して形成された最大径が25μm以下である凝集部を含むことが望ましい。第1の窒化珪素粒子が凝集して形成された凝集部が大きいと、必然的にその周囲に存在する強度の低い異常相の集まりである異常領域の大きさも大きくなり、窒化珪素基板の強度および破壊靭性を低下せしめることとなる。したがって、凝集部の最大径は25μm以下であることが望ましい。
 さらに、上記好ましい態様の窒化珪素基板において、基板表面からの深さが20μmの範囲である表層において任意の箇所に設定した一辺が100μmの正方領域に、前記凝集部を25個以下含むよう構成することが望ましい。前述したように、凝集部の最大径を25μm以下とすることにより所望の強度と破壊靭性を有する窒化珪素基板を構成することができるが、窒化珪素基板が凝集部を多く含む場合には、その熱伝導率が低下する虞がある。すなわち、窒化珪素粒子からなる主相と、焼結助剤からなる粒界相で構成された焼結体である窒化珪素基板の場合、熱の伝導はフォノンにより行われる。当該焼結体の熱伝導率は主相を構成している窒化珪素粒子の熱伝導率、及び、粒界相の熱伝導性、つまり粒界相固有の熱伝導率や粒界相の体積・厚みなどで律束される。
 ここで、第2の窒化珪素粒子が粒成長過程で粒内の不純物を放出し、不純物の少ない粒子となるのに対して、第1の窒化珪素粒子は粒成長が進んでおらず、粒内に多くの不純物を含む。その結果、フォノンの散乱により熱伝導率が低下することとなる。さらには第1の窒化珪素粒子は、アスペクト比が3.0以下と粒状の形態であり、その長軸長が5.0μm以下と小さい。そのため、同一体積で比較した場合に、第1の窒化珪素粒子の表面積は第2の窒化珪素粒子に比べ大きく、その周囲には多くの異常相が存在することとなり、熱を伝達するフォノンの流通が異常相において阻害される。加えて、異常相は熱伝導率の低いホウ素ガラスを含んでおり、窒化珪素基板に凝集部が多数存在する場合には、その熱伝導率が低下することとなる。したがって、高い熱伝導率を有する、好ましくは熱伝導率が80(W/m・K)以上の窒化珪素基板を構成するためには、基板表面からの深さが20μmの範囲である表層において任意の箇所に設定した一辺が100μmの正方領域に、前記凝集部を25個以下含むように構成することが好ましい。
 さらに、上記好ましい態様の窒化珪素基板において、基板表面からの深さが20μmの範囲である表層において任意の箇所に設定した一辺が100μmの正方領域に、前記凝集部を25個以下含み、表面からの深さが前記表層以外の範囲である内層において任意の箇所に設定した一辺が100μmの正方領域に、前記凝集部を20個以下含むよう構成することが望ましい。
 すなわち、窒化珪素基板において、所定の面積の中に含まれる凝集部が多数存在すると、その凝集部を含む異常相の集まりである異常領域も多数存在することとなると推察される。この異常領域に含まれる異常相は、正常相に比べて強度が低く、窒化珪素基板に応力が作用するとクラックが生じやすい。加えて、凝集部を形成している第1の窒化珪素粒子は、アスペクト比が3.0以下と粒状の形態をなしているので、破壊靭性が低く、クラックが進展し易い。ここで、上記好ましい態様の窒化珪素基板によれば、基板表面からの深さが20μmの範囲である表層において任意の箇所に設定した一辺が100μmの正方領域に、前記凝集部を25個以下含むよう構成されているので、強度の低い異常領域が少なく、窒化珪素基板に応力が作用した場合でも窒化珪素基板の表層におけるクラックの発生が抑制される。加えて、窒化珪素基板の表面からの深さが上記表層以外の範囲である内層において任意の箇所に設定した一辺が100μmの正方領域に、前記凝集部を20個以下含むよう構成されているので、内層は表層に比べ高い破壊靭性を有し、表層にクラックが生じた場合でも、当該クラックの進展が抑制され、窒化珪素基板の破壊を防止することができる。
 さらに加えて、上記態様の窒化珪素基板において、基板表面からの深さが20μmの範囲である表層において、第1の窒化珪素粒子の周囲の粒界相に形成された気孔の最大径は、10μm以下であることが望ましい。上記のように異常相および正常相は、両者の融点の相違に起因する収縮開始時期の時間差があるため、両者の境界付近には気孔が生じ易い。そして、窒化珪素基板に含まれる気孔は、応力が作用した場合にクラックの起点となり窒化珪素基板の破壊を招来するとともに、熱伝導率および絶縁耐圧を低下させる。一方で、上記態様の窒化珪素基板では、気孔の最大径を、10μm以下とすることにより、更に、窒化珪素基板の強度および熱伝導率を高めるとともに、その絶縁耐圧を向上することが可能となる。なお、同様な理由により、上記気孔は、基板表面からの深さが20μmの範囲である表層において任意の箇所に設定した一辺が100μmの正方領域に20個以下存在していることがより望ましい。
 さらに加えて、上記態様の窒化珪素基板において、下記の条件にて電子線マイクロアナライザー(EPMA)で測定したホウ素(B)の特性X線強度の変動係数が1.0以下であることが望ましい。なお、電子線マイクロアナライザーの測定条件は、ビーム径1μmで1mmの範囲を走査した。また、上記変動係数は、上記測定条件により2μm間隔で測定したホウ素(B)の特性X線強度の値から、その標準偏差をその平均値で割ることによって求めた値である。上記変動係数と窒化珪素基板の表面のうねりとの関係については以下のように推察した。EPMAで測定されたホウ素(B)の値は、上記したように窒化珪素基板の表面に存在するBNと窒化珪素基板の表層の異常領域に存在するホウ素ガラスの各々に含まれるホウ素(B)の量を和した値と考えられるが、異常領域に含まれるホウ素(B)の量を示していると推測される。すなわち、EPMAにより窒化珪素基板の表面の複数点を測定して得られたBの特性X線強度の標準偏差を、その平均値で除した値である変動係数が小さい場合には、分離層を構成していたBNが窒化珪素基板の表面に一様に均一に残存しているとともに、異常領域も窒化珪素基板の表層に一様に均一に存在していると予想した。ここで、窒化珪素基板の表面に残存したBNの分布に疎密があると、窒化珪素基板と金属基板とを接合し回路基板を構成した際にBNの偏在部において両者の接合性が阻害され、接合界面に空隙(ボイド)が生じ易い。しかしながら、本態様の窒化珪素基板では、ホウ素(B)の変動係数が1.0以下であるので、BNの分布の疎密が抑制されその偏在部が少ないので、窒化珪素基板と金属基板との接合性を高めることができる。さらに、窒化珪素基板の表層において異常領域の分布に疎密があると、窒化珪素基板の表面のうねりが拡大する傾向にあるが、本態様の窒化珪素基板では、ホウ素(B)の変動係数が1.0以下であるので、異常領域の分布の疎密が抑制されその偏在部が少なく、窒化珪素基板の表面のうねりをより低減することができる。
 本実施形態の窒化珪素基板は、上記のように構成されているので、その曲げ強度が600(MPa)以上の窒化珪素基板を提供でき、さらに、熱伝導率が80(W/m・k)以上である窒化珪素基板を提供することができる。
 さらに、本実施形態の窒化珪素基板によれば、上記のように構成されているので、その窒化珪素基板に金属基板を接合して形成された接合体を耐熱サイクル試験に付したときに、高い合格率を有する窒化珪素基板を提供することができる。具体的には、厚みが0.20~0.80mm、長さ40mm・幅30mmの前記窒化珪素基板の表面に、厚み0.5mm・長さ37mm・幅26mmの銅板を、当該窒化珪素基板の裏面に、厚み0.5mm・長さ37mm・幅27mmの銅板を、ろう材で形成された各々厚み20μmのろう材層を介し接合した複数の接合体を作成する。この複数の接合体を耐熱サイクル試験に付した時に、サイクル数3000回以上で破壊しない接合体を90%以上含む窒化珪素基板を提供することができる。ここで、ろう材は、Ag:70質量%、In:5質量%、酸素含有量0.1質量%以下、残部Cu及び不可避不純物からなる平均粒子径20μmの合金粉末100質量部に対し、さらに平均粒子径10μmのAg粉末粒子を10質量部および45μm以下の粒子サイズが85%以上の水素化チタンを1質量部添加し、前記合金粉末粒子間の間隙を埋めるようにAg粉末粒子および活性金属水素化物を混合してなる融点が770℃のろう材を、全ペーストに占める割合でバインダとしてアクリル系樹脂を5質量%、溶剤としてα-テルピネオール10質量%、分散剤として低分子アニオン系化合物であるアルキルベンゼンスルホンサン塩0.1質量%と配合したのちプラネタリーミキサーを用いて混合を行い、粘度を55Pa・sとしたものを用い、さらに、耐熱サイクル試験は、-40℃での冷却を20分、室温での保持を10分および125℃での加熱を20分とする昇温/降温サイクルを1サイクルとし、これを繰り返して回路基板に付与するものとする。
 加えて、本実施形態の窒化珪素基板によれば、上記のように構成されているので、その窒化珪素基板に金属基板を接合して形成された接合体を絶縁試験に付したときに、高い合格率を有する窒化珪素基板を提供することができる。具体的には、上記の耐熱サイクル試験に付したものと同様な複数の接合体を、絶縁試験に付した時に、絶縁破壊しない接合体を90%以上含む窒化珪素基板を提供することができる。なお、絶縁試験は、5kVの電圧を回路基板に1分間印加するものとする。
 本発明の他の実施形態は、窒化珪素粒子を主体とした主相と、主に焼結助剤から形成された粒界相とを含む厚みtが0.20~0.80mmの窒化珪素基板の製造方法であって、窒化ホウ素粉末・有機バインダおよび有機溶媒を含む窒化ホウ素ペーストを使用し、窒化珪素粉末・焼結助剤粉末および有機バインダを含む板状の成形体の表面に、分離層を形成する分離層形成工程と、前記分離層形成工程の後に、成形体の有機バインダの発熱ピーク温度に加えて15~450℃高い温度で前記分離層及び成形体を加熱し、前記分離層及び成形体から有機バインダを除去する脱脂工程と、前記脱脂工程の後に、分離層を介し複数枚積層された成形体を焼結する焼結工程とを含み、前記窒化ホウ素ペーストは、その窒化ホウ素粉末中に酸素(O)を0.01~0.5質量%および炭素(C)を0.001~0.5質量%含み、さらに前記脱脂工程後の分離層に炭素分(C)が残存するよう構成されており、前記窒化ホウ素ペーストの窒化ホウ素粉末中に含まれる酸素の含有率(質量%)をc、前記脱脂工程後の分離層に含まれる炭素分(C)の含有率(質量%)をaとした場合に、c/aが0.02~10.00の範囲であり、加えて前記分離層形成工程において成形体に形成された分離層は0.2~3.5mg/cmの六方晶窒化ホウ素粉末を含むことを特徴とする窒化珪素基板の製造方法である。
 なお、上記窒化珪素粉末と混合する有機バインダとしては、例えばポリビニルブチラール、メタクリル酸メチル樹脂等が挙げられ、上記窒化ホウ素ペーストに使用される有機バインダとしては、例えばポリビニルブチラール、エチルセルロース等が挙げられる。また、上記窒化ホウ素ペーストに使用される有機溶剤としては、例えばエタノール、ブタノール、α―テルピネオール等が挙げられる。また、上記焼結助剤としては、例えばY、MgO等が挙げられる。
 上記他の実施形態にかかる窒化珪素基板の製造方法によれば、分離層形成工程において、ドクターブレード法その他周知の成形方法を利用して形成された、窒化珪素粉末・焼結助剤粉末および有機バインダを含む板状の成形体(グリーンシート)の表面に、窒化ホウ素(BN)粉末・有機バインダおよび有機溶剤を含む窒化ホウ素(BN)ペーストを使用して分離層が形成される。表面に分離層が形成されたグリーンシートは、脱脂工程において加熱され、グリーンシートに含まれる有機バインダが除去(脱脂)されるとともに、BNペーストに含まれる有機バインダおよび有機溶剤も除去される。このため、脱脂工程を経たグリーンシートの表面には、BNペーストが脱脂され、有機バインダおよび有機溶剤が除去されたBN粉末および後述するように有機バインダの残渣である炭素分(C)が残存した層(以下、この脱脂工程後の分離層のことをBN層と便宜的に言う場合がある。)が形成される。このBN層が形成されたグリーンシートは、BN層を介して複数枚積層され、焼結工程において焼結され、窒化珪素粒子を主体とした主相と、主に焼結助剤から形成された粒界相とを含む窒化珪素基板が形成される。
 さらに、本実施形態の厚みtが0.20~0.80mmの窒化珪素基板の製造方法においては、上記分離層形成工程で使用されるBNペーストは、そのBN粉末中に酸素(O)を0.01~0.5質量%および炭素(C)を0.001~0.5質量%含み、BNペーストのBN粉末中に含まれる酸素の含有率(質量%)をc、グリーンシートの有機バインダの発熱ピーク温度に加えて15~450℃高い温度でグリーンシートを脱脂する脱脂工程後のBN層に残存する炭素分(c)の含有量をa(質量%)とした場合に、c/aが0.02~10.00となるよう構成されている。このように、BN粉末中の酸素(O)の割合、脱脂工程における脱脂温度、BN粉末中に含まれる酸素(O)の割合に対し脱脂工程が完了した後における炭素分(C)の割合を規定した理由について、以下説明する。
 まず、BN粉末中の酸素(O)の割合を規定した理由を説明する。BN粉末の酸素(O)の割合は、焼結工程における、BN粉末を構成するBN粒子とグリーンシートとの固着力、およびグリーンシートに含まれる焼結助剤が溶融し形成されるガラスの融点、この双方の観点から定められている。すなわち、BN粉末に含まれる酸素(O)の割合が0.01質量%未満の場合には、BN粒子とそれが接触しているグリーンシートの表面との間に反応が生じ難く、グリーンシートの表面に対するBN粒子の固着力が低下する。そのため、焼結工程におけるグリーンシートの収縮に伴いその表面を移動するBN粒子が生じ、焼結工程においてBN粉末の分布に疎密が発生するため、焼結後の窒化珪素基板の分離性が低下するとともに、その表面のうねりが増大する可能性がある。一方で、BN粉末に含まれる酸素(O)の割合が0.5質量%を超え多い場合には、過分な酸素(O)が焼結助剤に作用しその融点を降下させるため、焼結工程においてグリーンシートが充分に収縮せず、その結果、窒化珪素基板の密度が上がらず、高い強度および熱伝送率を有する窒化珪素基板を得ることができない。
 次に、脱脂工程における脱脂温度を規定した理由を説明する。脱脂温度は、脱脂工程後にグリーンシートに含まれる有機バインダの残渣である炭素分(C)の量、およびグリーンシートに含まれる窒化珪素粒子が変質しないこと、この双方の観点から定められている。すなわち、示差熱分析で計測されたグリーンシートの有機バインダの発熱ピーク温度に加えて15℃未満の温度でグリーンシートを脱脂した場合には、脱脂後のグリーンシートの中に残存する炭素分(C)が多く、焼結工程において、残存した炭素分(C)が窒化珪素粒子を還元するため、窒化珪素粒子の粒成長が阻害され、窒化珪素基板の破壊靭性を低下させる。一方で、示差熱分析で計測されたグリーンシートの有機バインダの発熱ピーク温度に加えて450℃を超える温度でグリーンシートを脱脂した場合には、グリーンシートに含まれる窒化珪素粒子が酸化し、その結果、窒化珪素基板の密度が上がらず、高い強度および熱伝送率を有する窒化珪素基板を得ることができない。なお、示差熱分析で計測された発熱ピーク温度に、複数のピークがある場合には、最も高温側に現れたピークに対応する温度を、発熱ピーク温度とすればよい。
 さらに、BN粉末中に含まれる酸素(O)の割合に対し脱脂工程が完了した後における炭素分(C)の割合を規定した理由を説明する。BN粉末中の酸素(O)の割合を規定した理由を説明した項で述べたように、BN粉末中の酸素(O)の割合は、焼結工程における、BN層を構成するBN粒子とグリーンシートとの固着力、およびグリーンシートに含まれる焼結助剤が溶融し形成されるガラスの融点、この双方の観点から定められている。一方で、BN粉末中に含まれる酸素(O)の割合を示す値は、BN粉末を構成するBN粒子の表面に形成されたB化合物の酸素(O)の値である。
 ここで、本実施形態の窒化珪素基板の製造方法において使用するBNペーストは、上記説明したようにホウ素ガラスを含む異常相を形成するB化合物、つまり脱脂工程を経た分離層であるBN層に含まれるB化合物を、焼結工程において炭素分(C)で還元し無害化するよう構成されている。すなわち、本実施形態のBNペーストは、上記脱脂温度の範囲で脱脂した後に、その有機バインダの残渣である炭素分(C)が適量だけBN層に残存することより、脱脂工程後のBN層に含まれる炭素分(C)が、BNペースト中に含まれるBN粒子自身が含む炭素(C)の量よりも増加するよう、構成されている。なお、BN粉末中に含まれる酸素(O)の含有率(質量%)をc、脱脂工程後のBN層における炭素分(C)の含有率をaとした場合に、c/aが10.00を超える場合には、B化合物を充分に還元することができず、許容できる以上の異常相が形成され、その結果、窒化珪素基板に存在する第1の窒化珪素粒子の密度が高くなる。一方で、c/aが0.02未満の場合には、過度な炭素分(C)により窒化珪素基板の強度が低下するとともに、窒化珪素基板の表面に存在する炭素分(C)のために金属基板との接合性が阻害される。
 なお、明確ではないが、BN粉末にそもそも含まれる炭素(C)は、BN粉末中において化合物を形成しており、脱脂工程後にBN粉末中に残留したCに比べ、Bの酸化物の還元に有効に働きにくいと推定される。このため、上述したように、脱脂工程後にBN粉末中に炭素分(C)が適度な範囲で残留するのが好適である。
 さらに、本実施形態の窒化珪素基板の製造方法における分離層形成工程において成形体に形成された分離層は、0.2~3.5mg/cmの六方晶BN粉末を含みよう構成した理由は下記のとおりである。すなわち、六方晶BN粉末の量が3.5mg/cmを超え多い場合、過量な六方晶BN粉末が、グリーンシートの焼成の過程で粒成長し、その表面に露出した柱状の窒化珪素粒で形成される凹凸の凹部にBN粉末が入り込み、グリーンシートの均一な収縮を阻害し、その結果、得られた窒化珪素基板の表面のうねりが大きくなりやすいからである。一方、六方晶BN粉末の量が0.2mg/cm未満と少ない場合、六方晶BN粉末の少ない部分が形成され、焼結工程において積層された窒化珪素基板が付着し、分離性が低下するからである。なお、同様な観点から、分離層の含む六方晶BN粉末の量は、0.4~2.2mg/cmであることが望ましい。
 また、本実施形態の窒化珪素基板の製造方法において、前記焼結工程が完了した後に、窒化珪素基板の表面の任意の箇所における、ホウ素(B)とシリコン(Si)の各々の蛍光X線強度の比(B/Si)の範囲が7.0×10-5~250×10-5であり、ホウ素(B)と炭素(C)の比であるB/Cが0.080~3.000となるよう構成されている。これらの理由については、上述した通りである。
 なお、上記BNペーストは、具体的には、平均粒径d50が4.0~20.0μm、d10が0.5~7.0μm、d90が8~40μmの窒化ホウ素粉末100質量部に対し、前記有機バインダを8.75~44質量部含むように調整することにより、形成することができる。なお、BN粉末の凝集を防止するため、必要に応じ、分散剤を添加してもよい。ここで、BN粉末の平均粒子径d50を4.0~20.0μmとしたのは、平均粒径d50が4.0μm未満と小さい場合、グリーンシートの焼成の過程で粒成長し、その表面に露出した柱状の窒化珪素粒で形成される凹凸の凹部にBN粉末が入り込み、グリーンシートの均一な収縮を阻害し、その結果、得られた窒化珪素基板の表面のうねりが大きくなりやすいからである。一方で、平均粒径d50が20.0μmを超え大きい場合には、BN粉末のグリーンシート表面への密着性が低下し、積層した後のハンドリングの際にグリーンシートが剥離しやすくなるからである。また、平均粒子径d10を0.5~7.0μmとしたのは、平均粒径d10が0.5μm未満と小さい場合、上記BN層に含まれるB化合物の割合が多くなりすぎるからである。一方で、平均粒径d10が7.0μmを超え大きい場合には、上記BN層に含まれるB化合物の割合が少なくなりすぎるからである。BN粒子表面に形成されているB化合物の割合が少ないとBN粒子とそれが接触しているグリーンシートの表面との間に反応が生じ難く、グリーンシートの表面に対するBN粒子の固着力が低下する。そのため、焼結工程におけるグリーンシートの収縮に伴いその表面を移動するBN粒子が生じ、焼結工程においてBN粉末の分布に疎密が発生するため、焼結後の窒化珪素基板の分離性が低下するとともに、その表面のうねりが増大する可能性がある。さらに、平均粒子径d90を8~40μmとしたのは、平均粒径d90が8μm未満と小さい場合、上記BN層に含まれるB化合物の割合が多くなりすぎるからである。一方で、平均粒径d90が40μmを超え大きい場合には、上記BN層中のBN粒子の粒径が大きくなりすぎるため、粗大なBN粒子の形状に起因するうねりが窒化珪素基板の表面に生成するからである。
 さらに、本実施形態の窒化珪素基板の製造方法において、上記BNペーストは、25~27℃における粘度が1000~50000cP、チキソ性が1.02~4.00であり、前記分離層形成工程が、スクリーン印刷で分離層を形成するよう構成することが望ましい。ここで、上記チキソ性は、回転粘度計で測定した10rpmと100rpmの粘度の比(10rpmの粘度)/(100rpmの粘度)で定義される値である。なお、このようなBNペーストは、具体的には、六方晶BN粉末100質量部に対し、有機バインダを8.75~44質量部含み、さらに有機溶剤を80~750質量部含むよう調整し、形成することができる。
 本実施形態の窒化珪素基板の製造方法において使用するBNペーストに含まれるBN粉末は六方晶BN粉末を使用することができる。このように略板状の六方晶BN粒子を含み、粘度が1000~50000cP、チキソ性が1.02~4.00に調整されたBNペーストを使用し、分離層形成工程においてスクリーン印刷で分離層を形成することにより、六方晶BN粒子の平坦面がグリーンシートの表面とほぼ平行、つまり六方晶BN粒子のc軸がグリーンシートの表面に対してほぼ垂直な姿勢となるよう配置された分離層を形成することができる。このような分離層および当該分離層が形成されたグリーンシートは、脱脂工程において共に脱脂され、その後、焼結工程において分離層を介して複数枚積層された状態で焼結される。ここで、積層されたグリーンシートを離隔している分離層には、上記の姿勢で六方晶BN粒子が均一に配置されているので、焼結工程において収縮するグリーンシート相互間の摩擦抵抗が低減され、グリーンシートが全体的に均一に収縮するので、より表面のうねりが低減された窒化珪素基板を形成できる。
 上記BNペーストにおいて、その粘度が1000cP未満と低い場合には、スクリーン印刷で形成された印刷パターンである分離層の形状保持性が悪く、分離層の厚みの分布にバラツキが生じることとなり、分離層に含まれる六方晶BN粉末の分布に疎密が生じることとなる。一方で、50000cPを超え高い場合には、印刷された分離層にかすれ等の欠陥部が生じ、同様に六方晶BN粉末の分布に疎密が生じる。このように六方晶BN粉末の分布に疎密が生じた分離層を介して積層されたグリーンシートでは、六方晶BN粉末が密に配置された部分に接触している部位と、疎に配置された部分に接触している部位が存在する。その結果、この積層されたグリーンシートを焼結すると、分離層における六方晶BN粉末の疎密に起因する摩擦抵抗の違いにより、グリーンシートの各部位の収縮量が各々相違することとなり、グリーンシートが全体として均一に収縮しないために、窒化珪素基板の表面のうねりを低減することができない可能性がある。
 さらに、BNペーストのチキソ性が1.02未満と低い場合には、スクリーン印刷においてスキージで押し広げられる際のBNペーストの粘度が高いために、上記姿勢で六方晶BN粒子を配置することが困難となり、窒化珪素基板の表面のうねりを低減することができない可能性がある。一方で、チキソ性が4.00を超え高い場合には、スクリーン印刷においてスキージで押し広げられる際のBNペーストの粘度が低く、印刷後の分離層の形状保持性が悪く、分離層の厚みの分布にバラツキが生じることとなり、分離層に含まれる六方晶BN粉末の分布に疎密が生じるため、同様に窒化珪素基板の表面のうねりを低減することができない可能性がある。
 さらに、前記脱脂工程後の成形体の表面の任意の箇所における測定長20mmの電子線マイクロアナライザー(EPMA)による線分析で得られた、ホウ素(B)とシリコン(Si)の各々の特性X線の強度の比(B/Si)のうち、任意の10.0mmの区間の平均値をf、その10.0mmの区間に含まれる0.2mmの区間の平均値をgとしたとき、g/fが0.2~7.0であるであることが望ましい。
 このように、脱脂工程後の成形体の表面の任意の箇所における測定長20mmの電子線マイクロアナライザー(EPMA)による線分析で得られた、ホウ素(B)とシリコン(Si)の各々の特性X線の強度の比(B/Si)のうち、任意の10.0mmの区間の平均値をf、その10.0mmの区間に含まれる0.2mmの区間の平均値をgとしたとき、g/fが0.2~0.7としたのは、次の理由による。
 すなわち、上記g/fという指標は、窒化珪素基板の表面のうねりに影響を及ぼす、成形体の表面に形成された分離層に含まれる六方晶BN粉末の粗密の状態を巨視的に定義するものである。ここで、脱脂工程後の成形体の表面の任意の箇所において、測定長20mmの電子線マイクロアナライザー(EPMA)による線分析で得られた、ホウ素(B)とシリコン(Si)の各々の特性X線の強度の比(B/Si)を、図1(a)に示す。図1(a)において実線L1で示すように、測定長20mmにおける各測定位置のB/Siの比の値は、大きな山M1や小さな山M2などを含み一定のバラツキの中で変動している。ここで、変動するB/Siの値の分散を求めることにより、六方晶BN粉末の疎密の状態を定義することもできるが、その分散の値には、窒化珪素基板の表面にうねりには直接的には関係しない小さな山M2の値も含まれてしまい、適切ではない。そこで、本願発明者らは、窒化珪素基板の表面にうねりに直接的に関係する、実線L1の大きな山M1について、適切に評価できるよう上記定義を想到したものである。
 つまり、図1(a)に示すように、上記のように測定長20mmの電子線マイクロアナライザー(EPMA)で得られたB/Siの値のうち、任意の10.0mmの区間N1のB/Siの値の平均値fを求める。この10.0mmの区間N1の平均値fを求める理由については、後述する。次いで、この10.0mmの区間N1に含まれる0.2mmの区間N2のB/Siの値に平均値gを求める。この0.2mmの区間N2のB/Siの値を平均化することにより、その平均値gにおける実線L1の小さな山M2の寄与は低くなり、窒化珪素基板の表面のうねりに影響する大きな山M1の適切な評価が可能となる。なお、0.2mmの区間N2は、10.0mmの区間N1のうち大きな山M1の存在する適宜な部分に設定すればよいが、例えば、10.0mmの区間N1において任意に選択された複数の箇所で0.2mmの区間の平均値gを求め、その複数の平均値gから更に求めた平均値やその最大値を指標g/fの値「g」として採用してもよい。
 一方で、0.2mmの区間N2の平均値gのみで六方晶BN粉末の疎密を評価する場合には、図1(b)において実線L2で示すように、10.0mmの区間N1のB/Siの平均値fが高く、そのバラツキは少ない場合でも、0.2mmの区間N2の平均値gは、図1(a)の場合と同一となり、0.2mmの区間N2の平均値gのみの評価では妥当ではない。そこで、0.2mmの区間N2の平均値gを10.0mmの区間N1の平均値fで除し、無次元化された指標g/fで、分離層に含まれる六方晶BN粉末の分布の疎密を評価するものである。
 なお、この六方晶BN粉末の疎密の指標であるg/fが、0.2未満と低い場合には、0.2mmの区間のB/Siの平均値gが相対的に低く、相対的に六方晶BN粉末が疎に配置された部分がグリーンシートの表面に存在することとなる。一方で、g/fが、0.7を超え高い場合には、0.2mmの区間のB/Siの平均値gが相対的に高く、相対的に六方晶BN粉末が密に配置された部分がグリーンシートの表面に存在することとなる。ここで、10.0mmの区間における平均値fが高い場合であっても、相対的に六方晶BN粉末の分布に疎密が生じた分離層を介して積層されたグリーンシートでは、六方晶BN粉末が密に配置された部分に接触している部位と、疎に配置された部分に接触している部位が存在する。その結果、この積層されたグリーンシートを焼結すると、分離層における六方晶BN粉末の相対的な疎密に起因する摩擦抵抗の違いにより、グリーンシートの各部位の収縮量が各々相違することとなり、グリーンシートが全体として均一に収縮しないために、窒化珪素基板の表面のうねりを低減することができない可能性がある。
 さらに、本実施形態の窒化珪素基板の製造方法において、示差熱分析で計測した場合に、BNペーストに含まれる有機バインダの発熱ピーク温度は、グリーンシートに含まれる有機バインダよりも5℃以上高いことが望ましい。ここで、BNペーストに含まれる有機バインダよりも後に成形体に含まれる有機バインダが脱脂される場合には、BNペーストの脱脂後に成形体の表面に配置されたBN粉末が、成形体の脱脂により生じるガスにより移動し、BN粉末の分布に疎密が形成される可能性がある。この現象を抑制するため、成形体に含まれる有機バインダに対しBNペーストに含まれる有機バインダの発熱ピーク温度を5℃以上高め、脱脂工程において、成形体に含まれる有機バインダが先に脱脂され、その後BNペーストに含まれる有機バインダが脱脂されるよう構成することが好ましい。
 また、本実施形態のBNペーストは、窒化ホウ素粉末100質量部に対し、有機バインダを8.75~44質量部、有機溶剤を80~750質量部配合し、0.2~10時間攪拌することにより作製するのが好適である。有機バインダが8.75質量部未満の場合または有機溶剤が750質量部を超える場合には、BNペーストの粘度が1000cP、チキソ性が1.02より低くなる可能性がある。また、有機バインダが44質量部を超える場合または有機溶剤が80質量部未満の場合には、BNペーストの粘度が50000cP、チキソ性が4.00を超える可能性がある。さらに、攪拌時間が、0.2時間未満の場合にはBNペーストの粘度が50000cP、チキソ性が4.00を超える可能性があり、10時間を超える場合にはBNペーストの粘度が1000cP、チキソ性が1.02より低くなる可能性がある。
 以下、本発明の実施例を具体的に説明する。なお、本発明はこれらの実施例に制限されるものではない。
 また、以下に述べる各実施例および比較例では、製造された窒化珪素基板が絶縁基板として組み込まれた回路基板の構成について説明する。
[回路基板]
 図2(a)および(b)に示すように、回路基板Wは、窒化珪素基板WBの上面(一面)に、ろう材層M1を介して接合された金属基板WAと、窒化珪素基板WBの下面(他面)にろう材層M3を介し接合された平板状の金属基板WCとを有している。ここで、窒化珪素基板WBの上面に接合された金属基板WAは、半導体素子などが搭載される回路板として機能し、窒化珪素基板WBの下面に接合された金属基板WCは、放熱板として機能する。なお、下記の各実施例および比較例で形成される回路基板Wの、窒化珪素基板WBの長さ(図2(a)において水平方向の大きさ)は40mm、幅(図2(a)において上下方向の大きさ)は30mmであり、金属基板WAの寸法は、厚み0.5mm・長さ36mm・幅26mmであり、金属基板WAの寸法は、厚み0.5mm・長さ37mm・幅27mmである。また、金属基板WAおよびWCとほぼ同じ長さおよび幅を有するろう材層M1およびM2の厚みは20μmである。
 上記金属基板WA・WCとしては、ろう材で接合でき、その融点がろう材よりも高ければ特に制約はなく、例えば銅、銅合金、アルミニウム、アルミニウム合金、銀、銀合金、ニッケル、ニッケル合金、ニッケルメッキを施したモリブデン、ニッケルメッキを施したタングステン、ニッケルメッキを施した鉄合金等を用いることが可能である。この中でも銅を金属部材として用いることが、電気的抵抗及び延伸性、高熱伝導性(低熱抵抗性)、マイグレーションが少ない等の点から最も好ましい。また、アルミニウムを金属部材として用いることは、電気的抵抗、高熱伝導性(低熱抵抗性)は、銅に劣るものの、アルミニウムが持つ塑性変形性を利用して、冷熱サイクルに対する実装信頼性を有する点で好ましい。その他にも電気的抵抗を重視すれば銀を用いることも好ましく、また電気的特性よりも接合後の信頼性を考慮する場合にはモリブデンやタングステンを用いれば、それらの熱膨張率が窒化珪素基板WBに近いことから接合時の熱応力を小さくすることができるので好ましい。
 なお、回路基板Wは、図2(a)、(b)に示すように個々の回路基板Wごとに形成してもよい。しかしながら、通例、工業生産において低コストで効率的に回路基板Wを製造するため、図7(c)に示すように、回路基板Wは、大判の窒化珪素基板WBに縦横に並列するように複数個形成し、図中に示す破線CBに沿い個片に分離して形成される。以下、一枚当たり回路基板Wを12個形成するための大判の窒化珪素基板WBを製造する場合を例として、各実施例および比較例を説明する。また、各実施例および比較例で作成された窒化珪素基板WBは、金属基板WA・WCを両面に接合し回路基板Wを形成し、耐熱サイクル試験および耐絶縁試験に付しているため、窒化珪素基板WBの製造工程の後に行われる回路基板Wの製造工程についても併せて説明する。
 以下、実施例1~43および比較例1~7について説明する。
[原料配合工程]
 実施例1~43および比較例1~7の窒化珪素基板は、以下の方法で形成した。表1に示す割合となるよう配合した窒化珪素粉末ならびに焼結助剤であるMgOおよびYの混合粉末を準備した。なお、窒化珪素粉末ならびにMgOおよびYの粉末の平均粒径(d50)は、各々0.1~2μm、0.1~2μm、0.1~2μmとした。そして、エタノール・ブタノール溶液(有機溶剤)を満たしたボールミルの樹脂製ポット中に、上記混合粉末および粉砕媒体の窒化珪素製ボールを投入し、4時間、湿式混合した。次に、前記ポット中の混合粉末に対し、表1に示す種類および割合の有機バインダを添加し、12時間、湿式混合し、シート成形用スラリーを得た。なお、有機バインダとしては、表1に示す各種発熱ピーク温度(A1)を有するポリビニルブチラール、メタクリル酸メチル樹脂を使用した。シート成形用スラリーに含まれる有機バインダの発熱ピーク温度(A1)は、各々、示差熱分析で計測し、最も高温側に現れるピークに対応する温度である。
Figure JPOXMLDOC01-appb-T000001
[グリーンシート形成工程]
 上記成形用スラリーを脱泡、溶媒除去により粘度を調整し、ドクターブレード法によりグリーンシートを成形した。次に、成形したグリーンシートを空気中で加熱し、有機溶剤を除去し、寸法が、縦150mm、横150mm、厚さが0.4mmである、表1に示す組成のグリーンシートを得た。なお、実施例25は厚みを1.3mm、実施例38は厚みを0.32mm、比較例1は1.6mm、比較例2は0.3mm、比較例7は0.48mmの厚みのグリーンシートを形成した。
[分離層形成工程]
 上記グリーンシートの上面(一面)に分離層を形成するため、BN粉末を含むBNペーストを準備した。各実施例および比較例ごとに、表2に示す組成でBN粉末・有機バインダ・有機溶剤を配合し、プラネタリーミキサーを用いて混合を行い、BNペーストを作成した。なお、有機バインダとしては、表2に示す各種発熱ピーク温度(A5)を有するポリビニルブチラール、エチルセルロースを使用した。各実施例および比較例における、BN粉末の種類・粒度分布(d10、d50、d90)・組成(A2)・酸素量(c)、BN粉末中の炭素量(b)、有機バインダの種類・組成(A4)、BNペーストに含まれる有機バインダと成形体に含まれる有機バインダの発熱ピーク温度の差(A5-A1)、有機溶媒の組成は、表2に示すとおりである。また、実施例1~41および比較例1~6のBNペーストの混合時間は40分とし、形成されたBNペーストの粘度およびチキソ性ならびに当該BNペーストによる分離層の形成方法は、表3に示すとおりである。なお、チキソ性は、回転粘度計で測定した10rpmと100rpmの粘度の比(10rpmの粘度)/(100rpmの粘度)で定義される値である。さらに、BNペーストに含まれる有機バインダの発熱ピーク温度(A5)も、上記と同様に、示差熱分析で計測し、最も高温側に現れるピークに対応する温度である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 上記BNペーストを使用し、図6(a)に示すようにグリーンシートWbの上面に分離層1を形成した。表4に、各実施例および比較例の分離層の厚み、分離層に含まれるBN粉末の単位面積当たりの重量、上記説明したEPMAによる0.2mm区間の平均値g、10.0mm区間の平均値fおよびそれらの比g/fを示す。なお、表4における分離層の厚みは、分離層が形成されたグリーンシートを120℃で加熱し、分離層に含まれる有機溶媒を除去した後の値である。
Figure JPOXMLDOC01-appb-T000004
[脱脂工程]
 上記分離層1が形成されたグリーンシートWbを、大気(酸素雰囲気)中で加熱することにより有機バインダを脱脂(除去)した。各実施例における、脱脂温度(A6)、脱脂工程完了後のBN層中の炭素分(C)の割合(a)、BNペーストのBN粉末中における炭素割合(b)と脱脂工程後のBN層に含まれる炭素分(C)の割合(a)との差a-b、BNペーストのBN粉末中における酸素割合(c)と脱脂工程後のBN層に含まれる炭素分(C)の割合(a)との比c/a、グリーンシートに含まれる有機バインダの発熱ピーク温度(A1)と脱脂温度(A6)との差(A6-A1)は、表5に示すとおりである。
Figure JPOXMLDOC01-appb-T000005
[焼成工程]
 脱脂工程が完了したグリーンシートWbを、分離層1を介して20枚積層し、図6(b)に示すように焼成炉F中に配置し、実施例・比較例ごとに表5に示す焼成温度で、5時間、加熱し、平板状の焼結体である窒化珪素基板を得た。その後、図6(c)に示すように、焼結体WBの表面に残存する分離層1をホーニング処理し除去した。ホーニング処理は、メディアGとして平均粒径(d50)が10~100μmのアルミナ砥粒を焼結体表面に1~360秒吹き付けて行った。
[金属基板接合工程]
 図6(d)に示すように、窒化珪素基板WBの両面に、Ag-Cu-In系活性ろう材を含むろう材ペーストm1・m3をスクリーン印刷で50μmの厚みで矩形領域に塗布し、その後、120℃の乾燥炉で30分間乾燥し、ろう材ペースト中の溶媒を除去した。各実施例および比較例で使用したろう材ペーストm1・m3は、Ag:70質量%、In:5質量%、酸素含有量0.1質量%以下、残部Cu及び不可避不純物からなる平均粒子径20μmの合金粉末100質量部に対し、さらに平均粒子径10μmのAg粉末粒子を10質量部および45μm以下の粒子サイズが85%以上の水素化チタンを1質量部添加し、前記合金粉末粒子間の間隙を埋めるようにAg粉末粒子および活性金属水素化物を混合してなる融点が770℃のろう材を、全ペーストに占める割合でバインダとしてアクリル系樹脂を5質量%、溶剤としてα-テルピネオール10質量%、分散剤0.1質量%と配合したのちプラネタリーミキサーを用いて混合を行い、粘度を55Pa・sとしたものである。
 次いで、図7(a)に示すように、窒化珪素基板WBよりも縦横寸法がやや小さく厚みが0.5mmの金属基板である銅基板Wa・Wcを、窒化珪素基板WBに塗布されたろう材を介し当該窒化珪素基板WBの両面に配置し、真空度が1Pa以下の非酸化雰囲気中において820℃で1時間、加熱した後、炉冷により冷却することにより、窒化珪素基板WBに銅基板Wa・Wbを接合し、接合体を得た。なお、図7(a)では、図6(d)に示されたろう材ペーストm1・m3が破線で示されている。
[エッチング工程]
 上記接合体にエッチング処理を施し、図7(b)に示すように、図2(a)に示す個々の回路基板Wの銅基板WAおよびWCに対応した寸法・形状となるよう、平面方向に間隙Sをエッチングで形成し、窒化珪素基板WBに接合された銅基板WaおよびWc(銅基板Wcは不図示)を分離した。具体的には、銅基板Waの表面に、UV硬化型のエッチングレジストをスクリーン印刷法で所定のパターンで塗布し、その後、エッチング液である液温を50℃に設定した塩化第2鉄(FeCl3)溶液(46.5Be)に接合体を浸漬し、銅基板Wa・Wcを分離した。
[ろう材除去工程]
 上記エッチングレジストを除去した後、銅基板WA・WCの周囲に残存する不要なろう材を、過酸化水素および酸性フッ化アンモニウムを含むろう材除去液で除去した。
[分離工程]
 その後、図7(c)に示す破線CBに沿い窒化珪素基板WBを切断し、一枚の窒化珪素基板WBあたり12個の、図2(a)に示す回路基板Wを得た。
[窒化珪素基板の特性]
 表6に、上記分離層形成工程~焼成工程を経て形成された実施例1~43および比較例1~7の窒化珪素基板における、表面および表層の第1の窒化珪素粒子の密度、内層の第1の窒化珪素粒子の密度、第1の窒化珪素粒子が凝集した凝集部の最大径、表面および表層の凝集部の密度、内層の凝集部の密度、を示す。これらの値は、例えば図4に示すように、いずれも窒化珪素基板WBの基板表面からの深さが20μmの範囲である表層および基板表面からの深さが前記表層以外の範囲である内層における任意の断面の組織写真に基づき測定したものである。図4において、符号9jが第1の窒化珪素粒子、符号9kが第2の窒化珪素粒子であり、符号9Lは、第1の窒化珪素粒子9jが凝集した凝集部である。ここで、第1の窒化珪素粒子9jとは、長軸長を短軸長で除したアスペクト比が3.0以下である長軸長が5.0μm以下の窒化珪素粒子であり、第2の窒化珪素粒子9kとは、第1の窒化珪素粒子9jに対し長軸長およびアスペクト比がともに超える窒化珪素粒子である。
Figure JPOXMLDOC01-appb-T000006
 第1の窒化珪素粒子の密度とは、上記表面または断面において任意の位置に設定された10μm四方の正方領域における第1の窒化珪素粒子の個数のことであり、凝集部の密度とは、上記表面または断面において任意の位置に設定された100μm四方の正方領域における第1の窒化珪素粒子の凝集部の個数のことである。さらに、窒化珪素基板の表層とは、表面からの深さが20μmの範囲を言い、内相とは表層以外の内部の範囲を言う。加えて、凝集部9Lの最大径とは、図5(a)に示す凝集部9Lの概念図において符号9mで示すように、凝集部9Lを含む最小円L3の直径のことである。
 表7に、実施例1~43および比較例1~7で形成された窒化珪素基板の、基板表面からの深さが20μmの範囲である表層における、アスペクト比が5.0~20.0であり長軸長が6~30μmの第2の窒化珪素粒子の面積比、気孔の最大径・密度および窒化珪素基板の厚み、を示す。なお、上記所定のアスペクト比および長軸長を有する第2の窒化珪素粒子の面積比は、上記表層において、任意の位置に設定された10μm四方の正方領域における面積比として求めた。また、気孔の最大径とは、図5(b)に示す気孔9nの概念図において符号9oで示すように、気孔9nを含む最小円L4の直径のことである。また、気孔の密度とは、上記表層において任意の位置に設定された10μm四方の正方領域における気孔の個数のことである。
Figure JPOXMLDOC01-appb-T000007
 表8に、実施例1~43および比較例1~7で形成された窒化珪素基板の表面のうねり、表面の任意の箇所におけるホウ素(B)とシリコン(Si)の各々の蛍光X線強度の比(B/Si)の値および炭素(C)とシリコン(Si)の各々の蛍光X線強度の比(C/Si)ならびに両者の比B/C、電子線マイクロアナライザー(EPMA)で測定した基板表面におけるホウ素(B)の変動係数、を示す。なお、ホウ素(B)と炭素(C)について、その蛍光X線強度をシリコン(Si)の蛍光X線強度との比として表したのは、蛍光X線強度測定装置の機差を考慮したからである。
Figure JPOXMLDOC01-appb-T000008
 上記電子線マイクロアナライザーにより得たホウ素(B)の変動係数は、加速電圧10kV、ビーム径1μmで1mmの範囲を走査し、2μm間隔で測定したホウ素(B)の蛍光X線強度の値から、その標準偏差をその平均値で割ることによって求めた値である。また、窒化珪素基板の表面のうねりは、表面粗さ計を用いて、ろ波中心線うねりを測定して、その算術平均うねりWa、すなわち、表面高さの平均値からの偏差の絶対値の算術平均である量を用いるものとし、測定条件は評価長さ30mm、測定速度0.3mm/s、カットオフ値(λc)0.25mm、カットオフ値(λf)8.0mmとした。さらに、実施例25および比較例1・2においては、各々厚みが0.8、1.0、0.18mmの窒化珪素基板を得るため、厚みが1.0、1.25、0.23mmのグリーンシートを使用した。
 表9に、実施例1~43および比較例1~7の窒化珪素基板の、分離性、曲げ強度、熱伝導率を示す。なお、窒化珪素基板の分離性の欄に記載された数値は、焼成工程において、一組当たり20枚積層して焼結された窒化珪素基板10組、つまり200枚の窒化珪素基板を剥離した場合に、窒化珪素基板が破損せず正常に剥離できた合格率である。また、曲げ強度は、JISR1601に準拠し、得られた窒化珪素基板を幅4mmに加工し、支持ロール間距離7mmである3点曲げ治具にセットし、クロスヘッド速度0.5mm/分で加重を印加して、破断時に印加された加重から算出した。さらに、熱伝導率は、上記の窒化珪素基板を5mm角に加工し、カーボンスプレーで表裏面を黒化処理後、JISR1611に準拠したレーザーフラッシュ法により求めた。
Figure JPOXMLDOC01-appb-T000009
[回路基板の特性]
 表9に、金属基板接合工程~分離工程を経て形成された、実施例1~43および比較例1~7の回路基板の、ピール強度試験、冷熱サイクル試験、絶縁試験を行った結果を示す。なお、ピール強度試験結果の欄に示された数値は、下記説明する試験片100個をピール強度試験付した場合の合格率である。また、冷熱サイクル試験結果および絶縁試験結果の欄に示された数値は、100個の回路基板を両試験に付した場合の合格率である。
 ピール強度試験は、図3に示すように、窒化珪素基板WBの側面に対し一端部が5mm突出するように銅基板WAを配置し、回路基板と同一の接合条件で接合した試験片Tを準備し、突出した部分を90度上方に引っ張りあげるのに要する単位長さ当りの力で評価し、その力が20kN/m以上の場合には合格とした。また、冷熱サイクル試験は、-40℃での冷却を20分、室温での保持を10分および125℃での加熱を20分とする昇温/降温サイクルを1サイクルとし、これを3000回繰り返して回路基板に熱ストレスを付与し、窒化珪素基板にクラックが発生しない場合には合格とした。さらに、絶縁試験は、5kVの電圧を回路基板に1分間印加し、窒化珪素基板にクラックが生じない場合には合格とした。
 表1~9に示す各実施例1~43によれば、以下の知見が得られた。上記本発明に係る製造方法により得られた厚みtが0.20~0.80mmの窒化珪素基板の表面の任意の箇所に設定した一辺が10μmの正方領域において、長軸長を短軸長で除したアスペクト比が3.0以下である長軸長が5.0μm以下の第1の窒化珪素粒子表面が40個以下存在であり、基板表面の任意の箇所における、ホウ素(B)とシリコン(Si)の各々の蛍光X線強度の比(B/Si)をaとしたときその範囲が7.0×10-5~250×10-5であり、炭素(C)とシリコン(Si)の各々の蛍光X線強度の比(C/Si)をbとしたときホウ素(B)と炭素(C)の比であるB/Cが0.080~3.000である窒化珪素基板の場合、その窒化珪素基板の表面のうねりが1.00μm以下であることが確認された。また、各窒化珪素基板ともにその分離性は90%以上であり、当該窒化珪素基板を使用した試験片によるピール試験の結果は、合格率が90%以上と高い値を示した。なお、窒化珪素基板の厚みが0.8mmの場合(実施例25)、分離層の形成方法がスプレー塗布の場合(実施例41)の場合でも、同様であった。
 さらに、基板表面からの深さが20μmの範囲である表層において任意の箇所に設定した一辺が10μmの正方領域に、第1の窒化珪素粒子を40個以下含み、基板表面からの深さが前記表層以外の範囲である内層において任意の箇所に設定した一辺が10μmの正方領域に、第1の窒化珪素粒子を30個以下含む窒化珪素基板の場合、その窒化珪素基板の曲げ強度は600(MPa)を上回り、当該窒化珪素基板を使用した回路基板による耐熱サイクル試験の結果は、合格率が90%以上と高い値を示した。
 加えて、基板表面および基板表面からの深さが20μmの範囲である表層において任意の位置に設定された一辺が10μmの正方領域における、アスペクト比が5.0~20.0であり長軸長が6.0~30.0μmの第2の窒化珪素粒子を、面積比で1.0~30.0%含む窒化珪素基板の場合、その窒化珪素基板の曲げ強度は600(MPa)以上、熱伝導率は80(W・mk)以上であり、当該窒化珪素基板を使用した回路基板による耐熱サイクル試験および耐絶縁試験の結果は、いずれも合格率が90%以上と高い値を示した。
 また、基板表面および基板表面からの深さが20μmの範囲である表層において、第1の窒化珪素粒子が凝集して形成された最大径が25μm以下の窒化珪素基板の場合、その窒化珪素基板の曲げ強度は600(MPa)を上回り、当該窒化珪素基板を使用した回路基板による耐熱サイクル試験の結果は、合格率が90%以上と高い値を示した。特に、第2の窒化珪素粒子の面積比が4~23%で、凝集部の最大径が20μm以下(実施例37以外)の場合、その効果は顕著であった。
 さらに、基板表面および基板表面からの深さが20μmの範囲である表層において任意の箇所に設定した一辺が100μmの正方領域に、上記凝集部を25個以下含む窒化珪素基板の場合、その窒化珪素基板の熱伝導率はいずれも80(W・mk)を上回り、当該窒化珪素基板を使用した回路基板による耐熱サイクル試験の結果は、合格率が90%以上と高い値を示した。特に、第2の窒化珪素粒子の面積比が4~23%で、凝集部の最大径が20μm以下の場合、その効果は顕著であった。
 さらに、基板表面からの深さが20μmの範囲である表層において任意の箇所に設定した一辺が100μmの正方領域に、上記凝集部を25個以下含み、基板表面からの深さが前記表層以外の範囲である内層において任意の箇所に設定した一辺が100μmの正方領域に、上記凝集部を20個以下含む窒化珪素基板の場合には、その窒化珪素基板の曲げ強度は600(MPa)以上、熱伝導率は80(W・mk)以上となり、当該窒化珪素基板を使用した回路基板による耐熱サイクル試験の結果は、合格率が90%以上と高い値を示した。特に、第2の窒化珪素粒子の面積比が4~23%で、凝集部の最大径が20μm以下の場合、その効果は顕著であった。
 加えて、基板表面および基板表面からの深さが20μmの範囲である表層において、上記第1の窒化珪素粒子の周囲の粒界相に形成された気孔の最大径が10μm以下、好ましくは基板表面および基板表面からの深さが20μmの範囲である表層において任意の箇所に設定した一辺が100μmの正方領域に、気孔を20個以下含む窒化珪素基板の場合、その窒化珪素基板の曲げ強度は600(MPa)以上、熱伝導率は80(W・mk)以上であり、当該窒化珪素基板を使用した回路基板による耐熱サイクル試験および耐絶縁試験の結果は、いずれも合格率が90%以上と高い値を示した。特に、第2の窒化珪素粒子の面積比が4~23%で、凝集部の最大径が20μm以下の場合、その効果は顕著であった。
 加えて、電子線マイクロアナライザー(EPMA)で測定した基板表面におけるホウ素(B)の特性X線強度の変動係数が1.0以下である窒化珪素基板の場合、その窒化珪素基板の表面のうねりは小さく、好ましくは0.5以下であることも確認された。
 一方で、窒化珪素基板の厚みが1.0mmと厚い比較例1よれば、上記B/Cが0.05と低い、つまり残留炭素の量が少ない場合でも、その表面のうねりは小さく、厚みの厚い窒化珪素基板においては、本発明は、その作用効果を奏さないことが確認された。
 窒化珪素基板の厚みが0.18mmと薄い比較例2よれば、その表面のうねりは改善されず、本発明は、その作用効果を奏し得ないことが確認された。
 また、BNペースト中のBN粉末の酸素分の割合(c)とBN層中の炭素分の割合(a)との比c/aが13と上限外である比較例3によれば、B/Cが3.3と上限外となり、B/C以外は比較例3とほぼ同一条件である実施例1~8と対比すると、窒化珪素基板の表面のうねりは改善されないことが確認された。一方で、上記c/aが0.01と下限外である比較例4によれば、B/Cが0.07となり、B/C以外は比較例4とほぼ同一条件である実施例1~8と対比すると、窒化珪素基板の表面のうねりは改善されるもののその曲げ強度および熱伝導率が著しく低いことが確認され、耐熱サイクル試験の合格率も低下した。
 さらに、BN層中のBN粉末含有量が0.15mg/cmと下限外である比較例5によれば、B/Siが6と下限外となり、B/Si以外は比較例5とほぼ同一条件である実施例1・10・13~18と対比すると、分離層に含まれていたBN粉末の量が少ないため、窒化珪素基板の分離性が極めて低くなることが確認された。一方で、BN層中のBN粉末含有量が3.7mg/cmと上限外である比較例6によれば、B/Siが260と上限外となり、B/Si以外は比較例6とほぼ同一条件である実施例1・10・13~18と対比すると、窒化珪素基板のうねりが大きくなるとともに、窒化珪素基板の表面に残存したBN粉末により銅基板との接合性が阻害され、ピール強度試験結果が低下した。加えて、比較例7によれば、BNペーストのBN粉末中における炭素割合(b)と脱脂工程後のBN層に含まれる炭素分(C)の割合(a)との差a-bが0、すなわち脱脂工程において有機バインダがほぼ完全に除去され、c/aも13.3と上限外となり、その結果、窒化珪素基板の表面のうねりが改善されないことが確認された。
 次に、BNペーストの混合時間の水準を変更した結果について、実施例44~47に基づき説明する。実施例44は実施例9、実施例45は実施例6、実施例46は実施例7、実施例47は実施例8にそれぞれ対応し、表10および11に示すように、基本的に混合時間のみを変更した製造条件で窒化珪素基板および回路基板を形成した。また、窒化珪素基板の特性および回路基板の特性については、実施例1~43と同様にして確認した。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 実施例44~47によれば、混合時間を適正化(0.2~10時間)することにより、表10に示されるように、BNペーストの粘度・チキソ性が対応する実施例に比べてより適正な範囲の値となっている(実施例9の粘度1000cP、チキソ性1.02が実施例44では粘度3000cP、チキソ性1.1となり、実施例6の粘度47000cP、チキソ性3が実施例45では粘度36000cP、チキソ性2.1となり、実施例7の粘度48000cP、チキソ性3.2が実施例46では粘度35000cP、チキソ性2.1となり、実施例8の粘度50000cP、チキソ性4が実施例47では粘度34000cP、チキソ性2となっている)。
 以上のようにチキソ性および粘度が最適化されることにより、BNペーストをグリーンシートの表面に塗布、印刷して分離層を形成する際に、分離層のうねりを小さくでき、その結果窒化珪素基板のうねりも小さくすることができる。表14に示すように、実施例44のうねりが0.40μm、実施例45のうねりが0.32μm、実施例46のうねりが0.32μm、実施例47のうねりが0.35μmであって、いずれも対応する実施例9、6~8よりうねりが小さくなっている。
 なお、表12~表15に示すように、窒化珪素基板のうねり以外の特性についても、BNペースト、分離層、窒化珪素基板のいずれも要求範囲に入っている。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 1 分離層、9j 第1の窒化珪素粒子、9k 第2の窒化珪素粒子、9L 凝集部、Wb 成形体(グリーンシート)、WB 窒化珪素基板 W 回路基板。

Claims (17)

  1.  窒化珪素粒子を主体とした主相と、主に焼結助剤から形成された粒界相とを含む厚みtが0.20~0.80mmの窒化珪素基板の製造方法であって、
    窒化ホウ素粉末・有機バインダおよび有機溶剤を含む窒化ホウ素ペーストを使用し、窒化珪素粉末・焼結助剤粉末および有機バインダを含む板状の成形体の表面に、分離層を形成する分離層形成工程と、
    前記分離層形成工程の後に、成形体の有機バインダの発熱ピーク温度に加えて15~450℃高い温度で前記分離層及び成形体を加熱し、前記分離層及び成形体から有機バインダを除去する脱脂工程と、
    前記脱脂工程の後に、分離層を介し複数枚積層された成形体を焼結する焼結工程と、を含み、
    前記窒化ホウ素ペーストは、その窒化ホウ素粉末中に酸素(O)を0.01~0.5質量%および炭素(C)を0.001~0.5質量%含み、前記脱脂工程後の分離層に炭素分(C)が残存するよう構成されており、さらに前記窒化ホウ素ペーストの窒化ホウ素粉末中に含まれる酸素の含有率(質量%)をc、前記脱脂工程後の分離層に含まれる炭素分の含有率(質量%)をaとした場合に、c/aが0.02~10.00の範囲であり、さらに前記分離層形成工程において成形体に形成された分離層は0.2~3.5mg/cmの六方晶窒化ホウ素粉末を含むことを特徴とする窒化珪素基板の製造方法。
  2. 前記焼結工程が完了した後に、窒化珪素基板の表面の任意の箇所における、ホウ素(B)とシリコン(Si)の各々の蛍光X線強度の比(B/Si)の範囲が7.0×10-5~250×10-5であり、ホウ素(B)と炭素(C)の比であるB/Cが0.080~3.000となるよう構成されている請求項1に記載の窒化珪素基板の製造方法。
  3.  前記窒化ホウ素ペーストは、平均粒径d50が4.0~20.0μm、d10が0.5~7.0μm、d90が8~40μmの窒化ホウ素粉末100質量部に対し、前記有機バインダを8.75~44質量部含む請求項1または請求項2に記載の窒化珪素基板の製造方法。
  4.  前記窒化ホウ素ペーストは、25~27℃における粘度が1000~50000cP、チキソ性が1.02~4.00であり、前記分離層形成工程が、スクリーン印刷で分離層を形成する請求項3に記載の窒化珪素基板の製造方法。
     但し、チキソ性は、回転粘度計で測定した10rpmと100rpmの粘度の比(10rpmの粘度)/(100rpmの粘度)で定義される値である。
  5.  前記窒化ホウ素ペーストは六方晶窒化ホウ素粉末100質量部に対し、前記有機バインダを8.75~44質量部含み、さらに有機溶剤を80~750質量部含む請求項4に記載の窒化珪素基板の製造方法。
  6.  前記脱脂工程後の成形体の表面の任意の箇所における測定長20mmの電子線マイクロアナライザー(EPMA)による線分析で得られた、ホウ素(B)とシリコン(Si)の各々の特性X線の強度の比(B/Si)のうち、任意の10.0mmの区間の平均値をf、その10.0mmの区間に含まれる0.2mmの区間の平均値をgとしたとき、g/fが0.2~7.0である請求項4または請求項5のいずれか一項に記載の窒化珪素基板の製造方法。
  7.  示差熱分析で計測された前記窒化ホウ素ペーストに含まれる有機バインダの発熱ピーク温度は、前記成形体の有機バインダの発熱ピーク温度よりも5℃以上高い請求項1乃至請求項6のいずれか一項に記載の窒化珪素基板の製造方法。
  8.  前記窒化ホウ素ペーストは、窒化ホウ素粉末100質量部に対し、有機バインダを8.75~44質量部、有機溶剤を80~750質量部配合し、0.2~10時間攪拌することにより作製する、請求項5乃至請求項7のいずれか一項に記載の窒化珪素基板の製造方法。
  9.  窒化珪素粒子を主体とした主相と、主に焼結助剤から形成された粒界相とを含む焼結体である窒化珪素基板であって、
     前記主相は、基板表面において、長軸長を短軸長で除したアスペクト比が3.0以下であり、かつ長軸長が5.0μm以下の第1の窒化珪素粒子と、前記第1の窒化珪素粒子に対し長軸長およびアスペクト比がともに超える第2の窒化珪素粒子とを含み、
     前記第1の窒化珪素粒子は、基板表面の任意の箇所に設定した一辺が10μmの正方領域に、40個以下存在し、
     基板表面の任意の箇所における、ホウ素(B)とシリコン(Si)の各々の蛍光X線強度の比(B/Si)の範囲が7.0×10-5~250×10-5であり、ホウ素(B)と炭素(C)の比であるB/Cが0.080~3.000であり、
     更に、表面のうねりが1.00μm以下であり、
     加えて厚みtが0.20~0.80mmである、
    ことを特徴とする窒化珪素基板。
     但し、基板表面のうねりは、表面粗さ計を用いて、ろ波中心線うねりを測定して、その算術平均うねりWa、すなわち、表面高さの平均値からの偏差の絶対値の算術平均である量を用いるものとし、測定条件は評価長さ30mm、測定速度0.3mm/s、カットオフ値(λc)0.25mm、カットオフ値(λf)8.0mmとする。
  10.  基板表面からの深さが20μmの範囲である表層において任意の箇所に設定した一辺が10μmの正方領域に、前記第1の窒化珪素粒子を40個以下含み、表面からの深さが前記表層以外の範囲である内層において任意の箇所に設定した一辺が10μmの正方領域に、前記第1の窒化珪素粒子を30個以下含む、請求項9に記載の窒化珪素基板。
  11.  基板表面からの深さが20μmの範囲である表層において任意の箇所に設定した一辺が10μmの正方領域に、アスペクト比が5.0~20.0であり、長軸長が6.0~30.0μmの第2の窒化珪素粒子を、面積比で1.0~30.0%含む請求項9または請求項10のいずれか一項に記載の窒化珪素基板。
  12.  基板表面からの深さが20μmの範囲である表層において、前記第1の窒化珪素粒子が凝集して形成された最大径が25μm以下である凝集部を含む請求項11に記載の窒化珪素基板。
  13.  基板表面からの深さが20μmの範囲である表層において任意の箇所に設定した一辺が100μmの正方領域に、前記凝集部を25個以下含む請求項12に記載の窒化珪素基板。
  14.  基板表面からの深さが20μmの範囲である表層において任意の箇所に設定した一辺が100μmの正方領域に、前記凝集部を25個以下含み、基板表面からの深さが前記表層以外の範囲である内層において任意の箇所に設定した一辺が100μmの正方領域に、前記凝集部を20個以下含む、請求項13に記載の窒化珪素基板。
  15.  基板表面からの深さが20μmの範囲である表層において、前記第1の窒化珪素粒子の周囲の粒界相に形成された気孔の最大径は、10μm以下である請求項11乃至請求項14のいずれかに記載の窒化珪素基板。
  16.  基板表面からの深さが20μmの範囲である表層において任意の箇所に設定した一辺が100μmの正方領域に、前記気孔を20個以下含む請求項15に記載の窒化珪素基板。
  17.  下記の条件にて電子線マイクロアナライザー(EPMA)で測定した基板表面におけるホウ素(B)の特性X線強度の変動係数が1.0以下である請求項9乃至請求項16のいずれか一項に記載の窒化珪素基板。
     但し、電子線マイクロアナライザーの測定条件は、ビーム径1μmで1mmの範囲を走査し、2μm間隔で測定したホウ素(B)の蛍光X線強度の値から、その標準偏差をその平均値で割ることによって求めた値である。
PCT/JP2012/076339 2011-10-11 2012-10-11 窒化珪素基板および窒化珪素基板の製造方法 WO2013054852A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/241,789 US9655237B2 (en) 2011-10-11 2012-10-11 Silicon nitride substrate and method for producing silicon nitride substrate
JP2013538571A JP5673847B2 (ja) 2011-10-11 2012-10-11 窒化珪素基板および窒化珪素基板の製造方法
EP12840162.7A EP2767524B1 (en) 2011-10-11 2012-10-11 Silicon nitride substrate and method for manufacturing silicon nitride substrate
CN201280043278.6A CN103781742B (zh) 2011-10-11 2012-10-11 氮化硅基板和氮化硅基板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011224020 2011-10-11
JP2011-224020 2011-10-11

Publications (1)

Publication Number Publication Date
WO2013054852A1 true WO2013054852A1 (ja) 2013-04-18

Family

ID=48081903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076339 WO2013054852A1 (ja) 2011-10-11 2012-10-11 窒化珪素基板および窒化珪素基板の製造方法

Country Status (5)

Country Link
US (1) US9655237B2 (ja)
EP (1) EP2767524B1 (ja)
JP (1) JP5673847B2 (ja)
CN (1) CN103781742B (ja)
WO (1) WO2013054852A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5729519B2 (ja) * 2012-03-26 2015-06-03 日立金属株式会社 窒化珪素焼結体基板及びその製造方法
JP2015164184A (ja) * 2014-01-30 2015-09-10 京セラ株式会社 窒化珪素質基板およびこれを備える回路基板ならびに電子装置
JP2016011218A (ja) * 2014-06-27 2016-01-21 京セラ株式会社 窒化珪素質基板およびこれを備える回路基板ならびに電子装置
JP2016103611A (ja) * 2014-11-28 2016-06-02 デンカ株式会社 窒化ホウ素樹脂複合体回路基板
JP2018158863A (ja) * 2017-03-22 2018-10-11 デンカ株式会社 複合焼結体
WO2020203787A1 (ja) 2019-03-29 2020-10-08 デンカ株式会社 窒化珪素基板、窒化珪素-金属複合体、窒化珪素回路基板、及び、半導体パッケージ
JPWO2023027122A1 (ja) * 2021-08-26 2023-03-02

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10669210B2 (en) * 2016-03-28 2020-06-02 Hitachi Metals, Ltd. Silicon nitride sintered substrate, silicon nitride sintered substrate sheet, circuit substrate, and production method for silicon nitride sintered substrate
JP7052374B2 (ja) * 2017-02-06 2022-04-12 三菱マテリアル株式会社 セラミックス/アルミニウム接合体の製造方法、絶縁回路基板の製造方法
CN112912356B (zh) * 2018-11-01 2023-05-02 Ube 株式会社 氮化硅基板的制造方法以及氮化硅基板
CN111170745B (zh) * 2020-01-09 2021-04-06 北京科技大学 一种高导热氮化硅基板的制备方法
CN112811912B (zh) * 2021-01-20 2021-11-02 中国科学院上海硅酸盐研究所 一种高性能氮化硅陶瓷基片的批量化烧结方法
JP7502836B2 (ja) 2021-01-29 2024-06-19 ピンク ゲーエムベーハー テルモジステーメ 電子アセンブリを接続するシステムおよび方法
CN115321954B (zh) * 2022-08-09 2023-07-07 广东环波新材料有限责任公司 陶瓷基板的制备方法以及低温共烧陶瓷基板
CN116063084A (zh) * 2023-04-04 2023-05-05 江苏富乐华功率半导体研究院有限公司 一种氮化硼印刷浆料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190765A (ja) * 1987-01-05 1988-08-08 株式会社東芝 セラミツクス焼結体の製造方法
JP3369819B2 (ja) 1995-11-15 2003-01-20 電気化学工業株式会社 セラミックス焼結体の製造方法
JP2010208898A (ja) * 2009-03-11 2010-09-24 Hitachi Metals Ltd 窒化珪素基板及びその製造方法並びにそれを使用した回路基板
JP2011178598A (ja) 2010-03-01 2011-09-15 Hitachi Metals Ltd 窒化珪素基板の製造方法および窒化珪素基板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0970932A1 (en) * 1998-07-10 2000-01-12 Sumitomo Electric Industries, Ltd. Ceramic base material
EP2377839B1 (en) * 2009-01-13 2016-10-26 Hitachi Metals, Ltd. Silicon nitride substrate manufacturing method
US8916961B2 (en) 2009-07-24 2014-12-23 Kabushiki Kaisha Toshiba Insulation sheet made from silicon nitride, and semiconductor module structure using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190765A (ja) * 1987-01-05 1988-08-08 株式会社東芝 セラミツクス焼結体の製造方法
JP3369819B2 (ja) 1995-11-15 2003-01-20 電気化学工業株式会社 セラミックス焼結体の製造方法
JP2010208898A (ja) * 2009-03-11 2010-09-24 Hitachi Metals Ltd 窒化珪素基板及びその製造方法並びにそれを使用した回路基板
JP2011178598A (ja) 2010-03-01 2011-09-15 Hitachi Metals Ltd 窒化珪素基板の製造方法および窒化珪素基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2767524A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5729519B2 (ja) * 2012-03-26 2015-06-03 日立金属株式会社 窒化珪素焼結体基板及びその製造方法
JP2015164184A (ja) * 2014-01-30 2015-09-10 京セラ株式会社 窒化珪素質基板およびこれを備える回路基板ならびに電子装置
JP2016011218A (ja) * 2014-06-27 2016-01-21 京セラ株式会社 窒化珪素質基板およびこれを備える回路基板ならびに電子装置
JP2016103611A (ja) * 2014-11-28 2016-06-02 デンカ株式会社 窒化ホウ素樹脂複合体回路基板
JP2018158863A (ja) * 2017-03-22 2018-10-11 デンカ株式会社 複合焼結体
WO2020203787A1 (ja) 2019-03-29 2020-10-08 デンカ株式会社 窒化珪素基板、窒化珪素-金属複合体、窒化珪素回路基板、及び、半導体パッケージ
KR20210144721A (ko) 2019-03-29 2021-11-30 덴카 주식회사 질화규소 기판, 질화규소-금속 복합체, 질화규소 회로 기판 및 반도체 패키지
JPWO2023027122A1 (ja) * 2021-08-26 2023-03-02
WO2023027122A1 (ja) * 2021-08-26 2023-03-02 デンカ株式会社 セラミックス板の製造方法、セラミックス板、複合シート、及び積層基板
JP7319482B2 (ja) 2021-08-26 2023-08-01 デンカ株式会社 セラミックス板の製造方法、セラミックス板、複合シート、及び積層基板

Also Published As

Publication number Publication date
EP2767524B1 (en) 2016-12-07
US20140220302A1 (en) 2014-08-07
EP2767524A1 (en) 2014-08-20
CN103781742A (zh) 2014-05-07
JPWO2013054852A1 (ja) 2015-03-30
EP2767524A4 (en) 2015-08-19
CN103781742B (zh) 2015-08-26
JP5673847B2 (ja) 2015-02-18
US9655237B2 (en) 2017-05-16

Similar Documents

Publication Publication Date Title
JP5673847B2 (ja) 窒化珪素基板および窒化珪素基板の製造方法
JP5673106B2 (ja) 窒化珪素基板の製造方法、窒化珪素基板、窒化珪素回路基板および半導体モジュール
TWI445682B (zh) Alumina sintered body, and its manufacturing method and semiconductor manufacturing device parts
JP5729519B2 (ja) 窒化珪素焼結体基板及びその製造方法
CN109690760B (zh) 散热板及其制造方法
JP5339214B2 (ja) 窒化珪素基板の製造方法および窒化珪素基板
WO2013008920A1 (ja) セラミックス回路基板
WO2011049067A1 (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、パワーモジュール用基板の製造方法及びヒートシンク付パワーモジュール用基板の製造方法
JP3629783B2 (ja) 回路基板
JP2011129880A (ja) 電子機器用放熱板およびその製造方法
JP4345054B2 (ja) セラミックス基板用ろう材及びこれを用いたセラミックス回路基板、パワー半導体モジュール
JP6124103B2 (ja) 窒化珪素回路基板およびその製造方法
JP5741793B2 (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、パワーモジュール用基板の製造方法及びヒートシンク付パワーモジュール用基板の製造方法
WO2021200866A1 (ja) 回路基板、接合体、及びこれらの製造方法
JPWO2020090832A1 (ja) 窒化ケイ素基板の製造方法および窒化ケイ素基板
JP5073135B2 (ja) 窒化アルミニウム焼結体、その製造方法及び用途
WO2024111483A1 (ja) セラミック焼結体及びその製造方法、接合体、並びにパワーモジュール
WO2021200011A1 (ja) 素子搭載基板、および素子搭載基板の製造方法
JP7429825B2 (ja) 窒化アルミニウム焼結体、及びその製造方法、回路基板、並びに、積層基板
JP4868641B2 (ja) 窒化アルミニウム基板の製造方法
JP2013182983A (ja) 窒化けい素回路基板およびそれを用いたモジュール
JP2023050453A (ja) セラミックス基板、セラミックス回路基板およびセラミックス基板の製造方法
JP2022094464A (ja) 窒化シリコン用グリーンシート、および、その製造方法
JP2009038386A (ja) 回路基板の製造方法
JP4653272B2 (ja) 窒化アルミニウム基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840162

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013538571

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14241789

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012840162

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012840162

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE