WO2013054496A1 - 水素生成装置およびその制御方法、ならびに燃料電池システム - Google Patents
水素生成装置およびその制御方法、ならびに燃料電池システム Download PDFInfo
- Publication number
- WO2013054496A1 WO2013054496A1 PCT/JP2012/006395 JP2012006395W WO2013054496A1 WO 2013054496 A1 WO2013054496 A1 WO 2013054496A1 JP 2012006395 W JP2012006395 W JP 2012006395W WO 2013054496 A1 WO2013054496 A1 WO 2013054496A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heater
- temperature
- hydrogen
- desulfurizer
- raw material
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/384—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/043—Processes for controlling fuel cells or fuel cell systems applied during specific periods
- H01M8/04302—Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/56—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
- C01B3/58—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
- C01B3/583—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being the selective oxidation of carbon monoxide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
- H01M8/04022—Heating by combustion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04225—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0432—Temperature; Ambient temperature
- H01M8/04373—Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04701—Temperature
- H01M8/04738—Temperature of auxiliary devices, e.g. reformer, compressor, burner
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0283—Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0435—Catalytic purification
- C01B2203/044—Selective oxidation of carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/047—Composition of the impurity the impurity being carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/066—Integration with other chemical processes with fuel cells
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0866—Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1064—Platinum group metal catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1076—Copper or zinc-based catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1258—Pre-treatment of the feed
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/1604—Starting up the process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/1614—Controlling the temperature
- C01B2203/1619—Measuring the temperature
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
- H01M8/0668—Removal of carbon monoxide or carbon dioxide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
- H01M8/0675—Removal of sulfur
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a hydrogen generator, a control method therefor, and a fuel cell system, and more particularly, a hydrogen generator that generates a hydrogen-containing gas by reforming a raw material gas containing hydrocarbon and water in a reformer and the same
- the present invention relates to a control method and a fuel cell system.
- Fuel cells capable of high-efficiency power generation even with small devices have been developed as power generation devices for distributed energy sources.
- Hydrogen gas is used as a fuel used for power generation of a fuel cell, but hydrogen gas is not maintained as a general infrastructure. Therefore, when a fuel cell is used by a consumer, for example, a hydrogen-containing gas is generated in a hydrogen generator by a steam reforming reaction from a raw material obtained from an existing fossil raw material infrastructure such as city gas, LPG, etc.
- the fuel cell is supplied with a configuration.
- the reaction section of the reformer is provided with a catalyst suitable for the reaction, such as a Ru catalyst or a Ni catalyst.
- This hydrogen-containing gas contains carbon monoxide. Since carbon monoxide lowers the performance of the fuel cell, a CO remover for reducing the carbon monoxide concentration is provided.
- a CO remover generally, a CO shifter that performs a water gas shift reaction (modification reaction) of carbon monoxide and water vapor and a CO selective oxidizer that oxidizes carbon monoxide mainly with an oxidizing agent such as a minute amount of air are used. It is done.
- Each reaction part of the CO converter and the CO selective oxidizer is provided with a catalyst suitable for each reaction, for example, a CO—Zn catalyst in the CO converter, a Ru catalyst in the CO selective oxidizer, and the like.
- Patent Document 2 As another method for starting up the hydrogen generator, a method of simultaneously raising the temperature of the shift catalyst layer and the desulfurization catalyst layer with a heater has been proposed (see, for example, Patent Document 2).
- JP 2007-326725 A Japanese Patent Laid-Open No. 5-147903
- the temperature raising time is shortened by heating each reactor with a heater at the same time when the hydrogen generator is activated as in Patent Document 1 described above.
- a large capacity or many heaters are required, and accompanying this, an expensive electric control device for large power and a large power source capacity are required.
- the electric power required for starting up a hydrogen generator etc. becomes temporarily very large. For this reason, when power from a commercial power source is used for starting up the hydrogen generator, etc., if the total power of the power required for starting up the hydrogen generator, etc. and the power consumption in the home exceeds the set capacity of the circuit breaker, There was a problem that the hydrogen generator and the like could not be started.
- the electric capacity of the heater is kept small in accordance with the existing electric control device and the power supply capacity, it takes a long time until the catalyst is heated to an appropriate temperature. As a result, the hydrogen generator is activated for a long time, and there is a problem that energy consumption at the time of activation increases.
- the present invention has been made to solve such a problem, and suppresses a situation in which the hydrogen generator cannot be started, and reduces the startup time by reducing the size of the hydrogen generator and the hydrogen generator. It is an object to provide a control method and a fuel cell system.
- a hydrogen generation apparatus includes a reformer that generates a hydrogen-containing gas by reforming a raw material gas containing hydrocarbon and water, and a hydrogen-containing gas generated by the reformer.
- a CO remover that removes carbon monoxide
- a first desulfurizer that removes sulfur in the raw material gas supplied to the reformer by reacting with hydrogen
- a first heater that heats the CO remover
- a second heater for heating the first desulfurizer
- a control device for controlling operations of the first heater and the second heater, wherein the control device includes the first heater and the second heater. The operation of one of the heaters is started and then stopped, and then the operation of the other heater is started.
- the present invention suppresses the situation where the hydrogen generator cannot be started and has a configuration as described above, and provides a hydrogen generator, a control method thereof, and a fuel cell system that achieve a compact hydrogen generator and shorten the startup time. There is an effect that it can be provided.
- a hydrogen generator includes a reformer that generates a hydrogen-containing gas by reforming a raw material gas containing hydrocarbon and water, and a hydrogen-containing gas generated by the reformer.
- a CO remover that removes carbon monoxide
- a first desulfurizer that removes sulfur in the raw material gas supplied to the reformer by reacting with hydrogen
- a first heater that heats the CO remover
- a second heater for heating the first desulfurizer
- a control device for controlling operations of the first heater and the second heater, wherein the control device includes the first heater and the second heater. The operation of one of the heaters is started and then stopped, and then the operation of the other heater is started.
- a hydrogen generator according to a second aspect of the present invention is the hydrogen generator according to the first aspect, wherein the control unit stops the operation after starting the operation of the one heater, and then starts the operation of the other heater. It may be configured to stop and then restart the operation of the one heater.
- the one heater may be the first heater, and the other heater may be the second heater.
- a hydrogen generator according to the third aspect, further comprising a CO removal temperature detector for detecting the temperature of the CO remover, wherein the control device starts the operation of the first heater. Thereafter, when the detected temperature of the CO remover temperature detector becomes equal to or higher than a preset first temperature, the operation of the first heater is stopped, and then the operation of the second heater is started. May be.
- the hydrogen generator according to the third or fourth aspect, wherein the combustor that heats at least one of the reformer, the CO remover, and the first desulfurizer; , Further comprising: a raw material supplier that supplies a raw material gas to the reformer; and a water supplier that supplies water to the reformer, and the control device includes the first heater, the raw material supplier, and the Even if it is comprised so that operation
- the hydrogen generator according to any one of the third to fifth aspects, wherein the CO remover removes carbon monoxide in the hydrogen-containing gas by a shift reaction. And a CO selective oxidizer that removes carbon monoxide in the hydrogen-containing gas by a CO selective oxidation reaction, wherein the first heater includes at least one of the CO converter and the CO selective oxidizer. You may heat.
- a hydrogen generator according to the sixth aspect, wherein the CO conversion temperature detector detects the temperature of the CO converter and the CO selective oxidation temperature detector detects the temperature of the CO selective oxidizer.
- the control device starts the operation of the first heater, and then the detected temperature of the CO shift temperature detector becomes equal to or higher than a preset second temperature, and the CO selective oxidation temperature detector When the detected temperature becomes equal to or higher than a preset third temperature, the operation of the first heater may be stopped, and then the operation of the second heater may be started.
- a hydrogen generator according to an eighth aspect of the present invention is the hydrogen generator according to any one of the third to seventh aspects, wherein the sulfur in the raw material gas is adsorbed without reacting with hydrogen to remove sulfur. And a raw material gas switching device for switching the supply destination of the raw material gas between the first desulfurizer and the second desulfurizer.
- the hydrogen generator further includes a desulfurization temperature detector that detects the temperature of the first desulfurizer, and the control device starts the operation of the first heater. After that, the operation of the second heater is started, and when the temperature detected by the desulfurization temperature detector becomes equal to or higher than a preset fourth temperature, the supply destination of the source gas is changed to the second desulfurization. It may be configured to switch from the vessel to the first desulfurizer by the raw material gas switch.
- a hydrogen generation apparatus is the hydrogen generation apparatus according to any one of the third to ninth aspects, further comprising a desulfurization temperature detector that detects a temperature of the first desulfurizer, and the control device includes the desulfurization apparatus.
- the operation of the second heater may be stopped when the temperature detected by the temperature detector is equal to or higher than a preset fifth temperature.
- the hydrogen generator includes a CO converter that removes carbon monoxide in the hydrogen-containing gas by a shift reaction.
- a CO selective oxidizer that removes carbon monoxide in the hydrogen-containing gas by a CO selective oxidation reaction, a CO conversion temperature detector that detects the temperature of the CO converter, and a temperature of the CO selective oxidizer
- a CO selective oxidation temperature detector for detecting the temperature, wherein the control device operates the second heater, and then the detected temperature of the CO shift temperature detector is lower than a preset sixth temperature
- the second heater is stopped and the first heater is operated in at least one of the cases. The It may be.
- a fuel cell system includes a hydrogen generator according to any one of the third to eleventh aspects, a fuel gas that is a hydrogen-containing gas supplied from the hydrogen generator, and an oxidant gas.
- a fuel cell that reacts to generate power; an oxidant gas supplier that supplies the oxidant gas to the fuel cell; an inverter that converts DC power generated by the fuel cell into AC power; and the reformer;
- a fuel cell system comprising: a combustor that heats at least one of the CO remover and the first desulfurizer; and a raw material supplier that supplies a raw material gas to the hydrogen generator.
- the control device included in the apparatus starts the power generation of the fuel cell by causing the operation of the first heater and the operation of the second heater not to overlap in the startup step performed before the power generation of the fuel cell. Stops the operation of the first heater and the second heater is a power generation step of, and, more raw material gas from the start step by the raw material supplier may be configured to supply to the hydrogen generator.
- the inverter is connected to a circuit breaker connected to a commercial power source, and power is supplied from the commercial power source via the circuit breaker in the starting step.
- the control device is supplied to the first heater and the second heater based on a cut-off power set in advance so that the breaker cuts off the power supply from the commercial power source. You may set electric power.
- a fuel cell system is the fuel cell system according to the thirteenth aspect, wherein the fuel cell system is provided to a consumer including a power load connected to the circuit breaker connected to the commercial power source together with the inverter.
- a power meter is provided on a distribution line connecting a commercial power source and the circuit breaker, and further detects a power supplied from the commercial power source to the consumer.
- the operation of the first heater and the operation of the second heater are executed so as not to overlap, and the power difference is greater than or equal to the predetermined value.
- the operation of the first heater and the operation of the second heater may be executed in an overlapping manner.
- a control method for a hydrogen generator comprising a reformer that generates a hydrogen-containing gas by reforming a raw material gas containing hydrocarbon and water, and the hydrogen generated by the reformer.
- a CO remover for removing carbon monoxide in the contained gas; a first desulfurizer for removing sulfur in the raw material gas supplied to the reformer by reacting with hydrogen; and a first heater for heating the CO remover.
- a control method for a hydrogen generator comprising: 1 heater; a second heater that heats the first desulfurizer; and a control device that controls operations of the first heater and the second heater. The apparatus starts and stops the operation of one of the first heater and the second heater, and then starts the operation of the other heater, and then starts the operation of the other heater. To control.
- FIG. 1 is a block diagram schematically showing a configuration of a hydrogen generator 100 according to Embodiment 1 of the present invention.
- the hydrogen generator 100 includes the reaction units of the reformer 1, the CO remover 2, and the first desulfurizer 3, the first heater 4, the second heater 5, and the control device 6.
- the hydrogen generator 100 may further include a CO removal temperature detector 10, a desulfurization temperature detector 11, a combustor 7, a raw material supplier 8, and a water supplier 9.
- the reformer 1 is a reactor that generates a hydrogen-containing gas by reforming a raw material gas containing hydrocarbon and water.
- the reformer 1 accommodates a reforming catalyst such as a Ru catalyst in a casing, and is connected to the raw material supplier 8 via a raw material gas flow path and supplied with water via the reforming water flow path.
- Examples of the raw material gas supplied by the raw material supplier 8 include natural gas, hydrocarbon components such as LPG, alcohols such as methanol, naphtha components, and the like.
- the water supplied by the water supplier 9 can take not only a liquid state but also a gas state (water vapor).
- a reforming temperature detector 20 is provided at an appropriate position of the reformer 1, and the reforming temperature detector 20 detects the temperature of the reformer 1 (for example, the temperature of the reforming catalyst).
- the CO remover 2 is a reactor that is connected to the reformer 1 via a hydrogen-containing gas flow path and removes carbon monoxide in the hydrogen-containing gas generated by the reformer 1.
- a CO removal catalyst such as a Cu—Zn-based catalyst can be used.
- the CO remover 2 is provided with a first heater 4 and a CO removal temperature detector 10.
- the first heater 4 is a heater for heating the CO remover 2 and, for example, a sheath type heater is used.
- the CO removal temperature detector 10 detects the temperature of the CO remover 2, particularly the temperature of the CO removal catalyst in the CO remover 2.
- the first desulfurizer 3 is provided between the raw material supplier 8 and the reformer 1 in the raw material gas flow path, and reacts and removes sulfur in the raw material gas supplied to the reformer 1 by reacting with hydrogen. It is a vessel. For this reaction, a metal oxide desulfurization catalyst is used.
- the first desulfurizer 3 is provided with a second heater 5 and a desulfurization temperature detector 11.
- the second heater 5 is a heater for heating the first desulfurizer 3, and for example, a sheathed heater is used.
- the desulfurization temperature detector 11 detects the temperature of the first desulfurizer 3, particularly the temperature of the desulfurization catalyst in the first desulfurizer 3.
- the combustor 7 includes, for example, a flame burner that burns a part of the raw material gas or a residual hydrogen-containing gas (fuel exhaust gas) returned from a hydrogen gas supply destination (for example, a fuel cell) of the hydrogen generator 100, and the residual hydrogen. It is comprised with the fan for supplying the air combusted with containing gas.
- the combustor 7 is installed in the vicinity of the reformer 1 and heats the reformer 1.
- the combustor 7 can further heat the CO remover 2 and the first desulfurizer 3.
- the CO remover 2 or the first desulfurizer 3 is appropriately disposed in the vicinity of the combustor 7 or the reformer 1 to heat the CO remover 2 or the first desulfurizer 3 by the combustor 7. Can do.
- the CO remover 2 can be heated by introducing the raw material gas that has become a high temperature in the reformer 1 as the reformer 1 is heated into the CO remover 2.
- control device 6 examples include a microcontroller, CPU, MPU, logic circuit, PLC (Programmable Logic Controller), and the like.
- the control device 6 controls at least the operation (for example, on / off operation) of the first heater 4 and the second heater 5 based on the temperatures detected by the CO removal temperature detector 10 and the desulfurization temperature detector 11. More specifically, the control device 6 starts the operation of one of the first heater 4 and the second heater 5 when the hydrogen generator 100 is started, and then stops the operation at a predetermined timing. The operation of the other heater is started. Furthermore, the control device 6 starts the operation of the other heater, stops it at a predetermined timing, and then restarts the operation of one heater.
- control device 6 operates the first heater 4 and the second heater 5 so as not to overlap when the hydrogen generator 100 is activated.
- the “one heater” may be the first heater 4 and the “other heater” may be the second heater 5.
- the “one heater” may be the second heater 5, May be used as the first heater 4.
- the control device 6 also controls the operations of the combustor 7, the raw material supplier 8, and the water supplier 9 based on the temperature detected by the reforming temperature detector 20. For example, the control device 6 controls the raw material supplier 8 to adjust the flow rate of the raw material gas supplied to the reformer 1. The control device 6 controls the water supply device 9 to adjust the flow rate of water supplied to the reformer 1.
- the CO removal temperature detector 10 provided in the CO remover 2 may be disposed in the catalyst layer accommodated in the CO remover 2 and directly measure the temperature of the catalyst layer.
- the CO removal temperature detector 10 is a temperature of an object having a correlation with the temperature of the catalyst layer, for example, a temperature of a wall of the CO removal temperature detector 10 that accommodates the catalyst layer, a vicinity of the CO removal temperature detector 10 or the like.
- the temperature of the catalyst layer may be indirectly measured by measuring the temperature or the temperature of the gas flowing into or out of the CO removal temperature detector 10.
- the reforming temperature detector 20 provided in the reformer 1 only needs to be able to directly or indirectly measure the temperature of the catalyst layer accommodated in the reformer 1.
- the desulfurization temperature detector 11 provided in the first desulfurizer 3 only needs to be able to directly or indirectly measure the temperature of the catalyst layer accommodated in the first desulfurizer 3.
- the control device 6 starts the operation of the first heater 4. Thereby, the CO remover 2 is heated.
- the control device 6 turns the first heater 4 on (energized) or off (non-energized) so that the temperature of the CO removal catalyst detected by the CO removal temperature detector 10 is equal to or higher than a preset first temperature.
- the first temperature is set to a temperature at which the CO removal catalyst can suitably exhibit the function of removing carbon monoxide, for example, 180 ° C. to 300 ° C., preferably 200 ° C.
- the control device 6 operates the raw material supplier 8 and the combustor 7.
- the raw material gas supplied from the raw material supplier 8 through a bypass passage (not shown) or through the fuel cell is burned in the combustor 7, and the reformer 1 and the raw material gas in the reformer 1 are heated.
- the heated source gas flows from the reformer 1 into the CO remover 2.
- the “predetermined condition A” is set to “the detection temperature of the CO removal temperature detector 10 is 120 ° C. or higher ”.
- the control device 6 controls the water supply device 9 to supply water (reform) to the reformer 1.
- Supply quality water means that the combustion state of the combustor 7 is stable and the temperature of the reformer 1 reaches a predetermined temperature, for example, about 150 ° C. It is that you are.
- the control device 6 stops the operation of the first heater 4 and then starts the operation of the second heater 5.
- the first desulfurizer 3 is heated to raise the temperature.
- the control device 6 controls the second heater 5 so that the temperature of the catalyst (first desulfurization catalyst) of the first desulfurizer 3 detected by the desulfurization temperature detector 11 is equal to or higher than a preset fifth temperature.
- the fifth temperature is set to a temperature at which the desulfurization catalyst functions suitably, for example, 200 ° C. to 300 ° C., preferably 200 ° C.
- the control device 6 When the predetermined condition C is realized after the start of the operation of the second heater 5 and the detected temperature of the CO removal temperature detector 10 becomes lower than the first temperature at which the CO removal catalyst functions, the control device 6 Then, after the operation of the second heater 5 is stopped, the operation of the first heater 4 is started again. As a result, the CO remover 2 is heated again by the first heater 4, and the temperature of the CO removal catalyst in the CO remover 2 is maintained at a temperature suitable for the function of the CO removal catalyst.
- the “predetermined condition C” can be that the temperature of the reformer 1 has reached a temperature at which the reforming reaction suitably proceeds, for example, 450 ° C. or more.
- the control device 6 stops the operation of the first heater 4 and then 2 Restart the operation of the heater 5. And the control apparatus 6 controls the 2nd heater 5 so that the detection temperature of the desulfurization temperature detector 11 becomes more than 5th temperature. Thereby, the 1st desulfurizer 3 is heated again by the 2nd heater 5, and the temperature of the 1st desulfurization catalyst in the 1st desulfurizer 3 is maintained at the temperature suitable for the function of the desulfurization catalyst.
- a predetermined temperature for example, the first temperature
- the control device 6 stops the operation of the second heater 5. Then, when the predetermined condition D is realized, the start-up of the hydrogen generator 100 is completed.
- This “predetermined condition D” means that the reactors of the reformer 1 and the CO remover 2 function stably, for example, the temperature of the reforming catalyst is 600 to 650 ° C., particularly 550 ° C. or more. It can be set that the temperature of the CO removal catalyst is 200 ° C. or higher.
- the control device 6 performs control to turn off the first heater 4 if the temperature detected by the CO removal temperature detector 10 is equal to or higher than a predetermined temperature.
- the control device 6 performs control to turn off the second heater 5 if the temperature detected by the desulfurization temperature detector 11 becomes equal to or higher than a predetermined temperature.
- the state in which the heaters 4 and 5 are turned off is also included in the operation of the heaters 4 and 5.
- the heater that is controlled by the control device 6 so as to be at a predetermined temperature or higher regardless of whether or not power is supplied is the “operating heater”.
- the predetermined temperature is, for example, the use temperature of the catalyst accommodated in the first desulfurizer 3 or the CO remover 2.
- the power consumption when the hydrogen generator 100 is started up can be suppressed by not operating the first heater 4 and the second heater 5 at the same time. For this reason, even when power from a commercial power source is used for starting the hydrogen generator 100 or the like, the total power of the power required for starting the hydrogen generator 100 and the power consumption in the home is set in the circuit breaker. It is possible to avoid a situation where the capacity of the hydrogen generator 100 cannot be started because the capacity is exceeded.
- the temperature of the catalyst provided in each reactor is quickly raised to a temperature suitable for each reaction without increasing the capacity and number of heaters. be able to. Furthermore, the increase in the price of electric control equipment and the increase in power supply capacity can be suppressed.
- the CO remover 2 includes a CO converter 2a and a CO selective oxidizer 2b, and the first heater 4 heats at least one of the CO converter 2a and the CO selective oxidizer 2b.
- FIG. 2 is a block diagram schematically showing the configuration of the hydrogen generator 100 according to Embodiment 2 of the present invention.
- the CO converter 2a is a CO remover that is connected to the reformer 1 by a hydrogen-containing gas flow path and removes carbon monoxide in the hydrogen-containing gas by a water vapor shift reaction (modification reaction).
- the CO converter 2a accommodates a CO conversion catalyst such as a Cu—Zn-based conversion catalyst.
- the CO converter 2a is provided with a first heater 4 and a CO conversion temperature detector 10a.
- the CO selective oxidizer 2b is a CO remover that is connected to the CO converter 2a by a hydrogen-containing gas flow path and removes carbon monoxide in the hydrogen-containing gas. In the CO selective oxidizer 2b, carbon monoxide is reduced by the CO selective oxidation reaction of carbon monoxide by the introduced oxygen in the air.
- the CO selective oxidizer 2b contains a CO selective oxidation catalyst such as a Ru-based selective oxidation catalyst.
- the CO selective oxidizer 2b is provided with a first heater 4 and a CO selective oxidation temperature detector 10b.
- the first heater 4 is a sheathed heater, for example, and heats the CO converter 2a and the CO selective oxidizer 2b. However, the first heater 4 may heat only one of the CO converter 2a and the CO selective oxidizer 2b.
- the first heater 4 is provided in each of the CO converter 2a and the CO selective oxidizer 2b, but may be installed in the vicinity of the CO converter 2a and the CO selective oxidizer 2b. Thereby, the first heater 4 can simultaneously heat both the CO converter 2a and the CO selective oxidizer 2b.
- the CO shift temperature detector 10a detects the temperature of the CO shift converter 2a, particularly the temperature of the CO shift catalyst in the CO shift converter 2a.
- the CO selective oxidation temperature detector 10b detects the temperature of the CO selective oxidizer 2b, particularly the temperature of the CO selective oxidation catalyst in the CO selective oxidizer 2b.
- the CO shift temperature detector 10a and the CO selective oxidation temperature detector 10b are housed in the CO shift converter 2a and the CO selective oxidizer 2b, similarly to the CO removal temperature detector 10 described in the first embodiment.
- the temperature of the catalyst layer is measured directly or indirectly.
- the control device 6 controls the operations of the first heater 4 and the second heater 5 based on the temperatures detected by the CO shift temperature detector 10a, the CO selective oxidation temperature detector 10b, and the desulfurization temperature detector 11.
- the control device 6 starts the operation of the first heater 4.
- the CO converter 2a and the CO selective oxidizer 2b are heated.
- the controller 6 detects the temperature of the CO selective oxidation catalyst detected by the CO selective oxidation temperature detector 10a, and the temperature of the CO selective oxidation catalyst detected by the CO selective oxidation temperature detector 10b. Is controlled to be equal to or higher than a preset third temperature.
- This second temperature is set to a temperature at which the CO shift catalyst functions, for example, 180 to 300 ° C., preferably 200 ° C.
- the third temperature is set to a temperature at which the CO selective oxidation catalyst functions, for example, 100 to 180 degrees, preferably 140 ° C.
- the control device 6 controls the first heater 4 to turn off the first heater 4 that is heating the CO selective oxidizer 2b while turning on the first heater 4 that heats the CO transformer 2a. To do. Thereby, one of the two first heaters 4 is temporarily turned off, but since the first heater 4 is controlled to heat, the first heater 4 is regarded as operating.
- the control device 6 operates the raw material supplier 8 and the combustor 7. As a result, the raw material gas supplied from the raw material supplier 8 is combusted in the combustor 7 and the reformer 1 and the raw material gas in the reformer 1 are heated.
- the heated source gas flows from the reformer 1 into the CO converter 2a and the CO selective oxidizer 2b. At this time, if the temperatures of the CO converter 2a and the CO selective oxidizer 2b are low, water vapor contained in the raw material gas is condensed in the CO converter 2a and the CO selective oxidizer 2b.
- the “predetermined condition E” is the same as the predetermined condition A, for example, when the temperature of the CO converter 2a and the CO selective oxidizer 2b is about 25 ° C. at startup.
- the control device 6 controls the water supply device 9 to supply water to the reformer 1.
- the control device 6 stops the operation of the first heater 4 and then starts the operation of the second heater 5. As the second heater 5 operates, the first desulfurizer 3 is heated to raise the temperature. The control device 6 controls the second heater 5 so that the temperature of the first desulfurizer 3 detected by the desulfurization temperature detector 11 is equal to or higher than the fifth temperature.
- the control device 6 stops the operation of the second heater 5 and then restarts the operation of the first heater 4. Thereby, the CO converter 2a and the CO selective oxidizer 2b are heated again by the first heater 4, and the temperatures of the CO conversion catalyst and the CO selective oxidation catalyst are maintained at temperatures suitable for the functions of the respective catalysts.
- the sixth temperature is set in advance to a temperature at which the CO shift catalyst suitably functions as in the second temperature, for example, 180 to 300 ° C., preferably 200 ° C.
- the seventh temperature is preset to a temperature at which the CO selective oxidation catalyst functions properly, for example, 100 to 180 ° C., preferably 170 ° C.
- the “predetermined condition F” means that the temperature of the reformer 1 reaches a temperature at which the reforming reaction proceeds, for example, 450 ° C. or more, and the temperature of the CO selective oxidation catalyst is preferably that of the catalyst.
- the functioning temperature can be set, for example, 170 ° C. or higher.
- the control device 6 When the detected temperatures of the CO shift temperature detector 10a and the CO selective oxidation temperature detector 10B become equal to or higher than predetermined temperatures (for example, the second temperature and the third temperature, respectively) by restarting the operation of the first heater 4, the control device 6 After the operation of the first heater 4 is stopped, the operation of the second heater 5 is restarted. And the control apparatus 6 controls the 2nd heater 5 so that the detection temperature of the desulfurization temperature detector 11 becomes more than 5th temperature. Thereafter, when the temperature detected by the desulfurization temperature detector 11 reaches the fifth temperature, the control device 6 stops the operation of the second heater 5. Then, when the predetermined condition G is realized, the activation of the hydrogen generator 100 is completed.
- predetermined temperatures for example, the second temperature and the third temperature, respectively
- the “predetermined condition G” is that the reactors of the reformer 1, the CO converter 2a, and the CO selective oxidizer 2b function stably, for example, the reforming catalyst temperature is 550 ° C. or higher.
- the temperature of the CO shift catalyst is 200 ° C. or higher and the temperature of the CO selective oxidation catalyst is 170 ° C. or higher.
- the raw material and water are supplied to the reformer 1 that has reached a predetermined temperature, and generation of a hydrogen-containing gas is started by the steam reforming reaction in the reformer 1.
- the first heater 4 causes the CO conversion catalyst in the CO converter 2a and the CO selective oxidation catalyst in the CO selective oxidizer 2b to reach a predetermined temperature suitable for the function of each catalyst. For this reason, after starting the production of the hydrogen-containing gas in the reformer 1, carbon monoxide contained in the hydrogen-containing gas without waiting for the temperatures of the CO conversion catalyst and the CO selective oxidation catalyst to reach predetermined temperatures.
- the hydrogen generator 100 can generate a hydrogen-containing gas with reduced carbon monoxide in a short time.
- the 1st heater 4 becomes a structure which can heat the CO converter 2a and the CO selective oxidizer 2b simultaneously, it can raise the temperature of CO converter 2a and the CO selective oxidizer 2b simultaneously. it can. For this reason, the number of parts is small, the cost can be reduced, and the temperature raising time of the CO converter 2a and the CO selective oxidizer 2b can be shortened.
- the first heater 4 and the second heater 5 by not operating the first heater 4 and the second heater 5 at the same time, the power consumption when starting the hydrogen generator 100 is suppressed, and the situation where the hydrogen generator 100 cannot be started is avoided. can do.
- the operation of the first heater 4 and the second heater 5 it is possible to quickly raise the temperature of each reactor to an appropriate temperature quickly while suppressing an increase in the price of the electric control device and an increase in power supply capacity. Can do.
- FIG. 3 is a block diagram schematically showing the configuration of the hydrogen generator 100 according to Embodiment 3 of the present invention.
- the hydrogen generator 100 according to Embodiment 3 includes a second desulfurizer 3 b, a raw material gas switch 13, and a hydrogen-containing gas supplier 12.
- the second desulfurizer 3b is an adsorptive desulfurizer that is connected to the raw material supplier 8 by a raw material gas flow path and adsorbs sulfur in the raw material gas without reacting with hydrogen to remove sulfur.
- the first desulfurizer 3a is provided between the raw material supplier 8 and the reformer 1 in the raw material gas flow path, and adsorbs sulfur in the raw material gas after reacting with sulfur in the raw material gas, thereby adsorbing sulfur in the raw material gas. This is a hydrodesulfurizer to be removed. In this reaction, a Cu—Zn-based hydrodesulfurization catalyst having adsorption ability even at room temperature is used.
- the first desulfurizer 3a is provided with a second heater 5 and a desulfurization temperature detector 11a.
- the desulfurization temperature detector 11a provided in the first desulfurizer 3a directly or indirectly measures the temperature of the catalyst layer accommodated in the first desulfurizer 3a, similarly to the CO removal temperature detector 10. .
- the raw material gas switch 13 is a device that switches the supply destination of the raw material gas between the first desulfurizer 3a and the second desulfurizer 3b.
- the raw material gas switching unit 13 bypasses the first and second valves 13a and 13b, which are three-way valves disposed on the upstream side and the downstream side of the second desulfurizer 3b, and the second desulfurizer 3b. It has a source gas branch flow path connecting the first valve 13a and the second valve 13b. That is, the source gas branch flow path is connected to the source gas flow path via the first valve 13a and the second valve 13b.
- the raw material gas passes through the second desulfurizer 3b and the first desulfurizer 3a along the raw material gas flow path, and the raw material It is possible to switch between a state of passing through the source gas branch channel on the way from the gas channel, returning to the source gas channel again, and passing through the first desulfurizer 3a. In the latter state, the raw material gas does not pass through the second desulfurizer 3b.
- the combustor 7 is installed in the vicinity of at least one of the reformer 1, the CO converter 2a, the CO selective oxidizer 2b, and the first desulfurizer 3a, and heats this reactor.
- the hydrogen generator 100 has a hydrogen-containing gas branch passage for supplying a part of the hydrogen-containing gas that has passed through the CO converter 2a to the first desulfurizer 3a.
- One end of the hydrogen-containing gas branch flow path is connected to the hydrogen-containing gas flow path between the CO converter 2a and the CO selective oxidizer 2b, and the other end is connected between the raw material gas switch 13 and the raw material supplier 8. It is connected to the raw material gas flow path.
- a hydrogen-containing gas supplier 12 including a pump, a flow rate adjusting valve, and the like is provided on the hydrogen-containing gas branch flow path.
- the hydrogen-containing gas supply device 12 adjusts the pressure and flow rate of the hydrogen-containing gas in the hydrogen-containing gas branch flow path, a part of the hydrogen-containing gas discharged from the outlet of the CO converter 2a is converted into the first desulfurizer 3a.
- one end of the hydrogen-containing gas branch flow path is connected not to the hydrogen-containing gas flow path between the CO converter 2a and the CO selective oxidizer 2b but to the hydrogen-containing gas flow path on the outlet side of the CO selective oxidizer 2b. May be.
- a part of the hydrogen-containing gas discharged from the outlet of the CO selective oxidizer 2b is supplied to the first desulfurizer 3a.
- the control device 6 controls the operations of the first heater 4 and the second heater 5 based on the temperatures detected by the CO shift temperature detector 10a, the CO selective oxidation temperature detector 10b, and the desulfurization temperature detector 11a.
- the control device 6 controls the operations of the combustor 7, the raw material supplier 8, the water supplier 9, the hydrogen-containing gas supplier 12, and the raw material gas switch 13.
- control device 6 starts the operation of the first heater 4 and then stops the operation. Then, the control device 6 starts the operation of the second heater 5, and the temperature detected by the desulfurization temperature detector 11a. Is switched from the second desulfurizer 3b to the first desulfurizer 3a by the raw gas switch 13 when the temperature becomes equal to or higher than a preset fourth temperature. Further, the control device 6 stops the operation of the second heater 5 when the temperature detected by the desulfurization temperature detector 11a is equal to or higher than a preset fifth temperature.
- FIG. 4 is a flowchart showing an example of a control method of the hydrogen generator 100 according to Embodiment 3 of the present invention.
- the control device 6 starts the operation of the first heater 4 (step S10), and the detected temperature of the CO shift temperature detector 10a is equal to or higher than the second temperature. And the 1st heater 4 is controlled so that the detection temperature of CO selective oxidation temperature detector 10b is more than 3rd temperature.
- the control device 6 operates the raw material supplier 8 and the combustor 7 (step S12). At this time, the control device 6 controls the raw material gas switching unit 13, and after the raw material gas has passed through the second desulfurizer 3b along the raw material gas flow path, the first desulfurizer 3a, the combustor 7 and the reformer. To be supplied to the vessel 1.
- the second desulfurizer 3b is not heated, but the second desulfurizer 3b can adsorb and remove sulfur contained in the raw material gas even at room temperature.
- the raw material gas flows into the first desulfurizer 3a after the contained sulfur is removed by the second desulfurizer 3b.
- the first desulfurizer 3a is not heated by the second heater 5 at this point, but as described above, the Cu—Zn-based hydrodesulfurization catalyst in the first desulfurizer 3a has an adsorption capability even at room temperature.
- the sulfur remaining in the raw material gas is further removed by the first desulfurizer 3a.
- the raw material gas from which sulfur has been removed by the first desulfurizer 3 a and the second desulfurizer 3 b is supplied to the combustor 7 and the reformer 1.
- the reformer 1 is heated by the combustor 7.
- the detected temperature of the CO shift temperature detector 10a is equal to or higher than the second temperature
- the detected temperature of the CO selective oxidation temperature detector 10b is equal to or higher than the third temperature (step S13: Y)
- the predetermined condition B is If realized (step S14: Y)
- the control device 6 controls the water supply device 9 to supply water (reformed water) to the reformer 1 (step S15).
- the control device 6 stops the operation of the first heater 4 (step S16), and then starts the operation of the second heater 5 (step S17).
- the predetermined condition F is realized (step S18: Y), and the detected temperature of the CO shift temperature detector 10a is less than the sixth temperature, or the detected temperature of the CO selective oxidation temperature detector 10b is less than the seventh temperature. Then (step S19: Y), the control device 6 stops the operation of the second heater 5 (step S20), and then starts the operation of the first heater 4 again (step S21). Thereby, the CO converter 2a and the CO selective oxidizer 2b are heated again by the first heater 4, and the temperatures of the CO conversion catalyst and the CO selective oxidation catalyst are maintained at temperatures suitable for the functions of the respective catalysts.
- Step S22 When the detected temperature of the CO shift temperature detector 10a is equal to or higher than the sixth temperature and the detected temperature of the CO selective oxidation temperature detector 10b is equal to or higher than the seventh temperature by restarting the operation of the first heater 4 (Step S22: Y ) After stopping the operation of the first heater 4 (step S23), the control device 6 resumes the operation of the second heater 5 (step S24).
- step S25: Y When the temperature of the desulfurization catalyst detected by the desulfurization temperature detector 11a reaches the fifth temperature (step S25: Y), the control device 6 determines that the hydrogen concentration in the raw material gas is about 1 to 10%.
- the hydrogen-containing gas supply device 12 is controlled so that As a result, part of the hydrogen-containing gas discharged from the CO converter 2a is extracted from the hydrogen-containing gas flow path to the hydrogen-containing gas branch flow path, and flows from the hydrogen gas-containing branch flow path into the source gas flow path. .
- step S25: Y when the temperature of the desulfurization catalyst detected by the desulfurization temperature detector 11a reaches the fifth temperature (step S25: Y), the control device 6 controls the raw material gas switch 13. Thereby, the raw material gas flows through the raw material gas branch flow path without passing through the second desulfurizer 3b, flows into the raw material gas flow path, and reaches the fifth temperature or higher, the first desulfurizer 3a and the combustor 7. And supplied to the reformer 1 (step S26). In this case, the first desulfurizer 3a is heated by the second heater 5 and warmed to an optimum temperature for the functioning of the hydrodesulfurization catalyst in the first desulfurizer 3a. The ability to remove is increasing.
- step S27 the control device 6 stops the operation of the second heater 5 (step S27).
- step S28 the start-up of the hydrogen generator 100 is completed.
- both the first heater 4 and the second heater 5 are stopped, but due to the heat generated in the combustor 7, not only the reformer 1 but also the CO converter 2a,
- the CO selective oxidizer 2b, the first desulfurizer 3a, the second desulfurizer 3b, and the like can be heated.
- the control device 6 may selectively restart the operation of the first heater 4 or the second heater 5 as necessary after stopping the operation of the second heater 5 (step S27). Further, as shown in FIG. 4, if the detected temperature of the CO shift temperature detector 10a is equal to or higher than the sixth temperature in step S19 and the detected temperature of the CO selective oxidation temperature detector 10b is equal to or higher than the seventh temperature (Ste S19: N), the processing of steps S20 to S24 (reheating of the CO remover by the first heater 4) may be omitted, and the process may proceed to step S25.
- the second desulfurizer 3b which does not require heating, has a sulfur removal function. Therefore, even if the second heater 5 does not operate, the sulfur in the raw material gas is reduced. Removed. Therefore, if only the CO converter 2a and the CO selective oxidizer 2b are heated by the first heater 4 to an appropriate temperature at which each catalyst functions, the hydrodesulfurization catalyst in the first desulfurizer 3a reaches a predetermined temperature. It is possible to supply the source gas without waiting. In this way, by using the second desulfurizer 3b and preferentially operating the first heater 4, the hydrogen generator 100 is activated in a short time, and contains hydrogen with reduced sulfur and carbon monoxide. Gas can be generated quickly.
- the first desulfurizer 3a can remove sulfur from the raw material gas even if the first desulfurizer 3a is not heated by the second heater 5. Can be removed. For this reason, in addition to the second desulfurizer 3b, the first desulfurizer 3a can reduce the concentration of sulfur in the raw gas sufficiently low for the hydrogen generator 100 to operate. The start-up time can be further shortened.
- the second heater 5 is not operating, if the first desulfurizer 3a receives heat from the combustor 7 in the vicinity of the combustor 7, the temperature of the hydrodesulfurization catalyst in the first desulfurizer 3a increases. To do. Thereby, the time until the hydrodesulfurization catalyst reaches a predetermined temperature by the second heater 5 after the operation of the second heater 5 is shortened. For this reason, the startup time of the hydrogen generator 100 can be further shortened.
- the first heater 4 when the reforming reaction of the reformer 1 is started, the first heater 4 causes the CO converter 2a and the CO selective oxidizer 2b to reach predetermined temperatures.
- the apparatus 100 can be activated in a short time. Furthermore, since the first heater 4 heats the CO converter 2a and the CO selective oxidizer 2b at the same time, the cost can be reduced and the temperature raising time of the CO converter 2a and the CO selective oxidizer 2b can be shortened. .
- the first heater 4 and the second heater 5 by not operating the first heater 4 and the second heater 5 at the same time, the power consumption when starting the hydrogen generator 100 is suppressed, and the situation where the hydrogen generator 100 cannot be started is avoided. can do.
- the operation of the first heater 4 and the second heater 5 it is possible to quickly raise the temperature of each reactor to an appropriate temperature quickly while suppressing an increase in the price of the electric control device and an increase in power supply capacity. Can do.
- FIG. 5 is a block diagram schematically showing the configuration of the hydrogen generator 100 according to Embodiment 4 of the present invention.
- the hydrogen generator 100 according to Embodiment 4 includes an evaporation mixing unit 14 that mixes and vaporizes the source gas and water.
- the hydrogen generator 100 has a configuration in which the reformer 1, the CO converter 2a, the CO selective oxidizer 2b, the combustor 7, the first desulfurizer 3a, and the evaporating and mixing unit 14 are integrated.
- This integrated component has an inner cylinder centering on the combustor 7 and an outer cylinder containing the inner cylinder.
- Various catalysts are arranged and various connection ports are formed at appropriate positions of the integrated component.
- the connection port includes a raw material gas inlet connected to the raw material gas flow path, a reformed water inlet connected to the reformed water flow path, a combustion exhaust gas outlet connected to the combustion exhaust gas flow path, and a hydrogen-containing gas flow path.
- a selective oxidation air inflow port through which selective oxidation air flows.
- the cylindrical reformer 1 is disposed on the lower outer periphery of the cylindrical combustor 7 (the lower portion between the combustor 7 and the inner cylinder), and the upper outer periphery (the combustor 7 and the inner cylinder).
- a cylindrical evaporating and mixing unit 14 having a lower end communicating with the reformer 1 is disposed in the upper part between the two.
- the evaporating and mixing unit 14 is connected to the raw material gas inlet and the reformed water inlet. For this reason, the raw material gas flowing in from the raw material gas inlet and the water flowing in from the reforming water inlet are mixed and heated in the evaporative mixing unit 14, and the mixed gas of the raw material gas and water vapor flows into the reformer 1. .
- a cylindrical flue gas passage is provided between the combustor 7 and the reformer 1.
- the combustion exhaust gas discharged from the combustor 7 passes through the combustion exhaust gas passage, so that the combustion exhaust gas heats the reformer 1 and the evaporative mixing unit 14.
- the combustion exhaust gas channel communicates with the combustion exhaust gas outlet formed at the upper part of the integrated component, and the combustion exhaust gas is discharged to the outside through this.
- a cylindrical CO converter 2a and a cylindrical CO selective oxidizer 2b are disposed outside the evaporating and mixing unit 14 (upper part between the inner cylinder and the outer cylinder).
- the inlet of the CO converter 2a is connected to the reformer 1, and the inlet of the CO selective oxidizer 2b is connected to the outlet of the CP converter.
- the outlet of the CO selective oxidizer 2b is connected to the hydrogen-containing gas flow path via the hydrogen-containing gas outlet.
- the CO converter 2a and the CO selective oxidizer 2b are disposed in the vicinity of the raw material gas inlet and the reforming water inlet.
- a cylindrical first desulfurizer 3a is disposed concentrically around the reformer 1 (outside the lower part of the outer cylinder) via a heat insulating material (not shown).
- the first desulfurizer 3a is connected to the raw material gas inlet through the raw material gas flow path.
- the CO converter 2a and the CO selective oxidizer 2b are disposed in the vicinity of the raw material gas inlet and the reforming water inlet. For this reason, even if the CO converter 2a and the CO selective oxidizer 2b are heated by the first heater 4, after the operation of the first heater 4 is stopped, the CO converter 2a and the CO selective oxidizer are supplied by the inflowing raw material gas and water. The temperature of 2b may drop.
- the CO converter 2a and the CO selective oxidizer 2b can be maintained at a predetermined temperature or a value close thereto. Since the CO converter 2a and the CO selective oxidizer 2b can reduce the concentration of carbon monoxide in the hydrogen-containing gas sufficiently low for the hydrogen generator 100 to operate, the hydrogen generator 100 can be activated. The time can be further shortened.
- each reactor is configured integrally, heat is transferred between the reactors. Therefore, the time and energy for heating each reactor can be reduced, and the start-up time of the hydrogen generator 100 can be shortened and the energy consumption at the start-up can be reduced.
- the first desulfurizer 3a and the second desulfurizer 3b are used, and the first heater 4 is preferentially operated to shorten the startup time of the hydrogen generator 100. It is further planned.
- the first heater 4 when the reforming reaction of the reformer 1 is started, the first heater 4 causes the CO converter 2a and the CO selective oxidizer 2b to reach predetermined temperatures.
- the apparatus 100 can be activated in a short time. Furthermore, since the first heater 4 heats the CO converter 2a and the CO selective oxidizer 2b at the same time, the cost can be reduced and the temperature raising time of the CO converter 2a and the CO selective oxidizer 2b can be shortened. .
- the first heater 4 and the second heater 5 by not operating the first heater 4 and the second heater 5 at the same time, the power consumption when starting the hydrogen generator 100 is suppressed, and the situation where the hydrogen generator 100 cannot be started is avoided. can do.
- the operation of the first heater 4 and the second heater 5 it is possible to quickly increase the temperature of each reactor to an appropriate temperature quickly while suppressing an increase in the size of the electric control device and the power supply capacity. .
- the fifth embodiment relates to a fuel cell system 200 including the hydrogen generator 100 according to the first to fourth embodiments.
- FIG. 6 is a block diagram schematically showing the configuration of the fuel cell system 200 according to Embodiment 5 of the present invention.
- the fuel cell system 200 includes a hydrogen generator 100, a fuel cell 201, an oxidant gas supplier 202, and an inverter 204.
- the fuel cell system 200 may further include a condenser 205.
- Hydrogen generator 100 is, for example, hydrogen generator 100 according to Embodiments 1 to 4, and supplies hydrogen-containing gas from which carbon monoxide and sulfur have been removed to fuel cell 201 as a fuel gas.
- FIG. 6 the structure which employ
- the fuel cell 201 is a device that generates electricity by electrochemically reacting a fuel gas that is a hydrogen-containing gas supplied from the hydrogen generator 100 and an oxidant gas.
- a fuel gas that is a hydrogen-containing gas supplied from the hydrogen generator 100 and an oxidant gas.
- oxygen in the air is used as the oxidant gas.
- an air supply device such as a blower is used as the oxidant gas supply device 202.
- the fuel cell 201 discharges fuel exhaust gas and oxidant exhaust gas that have not been used for the electrochemical reaction out of the supplied fuel gas and oxidant gas to the condenser 205.
- the condenser 205 recovers heat from the fuel exhaust gas and the oxidant exhaust gas discharged from the fuel cell 201 and separates the condensed water from the fuel exhaust gas.
- the fuel exhaust gas after the heat and condensed water are recovered is supplied to the combustor 7.
- the combustor 7 burns the raw material gas from the raw material supplier 8 and / or the fuel exhaust gas from the condenser 205 to heat the reformer 1.
- the inverter 204 converts the DC power generated in the fuel cell 201 into AC power.
- the control device 6 causes the operation of the first heater 4 and the operation of the second heater 5 to be executed so as not to overlap each other in the startup process performed before the power generation of the fuel cell 201. Then, the control device 6 stops the operation of the first heater 4 and the second heater 5 at the start of the power generation process for generating power from the fuel cell 201, and supplies more raw material gas than the starting process by the raw material supplier 8. This is supplied to the hydrogen generator 100.
- the supply amount of the raw material gas in the power generation process is, for example, three times the supply amount of the raw material gas in the startup process.
- one of the reasons for increasing the supply amount of the raw material gas in the power generation process from the start-up process is as follows. That is, in the starting process, the raw material gas is used for heating the reformer 1 and the like, whereas in the power generation process, the raw material gas is used for the power generation reaction in the fuel cell 201 in addition to the heating of the reformer 1 and the like. Is also used.
- the hydrogen generator 100 can generate the fuel gas necessary for the fuel cell 201 in a state where the power consumption of the heaters 4 and 5 is reduced.
- the amount of raw material gas supplied to the combustor 7 by the raw material supplier 8 and the condenser 205 to the combustor in the power generation process increases. Since this fuel exhaust gas contains hydrogen which is a combustible component and unmodified methane (a main component of city gas), the combustor 7 burns the raw material gas and the fuel exhaust gas and exists in the vicinity thereof. Reactors such as the reformer 1, the CO converter 2a, the CO selective oxidizer 2b, and the first desulfurizer 3a can be sufficiently heated to allow each reaction. Therefore, even if the operation of the first heater 4 and the second heater 5 is stopped in the power generation process, each reactor can maintain the temperature at which each catalyst functions. For this reason, the energy consumption of the hydrogen generator 100 can be further reduced.
- the heat of the reformer 1 is transmitted to the first desulfurizer 3a located around the reformer 1. Accordingly, the amount of heat transferred from the reformer 1 to the first desulfurizer 3a increases as the temperature of the reformer 1 increases. For this reason, compared with the case where the temperature of the reformer 1 is not so high in the start-up process, the case where the reformer 1 is sufficiently high up to the temperature required for the reforming reaction in the power generation process is improved. A large amount of heat is given from the mass device 1 to the first desulfurizer 3a.
- the first heater 4 can be operated, but preparation for power generation can be made without operating the second heater. Can be made. Then, if the second heater 5 is operated after shifting to the power generation process, the first desulfurizer 3a is heated from both the reformer 1 and the second heater 5 when the second heater 5 is operated. 2 The power consumption of the heater 5 can be suppressed, and the first desulfurizer 3a can be activated quickly.
- FIG. 7 is a block diagram schematically showing the configuration of the fuel cell system 200 according to Embodiment 6 of the present invention.
- the fuel cell system 200 is supplied with electric power from the commercial power supply 300 in the start-up process, and operates each heater 4, 5 and the like with this electric power.
- the inverter 204 converts the DC power generated in the fuel cell 201 into AC power having the same frequency as the AC power frequency of the commercial power supply 300, and the fuel cell system 200 is linked to the commercial power supply 300. Electric power is supplied to the consumer 400.
- the customer 400 is provided with a fuel cell system 200, a commercial power source 300 or a power load 402 that consumes AC power supplied from the fuel cell system 200, and a circuit breaker 401.
- the fuel cell system 200 is one of the power loads for consuming power from the commercial power supply 300 in the start-up process. However, since the fuel cell system 200 supplies power in the power generation process, It is distinguished from the power load 402.
- the circuit breaker 401 is connected to wiring connected to the electric power load 402, wiring connected to the inverter 204 of the fuel cell system 200, and wiring connected to the commercial power supply 300. As a result, the power from the fuel cell system 200 is supplied to the power load 402 via the circuit breaker 401. When reverse power flow is possible, power from the fuel cell system 200 is also supplied to the commercial power supply 300 via the circuit breaker 401. Electric power from the commercial power source 300 is supplied to the fuel cell system 200 and the electric power load 402 via the circuit breaker 401.
- the circuit breaker 401 is preliminarily set with a circuit breaker power, and the circuit breaker 401 determines the AC power supply path from the commercial power supply 300 to the inverter 204 and the power load 402 in a batch or individually based on the circuit breaker power. It can be opened and closed. For this reason, when power is supplied from the commercial power source 300 to the fuel cell system 200 and the power load 402, if the power exceeds the breaking power, the breaker 401 disconnects the wirings, and the fuel cell system 200 and The supply of power to the power load 402 is stopped collectively or individually.
- the control device 6 sets the power supplied to the first heater 4 and the second heater based on the power set in advance so that the circuit breaker 401 blocks the power supply from the commercial power supply 300 (cut-off power). That is, the control device 6 acquires the cutoff power.
- the interruption power is input to the control device 6 when a user, a worker, or the like inputs the interruption power with a key (input unit) or the like.
- the control device 6 may be able to automatically obtain the breaking power from the breaker 401.
- This cut-off power may be a numerical value (W) indicating the power, or may be a level obtained by dividing the power stepwise, for example, A, B, C, D.
- the control device 6 uses, for example, a relationship such as an expression or a table in which the cutoff power and the supplied power are associated with each other, and supplies power to the first and second heaters 4 and 5 based on the acquired cutoff power. Set.
- the larger the cut-off power the larger the maximum power supply to the heaters 4, 5 is set, the power consumed by each heater 4, 5 increases, and the amount of heat generated by each heater 4, 5 increases.
- the first heater 4 or the second heater 5 is operated based on the set supply power.
- the heaters 4 and 5 are operated, power exceeding the cut-off power is supplied from the commercial power supply 300 to the fuel cell system 200 via the breaker 401, and the breaker 401 is prevented from cutting off the power supply. Is done.
- the situation where the hydrogen generator 100 and thus the fuel cell system 200 cannot be started is avoided.
- the power supplied to each heater 4 and 5 is determined according to the cut-off power set by each customer 400. For this reason, the larger the cut-off power, the greater the power supplied to the heaters 4 and 5, and the startup time of the hydrogen generator 100 is shortened.
- the power used is adopted for determining whether or not the circuit breaker 401 needs to be interrupted has been described.
- it may be configured to operate by determining whether or not it is necessary to shut off based on the current value used. That is, when a breaker current value is set in advance in the circuit breaker 401, the control device 6 acquires this breaker current value and based on this, supplies power to the first and second heaters 4 and 5. You only have to set it.
- FIG. 8 is a block diagram schematically showing the configuration of the fuel cell system 200 according to Embodiment 7 of the present invention. As shown in FIG. 8, the fuel cell system 200 according to Embodiment 7 further includes a wattmeter 206 in addition to the circuit breaker 401.
- the wattmeter 206 is provided on a distribution line that connects the commercial power supply 300 and the customer 400, and includes a current sensor and a voltage sensor.
- the power meter 206 obtains the power value supplied from the commercial power supply 300 to the consumer 400 based on the current and voltage of the power supplied from the commercial power supply 300 to the consumer 400 detected by each sensor, The power value is output to the control device 6.
- the power supplied to the consumer 400 is the power consumed by the fuel cell system 200 and the power load 402 in the consumer 400.
- the control device 6 does not overlap the operation of the first heater 4 and the operation of the second heater 5 when the difference value obtained by subtracting the supply power detected by the power meter 206 from the cut-off power is less than a predetermined value in the startup process.
- the predetermined value is a value larger than the supply power required to additionally operate the second heater 5 when only the first heater 4 is operating, and only the second heater 5 is operating.
- the value is greater than the supply power required to additionally operate the first heater 4, and when both heaters 4 and 5 are not operating, the total supply required to operate both heaters 4 and 5 It is a value larger than electric power.
- the control device 6 starts from the wattmeter 206 when both the heaters 4 and 5 are not operating when the fuel cell system 200 is started, that is, when the hydrogen generator 100 is started. Obtain power supply. If the difference value between the supplied power and the previously obtained cutoff power is less than a predetermined value larger than the total supplied power of both the heaters 4 and 5, the control device 6 determines that the first and second heaters 4 and 5 are Only the operation of the first heater 4 is started so as not to overlap. Thereby, the situation where the power supplied from the commercial power supply 300 exceeds the cutoff power and the fuel cell system 200 cannot be started is avoided. On the other hand, if the power difference value is greater than or equal to the predetermined value, both heaters 4 and 5 operate in duplicate. As a result, the supplied power increases but does not exceed the cut-off power. Therefore, the temperature of each reactor is raised to a predetermined temperature by both the heaters 4 and 5 while the start of the fuel cell system 200 is continued. Can be shortened.
- the control device 6 acquires supply power from the wattmeter 206. Since the supplied power includes the supplied power to the first heater 4, the control device 6 determines that the first value is less than a predetermined value larger than the supplied power to the second heater 5. And the 1st heater 4 is operated so that the 2nd heaters 4 and 5 may not operate redundantly. Thereby, the situation where the power supplied from the commercial power supply 300 exceeds the cutoff power and the fuel cell system 200 cannot be started is avoided. On the other hand, if the power difference value is equal to or greater than the predetermined value, the second heater 5 operates in addition to the first heater 4. Thereby, the start-up of the hydrogen generator 100 can be shortened.
- the operation of the first heater 4 was started and stopped after the hydrogen generator 100 was started, and then the operation of the second heater 5 was started.
- the operation of the second heater 5 may be stopped after the hydrogen generator 100 is started, and then the operation of the first heater 4 may be started.
- the operation of the second heater 5 is stopped and the operation of the first heater 4 is started. Is done.
- the operation of the first heater 4 when the desulfurization catalyst temperature becomes lower than the fifth temperature, the first heater 4 is stopped and the operation of the second heater 5 is restarted.
- the hydrogen generator 100, the control method thereof, and the fuel cell system 200 of the present invention suppress the situation where the hydrogen generator 100 cannot be activated, and reduce the hydrogen generator 100 and reduce the startup time.
- the apparatus 100 and its control method, and the fuel cell system 200 are useful.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Combustion & Propulsion (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
水素生成装置(100)は、改質器(1)と、CO除去器(2)と、第1脱硫器(3a)と、第1ヒータ(4)と、第2ヒータ(5)と、制御装置(6)と、を備え、前記制御装置は、前記第1ヒータおよび前記第2ヒータのうちの一方のヒータの動作を開始させた後に停止させ、その後、他方のヒータの動作を開始させるよう構成されている。
Description
本発明は、水素生成装置およびその制御方法、ならびに燃料電池システムに関し、特に、改質器で炭化水素を含む原料ガスと水とを改質反応させて水素含有ガスを生成する水素生成装置およびその制御方法、ならびに燃料電池システムに関する。
小型装置でも高効率発電ができる燃料電池は、分散型エネルギー供給源の発電装置として開発されている。燃料電池の発電に利用される燃料として水素ガスが用いられているが、水素ガスは一般的なインフラとして整備されていない。そこで、燃料電池が需要家で利用される場合、たとえば、都市ガス、LPG等の既存化石原料インフラから得られる原料から水蒸気改質反応で水素含有ガスを水素生成装置で生成させ、水素含油ガスを燃料電池に供給する構成がとられることが多い。なお、改質器の反応部には、反応に適した触媒、たとえば、Ru触媒やNi触媒が備えられている。
この水素含有ガス中には一酸化炭素が含まれるが、一酸化炭素は燃料電池の性能を低下させるため、一酸化炭素濃度を低減するCO除去器が設けられる。CO除去器として、一般的に、一酸化炭素および水蒸気を水性ガスシフト反応(変成反応)させるCO変成器と、一酸化炭素を主に微量空気等の酸化剤で酸化させるCO選択酸化器とが用いられる。CO変成器およびCO選択酸化器のそれぞれの反応部には、各反応に適した触媒、たとえば、CO変成器にはCu-Zn触媒、CO選択酸化器にはRu触媒等が備えられている。
このような分散型エネルギー供給源の長所は、必要な時に必要なエネルギーを得ることができる点である。このため、エネルギー需要のない時は燃料電池の発電が停止することが望ましい。ただし、これにより、燃料電池は頻繁に起動停止することが必要となり、燃料電池の起動に伴って水素生成装置は短時間で起動できることが求められる。水素生成装置が起動するためには、ヒータあるいは燃焼器等の加熱器を用いて水素の生成およびCOの除去のための各種触媒を速やかに適温に昇温する必要がある。
この水素生成装置の起動方法として、まず加熱器により加熱した原料をCO変成器に供給した後、改質器に原料を供給する方法が提案されている(たとえば、特許文献1参照)。
また別の水素生成装置の起動方法として、変成触媒層および脱硫触媒層をヒータで同時に昇温する方法が提案されている(たとえば、特許文献2参照)。
上述の特許文献2のように水素生成装置の起動方法として、CO変成器を優先的に昇温する方法が提案されている。しかしながら、水素生成装置を迅速に起動するためには、各反応器に備えられる改質触媒、CO変成触媒、CO選択酸化触媒、脱硫触媒等の触媒が各反応に適した温度に速やかに昇温されなければならない。このため、水素含有ガス中の一酸化炭素を除去する触媒を備える反応器だけでなく、他の触媒またはその反応器もヒータあるいは燃焼器等の加熱器により加熱する必要がある。
そこで、上述の特許文献1のように水素生成装置の起動時に各反応器などを同時にヒータで加熱することによって、昇温時間が短縮される。この場合、大容量または多くのヒータが必要になり、これに付随して大電力用の高価な電気制御機器や大きな電源容量が必要になるという課題があった。また、水素生成装置などの起動に必要な電力が一時的に非常に大きくなる。このため、水素生成装置などの起動に商用電源からの電力が用いられる場合、水素生成装置などの起動に必要な電力と家庭内の消費電力との合計電力が遮断器の設定容量以上になると、水素生成装置などが起動できないという課題があった。
これに対し、既存の電気制御機器および電源容量に合わせてヒータの電気容量を小さく抑えると、触媒が適温に昇温されるまで長時間を要する。これにより、水素生成装置の起動が長時間化するとともに、起動時の消費エネルギーが増大するという課題があった。
本発明はこのような課題を解決するためになされたものであり、水素生成装置の起動ができない状況を抑制し、水素生成装置のコンパクト化および起動時間の短縮化を図った水素生成装置およびその制御方法、ならびに燃料電池システムを提供することを目的とする。
本発明のある態様に係る水素生成装置は、炭化水素を含む原料ガスと水とを改質反応させて水素含有ガスを生成する改質器と、前記改質器で生成された水素含有ガス中の一酸化炭素を除去するCO除去器と、前記改質器に供給される原料ガス中の硫黄を水素と反応させて除去する第1脱硫器と、前記CO除去器を加熱する第1ヒータと、前記第1脱硫器を加熱する第2ヒータと、前記第1ヒータおよび前記第2ヒータの動作を制御する制御装置と、を備え、前記制御装置は、前記第1ヒータおよび前記第2ヒータのうちの一方のヒータの動作を開始させた後に停止させ、その後、他方のヒータの動作を開始させるよう構成されている。
本発明は、上記構成を有し、水素生成装置の起動ができない状況を抑制し、水素生成装置のコンパクト化および起動時間の短縮化を図った水素生成装置およびその制御方法、ならびに燃料電池システムを提供することができるという効果を奏する。
第1の本発明に係る水素生成装置は、炭化水素を含む原料ガスと水とを改質反応させて水素含有ガスを生成する改質器と、前記改質器で生成された水素含有ガス中の一酸化炭素を除去するCO除去器と、前記改質器に供給される原料ガス中の硫黄を水素と反応させて除去する第1脱硫器と、前記CO除去器を加熱する第1ヒータと、前記第1脱硫器を加熱する第2ヒータと、前記第1ヒータおよび前記第2ヒータの動作を制御する制御装置と、を備え、前記制御装置は、前記第1ヒータおよび前記第2ヒータのうちの一方のヒータの動作を開始させた後に停止させ、その後、他方のヒータの動作を開始させるよう構成されている。
第2の本発明に係る水素生成装置は、第1の発明において、前記制御装置は、前記一方のヒータの動作を開始させた後に停止させ、その後、前記他方のヒータの動作を開始させた後に停止させ、その後、前記一方のヒータの動作を再度開始させるよう構成されていてもよい。
第3の本発明に係る水素生成装置は、第1または第2の発明において、前記一方のヒータは、前記第1ヒータであり、前記他方のヒータは、前記第2ヒータであってもよい。
第4の本発明に係る水素生成装置は、第3の発明において、前記CO除去器の温度を検出するCO除去温度検出器をさらに備え、前記制御装置は、前記第1ヒータの動作を開始させ、その後、前記CO除去器温度検出器の検出温度が予め設定された第1温度以上となった場合、前記第1ヒータの動作を停止させ、その後、前記第2ヒータの動作を開始させるよう構成されていてもよい。
第5の本発明に係る水素生成装置は、第3または第4の発明において、前記改質器、前記CO除去器および前記第1脱硫器のうちの少なくとも1つを加熱する燃焼器と、と、前記改質器に原料ガスを供給する原料供給器と、前記改質器に水を供給する水供給器と、をさらに備え、前記制御装置は、前記第1ヒータと前記原料供給器と前記燃焼器との動作を開始させ、その後、前記水供給器の動作を開始させ、かつ、前記第1ヒータの動作を停止させ、その後、前記第2ヒータの動作を開始させるよう構成されていてもよい。
第6の本発明に係る水素生成装置は、第3~第5のいずれかに1つの発明において、前記CO除去器は、変成反応により前記水素含有ガス中の一酸化炭素を除去するCO変成器と、CO選択酸化反応により前記水素含有ガス中の一酸化炭素を除去するCO選択酸化器と、を含み、前記第1ヒータは、前記CO変成器および前記CO選択酸化器のうちの少なくとも一方を加熱してもよい。
第7の本発明に係る水素生成装置は、第6の発明において、前記CO変成器の温度を検出するCO変成温度検出器と、前記CO選択酸化器の温度を検出するCO選択酸化温度検出器をさらに備え、前記制御装置は、前記第1ヒータの動作を開始させ、その後、前記CO変成温度検出器の検出温度が予め設定された第2温度以上となり、かつ、前記CO選択酸化温度検出器の検出温度が予め設定された第3温度以上となった場合に前記第1ヒータの動作を停止させ、その後、前記第2ヒータの動作を開始させるよう構成されていてもよい。
第8の本発明に係る水素生成装置は、第3~第7のいずれか1つの発明において、前記原料ガス中の硫黄を水素と反応させずに吸着して硫黄を除去する第2脱硫器と、前記原料ガスの供給先を前記第1脱硫器と前記第2脱硫器とに切り替える原料ガス切り替え器と、をさらに備えていてもよい。
第9の本発明に係る水素生成装置は、第8の発明において、前記第1脱硫器の温度を検出する脱硫温度検出器をさらに備え、前記制御装置は、前記第1ヒータの動作を開始させた後に停止させ、その後、前記第2ヒータの動作を開始させ、前記脱硫温度検出器の検出温度が予め設定された第4温度以上になった場合に前記原料ガスの供給先を前記第2脱硫器から前記第1脱硫器へ前記原料ガス切り替え器により切り替わるよう構成されていてもよい。
第10の本発明に係る水素生成装置は、第3~第9のいずれか1つの発明において、前記第1脱硫器の温度を検出する脱硫温度検出器をさらに備え、前記制御装置は、前記脱硫温度検出器により検出された温度が予め設定された第5温度以上になった場合に前記第2ヒータの動作を停止させてもよい。
第11の本発明に係る水素生成装置は、第3~第10のいずれか1つの発明において、前記CO除去器は、変成反応により前記水素含有ガス中の一酸化炭素を除去するCO変成器と、CO選択酸化反応により前記水素含有ガス中の一酸化炭素を除去するCO選択酸化器と、を含み、前記CO変成器の温度を検出するCO変成温度検出器と、前記CO選択酸化器の温度を検出するCO選択酸化温度検出器をさらに備え、前記制御装置は、前記第2ヒータを動作させ、その後、前記CO変成温度検出器の検出温度が予め設定された第6温度未満であった場合、および、前記CO選択酸化温度検出器の検出温度が予め設定された第7温度未満であった場合、のうちの少なくとも一方の場合に、前記第2ヒータを停止させ、前記第1ヒータを動作させてもよい。
第12の本発明に係る燃料電池システムは、第3~第11のいずれか1つの発明の水素生成装置と、前記水素生成装置から供給される水素含有ガスである燃料ガスと酸化剤ガスとを反応させて発電する燃料電池と、前記燃料電池に前記酸化剤ガスを供給する酸化剤ガス供給器と、前記燃料電池により発電された直流電力を交流電力に変換するインバータと、前記改質器、前記CO除去器および前記第1脱硫器のうちの少なくとも1つを加熱する燃焼器と、前記水素生成装置に原料ガスを供給する原料供給器と、を備える燃料電池システムであって、前記水素生成装置が備える制御装置は、前記燃料電池の発電前に行う起動工程では前記第1ヒータの動作および前記第2ヒータの動作を重複しないように実行させ、前記燃料電池の発電を開始させる発電工程では前記第1ヒータおよび前記第2ヒータの動作を停止させ、かつ、前記起動工程より多い原料ガスを前記原料供給器により前記水素生成装置に供給するよう構成されていてもよい。
第13の本発明に係る燃料電池システムは、第12の発明において、商用電源に繋がる遮断器に前記インバータが接続され、前記起動工程において前記商用電源から前記遮断器を介して電力が供給される燃料電池システムであって、前記制御装置は、前記遮断器が前記商用電源からの電力供給を遮断するように予め設定された遮断電力に基づいて前記第1ヒータおよび前記第2ヒータに供給される電力を設定してもよい。
第14の本発明に係る燃料電池システムは、第13の発明において、前記商用電源に繋がる前記遮断器に前記インバータと共に接続される電力負荷を含む需要家に設けられる燃料電池システムであって、前記商用電源と前記遮断器とを繋ぐ配電線に設けられ、前記商用電源から前記需要家に供給されている電力を検出する電力計をさらに備え、前記制御装置は、前記遮断電力から前記電力計により検出された前記供給電力を引いた電力差が所定値未満である場合に前記第1ヒータの動作および前記第2ヒータの動作を重複しないように実行させ、前記電力差が前記所定値以上である場合に前記第1ヒータの動作および前記第2ヒータの動作を重複して実行させるよう構成されていてもよい。
第15の本発明に係る水素生成装置の制御方法は、炭化水素を含む原料ガスと水とを改質反応させて水素含有ガスを生成する改質器と、前記改質器で生成された水素含有ガス中の一酸化炭素を除去するCO除去器と、前記改質器に供給される原料ガス中の硫黄を水素と反応させて除去する第1脱硫器と、前記CO除去器を加熱する第1ヒータと、前記第1脱硫器を加熱する第2ヒータと、前記第1ヒータおよび前記第2ヒータの動作を制御する制御装置と、を備えた水素生成装置の制御方法であって、前記制御装置は、前記第1ヒータおよび前記第2ヒータのうちの一方のヒータの動作を開始させた後に停止させ、その後、他方のヒータの動作を開始させるように、前記第1ヒータおよび前記第2ヒータを制御する。
以下、本発明の実施の形態を、図面を参照しながら具体的に説明する。
なお、以下では全ての図面を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
(実施の形態1)
(水素生成装置の構成)
図1は、本発明の実施の形態1に係る水素生成装置100の構成を概略的に示すブロック図である。
(水素生成装置の構成)
図1は、本発明の実施の形態1に係る水素生成装置100の構成を概略的に示すブロック図である。
水素生成装置100は、改質器1、CO除去器2および第1脱硫器3の各反応部、第1ヒータ4、第2ヒータ5ならびに制御装置6を備える。水素生成装置100は、CO除去温度検出器10、脱硫温度検出器11、燃焼器7、原料供給器8および水供給器9をさらに備えていてもよい。
改質器1は、炭化水素を含む原料ガスと水とを改質反応させて水素含有ガスを生成する反応器である。改質器1は、Ru触媒などの改質触媒を筐体内に収容し、該筐体には、原料ガス流路を介して原料供給器8に接続され、改質水流路を介して水供給器9に接続される。原料供給器8によって供給される原料ガスとしては、天然ガス、LPG等の炭化水素成分、メタノール等のアルコール、あるいはナフサ成分等が挙げられる。水供給器9により供給される水は、液体状態だけでなく、気体状態(水蒸気)も採り得る。改質器1の適所には改質温度検出器20が設けられ、該改質温度検出器20は、改質器1の温度(たとえば、改質触媒の温度)を検出する。
CO除去器2は、水素含有ガス流路を介して改質器1に接続され、改質器1で生成した水素含有ガス中の一酸化炭素を除去する反応器である。この一酸化炭素を除去する触媒には、Cu-Zn系触媒などのCO除去触媒を用いることができる。CO除去器2には、第1ヒータ4およびCO除去温度検出器10が設けられている。第1ヒータ4は、CO除去器2を加熱するためのヒータであって、たとえば、シーズ型のヒータが用いられる。また、CO除去温度検出器10は、CO除去器2の温度、特に、CO除去器2内のCO除去触媒の温度を検出する。
第1脱硫器3は、原料ガス流路において原料供給器8と改質器1との間に設けられ、改質器1に供給される原料ガス中の硫黄を水素と反応させて除去する反応器である。この反応には、金属酸化物系脱硫触媒が用いられる。第1脱硫器3には、第2ヒータ5および脱硫温度検出器11が設けられる。第2ヒータ5は第1脱硫器3を加熱するためのヒータであり、たとえば、シーズ型のヒータが用いられる。また、脱硫温度検出器11は、第1脱硫器3の温度、特に、第1脱硫器3内の脱硫触媒の温度を検出する。
燃焼器7は、たとえば、原料ガスの一部あるいは水素生成装置100の水素ガス供給先(たとえば、燃料電池)から戻された残余水素含有ガス(燃料排ガス)を燃焼させる火炎バーナーと、この残余水素含有ガスと共に燃焼させる空気を供給するためのファンとで構成される。燃焼器7は、改質器1の近傍に設置され、改質器1を加熱する。なお、燃焼器7は、CO除去器2および第1脱硫器3をさらに加熱することもできる。たとえば、CO除去器2又は第1脱硫器3を燃焼器7又は改質器1の近傍に適宜配設することにより、燃焼器7によってこれらCO除去器2又は第1脱硫器3を加熱することができる。あるいは、改質器1が加熱されることに伴って改質器1内の高温になった原料ガスがCO除去器2へ導入されることにより、該CO除去器2を加熱することができる。
制御装置6としては、マイクロコントローラ、CPU、MPU、論理回路、PLC(Programmable Logic Controller)等が例示される。制御装置6は、CO除去温度検出器10および脱硫温度検出器11により検出された温度に基づき、少なくとも第1ヒータ4、第2ヒータ5の動作(たとえば、オン/オフ動作)を制御する。具体的に説明すると、制御装置6は、水素生成装置100の起動時に、第1ヒータ4および第2ヒータ5のうちの一方のヒータの動作を開始させた後に所定のタイミングで停止させ、その後、他方のヒータの動作を開始させる。さらに、制御装置6は、他方のヒータの動作を開始させた後に所定のタイミングで停止させ、その後、一方のヒータの動作を再度開始させる。このように、制御装置6は、水素生成装置100の起動時においては、第1ヒータ4と第2ヒータ5とを重複しないように動作させる。なお、上記「一方のヒータ」を第1ヒータ4とし、「他方のヒータ」を第2ヒータ5としてもよいし、その逆に、上記「一方のヒータ」を第2ヒータ5」とし、「他方のヒータ」を第1ヒータ4としてもよい。
制御装置6は、改質温度検出器20により検出された温度などに基づき、燃焼器7、原料供給器8、水供給器9の動作も制御する。たとえば制御装置6は、原料供給器8を制御して、改質器1へ供給される原料ガスの流量を調整する。また、制御装置6は、水供給器9を制御して、改質器1に供給される水の流量を調整する。
なお、CO除去器2に設けられるCO除去温度検出器10は、CO除去器2内に収容される触媒層の中に配置され、触媒層の温度を直接的に測定してもよい。さらに、CO除去温度検出器10は、触媒層の温度と相関がある物の温度、たとえば、触媒層を収容するCO除去温度検出器10の壁などの温度、CO除去温度検出器10の近傍の温度、あるいは、CO除去温度検出器10に流入または流出するガスの温度を測定することによって触媒層の温度を間接的に測定してもよい。同様に、改質器1に設けられる改質温度検出器20も、改質器1内に収容される触媒層の温度を直接的または間接的に測定できればよい。第1脱硫器3に設けられる脱硫温度検出器11も、第1脱硫器3内に収容される触媒層の温度を直接的または間接的に測定できればよい。
(水素生成装置の起動時の制御方法)
水素生成装置100の起動において、第1ヒータ4によるCO除去器2の加熱と、第2ヒータ5による第1脱硫器3の加熱とを、互いに重複しないタイミングで行うと共に、これらの加熱の間に燃焼器7によって改質器1を加熱する。また、CO除去器2の加熱から第1脱硫器3の加熱への切り替えは、CO除去温度検出器10の検出温度が所定の第1温度以上であることを条件としている。
水素生成装置100の起動において、第1ヒータ4によるCO除去器2の加熱と、第2ヒータ5による第1脱硫器3の加熱とを、互いに重複しないタイミングで行うと共に、これらの加熱の間に燃焼器7によって改質器1を加熱する。また、CO除去器2の加熱から第1脱硫器3の加熱への切り替えは、CO除去温度検出器10の検出温度が所定の第1温度以上であることを条件としている。
具体的には、水素生成装置100の起動動作において、制御装置6は、第1ヒータ4の動作を開始させる。これにより、CO除去器2が加熱される。制御装置6は、CO除去温度検出器10により検出されたCO除去触媒の温度が予め設定された第1温度以上になるように、第1ヒータ4をオン(通電)したりオフ(非通電)したりと制御する。ここで、第1温度は、CO除去触媒が一酸化炭素を除去する機能を好適に発揮することができる温度、たとえば、180℃~300℃、好ましくは200℃に設定される。
第1ヒータ4の動作開始と同時、または、所定の条件Aが実現すると、制御装置6は、原料供給器8および燃焼器7を動作させる。これにより、原料供給器8から図示しないバイパス流路を通じて又は燃料電池等を通じて供給された原料ガスが燃焼器7で燃焼され、改質器1および改質器1内の原料ガスが加熱される。昇温した原料ガスは改質器1からCO除去器2へ流入する。この際、CO除去触媒の温度が低いと、原料ガスに含まれる水蒸気がCO除去器2で凝縮してしまう。この水の凝縮を防止するため、たとえば、起動時にCO除去触媒の温度が25℃程度の常温である場合を想定し、上記「所定の条件A」を「CO除去温度検出器10の検出温度が120℃以上」と定めることができる。
次に、CO除去温度検出器10の検出温度が第1温度以上となり、かつ、所定の条件Bが実現したら、制御装置6は、水供給器9を制御して改質器1に水(改質水)を供給する。ここで、「所定の条件B」とは、燃焼器7の燃焼状態が安定していること、かつ、改質器1の温度が予め定められた所定の温度、たとえば、150℃程度に達していることである。
改質水の供給開始と同時またはその後に、制御装置6は、第1ヒータ4の動作を停止させ、その後、第2ヒータ5の動作を開始させる。第2ヒータ5が動作することによって、第1脱硫器3が加熱され昇温する。制御装置6は、脱硫温度検出器11により検出された第1脱硫器3の触媒(第1脱硫触媒)の温度が予め設定された第5温度以上となるように、第2ヒータ5を制御する。この第5温度は、脱硫触媒が好適に機能する温度、たとえば、200℃~300℃、好ましく、200℃に設定される。
第2ヒータ5の動作開始後、所定の条件Cが実現し、且つ、CO除去温度検出器10の検出温度がCO除去触媒の機能する第1温度未満になった場合には、制御装置6は、第2ヒータ5の動作を停止させてから、第1ヒータ4の動作を再度開始させる。これにより、CO除去器2が第1ヒータ4により加熱し直され、CO除去器2内のCO除去触媒の温度はCO除去触媒の機能に適した温度に維持される。ここで、「所定の条件C」とは、改質器1の温度が、改質反応が好適に進行する温度、たとえば、450℃以上に達していることとすることができる。
第1ヒータ4の動作再開によってCO除去温度検出器10の検出温度が所定の温度(たとえば第1温度)以上になったら、制御装置6は、第1ヒータ4の動作を停止させてから、第2ヒータ5の動作を再開する。そして、制御装置6は、脱硫温度検出器11の検出温度が第5温度以上となるように第2ヒータ5を制御する。これにより、第1脱硫器3が第2ヒータ5により加熱し直され、第1脱硫器3内の第1脱硫触媒の温度は脱硫触媒の機能に適した温度に維持される。
脱硫温度検出器11の検出温度が第5温度に達したら、制御装置6は、第2ヒータ5の動作を停止させる。そして、所定の条件Dが実現すれば、水素生成装置100の起動を完了とする。この「所定の条件D」は、改質器1およびCO除去器2の反応器が安定して機能していること、たとえば、改質触媒の温度が、600~650℃、特に、550℃以上であり、CO除去触媒の温度が200℃以上であること、と設定することができる。
なお、第1ヒータ4の動作中であっても、CO除去温度検出器10の検出温度が所定の温度以上になれば、制御装置6は第1ヒータ4をオフにする制御を行う。同様に、第2ヒータ5の動作中であっても、脱硫温度検出器11の検出温度が所定の温度以上になれば、制御装置6は第2ヒータ5をオフにする制御を行う。この各ヒータ4、5がオフにされた状態もヒータ4、5の動作に含まれる。即ち、通電されているか否かにかかわらず、所定温度以上となるように制御装置6が制御対象としているヒータが「動作中のヒータ」である。なお、この所定の温度は、たとえば、第1脱硫器3またはCO除去器2に収容される触媒の使用温度である。
(作用、効果)
上記水素生成装置100によれば、第1ヒータ4および第2ヒータ5を同時に動作させないことにより、水素生成装置100の起動時における消費電力を抑制することができる。このため、水素生成装置100などの起動に商用電源からの電力が用いられる場合であっても、水素生成装置100の起動に必要な電力と家庭内の消費電力との合計電力が遮断器の設定容量以上になって、水素生成装置100が起動できない事態を回避することができる。
上記水素生成装置100によれば、第1ヒータ4および第2ヒータ5を同時に動作させないことにより、水素生成装置100の起動時における消費電力を抑制することができる。このため、水素生成装置100などの起動に商用電源からの電力が用いられる場合であっても、水素生成装置100の起動に必要な電力と家庭内の消費電力との合計電力が遮断器の設定容量以上になって、水素生成装置100が起動できない事態を回避することができる。
また、第1ヒータ4および第2ヒータ5の動作を切り替えることにより、ヒータの容量および数を増加させずに、各反応器に備えられる触媒を各反応に適した温度に速やかに順次昇温することができる。さらに、電気制御機器の高価格化や電源容量の増加が抑えられる。
(実施の形態2)
実施の形態2では、CO除去器2は、CO変成器2aおよびCO選択酸化器2bを含み、第1ヒータ4は、CO変成器2aおよびCO選択酸化器2bのうちの少なくとも一方を加熱する。図2は、本発明の実施の形態2に係る水素生成装置100の構成を概略的に示すブロック図である。
実施の形態2では、CO除去器2は、CO変成器2aおよびCO選択酸化器2bを含み、第1ヒータ4は、CO変成器2aおよびCO選択酸化器2bのうちの少なくとも一方を加熱する。図2は、本発明の実施の形態2に係る水素生成装置100の構成を概略的に示すブロック図である。
(水素生成装置の構成)
CO変成器2aは、水素含有ガス流路により改質器1に接続され、水蒸気シフト反応(変成反応)によって水素含有ガス中の一酸化炭素を除去するCO除去器である。CO変成器2aはCu-Zn系変成触媒などのCO変成触媒を収容し、CO変成器2aには第1ヒータ4およびCO変成温度検出器10aが設けられる。
CO変成器2aは、水素含有ガス流路により改質器1に接続され、水蒸気シフト反応(変成反応)によって水素含有ガス中の一酸化炭素を除去するCO除去器である。CO変成器2aはCu-Zn系変成触媒などのCO変成触媒を収容し、CO変成器2aには第1ヒータ4およびCO変成温度検出器10aが設けられる。
CO選択酸化器2bは、水素含有ガス流路によりCO変成器2aに接続され、水素含有ガス中の一酸化炭素を除去するCO除去器である。CO選択酸化器2bでは、導入された空気中の酸素により一酸化炭素がCO選択酸化反応することによって、一酸化炭素が低減する。CO選択酸化器2bはRu系選択酸化触媒などのCO選択酸化触媒を収容し、CO選択酸化器2bには第1ヒータ4およびCO選択酸化温度検出器10bが設けられる。
第1ヒータ4は、たとえば、シーズ型のヒータであって、CO変成器2aおよびCO選択酸化器2bを加熱する。ただし、第1ヒータ4は、CO変成器2aおよびCO選択酸化器2bのいずれか一方だけを加熱してもよい。また、第1ヒータ4は、CO変成器2aおよびCO選択酸化器2bのそれぞれに設けられたが、CO変成器2aおよびCO選択酸化器2bの近傍に設置されてもよい。これにより、第1ヒータ4はCO変成器2aおよびCO選択酸化器2bの両方を同時に加熱することができる。
CO変成温度検出器10aは、CO変成器2aの温度、特に、CO変成器2aの内のCO変成触媒の温度を検出する。CO選択酸化温度検出器10bは、CO選択酸化器2bの温度、特に、CO選択酸化器2b内のCO選択酸化触媒の温度を検出する。なお、CO変成温度検出器10aおよびCO選択酸化温度検出器10bは、実施の形態1で説明したCO除去温度検出器10と同様に、CO変成器2aやCO選択酸化器2bの中に収容される触媒層の温度を直接的または間接的に測定する。
制御装置6は、CO変成温度検出器10a、CO選択酸化温度検出器10bおよび脱硫温度検出器11により検出された温度に基づき、第1ヒータ4および第2ヒータ5の動作を制御する。
(水素生成装置の起動時の制御方法)
本実施の形態に係る水素生成装置100の起動においても、第1ヒータ4によるCO除去器2(CO変成器2aおよびCO選択酸化器2b)の加熱と、第2ヒータ5による第1脱硫器3の加熱とを、互いに重複しないタイミングで行うと共に、これらの加熱の間に燃焼器7によって改質器1を加熱する。但し、本実施の形態の制御装置6は、第1ヒータ4の動作を開始させ、その後、CO変成温度検出器10aの温度が予め設定された第2温度以上となり、かつ、CO選択酸化温度検出器10bの温度が予め設定された第3温度以上となった場合、第1ヒータ4の動作を停止させ、その後、第2ヒータ5の動作を開始させる。
本実施の形態に係る水素生成装置100の起動においても、第1ヒータ4によるCO除去器2(CO変成器2aおよびCO選択酸化器2b)の加熱と、第2ヒータ5による第1脱硫器3の加熱とを、互いに重複しないタイミングで行うと共に、これらの加熱の間に燃焼器7によって改質器1を加熱する。但し、本実施の形態の制御装置6は、第1ヒータ4の動作を開始させ、その後、CO変成温度検出器10aの温度が予め設定された第2温度以上となり、かつ、CO選択酸化温度検出器10bの温度が予め設定された第3温度以上となった場合、第1ヒータ4の動作を停止させ、その後、第2ヒータ5の動作を開始させる。
具体的には、水素生成装置100の起動動作において、制御装置6は、第1ヒータ4の動作を開始させる。これにより、CO変成器2aおよびCO選択酸化器2bが加熱される。制御装置6は、CO変成温度検出器10aで検出されたCO変成触媒の温度が予め設定された第2温度以上となり、かつ、CO選択酸化温度検出器10bで検出されたCO選択酸化触媒の温度が予め設定された第3温度以上となるように、第1ヒータ4を制御する。この第2温度は、CO変成触媒が機能する温度、たとえば、180~300度、好ましくは200℃に設定される。また、第3温度は、CO選択酸化触媒が機能する温度、たとえば、100~180度、好ましくは140℃に設定される。
ここで、第1ヒータ4の動作中において、CO変成温度検出器10aの検出温度が第2温度未満であっても、CO選択酸化温度検出器10bの検出温度が第3温度以上である場合がある。この場合、制御装置6は、CO変成器2aを加熱する第1ヒータ4をオンにしながら、CO選択酸化器2bを加熱している第1ヒータ4をオフにするように第1ヒータ4を制御する。これにより、2つの第1ヒータ4のうち一方は一時的にオフになるが、第1ヒータ4は加熱するための制御が行われているため、第1ヒータ4は動作しているとみなす。なお、CO選択酸化温度検出器10bによるCO選択酸化器2bの検出温度が第3温度未満であり、CO変成温度検出器10aによるCO変成器2aの検出温度が第2温度以上である場合についても、上記の場合と同様に制御すればよい。また、第1ヒータ4が、CO変成器2aおよびCO選択酸化器2bを個別に加熱できない構成の場合は、両方が適温になるまで第1ヒータ4を動作させる。
第1ヒータ4の動作開始と同時、または、所定の条件Eが実現したら、制御装置6は、原料供給器8および燃焼器7を動作させる。これにより、原料供給器8から供給された原料ガスが燃焼器7にて燃焼され、改質器1および改質器1内の原料ガスが加熱される。昇温した原料ガスは改質器1からCO変成器2aおよびCO選択酸化器2bへ流入する。この際、CO変成器2aおよびCO選択酸化器2bの温度が低いと、原料ガスに含まれる水蒸気がCO変成器2aおよびCO選択酸化器2bで凝縮してしまう。この水の凝縮を防止するため、「所定の条件E」は、所定の条件Aと同様に、たとえば、起動時にCO変成器2aおよびCO選択酸化器2bの温度が25℃程度の常温である場合を想定し、「CO変成温度検出器10aの検出温度が120℃以上であって、CO選択酸化温度検出器10bの検出温度が100℃以上であること」と定めることができる。
次に、CO変成温度検出器10aの検出温度が第2温度以上となり、かつ、CO選択酸化温度検出器10bの検出温度が第3温度以上となって、さらに、所定の条件B(実施の形態1参照)が実現したら、制御装置6は、水供給器9を制御して改質器1に水を供給する。
改質水の供給開始と同時またはその後に、制御装置6は、第1ヒータ4の動作を停止させ、その後、第2ヒータ5の動作を開始させる。第2ヒータ5が動作することによって、第1脱硫器3が加熱され昇温する。制御装置6は、脱硫温度検出器11により検出された第1脱硫器3の温度が第5温度以上となるように、第2ヒータ5を制御する。
第2ヒータ5の動作開始後、所定の条件Fが実現し、CO変成温度検出器10aの検出温度が第6温度未満になり、CO選択酸化温度検出器10bの検出温度が第7温度未満であった場合には、制御装置6は、第2ヒータ5の動作を停止させてから、第1ヒータ4の動作を再度開始させる。これにより、CO変成器2aおよびCO選択酸化器2bが第1ヒータ4により加熱し直され、CO変成触媒およびCO選択酸化触媒の温度は各触媒の機能に適した温度に維持される。ここで、第6温度は、第2温度と同様にCO変成触媒が好適に機能する温度、たとえば、180~300℃、好ましくは、200℃と予め設定されている。第7温度は、第3温度と同様にCO選択酸化触媒が好適に機能する温度、たとえば、100~180℃、好ましくは、170℃と予め設定されている。また、「所定の条件F」とは、改質器1の温度が、改質反応が進行する温度、たとえば、450℃以上に達し、かつ、CO選択酸化触媒の温度は、当該触媒が好適に機能する温度、たとえば、170℃以上、と設定することができる。
第1ヒータ4の動作再開によってCO変成温度検出器10aおよびCO選択酸化温度検出器10Bの検出温度が所定の温度(たとえば、それぞれ第2温度および第3温度)以上になったら、制御装置6は、第1ヒータ4の動作を停止させてから、第2ヒータ5の動作を再開する。そして、制御装置6は、脱硫温度検出器11の検出温度が第5温度以上となるように第2ヒータ5を制御する。その後、脱硫温度検出器11の検出温度が第5温度に達したら、制御装置6は、第2ヒータ5の動作を停止させる。そして、所定の条件Gが実現すると、水素生成装置100の起動を完了とする。この「所定の条件G」は、改質器1、CO変成器2aおよびCO選択酸化器2bの各反応器が安定して機能していること、たとえば、改質触媒温度が550℃以上であって、CO変成触媒の温度が200℃以上であり、かつ、CO選択酸化触媒の温度が170℃以上であること、と設定することができる。
(作用、効果)
上記構成によれば、水素生成装置100の起動動作において、所定の温度に達した改質器1に原料および水が供給され、改質器1において水蒸気改質反応により水素含有ガスの生成が開始される。この開始時には、第1ヒータ4により、CO変成器2a内のCO変成触媒およびCO選択酸化器2b内のCO選択酸化触媒は、各触媒の機能に適した所定の温度に達している。このため、改質器1での水素含有ガスの生成開始後は、CO変成触媒およびCO選択酸化触媒の各温度が所定の温度に達することを待つことなく、水素含有ガスに含まれる一酸化炭素を各触媒の働きによって所定の値以下(概ね10ppm以下)に速やかに低減できる。これにより、本実施の形態に係る水素生成装置100は、一酸化炭素が低減された水素含有ガスを短時間で生成することができる。
上記構成によれば、水素生成装置100の起動動作において、所定の温度に達した改質器1に原料および水が供給され、改質器1において水蒸気改質反応により水素含有ガスの生成が開始される。この開始時には、第1ヒータ4により、CO変成器2a内のCO変成触媒およびCO選択酸化器2b内のCO選択酸化触媒は、各触媒の機能に適した所定の温度に達している。このため、改質器1での水素含有ガスの生成開始後は、CO変成触媒およびCO選択酸化触媒の各温度が所定の温度に達することを待つことなく、水素含有ガスに含まれる一酸化炭素を各触媒の働きによって所定の値以下(概ね10ppm以下)に速やかに低減できる。これにより、本実施の形態に係る水素生成装置100は、一酸化炭素が低減された水素含有ガスを短時間で生成することができる。
また、第1ヒータ4は、CO変成器2aとCO選択酸化器2bを同時に加熱することができる構成となっているため、CO変成器2aおよびCO選択酸化器2bの温度を同時に上昇することができる。このため、部品点数が少なく、低コスト化が図れると共に、CO変成器2aおよびCO選択酸化器2bの昇温時間の短縮化が図られる。
さらに、実施の形態1と同様に、第1ヒータ4および第2ヒータ5を同時に動作させないことにより、水素生成装置100の起動時における消費電力が抑制され、水素生成装置100が起動できない事態を回避することができる。また、第1ヒータ4および第2ヒータ5の動作を切り替えることにより、電気制御機器の高価格化や電源容量の増加が抑えられながら、各反応器を適切な温度に速やかに順次昇温することができる。
(実施の形態3)
図3は、本発明の実施の形態3に係る水素生成装置100の構成を概略的に示すブロック図である。この図3に示すように、実施の形態3に係る水素生成装置100は、第2脱硫器3b、原料ガス切り替え器13および水素含有ガス供給器12を備える。
図3は、本発明の実施の形態3に係る水素生成装置100の構成を概略的に示すブロック図である。この図3に示すように、実施の形態3に係る水素生成装置100は、第2脱硫器3b、原料ガス切り替え器13および水素含有ガス供給器12を備える。
(水素生成装置の構成)
第2脱硫器3bは、原料ガス流路により原料供給器8に接続され、原料ガス中の硫黄を水素と反応させずに吸着して硫黄を除去する吸着脱硫器である。
第2脱硫器3bは、原料ガス流路により原料供給器8に接続され、原料ガス中の硫黄を水素と反応させずに吸着して硫黄を除去する吸着脱硫器である。
第1脱硫器3aは、原料ガス流路において原料供給器8と改質器1との間に設けられ、原料ガス中の硫黄を水素と反応させた後に吸着することにより原料ガス中の硫黄を除去する水添脱硫器である。この反応には、常温でも吸着能力を有すCu-Zn系の水添脱硫触媒が用いられる。第1脱硫器3aには、第2ヒータ5および脱硫温度検出器11aが設けられる。なお、第1脱硫器3aに設けられる脱硫温度検出器11aは、CO除去温度検出器10と同様に、第1脱硫器3a内に収容される触媒層の温度を直接的または間接的に測定する。
原料ガス切り替え器13は、原料ガスの供給先を第1脱硫器3aと第2脱硫器3bとの間で切り替える装置である。たとえば、原料ガス切り替え器13は、第2脱硫器3bの上流側および下流側にそれぞれ配設された三方弁から成る第1弁13aおよび第2弁13bと、第2脱硫器3bを迂回して第1弁13aおよび第2弁13bを接続する原料ガス分岐流路とを有する。即ち、原料ガス分岐流路は、第1弁13aおよび第2弁13bを介して原料ガス流路に接続される。従って、第1弁13aおよび第2弁13bの連通方向を適宜選択することにより、原料ガスが、原料ガス流路に沿って第2脱硫器3bおよび第1脱硫器3aを通過する状態と、原料ガス流路から途中で原料ガス分岐流路を通り、再び原料ガス流路へ戻って第1脱硫器3aを通過する状態とを、切り替えることができる。このうち後者の状態の場合、原料ガスは第2脱硫器3bを通らない。
燃焼器7は、改質器1、CO変成器2a、CO選択酸化器2bおよび第1脱硫器3aのうち少なくとも1つの反応器の近傍に設置され、この反応器を加熱する。
水素生成装置100は、CO変成器2aを経た水素含有ガスの一部を第1脱硫器3aへ供給するための水素含有ガス分岐流路を有している。この水素含有ガス分岐流路は、その一端がCO変成器2aとCO選択酸化器2bとの間の水素含有ガス流路に接続され、他端が原料ガス切り替え器13と原料供給器8との間の原料ガス流路に接続される。そして、この水素含有ガス分岐流路上に、ポンプや流量調整弁等から構成される水素含有ガス供給器12が設けられている。水素含有ガス供給器12が水素含有ガス分岐流路における水素含有ガスの圧力および流量を調節することにより、CO変成器2aの出口から排出された水素含有ガスの一部が、第1脱硫器3aに供給される。なお、水素含有ガス分岐流路の一端は、CO変成器2aとCO選択酸化器2bとの間の水素含有ガス流路でなく、CO選択酸化器2bの出口側の水素含有ガス流路に接続されてもよい。この場合、CO選択酸化器2bの出口から排出された水素含有ガスの一部が、第1脱硫器3aに供給される。
制御装置6は、CO変成温度検出器10a、CO選択酸化温度検出器10b、脱硫温度検出器11aで検出される温度に基づき、第1ヒータ4および第2ヒータ5の動作を制御する。また、制御装置6は、燃焼器7、原料供給器8、水供給器9、水素含有ガス供給器12および原料ガス切り替え器13の動作を制御する。
(水素生成装置の起動時の制御方法)
水素生成装置100の起動においては、制御装置6は、第1ヒータ4の動作を開始させた後に停止させ、その後、第2ヒータ5の動作を開始させ、脱硫温度検出器11aにより検出された温度が予め設定された第4温度以上になった場合に原料ガスの供給先を第2脱硫器3bから第1脱硫器3aへ原料ガス切り替え器13により切り替える。また、制御装置6は、脱硫温度検出器11aにより検出された温度が予め設定された第5温度以上になった場合に第2ヒータ5の動作を停止させる。さらに、制御装置6は、第2ヒータ5を動作させ、その後、変成温度検出器の温度が予め設定された第6温度未満であった場合、および、選択酸化温度検出器の温度が予め設定された第7温度未満であった場合、のうちの少なくとも一方の場合に、第2ヒータ5を停止させ、第1ヒータ4を動作させる。図4は、本発明の実施の形態3に係る水素生成装置100の制御方法の一例を示すフローチャートである。
水素生成装置100の起動においては、制御装置6は、第1ヒータ4の動作を開始させた後に停止させ、その後、第2ヒータ5の動作を開始させ、脱硫温度検出器11aにより検出された温度が予め設定された第4温度以上になった場合に原料ガスの供給先を第2脱硫器3bから第1脱硫器3aへ原料ガス切り替え器13により切り替える。また、制御装置6は、脱硫温度検出器11aにより検出された温度が予め設定された第5温度以上になった場合に第2ヒータ5の動作を停止させる。さらに、制御装置6は、第2ヒータ5を動作させ、その後、変成温度検出器の温度が予め設定された第6温度未満であった場合、および、選択酸化温度検出器の温度が予め設定された第7温度未満であった場合、のうちの少なくとも一方の場合に、第2ヒータ5を停止させ、第1ヒータ4を動作させる。図4は、本発明の実施の形態3に係る水素生成装置100の制御方法の一例を示すフローチャートである。
具体的には、水素生成装置100の起動動作において、制御装置6は、第1ヒータ4の動作を開始させ(ステップS10)、CO変成温度検出器10aの検出温度が第2温度以上であって、かつ、CO選択酸化温度検出器10bの検出温度が第3温度以上であるように、第1ヒータ4を制御する。
第1ヒータ4の動作開始と同時、または、所定の条件Eが実現したら(ステップS11:Y)、制御装置6は、原料供給器8および燃焼器7を動作させる(ステップS12)。このとき、制御装置6は、原料ガス切り替え器13を制御し、原料ガスが、原料ガス流路に沿って第2脱硫器3bを通った後に、第1脱硫器3a、燃焼器7および改質器1へ供給されるようにする。ここでは、第2脱硫器3bは加熱されていないが、第2脱硫器3bは常温でも原料ガスに含まれる硫黄を吸着して除去することができる。このため、原料ガスは、含有されている硫黄が第2脱硫器3bにより除去されてから、第1脱硫器3aに流入する。また、第1脱硫器3aもこの時点では第2ヒータ5により加熱されていないが、上述したように第1脱硫器3a内のCu-Zn系水添脱硫触媒は常温でも吸着能力を有すため、原料ガス中に残る硫黄が第1脱硫器3aによりさらに除去される。そして、第1脱硫器3aおよび第2脱硫器3bにより硫黄が除去された原料ガスは、燃焼器7および改質器1に供給される。そして、改質器1は燃焼器7により加熱される。
CO変成温度検出器10aの検出温度が第2温度以上となり、かつ、CO選択酸化温度検出器10bの検出温度が第3温度以上となって(ステップS13:Y)、さらに、所定の条件Bが実現したら(ステップS14:Y)、制御装置6は、水供給器9を制御して改質器1に水(改質水)を供給する(ステップS15)。
改質水の供給と同時またはその後に、制御装置6は、第1ヒータ4の動作を停止させ(ステップS16)、その後、第2ヒータ5の動作を開始させる(ステップS17)。
所定の条件Fが実現し(ステップS18:Y)、CO変成温度検出器10aの検出温度が第6温度未満になり、または、CO選択酸化温度検出器10bの検出温度が第7温度未満であったら(ステップS19:Y)、制御装置6は、第2ヒータ5の動作を停止させてから(ステップS20)、第1ヒータ4の動作を再度開始させる(ステップS21)。これにより、CO変成器2aおよびCO選択酸化器2bが第1ヒータ4により加熱し直され、CO変成触媒およびCO選択酸化触媒の温度は各触媒の機能に適した温度に維持される。
第1ヒータ4の動作再開によってCO変成温度検出器10aの検出温度が第6温度以上であって、かつCO選択酸化温度検出器10bの検出温度が第7温度以上になったら(ステップS22:Y)、制御装置6は、第1ヒータ4の動作を停止させてから(ステップS23)、第2ヒータ5の動作を再開する(ステップS24)。
そして、制御装置6は、脱硫温度検出器11aの検出による脱硫触媒の温度が第5温度に達したら(ステップS25:Y)、制御装置6は、原料ガス中の水素濃度が1~10%程度になるように、水素含有ガス供給器12を制御する。これにより、CO変成器2aから排出された水素含有ガスの一部は、水素含有ガス流路から水素含有ガス分岐流路へ引き抜かれて、水素ガス含有分岐流路から原料ガス流路へ流入する。
また、脱硫温度検出器11aの検出による脱硫触媒の温度が第5温度に達したら(ステップS25:Y)、制御装置6は、原料ガス切り替え器13を制御する。これにより、原料ガスは、第2脱硫器3bを通過せずに原料ガス分岐流路を流れて、原料ガス流路に流入し、第5温度以上になった第1脱硫器3a、燃焼器7および改質器1へ供給される(ステップS26)。この場合、第1脱硫器3aは第2ヒータ5により加熱され、第1脱硫器3a内の水添脱硫触媒が機能するのに最適な温度に温められているため、第1脱硫器3aの硫黄を除去する能力が高まっている。よって、第2脱硫器3bによる脱硫は省かれるが、第1脱硫器3aだけでも原料ガス内の硫黄を十分に除去することができる。そして、第1脱硫器3aにより硫黄が除去された原料ガスは燃焼器7および改質器1に供給され、改質器1は燃焼器7により加熱される。
そして、制御装置6は、第2ヒータ5の動作を停止させる(ステップS27)。所定の条件Gが実現すると(ステップS28:YES)、水素生成装置100の起動を完了とする。ここで、ステップS27の処理を終えると、第1ヒータ4および第2ヒータ5の何れもが停止状態となるが、燃焼器7での発熱により、改質器1のみならずCO変成器2a,CO選択酸化器2b,第1脱硫器3a,第2脱硫器3bなどが加熱され得る。
なお、制御装置6は、第2ヒータ5の動作を停止させた後(ステップS27)、第1ヒータ4又は第2ヒータ5の動作を必要に応じて選択的に再開してもよい。また、図4に示すように、ステップS19においてCO変成温度検出器10aの検出温度が第6温度以上であり、且つ、CO選択酸化温度検出器10bの検出温度が第7温度以上であれば(ステップS19:N)、ステップS20~S24の処理(第1ヒータ4によるCO除去器の再加熱)は省略し、ステップS25の処理へ移行すればよい。
(作用、効果)
上記構成によれば、水素生成装置100の起動時、加熱の必要がない第2脱硫器3bが硫黄の除去機能を担うため、第2ヒータ5が動作しなくても、原料ガス中の硫黄は除去される。よって、CO変成器2aおよびCO選択酸化器2bさえ各触媒が機能する適切な温度に第1ヒータ4により加熱されれば、第1脱硫器3a内の水添脱硫触媒が所定の温度に達するのを待たずに、原料ガスの供給が可能となる。このように、第2脱硫器3bを用い、また、第1ヒータ4を優先的に動作することによって、水素生成装置100は、短時間で起動して、硫黄および一酸化炭素を低減した水素含有ガスを速やかに生成することができる。
上記構成によれば、水素生成装置100の起動時、加熱の必要がない第2脱硫器3bが硫黄の除去機能を担うため、第2ヒータ5が動作しなくても、原料ガス中の硫黄は除去される。よって、CO変成器2aおよびCO選択酸化器2bさえ各触媒が機能する適切な温度に第1ヒータ4により加熱されれば、第1脱硫器3a内の水添脱硫触媒が所定の温度に達するのを待たずに、原料ガスの供給が可能となる。このように、第2脱硫器3bを用い、また、第1ヒータ4を優先的に動作することによって、水素生成装置100は、短時間で起動して、硫黄および一酸化炭素を低減した水素含有ガスを速やかに生成することができる。
また、第1脱硫器3a内の水添脱硫触媒が常温でも機能することにより、第2ヒータ5により第1脱硫器3aが加熱されなくても、第1脱硫器3aは原料ガス中から硫黄を除去することができる。このため、第2脱硫器3bに加えて第1脱硫器3aによって、原料ガス中の硫黄の濃度を、水素生成装置100が作動するために十分なほど低く減らすことができるため、水素生成装置100の起動時間の短縮化をさらに図ることができる。
さらに、第2ヒータ5が動作していないときでも、第1脱硫器3aが燃焼器7の近傍において燃焼器7から熱を受けると、第1脱硫器3a内の水添脱硫触媒の温度が上昇する。これにより、第2ヒータ5の動作後、水添脱硫触媒が第2ヒータ5によって所定の温度に達するまでの時間が短くなる。このため、水素生成装置100の起動時間の短縮化をさらに図ることができる。
また、実施の形態2と同様に、改質器1の改質反応の開始時には、第1ヒータ4により、CO変成器2aおよびCO選択酸化器2bが所定の温度に達しているため、水素生成装置100は短時間で起動することができる。さらに、第1ヒータ4は、CO変成器2aおよびCO選択酸化器2bを同時に加熱するため、低コスト化と、CO変成器2aおよびCO選択酸化器2bの昇温時間の短縮化とが図られる。
さらに、実施の形態1と同様に、第1ヒータ4および第2ヒータ5を同時に動作させないことにより、水素生成装置100の起動時における消費電力が抑制され、水素生成装置100が起動できない事態を回避することができる。また、第1ヒータ4および第2ヒータ5の動作を切り替えることにより、電気制御機器の高価格化や電源容量の増加が抑えられながら、各反応器を適切な温度に速やかに順次昇温することができる。
(実施の形態4)
図5は、本発明の実施の形態4に係る水素生成装置100の構成を概略的に示すブロック図である。この図5に示すように、実施の形態4に係る水素生成装置100は、原料ガスと水を混合して気化させる蒸発混合部14を備える。
図5は、本発明の実施の形態4に係る水素生成装置100の構成を概略的に示すブロック図である。この図5に示すように、実施の形態4に係る水素生成装置100は、原料ガスと水を混合して気化させる蒸発混合部14を備える。
(水素生成装置の構成)
水素生成装置100は、改質器1、CO変成器2a、CO選択酸化器2b、燃焼器7、第1脱硫器3aおよび蒸発混合部14が一体化された構成を有する。この一体化構成部は、燃焼器7を中心とする内筒とこれを内包する外筒とを有する。一体化構成部の適所において、各種触媒が配設されると共に、各種接続口が形成されている。この接続口としては、原料ガス流路に接続される原料ガス流入口、改質水流路に接続される改質水流入口、燃焼排ガス流路に接続される燃焼排ガス流出口、水素含有ガス流路に接続される水素含有ガス流出口、選択酸化用空気が流入する選択酸化用空気流入口などがある。
水素生成装置100は、改質器1、CO変成器2a、CO選択酸化器2b、燃焼器7、第1脱硫器3aおよび蒸発混合部14が一体化された構成を有する。この一体化構成部は、燃焼器7を中心とする内筒とこれを内包する外筒とを有する。一体化構成部の適所において、各種触媒が配設されると共に、各種接続口が形成されている。この接続口としては、原料ガス流路に接続される原料ガス流入口、改質水流路に接続される改質水流入口、燃焼排ガス流路に接続される燃焼排ガス流出口、水素含有ガス流路に接続される水素含有ガス流出口、選択酸化用空気が流入する選択酸化用空気流入口などがある。
一体化構成部において、円筒形状の燃焼器7の下部外周(燃焼器7と内筒の間の下部)には筒状の改質器1が配設され、上部外周(燃焼器7と内筒の間の上部)には下端が改質器1に連通する筒状の蒸発混合部14が配設されている。また、蒸発混合部14には、上記原料ガス流入口および改質水流入口が接続される。このため、原料ガス流入口から流入した原料ガスと改質水流入口から流入した水とは蒸発混合部14において混合し加熱されて、原料ガスと水蒸気との混合ガスが改質器1に流入する。
燃焼器7と改質器1との間には筒状の燃焼排ガス流路が設けられる。燃焼器7により排出された燃焼排ガスは燃焼排ガス流路を通ることにより、燃焼排ガスが改質器1および蒸発混合部14を加熱する。なお、燃焼排ガス流路は、一体化構成部の上部に形成された上記燃焼排ガス流出口に連通しており、燃焼排ガスはここを介して外部へ排出される。
蒸発混合部14の外側(内筒と外筒の間の上部)には筒状のCO変成器2aおよび筒状のCO選択酸化器2bが配設されている。CO変成器2aの流入口は改質器1に接続され、CO選択酸化器2bの流入口はCP変成器の流出口に接続される。CO選択酸化器2bの流出口は、上記水素含有ガス流出口を介して水素含有ガス流路に接続される。また、CO変成器2aおよびCO選択酸化器2bは、原料ガス流入口および改質水流入口の近傍に配置される。
改質器1の周囲(外筒の下部の外側)には、断熱材(図示せず)を介して筒状の第1脱硫器3aが同心円上に配置される。第1脱硫器3aは、原料ガス流路を介して原料ガス流入口に接続される。
(作用、効果)
上記構成によれば、CO変成器2aおよびCO選択酸化器2bは、原料ガス流入口および改質水流入口の近傍に配置されている。このため、CO変成器2aおよびCO選択酸化器2bが第1ヒータ4により加熱されても、第1ヒータ4の動作の停止後に、流入する原料ガスおよび水によってCO変成器2aおよびCO選択酸化器2bの温度が低下する可能性がある。これに対し、第1ヒータ4および第2ヒータ5を交互に動作させることにより、CO変成器2aおよびCO選択酸化器2bを所定の温度またはその近い値に維持することができる。このようなCO変成器2aおよびCO選択酸化器2bにより水素含有ガス中の一酸化炭素の濃度を水素生成装置100が作動するために十分なほど低く減らすことができるため、水素生成装置100の起動時間の短縮化をさらに図ることができる。
上記構成によれば、CO変成器2aおよびCO選択酸化器2bは、原料ガス流入口および改質水流入口の近傍に配置されている。このため、CO変成器2aおよびCO選択酸化器2bが第1ヒータ4により加熱されても、第1ヒータ4の動作の停止後に、流入する原料ガスおよび水によってCO変成器2aおよびCO選択酸化器2bの温度が低下する可能性がある。これに対し、第1ヒータ4および第2ヒータ5を交互に動作させることにより、CO変成器2aおよびCO選択酸化器2bを所定の温度またはその近い値に維持することができる。このようなCO変成器2aおよびCO選択酸化器2bにより水素含有ガス中の一酸化炭素の濃度を水素生成装置100が作動するために十分なほど低く減らすことができるため、水素生成装置100の起動時間の短縮化をさらに図ることができる。
また、各反応器が一体的に構成されているため、各反応器の間において熱の授受が行われる。よって、各反応器を加熱するための時間およびエネルギーを低減することができ、水素生成装置100の起動時間の短縮化と起動時の消費エネルギーの削減が図られる。
さらに、実施の形態3と同様に、第1脱硫器3aおよび第2脱硫器3bを用い、また、第1ヒータ4を優先的に動作することによって、水素生成装置100の起動時間の短縮化がさらに図られる。
また、実施の形態2と同様に、改質器1の改質反応の開始時には、第1ヒータ4により、CO変成器2aおよびCO選択酸化器2bが所定の温度に達しているため、水素生成装置100は短時間で起動することができる。さらに、第1ヒータ4は、CO変成器2aおよびCO選択酸化器2bを同時に加熱するため、低コスト化と、CO変成器2aおよびCO選択酸化器2bの昇温時間の短縮化とが図られる。
さらに、実施の形態1と同様に、第1ヒータ4および第2ヒータ5を同時に動作させないことにより、水素生成装置100の起動時における消費電力が抑制され、水素生成装置100が起動できない事態を回避することができる。また、第1ヒータ4および第2ヒータ5の動作を切り替えることにより、電気制御機器のサイズや電源容量の増加が抑えられながら、各反応器を適切な温度に速やかに順次昇温することができる。
(実施の形態5)
実施の形態5は、実施の形態1~4に係る水素生成装置100を備える燃料電池システム200に関する。図6は、本発明の実施の形態5に係る燃料電池システム200の構成を概略的に示すブロック図である。
実施の形態5は、実施の形態1~4に係る水素生成装置100を備える燃料電池システム200に関する。図6は、本発明の実施の形態5に係る燃料電池システム200の構成を概略的に示すブロック図である。
燃料電池システム200は、水素生成装置100と、燃料電池201と、酸化剤ガス供給器202と、インバータ204と、を備えている。燃料電池システム200は、凝縮器205をさらに備えていてもよい。水素生成装置100は、たとえば、実施の形態1~4に係る水素生成装置100であって、一酸化炭素および硫黄を除去した水素含有ガスを燃料ガスとして燃料電池201に供給する。図6では、一例として、実施の形態3に係る水素生成装置100を採用した構成を示している。
燃料電池201は、水素生成装置100から供給される水素含有ガスである燃料ガスと酸化剤ガスとを電気化学的に反応させることにより発電を行う装置である。酸化剤ガスには、たとえば、空気中の酸素が用いられる。この場合、酸化剤ガス供給器202にはブロワなどの空気供給器が利用される。燃料電池201は、供給された燃料ガスおよび酸化剤ガスのうち、電気化学反応に利用されなかった燃料排ガスおよび酸化剤排ガスを凝縮器205へ排出する。凝縮器205は、燃料電池201から排出された燃料排ガスおよび酸化剤排ガスから熱を回収するとともに、これにより凝縮された水を燃料排ガスから分離する。この熱および凝縮水が回収された後の燃料排ガスは、燃焼器7に供給される。燃焼器7は、原料供給器8からの原料ガスおよび/又は凝縮器205からの燃料排ガスを燃焼し、改質器1を加熱する。インバータ204は、燃料電池201で発生した直流電力を交流電力に変換する。
制御装置6は、燃料電池201の発電前に行う起動工程において、第1ヒータ4の動作および第2ヒータ5の動作を互いに重複しないように実行させる。そして、制御装置6は、燃料電池201の発電を行う発電工程の開始時において、第1ヒータ4および第2ヒータ5の動作を停止させ、かつ、起動工程より多い原料ガスを原料供給器8により水素生成装置100に供給する。ここで、発電工程における原料ガスの供給量は、起動工程における原料ガスの供給量の、たとえば、3倍である。
このように発電工程において起動工程より原料ガスの供給量を増やす理由の一つは、下記の通りである。つまり、起動工程においては原料ガスは改質器1などの加熱のために用いられるのに対し、発電工程においては原料ガスは改質器1などの加熱に加えて、燃料電池201における発電反応にも用いられるためである。
上記構成によれば、水素生成装置100が起動し、CO変成器2aおよびCO選択酸化器2bにおいて、一度、各反応が進行すると、それに伴い各反応により発生する熱量が増える。このため、発電工程において、第1ヒータ4および第2ヒータ5の動作を停止させても、各反応器は各触媒が機能する温度を維持することができる。よって、各ヒータ4、5の消費電力が低減された状態で、水素生成装置100は燃料電池201に必要な量の燃料ガスを生成することができる。
また、発電工程における原料ガスの供給量が起動工程における原料ガスの供給量より多いことにより、発電工程では原料供給器8により燃焼器7に供給される原料ガスの量および凝縮器205から燃焼器7に供給される燃料排ガスの量が増える。この燃料排ガスは、可燃成分である水素や改質されていないメタン(都市ガスの主成分)を含んでいるため、燃焼器7は、原料ガスおよび燃料排ガスを燃焼して、その近傍に存在する改質器1、CO変成器2a、CO選択酸化器2bおよび第1脱硫器3aなどの反応器を各反応が可能な程度に十分に加熱することができる。よって、発電工程において第1ヒータ4および第2ヒータ5の動作を停止しても、各反応器は各触媒が機能する温度を維持することができる。このため、水素生成装置100の消費エネルギーの低減をさらに図ることができる。
また、図5に示す実施の形態4に係る水素生成装置100が採用された構成の場合、改質器1の熱は、その周囲に位置する第1脱硫器3aへ伝わる。したがって、改質器1の温度が高くなるほど改質器1から第1脱硫器3aへ伝わる熱量も増える。このため、起動工程において改質器1の温度があまり高くなっていない場合に比べ、発電工程において改質器1が改質反応に必要な温度まで十分に高くなっている場合の方が、改質器1から第1脱硫器3aへ多くの熱量が与えられる。よって、起動工程においては第2脱硫器3bを用いて脱硫を行うことにより、第1ヒータ4は動作させるものの第2ヒータを動作させずに発電の準備を整えられるため、発電工程にできるだけ早く移行させることができる。そして、発電工程に移行させた後に第2ヒータ5を動作させれば、第2ヒータ5の動作時には第1脱硫器3aが改質器1からも第2ヒータ5からも加熱されるため、第2ヒータ5の消費電力を抑えられると共に、第1脱硫器3aの起動も迅速に行うことができる。
(実施の形態6)
実施の形態6は、燃料電池システム200の起動工程において商用電源300から遮断器401を介して電力が供給される燃料電池システム200に関する。図7は、本発明の実施の形態6に係る燃料電池システム200の構成を概略的に示すブロック図である。
実施の形態6は、燃料電池システム200の起動工程において商用電源300から遮断器401を介して電力が供給される燃料電池システム200に関する。図7は、本発明の実施の形態6に係る燃料電池システム200の構成を概略的に示すブロック図である。
燃料電池システム200は、起動工程では商用電源300から電力の供給を受け、この電力で各ヒータ4、5などを動作させる。発電工程では、インバータ204が、燃料電池201で発生した直流電力を、商用電源300の交流電力の周波数と同じ周波数を持つ交流電力に変換し、燃料電池システム200は商用電源300と連系して需要家400に電力を供給する。
需要家400には、燃料電池システム200、商用電源300又は燃料電池システム200から供給される交流電力を消費する電力負荷402、および遮断器401が設けられている。なお、燃料電池システム200は、起動工程において商用電源300からの電力を消費するために電力負荷の1つであるが、発電工程では電力を供給するため、電力を消費するだけの一般的な他の電力負荷402と区別される。
遮断器401には、電力負荷402に繋がる配線と、燃料電池システム200のインバータ204に繋がる配線と、商用電源300に繋がる配線とが接続されている。これにより、燃料電池システム200からの電力は、遮断器401を介して電力負荷402に供給される。逆潮流が可能な場合、燃料電池システム200からの電力は、遮断器401を介して商用電源300にも供給される。商用電源300からの電力は、遮断器401を介して燃料電池システム200や電力負荷402に供給される。また、遮断器401には遮断電力が予め設定されており、遮断器401は商用電源300からインバータ204および電力負荷402への交流電力の供給経路を、遮断電力に基づいて、一括して又は個別に開閉可能に構成されている。このため、商用電源300から燃料電池システム200および電力負荷402へ電力が供給される際に、電力が遮断電力を超えると、遮断器401は各配線の接続を切断して、燃料電池システム200および電力負荷402への電力の供給が一括して又は個別に停止される。
制御装置6は、遮断器401が商用電源300からの電力供給を遮断するように予め設定された電力(遮断電力)に基づいて第1ヒータ4および第2ヒータに供給される電力を設定する。すなわち、制御装置6は、遮断電力を取得する。たとえば、使用者や作業員などが遮断電力をキー(入力部)などにより入力することにより、遮断電力が制御装置6に入力される。または、制御装置6が遮断電力を遮断器401から自動的に取得することができてもよい。この遮断電力は、電力を示す数値(W)であってもよいし、電力を段階的に分けたレベル、たとえば、A、B、C、Dであってもよい。そして、制御装置6は、たとえば、遮断電力と供給電力とが対応付けられた式や表などの関係を用いて、取得した遮断電力に基づいて第1および第2ヒータ4、5への供給電力を設定する。これにより、遮断電力が大きいほど、各ヒータ4、5への最大供給電力が大きく設定され、各ヒータ4、5が消費する電力が大きくなり、各ヒータの4、5の発熱量が増える。
上記構成によれば、燃料電池システム200の起動工程、つまり、水素生成装置100の起動時には、設定された供給電力に基づいて、第1ヒータ4または第2ヒータ5が動作させられる。これにより、各ヒータ4、5が動作したことにより、遮断電力を超える電力が商用電源300から遮断器401を介して燃料電池システム200に供給され、遮断器401が電力供給を遮断することが防止される。これにより、水素生成装置100、延いては、燃料電池システム200が起動できない事態が回避される。
また、各需要家400で設定されている遮断電力に応じて各ヒータ4、5への供給電力が定められる。このため、遮断電力が大きいほど、各ヒータ4、5への供給電力が大きくなり、水素生成装置100の起動時間が短くなる。
なお、上記では遮断器401による遮断の要否決定に使用電力を採用する場合を説明した。これに対し、一般的な家庭の配電盤における遮断器のように、使用電流値に基づいて遮断の要否を決定して動作するように構成してもよい。即ち、遮断器401に予め遮断電流値が設定されている場合には、制御装置6は、この遮断電流値を取得し、これに基づいて第1および第2ヒータ4,5への供給電力を設定すればよい。
(実施の形態7)
図8は、本発明の実施の形態7に係る燃料電池システム200の構成を概略的に示すブロック図である。この図8に示すように、実施の形態7に係る燃料電池システム200は、遮断器401に加え、電力計206をさらに備える。
図8は、本発明の実施の形態7に係る燃料電池システム200の構成を概略的に示すブロック図である。この図8に示すように、実施の形態7に係る燃料電池システム200は、遮断器401に加え、電力計206をさらに備える。
電力計206は、商用電源300と需要家400を繋ぐ配電線に設けられ、電流センサおよび電圧センサを含む。電力計206は、各センサにより検出された、商用電源300から需要家400に供給される電力の電流および電圧に基づいて商用電源300から需要家400へ供給されている電力値を求め、この供給電力値を制御装置6に出力する。ここで、需要家400への供給電力は、需要家400において燃料電池システム200および電力負荷402が消費している電力である。
制御装置6は、起動工程において、遮断電力から電力計206により検出された供給電力を引いた差分値が所定値未満である場合に第1ヒータ4の動作および第2ヒータ5の動作を重複しないように実行させ、電力差が前記所定値以上である場合に第1ヒータ4の動作および第2ヒータ5の動作を重複して実行させる。ここで、所定値は、第1ヒータ4のみが動作しているときには第2ヒータ5を追加的に動作させるのに必要な供給電力より大きな値であり、第2ヒータ5のみが動作しているときには第1ヒータ4を追加的に動作させるのに必要な供給電力より大きな値であり、両方のヒータ4、5が動作していないときには両方のヒータ4、5を動作させるのに必要な合計供給電力より大きな値である。
上記構成によれば、燃料電池システム200の起動工程、つまり、水素生成装置100の起動の開始の際、両方のヒータ4、5が動作していない状態において、制御装置6は、電力計206から供給電力を取得する。制御装置6は、この供給電力と予め取得されている遮断電力との差分値が両方のヒータ4、5の合計供給電力より大きな所定値未満であれば、第1および第2ヒータ4、5は重複して動作しないように、第1ヒータ4の動作のみを開始する。これにより、商用電源300からの供給電力が遮断電力を超え、燃料電池システム200が起動できない事態が回避される。一方、電力の差分値が所定値以上であれば、両方のヒータ4、5は重複して動作する。これにより、供給電力は増えるが遮断電力を超えないため、燃料電池システム200の起動を継続しながら、両方のヒータ4、5で各反応器を所定温度まで昇温することによって、水素生成装置100の起動の短縮化を図ることができる。
また、燃料電池システム200の起動工程、つまり、水素生成装置100の起動中、第1ヒータ4のみが動作している状態において、制御装置6は、電力計206から供給電力を取得する。この供給電力は第1ヒータ4への供給電力も含むため、制御装置6は、供給電力と遮断電力との差分値が第2ヒータ5への供給電力より大きな所定値未満であれば、第1および第2ヒータ4、5は重複して動作しないように、第1ヒータ4を動作させる。これにより、商用電源300からの供給電力が遮断電力を超え、燃料電池システム200が起動できない事態が回避される。一方、電力の差分値が所定値以上であれば、第1ヒータ4に加えて第2ヒータ5も重複して動作する。これにより、水素生成装置100の起動の短縮化を図ることができる。
さらに、燃料電池システム200の起動工程で、第2ヒータ5のみが動作している状態においても、上述した第1ヒータ4のみが動作している状態の場合と同様の制御を行うことができる。
(実施の形態8)
上記全ての実施の形態では、水素生成装置100の起動の際に第1ヒータ4の動作が開始した後に停止し、その後、第2ヒータ5の動作が開始した。これに対し、水素生成装置100の起動の際に第2ヒータ5の動作が開始した後に停止し、その後、第1ヒータ4の動作が開始してもよい。この場合、まず第2ヒータ5の動作により、脱硫温度検出器11aで検出される脱硫触媒温度が第5温度以上となると、第2ヒータ5の動作が停止され、第1ヒータ4の動作が開始される。そして、第1ヒータ4の動作後、脱硫触媒温度が第5温度未満となった場合、第1ヒータ4が停止し、第2ヒータ5の動作が再開される。
上記全ての実施の形態では、水素生成装置100の起動の際に第1ヒータ4の動作が開始した後に停止し、その後、第2ヒータ5の動作が開始した。これに対し、水素生成装置100の起動の際に第2ヒータ5の動作が開始した後に停止し、その後、第1ヒータ4の動作が開始してもよい。この場合、まず第2ヒータ5の動作により、脱硫温度検出器11aで検出される脱硫触媒温度が第5温度以上となると、第2ヒータ5の動作が停止され、第1ヒータ4の動作が開始される。そして、第1ヒータ4の動作後、脱硫触媒温度が第5温度未満となった場合、第1ヒータ4が停止し、第2ヒータ5の動作が再開される。
なお、上記全実施の形態は、互いに相手を排除しない限り、互いに組み合わせてもよい。
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造および/又は機能の詳細を実質的に変更できる。
本発明の水素生成装置100およびその制御方法、ならびに燃料電池システム200は、水素生成装置100の起動ができない状況を抑制し、水素生成装置100のコンパクト化および起動時間の短縮化を図った水素生成装置100およびその制御方法、ならびに燃料電池システム200等として有用である。
1 改質器
2 CO除去器
2a CO変成器
2b CO選択酸化器
3 第1脱硫器
3a 第1脱硫器
3b 第2脱硫器
4 第1ヒータ
5 第2ヒータ
6 制御装置
7 燃焼器
8 原料供給器
9 水供給器
10 CO除去温度検出器
10a CO変成温度検出器
10b CO選択酸化温度検出器
11 脱硫温度検出器
11a 脱硫温度検出器
13 原料ガス切り替え器
100 水素生成装置
200 燃料電池システム
201 燃料電池
202 酸化剤ガス供給器
204 インバータ
300 商用電源
401 遮断器
2 CO除去器
2a CO変成器
2b CO選択酸化器
3 第1脱硫器
3a 第1脱硫器
3b 第2脱硫器
4 第1ヒータ
5 第2ヒータ
6 制御装置
7 燃焼器
8 原料供給器
9 水供給器
10 CO除去温度検出器
10a CO変成温度検出器
10b CO選択酸化温度検出器
11 脱硫温度検出器
11a 脱硫温度検出器
13 原料ガス切り替え器
100 水素生成装置
200 燃料電池システム
201 燃料電池
202 酸化剤ガス供給器
204 インバータ
300 商用電源
401 遮断器
Claims (15)
- 炭化水素を含む原料ガスと水とを改質反応させて水素含有ガスを生成する改質器と、
前記改質器で生成された水素含有ガス中の一酸化炭素を除去するCO除去器と、
前記改質器に供給される原料ガス中の硫黄を水素と反応させて除去する第1脱硫器と、
前記CO除去器を加熱する第1ヒータと、
前記第1脱硫器を加熱する第2ヒータと、
前記第1ヒータおよび前記第2ヒータの動作を制御する制御装置と、を備え、
前記制御装置は、前記第1ヒータおよび前記第2ヒータのうちの一方のヒータの動作を開始させた後に停止させ、その後、他方のヒータの動作を開始させるよう構成されている、水素生成装置。 - 前記制御装置は、前記一方のヒータの動作を開始させた後に停止させ、その後、前記他方のヒータの動作を開始させた後に停止させ、その後、前記一方のヒータの動作を再度開始させるよう構成されている、請求項1に記載の水素生成装置。
- 前記一方のヒータは、前記第1ヒータであり、
前記他方のヒータは、前記第2ヒータである、請求項1または2に記載の水素生成装置。 - 前記CO除去器の温度を検出するCO除去温度検出器をさらに備え、
前記制御装置は、前記第1ヒータの動作を開始させ、その後、前記CO除去温度検出器の検出温度が予め設定された第1温度以上となった場合、前記第1ヒータの動作を停止させ、その後、前記第2ヒータの動作を開始させるよう構成されている、請求項3に記載の水素生成装置。 - 前記改質器、前記CO除去器および前記第1脱硫器のうちの少なくとも1つを加熱する燃焼器と、
前記改質器に原料ガスを供給する原料供給器と、
前記改質器に水を供給する水供給器と、をさらに備え、
前記制御装置は、前記第1ヒータと前記原料供給器と前記燃焼器との動作を開始させ、その後、前記水供給器の動作を開始させ、かつ、前記第1ヒータの動作を停止させ、その後、前記第2ヒータの動作を開始させるよう構成されている、請求項3または4に記載の水素生成装置。 - 前記CO除去器は、変成反応により前記水素含有ガス中の一酸化炭素を除去するCO変成器と、CO選択酸化反応により前記水素含有ガス中の一酸化炭素を除去するCO選択酸化器と、を含み、
前記第1ヒータは、前記CO変成器および前記CO選択酸化器のうちの少なくとも一方を加熱する、請求項3~5のいずれかに1項に記載の水素生成装置。 - 前記CO変成器の温度を検出するCO変成温度検出器と、
前記CO選択酸化器の温度を検出するCO選択酸化温度検出器をさらに備え、
前記制御装置は、前記第1ヒータの動作を開始させ、その後、前記CO変成温度検出器の検出温度が予め設定された第2温度以上となり、かつ、前記CO選択酸化温度検出器の検出温度が予め設定された第3温度以上となった場合に前記第1ヒータの動作を停止させ、その後、前記第2ヒータの動作を開始させるよう構成されている、請求項6に記載の水素生成装置。 - 前記原料ガス中の硫黄を水素と反応させずに吸着して硫黄を除去する第2脱硫器と、
前記原料ガスの供給先を前記第1脱硫器と前記第2脱硫器とに切り替える原料ガス切り替え器と、をさらに備える、請求項3~7のいずれか1項に記載の水素生成装置。 - 前記第1脱硫器の温度を検出する脱硫温度検出器をさらに備え、
前記制御装置は、前記第1ヒータの動作を開始させた後に停止させ、その後、前記第2ヒータの動作を開始させ、前記脱硫温度検出器の検出温度が予め設定された第4温度以上になった場合に前記原料ガスの供給先を前記第2脱硫器から前記第1脱硫器へ前記原料ガス切り替え器により切り替わるよう構成されている、請求項8に記載の水素生成装置。 - 前記第1脱硫器の温度を検出する脱硫温度検出器をさらに備え、
前記制御装置は、前記脱硫温度検出器により検出された温度が予め設定された第5温度以上になった場合に前記第2ヒータの動作を停止させる、請求項3~9のいずれか1項に記載の水素生成装置。 - 前記CO除去器は、変成反応により前記水素含有ガス中の一酸化炭素を除去するCO変成器と、CO選択酸化反応により前記水素含有ガス中の一酸化炭素を除去するCO選択酸化器と、を含み、
前記CO変成器の温度を検出するCO変成温度検出器と、
前記CO選択酸化器の温度を検出するCO選択酸化温度検出器をさらに備え、
前記制御装置は、前記第2ヒータを動作させ、その後、前記CO変成温度検出器の検出温度が予め設定された第6温度未満であった場合、および、前記CO選択酸化温度検出器の検出温度が予め設定された第7温度未満であった場合、のうちの少なくとも一方の場合に、前記第2ヒータを停止させ、前記第1ヒータを動作させる、請求項3~10のいずれかに記載の水素生成装置。 - 前記請求項3~11のいずれか1つに記載の水素生成装置と、
前記水素生成装置から供給される水素含有ガスである燃料ガスと酸化剤ガスとを反応させて発電する燃料電池と、
前記燃料電池に前記酸化剤ガスを供給する酸化剤ガス供給器と、
前記燃料電池により発電された直流電力を交流電力に変換するインバータと、
前記改質器、前記CO除去器および前記第1脱硫器のうちの少なくとも1つを加熱する燃焼器と、
前記水素生成装置に原料ガスを供給する原料供給器と、を備える燃料電池システムであって、
前記水素生成装置が備える制御装置は、
前記燃料電池の発電前に行う起動工程では前記第1ヒータの動作および前記第2ヒータの動作を重複しないように実行させ、
前記燃料電池の発電を開始させる発電工程では前記第1ヒータおよび前記第2ヒータの動作を停止させ、かつ、前記起動工程より多い原料ガスを前記原料供給器により前記水素生成装置に供給するよう構成されている、燃料電池システム。 - 商用電源に繋がる遮断器に前記インバータが接続され、前記起動工程において前記商用電源から前記遮断器を介して電力が供給される燃料電池システムであって、
前記制御装置は、前記遮断器が前記商用電源からの電力供給を遮断するように予め設定された遮断電力に基づいて前記第1ヒータおよび前記第2ヒータに供給される電力を設定する、請求項12に記載の燃料電池システム。 - 前記商用電源に繋がる前記遮断器に前記インバータと共に接続される電力負荷を含む需要家に設けられる燃料電池システムであって、
前記商用電源と前記遮断器とを繋ぐ配電線に設けられ、前記商用電源から前記需要家に供給されている電力を検出する電力計をさらに備え、
前記制御装置は、前記遮断電力から前記電力計により検出された前記供給電力を引いた電力差が所定値未満である場合に前記第1ヒータの動作および前記第2ヒータの動作を重複しないように実行させ、前記電力差が前記所定値以上である場合に前記第1ヒータの動作および前記第2ヒータの動作を重複して実行させるよう構成されている、請求項13に記載の燃料電池システム。 - 炭化水素を含む原料ガスと水とを改質反応させて水素含有ガスを生成する改質器と、前記改質器で生成された水素含有ガス中の一酸化炭素を除去するCO除去器と、前記改質器に供給される原料ガス中の硫黄を水素と反応させて除去する第1脱硫器と、前記CO除去器を加熱する第1ヒータと、前記第1脱硫器を加熱する第2ヒータと、前記第1ヒータおよび前記第2ヒータの動作を制御する制御装置と、を備えた水素生成装置の制御方法であって、
前記制御装置は、前記第1ヒータおよび前記第2ヒータのうちの一方のヒータの動作を開始させた後に停止させ、その後、他方のヒータの動作を開始させるように、前記第1ヒータおよび前記第2ヒータを制御する、水素生成装置の制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12840591.7A EP2767506B1 (en) | 2011-10-14 | 2012-10-04 | Hydrogen producing device and control method therefor, and fuel cell system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011226428 | 2011-10-14 | ||
JP2011-226428 | 2011-10-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013054496A1 true WO2013054496A1 (ja) | 2013-04-18 |
Family
ID=48081566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/006395 WO2013054496A1 (ja) | 2011-10-14 | 2012-10-04 | 水素生成装置およびその制御方法、ならびに燃料電池システム |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2767506B1 (ja) |
JP (1) | JPWO2013054496A1 (ja) |
WO (1) | WO2013054496A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016152061A (ja) * | 2015-02-16 | 2016-08-22 | パナソニックIpマネジメント株式会社 | 燃料電池システム及びその運転方法 |
JPWO2020105388A1 (ja) * | 2018-11-21 | 2021-10-07 | パナソニックIpマネジメント株式会社 | 水素生成装置およびそれを用いた燃料電池システム |
CN113690473A (zh) * | 2021-07-06 | 2021-11-23 | 清华大学 | 燃料电池堆 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10340537B2 (en) * | 2014-11-27 | 2019-07-02 | Panasonic Intellectual Property Management Co., Ltd. | Fuel cell system and control method for the same |
WO2020103994A1 (en) * | 2018-11-20 | 2020-05-28 | Blue World Technologies Holding ApS | Compact burner-reformer unit for a fuel cell system and its use and method of operation |
CN113079706B (zh) | 2018-11-20 | 2024-05-28 | 蓝界科技控股公司 | 燃料电池系统及其用途和操作方法 |
US11239479B2 (en) | 2020-03-26 | 2022-02-01 | Saudi Arabian Oil Company | Ignition method of fuel reformer using partial oxidation reaction of the fuel for SOFC fuel cell start-up |
US11542159B2 (en) | 2020-06-22 | 2023-01-03 | Saudi Arabian Oil Company | Autothermal reformer system with liquid desulfurizer for SOFC system |
US11618003B2 (en) | 2020-06-23 | 2023-04-04 | Saudi Arabian Oil Company | Diesel reforming apparatus having a heat exchanger for higher efficiency steam reforming for solid oxide fuel cells (SOFC) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0471169A (ja) * | 1990-07-10 | 1992-03-05 | Fuji Electric Co Ltd | 燃料電池発電システムの起動方法 |
JPH05147903A (ja) | 1991-12-03 | 1993-06-15 | Fuji Electric Co Ltd | 改質装置 |
JPH1064570A (ja) * | 1996-08-22 | 1998-03-06 | Tokyo Gas Co Ltd | リン酸型燃料電池の起動方法 |
JP2001351661A (ja) * | 2000-06-09 | 2001-12-21 | Fuji Electric Co Ltd | 燃料電池発電装置の運転方法 |
JP2002184441A (ja) * | 2000-12-11 | 2002-06-28 | Toyota Motor Corp | 燃料電池装置 |
JP2003176105A (ja) * | 2001-10-03 | 2003-06-24 | Matsushita Electric Ind Co Ltd | 水素生成装置、燃料電池システム、水素生成装置の運転方法 |
JP2005032564A (ja) * | 2003-07-14 | 2005-02-03 | Fuji Electric Holdings Co Ltd | 燃料電池発電装置の起動時昇温制御方法 |
JP2007326725A (ja) | 2006-06-06 | 2007-12-20 | Matsushita Electric Ind Co Ltd | 水素生成装置および燃料電池システム |
JP2008532252A (ja) * | 2005-03-07 | 2008-08-14 | ハイテオン インコーポレイテッド | 熱電気複合利用システム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4753506B2 (ja) * | 2001-09-28 | 2011-08-24 | 大阪瓦斯株式会社 | 水素含有ガス生成装置及びその運転方法 |
KR100968580B1 (ko) * | 2007-11-06 | 2010-07-08 | (주)퓨얼셀 파워 | 다중 탈황 구조를 갖는 연료처리장치 및 이를 구비한연료전지 시스템 |
-
2012
- 2012-10-04 JP JP2013538430A patent/JPWO2013054496A1/ja active Pending
- 2012-10-04 WO PCT/JP2012/006395 patent/WO2013054496A1/ja active Application Filing
- 2012-10-04 EP EP12840591.7A patent/EP2767506B1/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0471169A (ja) * | 1990-07-10 | 1992-03-05 | Fuji Electric Co Ltd | 燃料電池発電システムの起動方法 |
JPH05147903A (ja) | 1991-12-03 | 1993-06-15 | Fuji Electric Co Ltd | 改質装置 |
JPH1064570A (ja) * | 1996-08-22 | 1998-03-06 | Tokyo Gas Co Ltd | リン酸型燃料電池の起動方法 |
JP2001351661A (ja) * | 2000-06-09 | 2001-12-21 | Fuji Electric Co Ltd | 燃料電池発電装置の運転方法 |
JP2002184441A (ja) * | 2000-12-11 | 2002-06-28 | Toyota Motor Corp | 燃料電池装置 |
JP2003176105A (ja) * | 2001-10-03 | 2003-06-24 | Matsushita Electric Ind Co Ltd | 水素生成装置、燃料電池システム、水素生成装置の運転方法 |
JP2005032564A (ja) * | 2003-07-14 | 2005-02-03 | Fuji Electric Holdings Co Ltd | 燃料電池発電装置の起動時昇温制御方法 |
JP2008532252A (ja) * | 2005-03-07 | 2008-08-14 | ハイテオン インコーポレイテッド | 熱電気複合利用システム |
JP2007326725A (ja) | 2006-06-06 | 2007-12-20 | Matsushita Electric Ind Co Ltd | 水素生成装置および燃料電池システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP2767506A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016152061A (ja) * | 2015-02-16 | 2016-08-22 | パナソニックIpマネジメント株式会社 | 燃料電池システム及びその運転方法 |
JPWO2020105388A1 (ja) * | 2018-11-21 | 2021-10-07 | パナソニックIpマネジメント株式会社 | 水素生成装置およびそれを用いた燃料電池システム |
JP7429844B2 (ja) | 2018-11-21 | 2024-02-09 | パナソニックIpマネジメント株式会社 | 水素生成装置およびそれを用いた燃料電池システム |
CN113690473A (zh) * | 2021-07-06 | 2021-11-23 | 清华大学 | 燃料电池堆 |
CN113690473B (zh) * | 2021-07-06 | 2023-02-03 | 清华大学 | 燃料电池堆 |
Also Published As
Publication number | Publication date |
---|---|
EP2767506A4 (en) | 2015-07-15 |
EP2767506B1 (en) | 2018-08-01 |
EP2767506A1 (en) | 2014-08-20 |
JPWO2013054496A1 (ja) | 2015-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013054496A1 (ja) | 水素生成装置およびその制御方法、ならびに燃料電池システム | |
EP2518012A1 (en) | Hydrogen generation device, fuel cell system, and method for operating hydrogen generation device | |
EP2546913A1 (en) | Fuel cell system and method for running a fuel cell system | |
US8962199B2 (en) | Fuel cell system | |
EP2455335B1 (en) | Method for operating a hydrogen generator | |
JP5422780B1 (ja) | 燃料電池システム | |
JP5180413B2 (ja) | 燃料電池システム及びその運転方法 | |
JP2005174745A (ja) | 燃料電池システムの運転方法及び燃料電池システム | |
JP5830667B2 (ja) | 燃料電池システム及びその運転方法 | |
JP2008106172A (ja) | 脱硫装置、その方法、燃料電池用燃料ガスの製造装置、および、燃料電池システム | |
JPWO2010109854A1 (ja) | 水素生成装置、それを備える燃料電池システム、水素生成装置の運転方法、及び燃料電池システムの運転方法 | |
JP5796227B2 (ja) | 燃料電池発電システム及び燃料電池発電システムの運転停止方法 | |
JP2013032238A (ja) | 水素生成装置、および燃料電池システム | |
JP5395168B2 (ja) | 水素生成装置および燃料電池システム | |
JP2012158489A (ja) | 水素生成装置および燃料電池システムの運転方法 | |
JP2012119244A (ja) | 燃料電池システム | |
JPWO2015182018A1 (ja) | 固体酸化物形燃料電池システム及びその停止方法 | |
JP5537218B2 (ja) | 燃料電池システム、及び、燃料電池システムの起動方法 | |
JP2007335333A (ja) | 燃料電池用燃料ガスの製造装置、および、燃料電池システム | |
JP2016145122A (ja) | 水素生成装置と燃料電池発電装置 | |
WO2011036886A1 (ja) | 燃料電池システム、及び燃料電池システムの運転方法 | |
JP2016034881A (ja) | 水素生成装置及びその運転方法並びに燃料電池システム | |
JP2008214121A (ja) | 水素生成装置およびそれを用いた燃料電池システム | |
JP2006076840A (ja) | 水素生成装置および燃料電池システム | |
JP2012153535A (ja) | 水素生成装置及び水素生成装置を備えた燃料電池システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12840591 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012840591 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2013538430 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |