WO2013053186A1 - 一种钕铁硼合金废料再生处理方法 - Google Patents

一种钕铁硼合金废料再生处理方法 Download PDF

Info

Publication number
WO2013053186A1
WO2013053186A1 PCT/CN2011/084963 CN2011084963W WO2013053186A1 WO 2013053186 A1 WO2013053186 A1 WO 2013053186A1 CN 2011084963 W CN2011084963 W CN 2011084963W WO 2013053186 A1 WO2013053186 A1 WO 2013053186A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste
ndfeb
furnace
regenerating
boron alloy
Prior art date
Application number
PCT/CN2011/084963
Other languages
English (en)
French (fr)
Inventor
许开华
张翔
谭翠丽
Original Assignee
深圳市格林美高新技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市格林美高新技术股份有限公司 filed Critical 深圳市格林美高新技术股份有限公司
Publication of WO2013053186A1 publication Critical patent/WO2013053186A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • C22B7/004Dry processes separating two or more metals by melting out (liquation), i.e. heating above the temperature of the lower melting metal component(s); by fractional crystallisation (controlled freezing)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of resource recycling, and particularly relates to a method for regenerating a waste of NdFeB alloy. Background technique
  • NdFeB alloy is a kind of permanent magnet material with superior performance, and the iron content is the highest, and the others are rare earth, cobalt, aluminum and boron. NdFeB alloys are widely used in various fields of high technology, and their development prospects are broad, but NdFeB will inevitably produce some waste in the production process, and will also produce many scraps in the post-processing process. Therefore, it is necessary to properly treat the NdFeB waste, which can avoid environmental pollution and save resources.
  • NdFeB wastes generally adopts a method of recovering rare earths from them, the process flow is long, and a large amount of chemical materials such as strong acid and alkali are needed, which wastes resources and pollutes the environment.
  • the object of the present invention is to provide a method for reclaiming waste of NdFeB alloy, which can overcome the defects of complicated process, high cost, waste of resources and environmental pollution.
  • the present invention adopts the following scheme:
  • a method for regenerating the waste of NdFeB alloy first disintegrating the NdFeB waste and then pulverizing, and then using the fusion method to obtain the regenerated NdFeB mixture.
  • the mass ratio of the waste to the word is 1 : 3 ⁇ 9, and the two are evenly mixed, and then in the vacuum atmosphere of the furnace, 75 0 ⁇
  • the off time is preferably controlled to 15 ⁇ 24 h.
  • the degree of vacuum in the furnace is preferably controlled at 40 to 105 micrometers of mercury.
  • the ball mill is preferably pulverized: the scrap is added to the ball mill medium having a diameter of 1 to 10 mm according to the mass ratio of the scrap to the ball mill medium: 1 to 10, and the ball mill rotation speed is controlled to 50 to 250 r/min. 0. 5 ⁇ 10 h; Continuously pass 30 ⁇ 90 °C pure water during ball milling.
  • the waste removal can be carried out as follows: First, the NdFeB waste is washed with pure water, the surface adsorbed impurities are removed, and then dried.
  • the amount added is adjusted according to the ratio of each element in the NdFeB waste.
  • the yttrium, iron and cobalt in the NdFeB waste were formed into a low melting point alloy, which destroyed the bonding between the NdFeB elements and made the dense alloy into a loose state.
  • the rhetoric uses the vapor pressure at a certain temperature to be much higher than the vapor pressure of cobalt, iron, bismuth, etc., so that the words are evaporated and recycled. After the completion of the resignation, the power is cooled down.
  • the vacuum pump is stopped, cooled to below 100 °C, the surface is cleaned, and then the ball is ground, crushed, and the alloy composition is adjusted. A regenerated NdFeB mixture is obtained for remanufacturing the NdFeB alloy.
  • the method for regenerating the waste of the NdFeB alloy waste material has the advantages of short process, short process, small investment in the equipment, and low cost; compared with the traditional wet recovery technology, the use of chemicals such as strong alkali and strong acid is avoided, and the environment is reduced. Pollution. detailed description
  • the amount added by the word is calculated according to the ratio of the material words.
  • 1: 7 Mix the waste with the powder and mix it into the graphite crucible of the furnace. Seal the furnace, start the vacuum pump to pump vacuum, and heat up when the vacuum in the furnace reaches 40 micrometers of mercury. When the furnace temperature reaches 450 °, stop the pump, continue to heat up to the working temperature of 760 °C, and keep warm for 7 h. After the end of the heat preservation, start the vacuum pump to evaporate and recycle it for 15 h. After the completion of the speech, the power is cooled down. When the furnace temperature drops to 320 °C, the vacuum pump is stopped, and the furnace is cooled to below 100 °C. The surface is cleaned by unsmelling the melt block. After ball milling, crushing, and adjusting the alloy composition, it is regenerated. NdFeB mixture for remanufacturing NdFeB alloy.
  • the amount added is calculated, and the waste and the powder are uniformly mixed according to the ratio of 1:9, and loaded into the graphite crucible of the furnace.
  • Seal the furnace start the vacuum pump to vacuum, and heat up when the vacuum in the furnace reaches 105 micron mercury.
  • the furnace temperature reaches 450 ° the pump is stopped, and the temperature is raised to 950 °C, and the temperature is kept for 7.5 h.
  • the vacuum pump is started to evaporate and recycle, and the time for off-line is 24 h. After the completion of the speech, the power is cooled down.
  • the amount of the word added is calculated, and the scrap and the powder are uniformly mixed according to the ratio of the material to the particle size, and are loaded into the graphite crucible of the furnace.
  • Seal the furnace start the vacuum pump to vacuum, and heat up when the vacuum in the furnace reaches 55 micron mercury.
  • the furnace temperature reaches 450 °C
  • the pump is stopped, and the temperature is further increased to 800 °C, and the temperature is kept for 8 hours.
  • the vacuum pump is started to evaporate and be recycled, and the time for the speech is 16 hours. After the completion of the speech, the power is cooled down.
  • the NdFeB300/110 grade NdFeB alloy was prepared by using the obtained regenerated NdFeB mixture and the conventional mixture, respectively.
  • the method is as follows: The obtained NdFeB mixture is subjected to component analysis, and then an appropriate amount of Pr, Nd, Dy, A1 is added. With borax, put it into the medium frequency vacuum induction furnace for smelting, first vacuum and then argon gas, smelting temperature is controlled at 1500 °C, heat preservation 30 After mil, cast a healthy.
  • the alloy ingot was descaled and broken into 3 ⁇ 5 ⁇ uniform particle powder under nitrogen protection. Vertical steel molding is used for further compaction. An isostatic pressing process can be applied.
  • the powder is made into a cylindrical sample of ⁇ 12*12 in a magnetic field, the magnetic field ⁇ > 10000 Oersted, the pressure is 5 T/cm 2 , and the isostatic Press 7 T/cm 2 .
  • the sample was sintered under argon protection in a sintering furnace.
  • the sintered sample was made into a ⁇ 10*10 standard sample.
  • the magnetic properties of the NdFeB300/110 grade NdFeB alloy prepared by using the regenerated NdFeB mixture obtained in Example 1 and the NdFeB300/110 grade NdFeB alloy prepared by the conventional mixture are shown in the following table 1:

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

提供了一种钕铁硼合金废料的再生处理方法,先将钕铁硼废料除杂后粉碎,然后采用锌熔法获得再生钕铁硼混合料。该方法工艺简单、流程短、设备简单投资少,成本低,且减少了环境污染。

Description

说 明 书
一种钕铁硼合金废料再生处理方法
技术械
本发明属于资源再利用技术领域, 特别涉及一种钕铁硼合金废料再 生处理方法。 背景技术
钕铁硼合金是一种性能优越的永磁材料, 其中铁含量最高, 其余分 别为稀土、钴、 铝、 硼等。 钕铁硼合金被广泛应用于高科技的各个领域, 其发展前景广阔, 但是钕铁硼在生产过程中难免会产生一些废料, 且在 后加工过程中也会产生很多边角料。 因此需要对钕铁硼废料进行合理的 处理, 既可以避免对环境的污染, 又可以节省资源。
目前, 对钕铁硼废料的处理一般采用从中回收稀土的方式, 工艺流 程长, 且需要加入大量强酸强碱等化工材料, 既浪费资源又污染环境。 发明内容
本发明的目的在于提供一种钕铁硼合金废料再生处理方法, 可以克 服目前再生处理方法工艺复杂、成本高,既浪费资源又污染环境的缺陷。
为实现上述目的, 本发明采用如下方案:
一种钕铁硼合金废料再生处理方法, 先将钕铁硼废料除杂后粉碎, 然后采用辞熔法获得再生钕铁硼混合料。
辞熔法处理钕铁硼废料获得再生钕铁硼混合料时, 按照废料与辞的 质量比为 1 : 3〜9 将二者混合均匀, 然后于辞熔炉中真空气氛下 75 0〜
950 °C保温 7〜8. 5 h , 之后脱辞。
脱辞时间优选控制为 15〜24 h。
辞熔炉内的真空度优选控制在 40〜1 05微米汞柱。
在辞熔炉中, 当炉内真空度达 40〜1 05 微米汞柱时送电升温; 当炉 温达 450 ° 时停泵, 继续升温至 750〜950 ° 之后保温 7〜8. 5 h; 保温 结束后, 开动真空泵进行脱辞。
进一步, 废料除杂后优选进行球磨粉碎: 按照废料与球磨介质质量 比为 1: 1〜 10将废料加入直径为 1〜 10 mm的球磨介质中, 控制球磨转 速为 50〜250 r/min , 研磨 0. 5 ~ 10 h; 球磨过程中连续通入 30〜90 °C 纯水。
废料除杂可如下进行: 先用纯水清洗钕铁硼废料, 除去表面吸附杂 质, 然后干燥。
具体的, 辞添加的量按照钕铁硼废料中各元素的比例进行调整。 在辞熔炉中真空氛围保温时, 辞与钕铁硼废料中的钕、 铁以及钴形 成低熔点合金, 破坏了钕铁硼元素间的粘结作用, 使致密合金变成了松 散的状态。 脱辞则利用在一定的温度下辞的蒸汽压远远高于钴、 铁、 钕 等的蒸汽压, 使辞蒸发出来予以回收利用。 脱辞完毕后, 断电降温, 待 炉温降至 320 °C时停真空泵, 冷却至 100 °C以下出炉, 卸出辞熔料块 进行表面清理, 然后再经过球磨、 破碎、 调整合金成分, 获得再生钕铁 硼混合料, 用于重新制作钕铁硼合金。
辞熔法虽然并不是首次提出, 但过往多用于硬质合金废料的回收。 本发明大胆尝试, 将其运用于钕铁硼合金废料回收制备钕铁硼混合料。 由于钕铁硼合金与硬质合金的性能相差较大, 因此需要对辞熔法的各参 数重新进行摸索和调整, 最终通过合理调整工艺参数, 获得了很好的回 收效果, 且回收获得的再生钕铁硼混合料制备的合金性能与常规混合料 制备的合金性能基本相当。
本发明具有以下优点:
本发明钕铁硼合金废料再生处理方法工艺筒单、 流程短, 设备筒单 投资小, 成本低; 与传统的湿法回收技术相比, 避免了使用强碱、 强酸 等化学物质, 减少了环境污染。 具体实施方式
实施例 1
根据钕铁硼废料中各元素的比例来计算辞添加的量, 按料辞质量比 1: 7 将废料与辞粉混合均匀, 装入辞熔炉的石墨坩埚内。 密封炉子, 开 动真空泵抽真空, 当炉内真空度达 40 微米汞柱时送电升温。 当炉温达 450 ° 时停泵, 继续升温至工作温度 760 °C, 保温 7 h; 保温结束后, 开动真空泵使辞蒸发出来予以回收利用, 脱辞时间为 15 h。 脱辞完毕, 断电降温, 待炉温降至 320 °C时停真空泵, 冷却至 100 °C以下出炉, 卸出辞熔料块进行表面清理, 经过球磨、 破碎、 调整合金成分, 便得再 生钕铁硼混合料, 用于重新制作钕铁硼合金。
实施例 2
根据钕铁硼废料中各元素的比例来计算辞添加的量, 按料辞比 1: 9 将废料与辞粉混合均匀, 装入辞熔炉的石墨坩埚内。 密封炉子, 开动真 空泵抽真空, 当炉内真空度达 105 微米汞柱时送电升温。 当炉温达 450 ° 时停泵, 继续升温至工作温度 950 °C, 保温 7.5 h; 保温结束后, 开动真空泵使辞蒸发出来予以回收利用, 脱辞时间为 24 h。 脱辞完毕, 断电降温, 待炉温降至 320 °C时停真空泵, 冷却至 100 °C以下出炉, 卸出辞熔料块进行表面清理, 经过球磨、 破碎、 调整合金成分, 便得再 生钕铁硼混合料, 用于重新制作钕铁硼合金。
实施例 3
根据钕铁硼废料中各元素的比例来计算辞添加的量, 按料辞比 1: 5 将废料与辞粉混合均匀, 装入辞熔炉的石墨坩埚内。 密封炉子, 开动真 空泵抽真空,当炉内真空度达 55 微米汞柱时送电升温。当炉温达 450 °C 时停泵, 继续升温至工作温度 800 °C, 保温 8 h; 保温结束后, 开动真 空泵使辞蒸发出来予以回收利用, 脱辞时间为 16 h。 脱辞完毕, 断电降 温, 待炉温降至 320 °C时停真空泵, 冷却至 100 °C以下出炉, 卸出辞 熔料块进行表面清理, 经过球磨、 破碎、 调整合金成分, 便得再生钕铁 硼混合料, 用于重新制作钕铁硼合金。
分别利用获得的再生钕铁硼混合料以及常规的混合料制备 NdFeB300/110牌号钕铁硼合金, 方法如下: 将获得的钕铁硼混合料进行 成分分析, 然后加入适量 Pr、 Nd、 Dy、 A1 与硼铁, 放入中频真空感应 炉中进行冶炼, 先抽真空后充氩气, 冶炼温度控制在 1500 °C, 保温 30 mil后, 铸健。
将合金锭除去氧化皮, 氮气保护下破碎成 3〜5 μηι均匀颗粒粉末。 采用垂直钢模压, 为进一步密实, 可加用等静压工艺, 在磁场中把粉末 制成 φ 12*12的圓柱形样品, 磁场 Η> 10000奥斯特, 压强 5 T/cm2, 等 静压 7 T/cm2
样品在烧结炉中氩气保护下烧结。烧结样品制成 φ 10*10标准样品。 利用实施例 1获得的再生钕铁硼混合料制备 NdFeB300/110牌号钕 铁硼合金的性能与常规混合料制备的 NdFeB300/110 牌号钕铁硼合金的 磁性能参数见下表 1:
表 1
磁性能指标
剩磁 Br 内禀矫顽力 Hci 磁感矫顽力 Hcb 磁能积 ( BH ) max (T) ( KA/m ) (KA/m) (KJ/m3) 一般 1223 942.5
混合料
再生 1.25 1235 943.7 296.93
混合料

Claims

权 利 要 求 书
1. 一种钕铁硼合金废料再生处理方法, 其特征在于, 先将钕铁硼 废料除杂后粉碎, 然后采用辞熔法获得再生钕铁硼混合料。
2. 如权利要求 1 所述的钕铁硼合金废料再生处理方法, 其特征在 于, 辞熔法处理钕铁硼废料获得再生钕铁硼混合料时, 按照废料与辞的 质量比为 1 : 3〜9 将二者混合均匀, 然后于辞熔炉中真空气氛下 750〜 950 °C保温 7〜8. 5 h, 之后脱辞获得。
3.如权利要求 2所述的钕铁硼合金废料再生处理方法,其特征在于, 脱辞时间为 15〜24 h。
4.如权利要求 2所述的钕铁硼合金废料再生处理方法,其特征在于, 辞熔炉内的真空度为 40〜105 微米汞柱。
5.如权利要求 2〜4 任一项所述的钕铁硼合金废料再生处理方法, 其特征在于, 在辞熔炉中, 当炉内真空度达 40〜105 微米汞柱时送电升 温; 当炉温达 450 ° 时停泵, 继续升温至 750〜950 °C保温 7〜8. 5 h; 保温结束后, 开动真空泵进行脱辞。
6.如权利要求 5所述的钕铁硼合金废料再生处理方法,其特征在于, 废料除杂后进行球磨粉碎: 按照废料与球磨介质质量比为 1 : 1〜10将废 料加入直径为 1〜10 mm的球磨介质中, 控制球磨转速 50〜250 r/min, 研磨 0. 5 - 10 h; 球磨过程中连续通入 30〜90 °C纯水。
PCT/CN2011/084963 2011-10-12 2011-12-30 一种钕铁硼合金废料再生处理方法 WO2013053186A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011103084289A CN103045866A (zh) 2011-10-12 2011-10-12 一种钕铁硼合金废料再生处理方法
CN201110308428.9 2011-10-12

Publications (1)

Publication Number Publication Date
WO2013053186A1 true WO2013053186A1 (zh) 2013-04-18

Family

ID=48058725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084963 WO2013053186A1 (zh) 2011-10-12 2011-12-30 一种钕铁硼合金废料再生处理方法

Country Status (2)

Country Link
CN (1) CN103045866A (zh)
WO (1) WO2013053186A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270251A (zh) * 2020-02-06 2020-06-12 刘小英 一种钕铁硼的回收再利用装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105931781B (zh) * 2016-06-22 2019-01-08 赣州富尔特电子股份有限公司 一种烧结钕铁硼回收废料的再生利用方法
CN106048232B (zh) * 2016-07-22 2018-08-14 江西理工大学 一种钕铁硼废料功能修复的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077264A (ja) * 2004-09-07 2006-03-23 Kenichi Machida 希土類焼結磁石および遷移金属系スクラップのリサイクル方法、GHz帯域対応電波吸収体用磁性体粉末および電波吸収体の製造方法
CN101717859A (zh) * 2009-12-22 2010-06-02 赣州步莱铽新资源有限公司 一种从钕铁硼废料中回收稀土的方法
CN101817547A (zh) * 2010-05-07 2010-09-01 沈阳工业大学 一种从钕铁硼永磁材料废料中回收混合稀土氯化物的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1127797A (zh) * 1995-01-23 1996-07-31 孟祥林 钕铁硼稀土永磁废料二次真空熔炼再生永磁体的方法
CN101705382A (zh) * 2009-11-30 2010-05-12 杭州天石硬质合金有限公司 超细硬质合金的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077264A (ja) * 2004-09-07 2006-03-23 Kenichi Machida 希土類焼結磁石および遷移金属系スクラップのリサイクル方法、GHz帯域対応電波吸収体用磁性体粉末および電波吸収体の製造方法
CN101717859A (zh) * 2009-12-22 2010-06-02 赣州步莱铽新资源有限公司 一种从钕铁硼废料中回收稀土的方法
CN101817547A (zh) * 2010-05-07 2010-09-01 沈阳工业大学 一种从钕铁硼永磁材料废料中回收混合稀土氯化物的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270251A (zh) * 2020-02-06 2020-06-12 刘小英 一种钕铁硼的回收再利用装置

Also Published As

Publication number Publication date
CN103045866A (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
JP6419869B2 (ja) セリウム含有ネオジム鉄ホウ素磁石およびその製造方法
CN102211192B (zh) 二次回收料制备高性能钕铁硼的方法
CN103093916B (zh) 一种钕铁硼磁性材料及其制备方法
CN106158339B (zh) 烧结钕铁硼回收废料经扩渗处理制备高性能永磁体的方法
JP2017188661A (ja) ネオジム鉄ホウ素廃棄物で製造されるネオジム鉄ホウ素永久磁石およびその製造方法
CN106971802A (zh) 一种再生烧结钕铁硼永磁体制备方法
CN102251118A (zh) 一种从废旧镍氢电池中回收金属的方法
CN102403118A (zh) 一种各向异性钐钴基纳米晶稀土永磁体制备方法
CN104036945A (zh) 一种利用废旧永磁电机磁钢制备高温稳定性再生烧结钕铁硼磁体的方法
CN104575901A (zh) 一种添加铽粉的钕铁硼磁体及其制备方法
WO2011082595A1 (zh) 一种微细球形nd-fe-b粉的制备方法
CN103077796A (zh) 一种耐蚀钕铁硼永磁材料及其制备方法
CN104036946A (zh) 一种利用废旧永磁电机磁钢制备高性能高矫顽力再生烧结钕铁硼磁体的方法
CN104036947A (zh) 一种利用废旧永磁电机磁钢制备高矫顽力再生烧结钕铁硼磁体的方法
CN104036948A (zh) 一种利用废旧永磁电机磁钢制备高性能再生烧结钕铁硼磁体的方法
CN111276309B (zh) 一种热压成型制备稀土永磁体的方法
CN107424700A (zh) 利用双面磨加工钕铁硼油泥废料制备再生烧结钕铁硼磁体的方法
WO2013053186A1 (zh) 一种钕铁硼合金废料再生处理方法
US20210280344A1 (en) Method for preparing NdFeB magnet powder
CN107464684B (zh) 烧结磁体的处理方法
CN103123840B (zh) 一种具有高抗压强度的永磁材料及其制备方法
CN105702406B (zh) 一种MnAlC基高矫顽力永磁材料及其制备方法
CN111354524B (zh) 一种钕铁硼各向异性粘结磁粉的制备方法
CN111370219A (zh) 一种钕铁硼废旧磁钢全循环回收利用生产新永磁体的制备工艺
TWI555041B (zh) 以釹鐵硼磁石廢料製造釹鐵硼磁石的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/10/2014).

122 Ep: pct application non-entry in european phase

Ref document number: 11873867

Country of ref document: EP

Kind code of ref document: A1