WO2013053174A1 - 多孔金属结构的高效散热器 - Google Patents

多孔金属结构的高效散热器 Download PDF

Info

Publication number
WO2013053174A1
WO2013053174A1 PCT/CN2011/083296 CN2011083296W WO2013053174A1 WO 2013053174 A1 WO2013053174 A1 WO 2013053174A1 CN 2011083296 W CN2011083296 W CN 2011083296W WO 2013053174 A1 WO2013053174 A1 WO 2013053174A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat conducting
conducting strip
porous metal
strip
Prior art date
Application number
PCT/CN2011/083296
Other languages
English (en)
French (fr)
Inventor
李再林
杜瑞亮
孙瑞
Original Assignee
Li Zailin
Du Ruiliang
Sun Rui
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Zailin, Du Ruiliang, Sun Rui filed Critical Li Zailin
Publication of WO2013053174A1 publication Critical patent/WO2013053174A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape

Definitions

  • the present invention relates to a heat sink for a semiconductor or other solid state device, and more particularly to a highly efficient heat sink for a porous metal structure for high power semiconductor chips and high power LED heat dissipation.
  • the prior art heat sink basically uses ordinary aluminum heat sink to dissipate heat, because the aluminum heat sink is based on aluminum profiles. Therefore, the area in contact with the air is limited. If the heat sink is added to improve the heat dissipation effect, the volume and weight of the heat sink are increased, and the cost is greatly increased, resulting in a lower cost performance of the entire product.
  • the high-power semiconductor chip such as the CPU of the computer and the heat dissipation of the currently popular high-power LED
  • the conventional heat pipe heat sink device is to install an aluminum piece as a heat sink on the heat pipe,
  • the heat dissipation area is greatly limited.
  • a metal foam heat sink for an electronic heat-generating device including a heat sink for placing an electronic heat-generating device, and a metal sintered on the heat-dissipating plate, is disclosed in the patent document of the publication No. CN 1929729A.
  • the foam layer, the metal foam layer adopts a special processing technology, and the metal foam material is processed and formed, and is sintered to the heat dissipation plate at a high temperature, and the metal foam layer is stored by using a large heat exchange area of the metal foam and high heat transfer efficiency. The heat is quickly taken away.
  • the publication date is February 9, 2011, and the patent document of the publication No.
  • CN 20174267U discloses a superconducting heat pipe radiator using a porous metal material as a heat dissipating body, which comprises a porous metal, a heat source connecting plate and a heat pipe; wherein the heat pipe One end is inserted into the porous metal, and the other end is inserted into the heat source connecting plate; the structure is connected to the heat source and the heat dissipating component through the heat pipe, which can save product installation space, reduce the overall weight of the product, and save raw material cost.
  • the patent document published on May 16, 2007, published as CN 1964092A discloses a high-power light-emitting diode using a porous metal material as a heat sink, which is mainly made of a porous metal material and a high-power light-emitting diode by welding or sticking.
  • Package composition The use of a porous metal material such as porous copper or porous aluminum produced by an electrochemical process as a heat sink can greatly increase the heat dissipation area and facilitate heat dissipation of the high power light emitting diode.
  • the heat dissipation structures of the above several patents all utilize the characteristics of the porous metal having a large surface area, and the heat dissipation effect of the heat sink is improved by increasing the heat dissipation area.
  • the heat of the heat source cannot be uniformly transferred to the entire porous metal. Since the porosity of the porous metal is as high as 90% or more, the effective heat transfer area per unit area is small in the porous metal. It is known that the amount of heat transfer is proportional to the heat transfer area. Therefore, the high porosity structure of the porous metal makes the heat transfer performance of the porous metal much lower than that of a conventional heat sink.
  • the heat transfer efficiency is very low, and simply connecting the porous metal to the heat source or simply inserting the heat pipe or the heat conductive sheet into the porous metal cannot transfer the heat of the heat source to the entire porous metal, and the above structures do not consider heat in the porous state.
  • the conduction problem in the metal and the inherent defect of low heat transfer efficiency make the advantage of the large-area heat-dissipating surface of the porous metal not fully exerted, and the heat-dissipating effect of the porous metal heat sink is reduced. Summary of the invention
  • the object of the present invention is to provide a highly efficient heat sink having a porous metal structure with high heat transfer efficiency and good heat dissipation effect in order to solve the problems of low heat transfer efficiency and poor heat dissipation effect of the prior art porous metal heat sink.
  • a high-efficiency heat sink of a porous metal structure comprising a plate-like structure heat-conducting portion connected to a heat source and a block-shaped structure heat-dissipating portion connected to the heat-conducting portion, the heat dissipation
  • the portion is a porous metal structure, and a heat conducting strip connected to the heat conducting portion is disposed in the heat dissipating portion, and the heat conducting portion, the heat conducting strip and the heat radiating portion are an integrated structure.
  • a heat conducting strip connected to the heat conducting portion is disposed in the heat dissipating portion of the porous metal structure, and the heat absorbed by the heat conducting portion from the heat source can be sent to the heat dissipating portion of the porous metal structure through the heat conducting strip, and the heat transfer portion of the heat radiating portion of the porous metal structure
  • the efficiency is greatly improved, so that the advantage of the large-area heat-dissipating surface of the heat-dissipating portion of the porous metal structure can be fully exerted, thereby greatly improving the heat-dissipating effect of the porous metal structure heat sink.
  • the term "description" is used to mean that the heat-conducting strips are evenly distributed in a symmetrical or proportionally distributed manner throughout the heat dissipating portion. They may be arranged in parallel at equal intervals, or may be radially distributed.
  • the structure, the heat-conducting strip itself may be the same structure, or may be a structure having a regular change.
  • the integrated structure of the heat conducting portion, the heat conducting strip and the heat dissipating portion can improve the heat conduction efficiency, and the porous metal base mold can be combined with the heat conducting portion provided with the heat conducting strip, and the porous metal structure can be formed above the heat conducting portion by the porous metal forming process.
  • the heat conducting strip is placed in the porous metal structure; for the simple heat sink structure, the heat conducting portion, the heat conducting strip and the porous metal may be combined into a single structure by welding, bonding or the like.
  • the heat conducting portion, the heat conducting strip and the porous metal structure are tightly fused and joined together to form a composite metal body, so that the heat of the heat conducting portion is quickly and uniformly transferred to the porous metal structure through the heat conducting strip, and the porous metal structure has The advantage of a large heat-dissipating surface is that heat is quickly dissipated.
  • the heat conducting strip has a columnar or plate-like structure, and the heat conducting strips are vertically disposed at equal intervals on the heat conducting portion of the plate-like structure.
  • This structure can make the heat dissipating heat dissipation strips evenly arranged in the entire heat dissipating portion, and is suitable for dissipating heat of the heat generating device having a planar heat source.
  • the heat conducting strip has a columnar structure, and the heat conducting strip is radially disposed on the heat conducting portion of the plate structure.
  • the heat conducting strip of such a structure is arranged radially, and the heat conducting strip is relatively concentrated near the heat conducting portion, and is suitable for heat dissipation of the heat generating device having a point source.
  • the heat conducting strips are equally spaced, and the heat conducting strip and the heat conducting strip are integrally connected to form a three-dimensional grid-like structure.
  • the structure is also provided with a horizontally-structured heat-conducting strip.
  • the three-dimensional grid-like structure allows the heat-dissipating strip to be uniformly disposed in the entire heat-dissipating portion, and is particularly suitable for a heat source. Heat dissipation of the planar heat generating device.
  • the heat conducting portion is a flat plate structure, and the heat conducting strip is disposed in a vertical direction and a horizontal direction of the heat dissipating portion, and the heat conducting strip disposed in the horizontal direction is perpendicular to the heat conducting strip in the front and rear direction and the heat conducting strip in the left and right direction
  • the intersection is composed of a vertical heat conduction strip perpendicularly intersecting the horizontal heat conduction strips of different heights, and the vertical heat conduction strips are connected to the heat conduction portion at the lower end portion thereof.
  • the heat conducting strip of the three-dimensional grid structure can be arranged in various ways, the mutually orthogonal structure between the heat conducting strips can reduce the manufacturing difficulty and reduce the production cost.
  • the vertical heat conducting strip has a tapered or wedge-shaped structure, and the cross-sectional area thereof decreases from the lower end portion of the heat conducting strip connecting the heat conducting portion to the upper end portion of the heat conducting strip away from the heat conducting portion;
  • the horizontal heat conducting strip near the heat conducting portion has a cross section The area is larger than the cross-sectional area of the horizontal heat conducting strip away from the heat conducting portion.
  • the cross-sectional area of the heat-conducting strip near the heat-conducting portion is larger than the cross-sectional area of the heat-conducting strip away from the heat-conducting portion, thereby reducing the weight of the heat sink, saving materials, and reducing costs. Increase the heat dissipation area of the heat sink.
  • the heat conducting portion is a flat plate structure
  • the heat conducting strip is spirally formed as a whole
  • the spiral heat conducting strip has a spiral center line perpendicular to the heat conducting portion of the flat plate structure
  • the lower end portion of the heat conducting strip is thermally conductive.
  • the solution utilizes a spiral surrounding structure to transfer heat from the heat conducting portion to the heat dissipating portion of the three-dimensional structure, which is simple in installation and low in cost.
  • the spiral heat conducting strip has a body having a tapered or wedge-shaped structure, and the cross-sectional area of the heat conducting strip body is decreased from the lower end portion of the heat conducting strip connecting the heat conducting portion toward the upper end portion of the heat conducting strip away from the heat conducting portion.
  • the cross-sectional area of the heat-conducting strip near the heat-conducting portion is larger than the cross-sectional area of the heat-conducting strip away from the heat-conducting portion, thereby reducing the weight of the heat sink, saving materials, and reducing costs. Increase the heat dissipation area of the heat sink.
  • the spiral heat conducting strip is in the shape of an inverted tower spring, and the spiral heat conducting strip adjacent to the heat conducting portion has a spiral circumference smaller than a spiral circumference of the spiral heat conducting strip away from the heat conducting portion.
  • the inverted tower-like structure heat-conducting strip can increase the density of the heat-conducting strip away from the heat-conducting portion, and more heat can be transferred to the upper portion of the heat sink, so that the heat distribution of the heat-dissipating portion can be more evenly distributed, which is beneficial to improve the heat-dissipating effect.
  • the heat conducting portion and the heat conducting strip are aluminum, aluminum alloy or copper or copper alloy, and the heat dissipating portion is foamed copper, aluminum foam, nickel foam or foamed iron.
  • the utility model has the beneficial effects that: the utility model effectively solves the problems of low heat transfer efficiency and poor heat dissipation effect of the prior art porous metal heat sink, and the porous metal structure high efficiency heat sink of the invention has high heat transfer efficiency and good heat dissipation effect, Very high use value.
  • Embodiment 1 is a schematic structural view of Embodiment 1 of a high-efficiency heat sink of a porous metal structure of the present invention
  • Embodiment 3 is a schematic structural view of Embodiment 3 of the high-efficiency heat sink of the porous metal structure of the present invention
  • Embodiment 5 is a schematic structural view of Embodiment 5 of the high-efficiency heat sink of the porous metal structure of the present invention.
  • FIG. 4 is a schematic view showing a connection structure between a heat conducting plate and a heat conducting strip of the high efficiency heat sink of the porous metal structure of the present invention
  • FIG. 5 is a heat conducting plate and heat conducting of the high efficiency heat sink embodiment 6 of the porous metal structure of the present invention
  • FIG. 6 is a schematic structural view of Embodiment 7 of the high-efficiency heat sink of the porous metal structure of the present invention
  • Figure 7 is a plan view of Figure 6;
  • Embodiment 10 is a schematic structural view of Embodiment 10 of the high-efficiency heat sink of the porous metal structure of the present invention.
  • Fig. 9 is a schematic view showing the structure of an embodiment 11 of the high-efficiency heat sink of the porous metal structure of the present invention.
  • a high-efficiency heat sink of a porous metal structure includes a heat conduction portion of a copper plate structure connected to a heat source and a block structure heat dissipation portion connected to the heat conduction portion, and the heat dissipation portion 1 is a porous metal foam copper, and a copper heat conduction strip 3 connected to the heat conducting portion 2 is disposed in a distributed manner in the heat dissipating portion.
  • the heat conducting strip has a columnar structure, and the heat conducting strips are vertically disposed on the heat conducting portion of the plate structure at equal intervals. The lower end of the heat conducting strip is connected to the heat conducting portion, and the heat conducting portion, the heat conducting strip and the heat radiating portion are integrated structures.
  • the high-efficiency heat sink of the second embodiment has a heat-conductive strip in a plate-like structure, and the rest is the same as in the first embodiment.
  • the heat conducting strip has a plate-like structure, and the heat conducting strip is radially disposed on the heat conducting portion of the plate-like structure, and the rest is the same as in the second embodiment.
  • the high-efficiency heat sink of the embodiment 4 has a columnar structure, and the heat-conducting strip is disposed in a three-dimensional radial shape on the heat-conducting portion of the plate-like structure, and the rest is the same as in the first embodiment.
  • the heat conducting strips are cylindrical, and are equally spaced, and the heat conducting strip and the heat conducting strip are integrally connected to form a three-dimensional grid-like structure;
  • the heat conducting strip is disposed in the heat dissipation In the vertical direction and the horizontal direction of the portion, the heat conducting strip disposed in the horizontal direction is formed by the heat conducting strips in the front and rear direction and the heat conducting strips in the left and right direction perpendicularly intersecting, and the heat conducting strips in the vertical direction intersect perpendicularly with the horizontal heat conducting strips of different heights, vertical
  • the lower end of the heat conducting strip in the direction is connected to the heat conducting portion, and the rest is the same as in the first embodiment.
  • the heat conducting portion and the heat conducting strip of the heat sink are both aluminum, the porous metal of the heat dissipating portion is foamed aluminum, and the vertical heat conducting strip has a pyramidal structure, and the cross sectional area is self-joined.
  • the lower end portion of the heat conducting strip of the heat conducting portion is decremented toward the upper end portion of the heat conducting strip away from the heat conducting portion;
  • the horizontal heat conducting strip near the heat conducting portion has a cross sectional area larger than the horizontal cross section of the heat conducting strip away from the heat conducting portion, and the rest is the same as that of Embodiment 5. .
  • the heat conducting portion is a flat plate structure, and the heat conducting strip is spirally formed as a whole, and is disposed at equal intervals, and the spiral heat conducting strip has a spiral center line and a heat conduction of the flat plate structure.
  • the lower portion of the heat conducting strip is connected to the heat conducting portion, and the rest is the same as in the first embodiment.
  • the high-efficiency heat sink of the embodiment 8 has a spiral heat-conducting strip body having a wedge-shaped structure, and the cross-sectional area of the heat-conducting strip body is decreased from the lower end portion of the heat-transfer strip connecting the heat-conducting portion toward the upper end portion of the heat-conducting strip away from the heat-conducting portion, and the rest and the embodiment 7 the same.
  • the spiral heat conducting strip of the embodiment 9 has an inverted tower spring shape, and the spiral heat conducting strip near the heat conducting portion has a spiral circumference smaller than that of the spiral heat conducting strip far from the heat conducting portion, and the rest is the same as that of the eighth embodiment.
  • the heat conducting portion is a flat plate structure
  • the heat conducting strip is a vertical plate disposed at a position intermediate the heat dissipating portion and perpendicular to the heat conducting portion, and the heat dissipating portion is integrally formed by welding between the heat conducting strip and the heat conducting portion.
  • the structure is the same as in the first embodiment.
  • the heat transfer portion has a flat plate structure, and the heat radiating portion is directly disposed on the heat transfer portion in a block structure, and the heat transfer portion and the heat dissipation portion are integrally formed by bonding.
  • the basic mold of the porous metal may be combined with the heat conducting portion provided with the heat conducting strip, and then the porous metal structure is formed on the heat conducting portion by the porous metal forming process, so that the heat conducting strip is located in the porous metal structure, thereby
  • the heat conducting portion, the heat conducting strip and the heat dissipating portion are integrated structures, and for a simple heat sink structure, the heat conducting portion, the heat conducting strip and the porous metal may be combined into a single structure by welding or bonding, in two different materials. When welding between, a transition layer may be provided on one of the materials to facilitate welding with another material.
  • the heat conducting portion is closely attached to the heat dissipating surface of the high-power semiconductor chip or the high-power LED, and the heat generated by the high-power semiconductor chip or the high-power LED is quickly and uniformly transferred to the porous metal structure through the heat conducting strip.
  • the heat is quickly dissipated by natural cooling, forced air cooling or water cooling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种多孔金属结构的散热器,包括与热源连接的板状结构导热部(2)及与导热部连接的块状结构散热部(1),该散热部为多孔金属结构,散热部内匀称地散布有与导热部连接的导热条(3),导热部、导热条及散热部为一体化结构。解决了现有技术的多孔金属散热器传热效率低、散热效果差的问题,这种多孔金属散热器具有传热效率高、散热效果好以及高使用价值的优点。

Description

技术领域
本发明涉及一种半导体或其他固态器件的散热装置,尤其是涉及一种用于大功率半导体 芯片及大功率 LED散热的多孔金属结构的高效散热器。
背景技术
大功率半导体芯片及大功率 LED都需要配置体积小、 散热效果好的散热装置, 现有技 术的散热装置, 基本上是采用普通的铝散热片来散热, 由于铝散热片是依铝型材为基础, 因 此其与空气接触的面积是有限的, 如果采取增加散热片的方法来改善散热的效果, 又会增加 散热装置的体积和重量, 同时会使成本大大增加, 造成整个产品的性价比降低。 计算机的 CPU等大功率半导体芯片及目前流行的大功率 LED的散热, 虽然也有采用热管原理来实现 散热的结构, 但是目前普通的热管散热装置都是在热管上加装铝片作散热器, 其散热面积受 到很大的限制。 公开日为 2007年 3月 14日, 公开号为 CN 1929729A的专利文件公开了一 种用于电子发热器件的金属泡沫散热器, 包括用于放置电子发热器件的散热板, 散热板上烧 结有金属泡沫层, 其金属泡沫层采用特殊的加工工艺, 将任意金属泡沫材料加工成型, 并高 温烧结到散热板上, 利用金属泡沫换热面积大, 传热效率高的特点, 将金属泡沫层储存的热 量迅速带走。 公开日为 2011年 2月 9日, 公开号为 CN 20174267U的专利文件公开了一种 用多孔金属材料作散热体的超导热管散热器, 它包括多孔金属、 热源连接板和热管; 其中, 热管一端插入多孔金属, 另一端插入热源连接板; 该结构通过热管连接热源与散热部件, 可 以节省产品安装空间,降低产品整体的重量,节约原材料成本。公开日为 2007年 5月 16日, 公开号为 CN 1964092A的专利文件公开了一种采用多孔金属材料作为散热装置的大功率发 光二极管, 它主要由多孔金属材料与大功率发光二极管通过焊接或粘合封装组成。采用通过 电化学工艺生产的多孔金属材料如多孔铜或多孔铝作为散热装置, 能极大地增加散热面积, 有利于大功率发光二极管的散热。上述几种专利的散热结构均利用了多孔金属其表面积较大 的特点, 通过增大散热面积, 使散热器的散热效果有了提高。 但上述结构均存在热源的热量 无法均勾地传递到整个多孔金属中的问题, 因为多孔金属的孔隙率高达 90 %以上, 因此在 多孔金属中, 单位面积内的有效传热面积很小, 我们知道, 热量传递的大小与传热面积成正 比,因此,多孔金属的这种高孔隙率结构使得多孔金属的热传导性能大大低于常规的散热器, 传热效率很低,而将多孔金属与热源简单连接或者在多孔金属内简单地插入热管或导热片均 无法使热源的热量均勾地传递到整个多孔金属中,上述结构均没有考虑热量在多孔金属中的 传导问题,传热效率低的固有缺陷使得多孔金属所具有大面积散热表面的优势得不到充分发 挥, 降低了多孔金属散热器的散热效果。 发明内容
本发明的目的是为解决现有技术的多孔金属散热器传热效率低、散热效果差的问题而提 供一种传热效率高、 散热效果好的多孔金属结构的高效散热器。
本发明为解决上述技术问题所采用的技术方案是: 一种多孔金属结构的高效散热器, 包 括与热源连接的板状结构导热部及与导热部连接的块状结构散热部,所述的散热部为多孔金 属结构, 散热部内勾称地散布有与导热部连接的导热条, 所述的导热部、 导热条及散热部为 一体化结构。在多孔金属结构散热部内勾称地设置与导热部连接的导热条, 导热部从热源吸 收的热量就可以通过导热条均勾地送到多孔金属结构的散热部内,多孔金属结构散热部的传 热效率得以大大提高,因此多孔金属结构散热部所具有大面积散热表面的优势就可以得到充 分发挥, 从而大大提高多孔金属结构散热器的散热效果。 这里所述的 "勾称地散布", 是指 这些导热条均勾或对称或比例和谐地分散布置在整个散热部内,他们可以是等间距相互平行 设置的结构, 也可以是均勾分布的放射状结构, 导热条的自身可以是相同的结构, 也可以是 一种具有规则变化的结构。 导热部、 导热条及散热部采用一体化的结构可以提高导热效率, 可以采用将多孔金属的基模与设有导热条的导热部组合,再通过多孔金属生成工艺在导热部 上方生成多孔金属结构, 使导热条位于多孔金属结构中; 对于简单的散热器结构, 也可以采 用焊接、 粘接等方法使导热部、 导热条与多孔金属组合成一体结构。 这样, 导热部、 导热条 与多孔金属结构紧密地融合连接在一起, 形成复合型金属体, 使导热部的热量通过导热条迅 速、 均勾地传递到多孔金属结构中, 利用多孔金属结构所具有大面积散热表面的优势, 将热 量迅速散发出去。
作为优选, 所述的导热条呈柱状或板状结构, 导热条等间距地垂直设置在板状结构的导 热部上。这种结构可以使导热条均勾的布置的整个散热部内, 适合于热源呈面状的发热器件 的散热。
作为一种可选方案, 所述的导热条呈柱状结构, 导热条呈放射状设置在板状结构的导热 部上。 这种结构的导热条呈放射状布置, 靠近导热部导热条相对集中, 适合于热源呈点状的 发热器件的散热。 作为另一种可选方案, 所述的导热条等间距设置, 导热条与导热条之间一体化连接构成 立体的网格状结构。这种结构除设有传统的指向热源的导热条外, 还设置有横向结构的导热 条, 这种立体的网格状结构可以使导热条均勾的布置的整个散热部内, 尤其适合于热源呈面 状的发热器件的散热。
作为优选, 所述的导热部为平板结构, 所述的导热条设置在散热部的垂直方向及水平方 向上, 设置在水平方向上的导热条由前后方向的导热条及左右方向的导热条垂直相交构成, 垂直方向的导热条与不同高度的水平方向导热条垂直相交,垂直方向的导热条其下端部与导 热部相连。虽然立体网格状结构的导热条可以采用多种排列方式, 但导热条之间相互正交的 结构可以降低制造难度, 降低生产成本。
作为优选, 垂直方向的导热条呈锥状或楔状结构, 其横截面积自连接导热部的导热条下 端部向远离导热部的导热条上端部递减;靠近导热部的水平方向导热条其横截面积大于远离 导热部的水平方向导热条的横截面积。考虑到热量传递过程中会不断散发, 因此靠近导热部 的导热条其横截面积大于远离导热部的导热条的横截面积, 这样可以减轻散热器的重量, 节 约材料, 降低成本, 同时也可以增大散热部的散热面积。
作为一种可选方案, 所述的导热部为平板结构,所述的导热条整体呈螺旋状, 螺旋状的 导热条其螺旋中心线与平板结构的导热部垂直, 导热条的下端部与导热部相连。本方案利用 螺旋的环绕结构将热量从导热部传递到立体结构的散热部中, 设置简单, 成本低廉。
作为优选, 所述的螺旋状的导热条其本体呈锥状或楔状结构, 导热条本体的横截面积自 连接导热部的导热条下端部向远离导热部的导热条上端部递减。考虑到热量传递过程中会不 断散发, 因此靠近导热部的导热条其横截面积大于远离导热部的导热条的横截面积, 这样可 以减轻散热器的重量, 节约材料, 降低成本, 同时也可以增大散热部的散热面积。
作为优选, 所述的螺旋状的导热条呈倒置的塔簧状, 靠近导热部的螺旋状导热条其螺旋 周长小于远离导热部的螺旋状导热条的螺旋周长。倒置的塔簧状结构导热条可以使得远离导 热部的导热条密度增加, 较多的热量得以传递到散热器的上部, 这样可以让散热部的热量分 布更为均勾, 有利于提高散热效果。
作为优选, 导热部与导热条为铝、 铝合金或者铜、 铜合金, 散热部为泡沫铜、 泡沫铝、 泡沫镍或泡沫铁。
本发明的有益效果是: 它有效地解决了现有技术的多孔金属散热器传热效率低、散热效 果差的问题, 本发明的多孔金属结构高效散热器传热效率高、 散热效果好, 具有很高的使用 价值。 附图说明
图 1是本发明多孔金属结构的高效散热器实施例 1的一种结构示意图;
图 2是本发明多孔金属结构的高效散热器实施例 3的一种结构示意图;
图 3是本发明多孔金属结构的高效散热器实施例 5的一种结构示意图;
图 4是本发明多孔金属结构的高效散热器实施例 5的一种导热板与导热条的连接结构示意图; 图 5是本发明多孔金属结构的高效散热器实施例 6的一种导热板与导热条的连接结构示意图; 图 6是本发明多孔金属结构的高效散热器实施例 7的一种结构示意图;
图 7是图 6的俯视图;
图 8是本实用新型多孔金属结构的高效散热器实施例 10的一种结构示意图;
图 9是本实用新型多孔金属结构的高效散热器实施例 11的一种结构示意图。
具体实施方式 下面通过实施例, 并结合附图对本发明技术方案的具体实施方式作进一步的说明。
实施例 1
在图 1所示的实施例 1中, 一种多孔金属结构的高效散热器, 包括与热源连接的铜质板状结 构导热部及与导热部连接的块状结构散热部, 所述的散热部 1为多孔金属泡沫铜, 散热部内 勾称地散布有与导热部 2连接的铜质导热条 3, 所述的导热条呈柱状结构, 导热条等间距地 垂直设置在板状结构的导热部上, 导热条的下端与导热部连接, 所述的导热部、 导热条及散 热部为一体化结构。
实施例 2
实施例 2的高效散热器其导热条呈板状结构, 其余和实施例 1相同。
实施例 3
在图 2所示的实施例 3中, 所述的导热条呈板状结构, 导热条呈放射状设置在板状结构的导 热部上, 其余和实施例 2相同。
实施例 4
实施例 4的高效散热器其导热条呈柱状结构,导热条呈立体放射状设置在板状结构的导热部 上, 其余和实施例 1相同。
实施例 5
在图 3、 图 4所示的实施例 5中, 所述的导热条呈圆柱状, 等间距设置, 导热条与导热条之 间一体化连接构成立体的网格状结构; 所述的导热部为平板结构, 所述的导热条设置在散热 部的垂直方向及水平方向上,设置在水平方向上的导热条由前后方向的导热条及左右方向的 导热条垂直相交构成, 垂直方向的导热条与不同高度的水平方向导热条垂直相交, 垂直方向 的导热条其下端部与导热部相连, 其余和实施例 1相同。
实施例 6
在图 5所示的实施例 6中,散热器的导热部及导热条均为铝质,散热部的多孔金属为发泡铝, 垂直方向的导热条呈棱锥状结构,其横截面积自连接导热部的导热条下端部向远离导热部的 导热条上端部递减;靠近导热部的水平方向导热条其横截面积大于远离导热部的水平方向导 热条的横截面积, 其余和实施例 5相同。
实施例 7
在图 6图 7所示的实施例 7中, 所述的导热部为平板结构,所述的导热条整体呈螺旋状, 等 间距设置, 螺旋状的导热条其螺旋中心线与平板结构的导热部垂直, 导热条的下端部与导热 部相连, 其余和实施例 1相同。
实施例 8
实施例 8的高效散热器其螺旋状的导热条本体呈楔状结构,导热条本体的横截面积自连接导 热部的导热条下端部向远离导热部的导热条上端部递减, 其余和实施例 7相同。
实施例 9
实施例 9的螺旋状的导热条呈倒置的塔簧状,靠近导热部的螺旋状导热条其螺旋周长小于远 离导热部的螺旋状导热条的螺旋周长, 其余和实施例 8相同。
实施例 10
在图 8所示的实施例 10中, 导热部为平板结构,导热条为一块设置在散热部中间位置且与导 热部垂直的立板, 散热部与导热条及导热部之间通过焊接形成一体结构, 其余和实施例 1相 同。
实施例 11
在图 9所示的实施例 11中, 导热部为平板结构,散热部呈块状结构直接设置在导热部上, 导 热部与散热部为之间通过粘接形成一体结构。
在上述实施例中, 可以采用将多孔金属的基模与设有导热条的导热部组合, 再通过多孔 金属生成工艺在导热部上方生成多孔金属结构, 使导热条位于多孔金属结构中, 从而使导热 部、 导热条及散热部成为一体化结构, 而对于简单的散热器结构, 也可以采用焊接、 粘接等 方法使导热部、 导热条与多孔金属组合成一体结构, 在两种不同材料之间焊接时, 可以在其 中一种材料上设置过渡层, 以方便与另外一种材料焊接。 本发明的高效散热器在使用时,导热部紧贴大功率半导体芯片或大功率 LED的散热面, 大功率半导体芯片或大功率 LED产生的热量通过导热条迅速、 均勾地传递到多孔金属结构 中, 利用多孔金属结构所具有大面积散热表面的优势, 再通过自然冷却、 强制风冷或水冷等 方式, 将热量迅速散发出去。
上述实施例仅用来举例解释和说明本发明, 而不是对本发明实施方式的限制, 在本发明 的精神和权利要求的保护范围内, 对本发明做出的任何修改和改变, 都落入本发明的保护范 围内。

Claims

权利要求
1. 一种多孔金属结构的高效散热器, 包括与热源连接的板状结构导热部及与导热部连接的 块状结构散热部, 其特征是: 所述的散热部 (1 ) 为多孔金属结构, 散热部内勾称地散布有 与导热部 (2) 连接的导热条 (3 ), 所述的导热部、 导热条及散热部为一体化结构。
2. 根据权利要求 1 所述的多孔金属结构的高效散热器, 其特征在于: 所述的导热条呈柱状 或板状结构, 导热条等间距地垂直设置在板状结构的导热部上。
3. 根据权利要求 1 所述的多孔金属结构的高效散热器, 其特征在于: 所述的导热条呈柱状 结构, 导热条呈放射状设置在板状结构的导热部上。
4. 根据权利要求 1 所述的多孔金属结构的高效散热器, 其特征在于: 所述的导热条等间距 设置, 导热条与导热条之间一体化连接构成立体的网格状结构。
5. 根据权利要求 4所述的多孔金属结构的高效散热器, 其特征在于: 所述的导热部为平板 结构, 所述的导热条设置在散热部的垂直方向及水平方向上, 设置在水平方向上的导热条由 前后方向的导热条及左右方向的导热条垂直相交构成,垂直方向的导热条与不同高度的水平 方向导热条垂直相交, 垂直方向的导热条其下端部与导热部相连。
6. 根据权利要求 5 所述的多孔金属结构的高效散热器, 其特征在于: 垂直方向的导热条呈 锥状或楔状结构,其横截面积自连接导热部的导热条下端部向远离导热部的导热条上端部递 减;靠近导热部的水平方向导热条其横截面积大于远离导热部的水平方向导热条的横截面积
7. 根据权利要求 1 所述的多孔金属结构的高效散热器, 其特征在于: 所述的导热部为平板 结构,所述的导热条整体呈螺旋状, 螺旋状的导热条其螺旋中心线与平板结构的导热部垂直, 导热条的下端部与导热部相连。
8. 根据权利要求 7所述的多孔金属结构的高效散热器, 其特征在于: 所述的螺旋状的导热 条其本体呈锥状或楔状结构,导热条本体的横截面积自连接导热部的导热条下端部向远离导 热部的导热条上端部递减。
9. 根据权利要求 8所述的多孔金属结构的高效散热器, 其特征在于: 所述的螺旋状的导热 条呈倒置的塔簧状,靠近导热部的螺旋状导热条其螺旋周长小于远离导热部的螺旋状导热条 的螺旋周长。
10. 根据权利要求 1或 2或 3或 4或 5或 6或 7或 8或 9所述的多孔金属结构的高效散热器, 其特征在于: 导热部与导热条为铝、 铝合金或者铜、 铜合金, 散热部为泡沫铜、 泡沫铝、 泡 沫镍或泡沫铁。
PCT/CN2011/083296 2011-10-10 2011-12-01 多孔金属结构的高效散热器 WO2013053174A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110303862.8 2011-10-10
CN2011103038628A CN102368482B (zh) 2011-10-10 2011-10-10 多孔金属结构的高效散热器

Publications (1)

Publication Number Publication Date
WO2013053174A1 true WO2013053174A1 (zh) 2013-04-18

Family

ID=45761041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083296 WO2013053174A1 (zh) 2011-10-10 2011-12-01 多孔金属结构的高效散热器

Country Status (2)

Country Link
CN (1) CN102368482B (zh)
WO (1) WO2013053174A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2989659A4 (en) * 2013-04-23 2017-04-12 Alexiou & Tryde Holding ApS Heat sink having a cooling structure with decreasing structure density

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105960150A (zh) * 2016-07-10 2016-09-21 李增珍 一种风冷散热器的制作方法
US10782078B2 (en) 2016-09-13 2020-09-22 Bgt Materials Limited Heat dissipation coating layer and manufacturing method thereof
RU2734855C1 (ru) * 2017-03-23 2020-10-23 Куинтус Текнолоджиз Аб Прессовое устройство

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250879A (ja) * 1995-03-07 1996-09-27 Showa Aircraft Ind Co Ltd ヒートシンク
JPH10322062A (ja) * 1997-05-21 1998-12-04 Matsushita Electric Works Ltd 放熱器
JP2002329821A (ja) * 2001-04-27 2002-11-15 Toshiyuki Arai ヒートシンク
US6591897B1 (en) * 2002-02-20 2003-07-15 Delphi Technologies, Inc. High performance pin fin heat sink for electronics cooling
CN1905171A (zh) * 2005-07-26 2007-01-31 黄福国 散热装置
CN201742674U (zh) * 2010-08-06 2011-02-09 李再林 一种用多孔金属材料作散热体的超导热管散热器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2337509Y (zh) * 1998-07-15 1999-09-08 富骅企业股份有限公司 散热装置
CN1095406C (zh) * 1999-04-02 2002-12-04 富准精密工业(深圳)有限公司 高密度散热器制造方法
CN100484378C (zh) * 2005-01-15 2009-04-29 富准精密工业(深圳)有限公司 散热装置的制造方法
JP2007129183A (ja) * 2005-10-03 2007-05-24 Sumitomo Electric Ind Ltd 冷却部材
CN1929729A (zh) * 2006-09-05 2007-03-14 西安交通大学 一种用于电子发热器件的金属泡沫散热器
CN100433391C (zh) * 2006-11-30 2008-11-12 何永祥 一种采用多孔金属材料作为散热装置的大功率发光二极管
WO2008119696A1 (en) * 2007-03-29 2008-10-09 Nv Bekaert Sa Composite aluminium or aluminium alloy porous structures
CN101436574B (zh) * 2008-12-15 2011-03-16 江西蓝天学院 一种cpu散热器
KR101077948B1 (ko) * 2009-03-23 2011-10-28 동하정밀 주식회사 전자기기용 히트싱크
CN201844377U (zh) * 2010-09-02 2011-05-25 袁志贤 一种led光源散热装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250879A (ja) * 1995-03-07 1996-09-27 Showa Aircraft Ind Co Ltd ヒートシンク
JPH10322062A (ja) * 1997-05-21 1998-12-04 Matsushita Electric Works Ltd 放熱器
JP2002329821A (ja) * 2001-04-27 2002-11-15 Toshiyuki Arai ヒートシンク
US6591897B1 (en) * 2002-02-20 2003-07-15 Delphi Technologies, Inc. High performance pin fin heat sink for electronics cooling
CN1905171A (zh) * 2005-07-26 2007-01-31 黄福国 散热装置
CN201742674U (zh) * 2010-08-06 2011-02-09 李再林 一种用多孔金属材料作散热体的超导热管散热器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2989659A4 (en) * 2013-04-23 2017-04-12 Alexiou & Tryde Holding ApS Heat sink having a cooling structure with decreasing structure density

Also Published As

Publication number Publication date
CN102368482A (zh) 2012-03-07
CN102368482B (zh) 2013-06-19

Similar Documents

Publication Publication Date Title
CN102221189A (zh) 一种垂直对流散热器及一种垂直对流散热筒灯
CN201607152U (zh) 一种穿孔多面立体散热器
CN202082883U (zh) 集成大功率led热管散热装置
WO2013053174A1 (zh) 多孔金属结构的高效散热器
CN203464213U (zh) 一种led投射灯散热器
CN201742674U (zh) 一种用多孔金属材料作散热体的超导热管散热器
WO2011134121A1 (zh) 一种led光源模组
CN205028894U (zh) 一种插齿式焊接热管散热器
CN101893220B (zh) 用于冷却led的重力型平板热管散热器
CN201844377U (zh) 一种led光源散热装置
CN105138098A (zh) 一种铜铝爆炸复合cpu散热片装置
CN201844247U (zh) 轻便型高效散热led灯具
CN201206808Y (zh) 发光二极管灯具
CN201652270U (zh) 一种led灯具的光源散热器
CN204179185U (zh) 一种快速散热滤波器腔体
CN211152537U (zh) 服务器散热器
CN202469989U (zh) 一种组合型三维立体led散热器
CN211352881U (zh) 一种高效快速的散热模组
CN202150487U (zh) 一种led散热器
CN201327001Y (zh) Led光源散热器
CN208805772U (zh) 一种风扇内置式的cpu散热器
CN108919930A (zh) 一种风扇内置式的cpu散熱器
CN217694149U (zh) 一种散热器
CN203940391U (zh) 一种结构一体化大功率led散热器
CN202076328U (zh) 新型热管循环散热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873833

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/06/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11873833

Country of ref document: EP

Kind code of ref document: A1