WO2013047908A1 - ハニカムフィルタ、及びその製造方法 - Google Patents

ハニカムフィルタ、及びその製造方法 Download PDF

Info

Publication number
WO2013047908A1
WO2013047908A1 PCT/JP2012/075876 JP2012075876W WO2013047908A1 WO 2013047908 A1 WO2013047908 A1 WO 2013047908A1 JP 2012075876 W JP2012075876 W JP 2012075876W WO 2013047908 A1 WO2013047908 A1 WO 2013047908A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
honeycomb
raw material
parts
Prior art date
Application number
PCT/JP2012/075876
Other languages
English (en)
French (fr)
Inventor
浩二 元木
末信 宏之
絵梨子 小玉
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to EP12821164.6A priority Critical patent/EP2604323A4/en
Priority to CN201280002137.XA priority patent/CN103140269B/zh
Priority to JP2012555229A priority patent/JP5981854B2/ja
Priority to US13/764,009 priority patent/US8747511B2/en
Publication of WO2013047908A1 publication Critical patent/WO2013047908A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24494Thermal expansion coefficient, heat capacity or thermal conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/40Mortars, concrete or artificial stone characterised by specific physical values for gas flow through the material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs

Definitions

  • the present invention relates to a honeycomb filter and a manufacturing method thereof. More specifically, the present invention relates to a honeycomb filter capable of realizing a high durability while suppressing an increase in pressure loss, and a method for manufacturing such a honeycomb filter.
  • the exhaust gas discharged from the diesel engine may contain particulate matter such as soot. If this particulate matter is released into the atmosphere as it is, it may cause environmental pollution.
  • a filter for exhaust gas purification is used.
  • a diesel particulate filter can be mentioned as a filter for removing particulate matter in exhaust gas discharged from a diesel engine.
  • the particulate matter may be referred to as “PM”.
  • PM is an abbreviation for “Particulate Matter”.
  • the diesel particulate filter may be referred to as “DPF”.
  • a DPF for example, a DPF provided with a honeycomb structure having porous partition walls for partitioning a plurality of cells can be exemplified.
  • the cells formed in the honeycomb structure serve as fluid (for example, exhaust gas and purified gas) flow paths.
  • Patent documents 1 and 2 can be mentioned as a manufacturing method of such a honeycomb structure.
  • a plugging portion for sealing an opening portion of the cell is disposed at one end of the cell formed in the honeycomb structure.
  • exhaust gas is introduced from one end of such a filter, particulate matter in the exhaust gas is captured by the partition walls.
  • a DPF having a higher “maximum soot accumulation amount” is required as compared with a conventional DPF.
  • the maximum soot accumulation amount is also referred to as “soot mass limit” or “SML”.
  • SML stable soot accumulation amount
  • soot in the exhaust gas accumulates on the partition walls of the honeycomb filter.
  • soot accumulates on the partition walls of the honeycomb filter, the pressure loss of the honeycomb filter increases. For this reason, soot accumulated on the partition walls of the honeycomb filter is burned to regenerate the honeycomb filter.
  • the regeneration is performed at a stage where more soot is deposited on the partition walls.
  • the amount of soot accumulated on the partition walls increases, a large amount of soot burns at a time, and the temperature rise of the honeycomb filter during regeneration increases. If the temperature rise of the honeycomb filter during regeneration becomes large, the honeycomb filter may be damaged such as cracks.
  • the maximum soot accumulation amount is the maximum accumulation amount of soot that does not cause breakage such as cracks in the honeycomb filter when the above regeneration is performed. That is, in the honeycomb filter, a high maximum soot accumulation amount means that durability such as thermal shock resistance is excellent.
  • the maximum soot accumulation amount of the honeycomb filter correlates with the heat capacity of the honeycomb filter.
  • the heat capacity of the honeycomb filter is correlated with the porosity of the honeycomb filter. For example, as the porosity of the honeycomb filter is lower, the mass of the honeycomb filter is increased and the heat capacity of the honeycomb filter is also increased. However, when the porosity of the honeycomb filter is lowered, the pressure loss of the honeycomb filter is increased. In particular, when the porosity of the honeycomb filter is 46% or less, the increase in pressure loss becomes significant. When the pressure loss of the honeycomb filter increases, the filter performance decreases.
  • Patent Document 1 the particle size distribution of talc and silica in the cordierite raw material is controlled.
  • the porous honeycomb structure manufactured according to Patent Document 1 is said to have high collection efficiency and prevent an increase in pressure loss, but in practice, it is extremely difficult to control the particle size of the raw material.
  • a pressure loss is a problem in a low porosity honeycomb filter.
  • Patent Document 2 discloses a porous material having a pore volume of 15 ⁇ m or less and a pore volume of 0.07 cc / cc or less, and a pore volume of 40 ⁇ m or more and a pore volume of 0.07 cc / cc or less.
  • This porous material has a porosity of 40 to 75% and a permeabilidity of 1.5 ⁇ m 2 or more.
  • the porous material is a non-oxide ceramic and has a high thermal expansion coefficient. That is, in a raw material having a low thermal expansion coefficient, high durability could not be realized while suppressing an increase in pressure loss.
  • the amount of kaolin as a silica source in the cordierite forming raw material is increased, and the amount of silica is relatively decreased.
  • the porosity of the partition of the obtained honeycomb structure can be reduced.
  • pores connected from one surface of the partition wall to the other surface decrease, and the pressure loss of the honeycomb structure increases. It was.
  • the present invention has been made in view of the above-described problems.
  • the present invention provides a honeycomb filter capable of realizing high durability with a large maximum amount of accumulated soot while suppressing an increase in pressure loss, and a method for manufacturing such a honeycomb filter.
  • the following honeycomb filter and manufacturing method thereof are provided.
  • a cylindrical honeycomb structure having a porous partition wall that partitions and forms a plurality of cells extending from one end face to the other end face that serve as a fluid flow path, one open end of the predetermined cell, A plugging portion disposed at the other opening end of the remaining cell, wherein the partition wall has a porosity of 46% or less, and the honeycomb structure has a permeability of 0.8 ⁇ m 2.
  • the pore volume ratio of pores having a pore diameter of 40 ⁇ m or more is 7.5% or less
  • the pore volume ratio of pores having a pore diameter of 10 ⁇ m or less is 25% or less
  • a honeycomb filter in which the honeycomb structure has a thermal expansion coefficient of 1.0 ⁇ 10 ⁇ 6 / ° C. or less at 40 ° C. to 800 ° C.
  • the partition wall is made of a porous body containing cordierite as a main component, and the partition wall contains 0.40% by mass or less of lithium in terms of Li 2 O in the partition wall.
  • Honeycomb filter is made of a porous body containing cordierite as a main component, and the partition wall contains 0.40% by mass or less of lithium in terms of Li 2 O in the partition wall.
  • the partition includes at least one selected from the group consisting of cerium oxide, zirconium oxide, and yttrium oxide in the partition, and the content of the cerium oxide is 3.0% by mass or less.
  • the cordierite is produced using a clay obtained by adding at least one selected from the group consisting of cerium oxide, zirconium oxide, and yttrium oxide to a cordierite forming raw material.
  • the addition amount of the cerium oxide is 3.0 parts by mass or less with respect to 100 parts by mass of the conversion raw material
  • the addition amount of the zirconium oxide is 2.5 parts by mass or less with respect to 100 parts by mass of the cordierite conversion raw material.
  • the honeycomb filter according to any one of [1] to [4], wherein an addition amount of the yttrium oxide is 2.0 parts by mass or less with respect to 100 parts by mass of the cordierite forming raw material.
  • honeycomb filter according to any one of [1] to [5], which is manufactured using a clay using boehmite in an amount of 2% by mass to 8% by mass as an alumina source of a cordierite forming raw material.
  • the clay preparation step is an operation of adding 0.2 parts by mass or more and 1.0 part by mass or less of lithium carbonate to 100 parts by mass of the cordierite forming raw material, and to 100 parts by mass of the cordierite forming raw material.
  • the honeycomb includes at least one of an operation of adding 2.0 parts by mass or less of yttrium oxide and an operation of using 2 to 8% by mass of boehmite as an alumina source of the cordierite forming raw material.
  • the porosity of the partition walls of the obtained honeycomb structure is 46% or less, the permeability of the honeycomb structure is 0.8 ⁇ m 2 or more, and the pores have a pore diameter of 40 ⁇ m or more.
  • the volume ratio is 7.5% or less, the pore volume ratio of pores having a pore diameter of 10 ⁇ m or less is 25% or less, and the thermal expansion coefficient of the honeycomb structure at 40 ° C. to 800 ° C. is 1.0 ⁇ 10 ⁇ 6 / ° C. or lower, the method for manufacturing a honeycomb filter according to the above [7].
  • the honeycomb filter of the present invention includes a honeycomb structure and a plugging portion.
  • the honeycomb structure has a cylindrical shape having porous partition walls that define and form a plurality of cells extending from one end face to the other end face that serve as a fluid flow path.
  • the plugging portion is disposed at one open end of a predetermined cell of the honeycomb structure and the other open end of the remaining cells.
  • the porosity of the partition walls is 46% or less.
  • the honeycomb structure has a permeability of 0.8 ⁇ m 2 or more.
  • the pore volume ratio of pores having a pore diameter of 40 ⁇ m or more is 7.5% or less, and the pore volume ratio of pores having a pore diameter of 10 ⁇ m or less is 25% or less.
  • the thermal expansion coefficient of the honeycomb structure at 40 ° C. to 800 ° C. is 1.0 ⁇ 10 ⁇ 6 / ° C. or less.
  • the honeycomb filter of the present invention can achieve high durability while suppressing an increase in pressure loss. That is, in the honeycomb filter of the present invention, high durability is realized by setting the partition wall porosity to 46% or less. And in the honeycomb filter of the present invention, the permeability is 0.8 ⁇ m 2 or more, the pore volume ratio of pores having a pore diameter of 40 ⁇ m or more and the pore volume ratio of pores having a pore diameter of 10 ⁇ m or less are as described above. By setting this value, it is possible to achieve a pressure loss comparable to that of a conventional honeycomb filter.
  • the pores not related to gas permeability are selectively blocked to minimize the influence on the increase in pressure loss. ing. Furthermore, by selectively plugging pores not related to gas permeability, the porosity of the honeycomb structure used in the honeycomb filter is lowered, and the heat capacity of the honeycomb filter is increased. Thereby, durability of a honeycomb filter becomes high and the maximum soot accumulation amount can be improved.
  • the above-described honeycomb filter of the present invention can be easily manufactured.
  • at least one of the five operations described below is performed in the step of preparing the kneaded material for manufacturing the honeycomb structure. Thereby, among the pores formed in the partition, pores not related to gas permeability can be selectively blocked.
  • the first operation is an operation of adding 0.2 to 1.0 parts by mass of lithium carbonate to 100 parts by mass of the cordierite forming raw material.
  • the second operation is an operation of adding 3.0 parts by mass or less of cerium oxide to 100 parts by mass of the cordierite forming raw material.
  • the third operation is an operation of adding 2.5 parts by mass or less of zirconium oxide to 100 parts by mass of the cordierite forming raw material.
  • the fourth operation is an operation of adding 2.0 parts by mass or less of yttrium oxide to 100 parts by mass of the cordierite forming raw material.
  • the fifth operation is an operation in which boehmite is used in an amount of 2% by mass or more and 8% by mass or less as an alumina source of the cordierite forming raw material.
  • 1 is a perspective view schematically showing one embodiment of a honeycomb filter of the present invention.
  • 1 is a cross-sectional view schematically showing a cross section parallel to a cell extending direction of an embodiment of a honeycomb filter of the present invention.
  • 6 is a graph showing the relationship between the average pore diameter ( ⁇ m) and the porosity (%) in the honeycomb filters of Examples 1 to 4, 6 to 13, 15 to 17 and Comparative Examples 1, 4, 7, and 8. It is a graph which shows the pore diameter distribution of the partition of the honeycomb structure used for a honeycomb filter. It is the microscope picture which expanded the cross section which cut
  • the honeycomb filter 100 of this embodiment includes a honeycomb structure 4 and a plugging portion 5.
  • the honeycomb structure 4 has a cylindrical shape having a porous partition wall 1 for partitioning and forming a plurality of cells 2 extending from one end face 11 to the other end face 12 serving as a fluid flow path. Further, the plugged portions 5 are disposed at one open end of the predetermined cell 2 and the other open end of the remaining cell 2 of the honeycomb structure 4.
  • FIG. 1 is a perspective view schematically showing one embodiment of the honeycomb filter of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a cross section parallel to the cell extending direction of one embodiment of the honeycomb filter of the present invention.
  • the porosity of the partition walls 1 is 46% or less.
  • the permeability of the honeycomb structure 4 is 0.8 ⁇ m 2 or more.
  • the pore volume ratio of pores having a pore diameter of 40 ⁇ m or more is 7.5% or less, and the pore volume ratio of pores having a pore diameter of 10 ⁇ m or less. However, it is 25% or less.
  • the thermal expansion coefficient of the honeycomb structure 4 from 40 ° C. to 800 ° C. is 1.0 ⁇ 10 ⁇ 6 / ° C. or less.
  • the honeycomb filter 100 that satisfies the above-described configuration, it is possible to provide a honeycomb filter that has a high maximum soot deposition amount and high durability while suppressing an increase in pressure loss. More specifically, in the honeycomb filter 100 of the present embodiment, among the pores formed in the partition walls 1, the pores not related to gas permeability are selectively blocked, thereby affecting the increase in pressure loss. Minimize. Further, by selectively plugging pores not related to gas permeability, the porosity of the honeycomb structure 4 is lowered, and the heat capacity of the honeycomb filter 100 is increased. Thereby, durability of the honey-comb filter 100 becomes high and the maximum soot accumulation amount can be improved.
  • a large number of pores are formed in the partition walls of the honeycomb structure. Also in the honeycomb structure used in the conventional honeycomb filter, a large number of pores are formed in the partition walls. Such pores include the following two types of pores.
  • the first pore is a pore that is connected from one surface of the partition wall to the other surface and allows the exhaust gas to pass therethrough.
  • the second pore is a pore that is not connected from one surface of the partition wall to the other surface, and the continuity is interrupted in the middle of the partition wall.
  • the pressure loss of the honeycomb filter is determined by the number of the first pores.
  • the second pore does not affect the pressure loss of the honeycomb filter.
  • the second pore is a pore having a smaller pore diameter than the first pore. In order to improve the durability of the honeycomb filter, it is effective to reduce the porosity of the honeycomb structure and increase the weight of the honeycomb structure. That is, if the second pore can be selectively closed, high durability can be realized while suppressing an increase in pressure loss.
  • the configuration in which the second pores are selectively blocked has a porosity, a permeability, a pore volume ratio of pores having a pore diameter of 40 ⁇ m or more, and a fine pore size. It is defined by the pore volume ratio of pores having a pore diameter of 10 ⁇ m or less.
  • the porosity is 46% or less, and the permeability is 0.8 ⁇ m 2 or more.
  • the “porosity” is a value measured with a mercury porosimeter.
  • permeability means a physical property value calculated by the following formula (1). This permeability is a value serving as an index representing the passage resistance when a predetermined gas passes through a partition wall or the like.
  • C permeability ( ⁇ m 2 )
  • F gas flow rate (cm 3 / s)
  • T sample thickness (cm)
  • V gas viscosity (dynes ⁇ sec / cm 2 ).
  • D represents the sample diameter (cm)
  • P represents the gas pressure (PSI).
  • the permeability is a value serving as an index representing the passage resistance of the partition wall.
  • the porosity of the partition wall was 46% or less, the pore volume ratio of pores having a pore diameter of 40 ⁇ m or more was 7.5% or less, and the pore volume ratio of pores having a pore diameter of 10 ⁇ m or less was 25% or less.
  • the permeability of the honeycomb structure is 0.8 ⁇ m 2 or more, it can be said that the second pore is selectively blocked. That is, in the honeycomb filter of the present embodiment, it can be said that pores having a small pore diameter that are discontinuous in the middle of the partition walls are selectively blocked.
  • the permeability in a normal cordierite honeycomb structure, it is extremely difficult to set the permeability to 0.8 ⁇ m 2 or more when the porosity is set to 46% or less. It is possible to increase the permeability specifically by increasing the pore diameter of the pores formed in the partition walls. However, in such a case, the pore volume ratio of pores having a pore diameter of 40 ⁇ m or more increases. When the pore volume ratio of pores having a pore diameter of 40 ⁇ m or more is increased, the collection efficiency of the honeycomb filter is greatly reduced. For example, when the pore volume ratio of pores having a pore diameter of 40 ⁇ m or more increases, the particulate matter to be collected passes through the pores of the partition walls.
  • the pore volume ratio of pores having a pore diameter of 40 ⁇ m or more is 7.5% or less. It is not an increase in permeability. That is, “porosity”, “permeability”, “pore volume ratio of pores having a pore diameter of 40 ⁇ m or more”, and “pore volume ratio of pores having a pore diameter of 10 ⁇ m or less” are all described above. By satisfying the numerical range, it can be said that the pores in which the continuity is interrupted in the middle of the partition walls are well blocked.
  • the porosity of the partition walls is 46% or less.
  • the porosity of the partition walls is more than 46%, the heat capacity of the partition walls is low, and it is difficult to maintain high durability of the honeycomb filter. Accordingly, the maximum soot accumulation amount is also lowered.
  • the maximum soot deposition amount can be increased by setting the partition wall porosity to 46% or less.
  • the porosity of the partition walls is preferably 42% or less, and more preferably 40% or less. With this configuration, the maximum soot deposition amount can be further increased.
  • the lower limit of the porosity of the partition wall is not particularly limited, but the partition wall porosity is preferably 30% or more. When the porosity of the partition walls is too low, the pressure loss of the honeycomb filter may increase. It is more preferable that the partition wall has a porosity of 34% or more.
  • the permeability of the honeycomb structure is 0.8 ⁇ m 2 or more. By configuring in this way, even when the porosity is lowered, the passage resistance of the partition walls can be improved.
  • the permeability of the honeycomb structure is preferably 1.0 ⁇ m 2 or more, and more preferably 1.2 ⁇ m 2 or more. By comprising in this way, the increase in pressure loss can be suppressed effectively compared with the reduction in porosity.
  • the upper limit of the permeability of the honeycomb structure has a correlation with the porosity of the partition walls and the pore volume ratio of pores having a pore diameter of 40 ⁇ m or more. That is, when all of the pores formed in the partition walls are only connected from one surface of the partition walls to the other surface, this is a substantial upper limit of the permeability of the honeycomb structure.
  • the upper limit of the permeability of the honeycomb structure is about 6.0 ⁇ m 2 .
  • the pore volume ratio of pores having a pore diameter of 40 ⁇ m or more is 7.5% or less.
  • the pore volume ratio of pores having a pore diameter of 40 ⁇ m or more is a value calculated from the measurement result with a mercury porosimeter.
  • the “pore volume ratio of pores having a pore diameter of 40 ⁇ m or more” means the ratio of the pore volume of 40 ⁇ m or more to the total pore volume. That is, “pore volume ratio of pores having a pore diameter of 40 ⁇ m or more” is a ratio of the volume of pores of 40 ⁇ m or more when the volume of all pores is 100%.
  • the pore volume ratio of pores having a pore diameter of 40 ⁇ m or more is preferably 6.0% or less, and more preferably 4.0% or less. By comprising in this way, it can be set as the honeycomb filter of favorable collection efficiency.
  • the lower limit of the pore volume ratio of pores having a pore diameter of 40 ⁇ m or more there is no particular limitation on the lower limit of the pore volume ratio of pores having a pore diameter of 40 ⁇ m or more.
  • the substantial lower limit of the pore volume ratio of pores having a pore diameter of 40 ⁇ m or more is 0%. That is, in the honeycomb filter of the present embodiment, it is preferable that pores having a pore diameter of 40 ⁇ m or more are not substantially formed.
  • the pore volume ratio of pores having a pore diameter of 10 ⁇ m or less is 25% or less.
  • the pore volume ratio of pores having a pore diameter of 10 ⁇ m or less is a value calculated from the measurement result with a mercury porosimeter.
  • the “pore volume ratio of pores having a pore diameter of 10 ⁇ m or less” means the ratio of the volume of pores of 10 ⁇ m or less to the volume of all pores. That is, “pore volume ratio of pores having a pore diameter of 10 ⁇ m or less” is a ratio of the volume of pores of 10 ⁇ m or less, assuming that the volume of all pores is 100%.
  • pores with small pore diameters are considered to affect the increase in pressure loss of the honeycomb filter.
  • the ratio of pores with small pore diameters is expressed as “ It is defined by “pore volume ratio of pores having a pore diameter of 10 ⁇ m or less”.
  • the ratio of pores having discontinuity in the middle of the partition wall is the same as the porosity and the pore diameter is 10 ⁇ m or less.
  • the pore volume ratio of the pores can be relatively reduced as compared with a honeycomb filter having a pore volume exceeding 25%. Therefore, the honeycomb filter of the present embodiment can achieve high durability while suppressing an increase in pressure loss.
  • the pore volume ratio of pores having a pore diameter of 10 ⁇ m or less is preferably 7.0% or less, and more preferably 6.0% or less.
  • the thermal expansion coefficient of the honeycomb structure at 40 ° C. to 800 ° C. is 1.0 ⁇ 10 ⁇ 6 / ° C. or less. By comprising in this way, it can be set as the honeycomb filter excellent in heat resistance.
  • the thermal expansion coefficient at 40 ° C. to 800 ° C. of the honeycomb structure may be simply referred to as “thermal expansion coefficient of the honeycomb structure”.
  • the term “thermal expansion coefficient of the honeycomb structure” refers to the thermal expansion coefficient of the partition walls constituting the honeycomb structure in the cell extending direction.
  • the thermal expansion coefficient of the honeycomb structure is preferably 0.7 ⁇ 10 ⁇ 6 / ° C. or less, and more preferably 0.4 ⁇ 10 ⁇ 6 / ° C. or less.
  • the honeycomb filter of this embodiment can be used suitably as a filter for purifying the high temperature exhaust gas discharged
  • the lower limit value of the thermal expansion coefficient of the honeycomb structure there is no particular limitation on the lower limit value of the thermal expansion coefficient of the honeycomb structure. That is, regarding the thermal expansion coefficient, there is no preferable lower limit value, and it is preferable that the coefficient is appropriately lower depending on the material of the honeycomb filter and the like.
  • the lower limit value of the thermal expansion coefficient of the honeycomb structure is, for example, 0.1 ⁇ 10 ⁇ 6 / ° C.
  • the partition walls are preferably made of a porous body mainly composed of cordierite.
  • the “main component” means a component that is 70% by mass or more in the constituent material. That is, in the honeycomb filter of the present embodiment, it is preferable that the partition walls of the honeycomb structure be made of a porous body containing 70% by mass or more of cordierite.
  • the partition walls of the honeycomb structure are more preferably made of a material containing 75% by mass or more of cordierite, more preferably a material containing 80% by mass or more, and a material containing 85% by mass or more. Particularly preferred.
  • Cordierite has been described so far in terms of “porosity”, “permeability”, “pore volume ratio of pores having a pore diameter of 40 ⁇ m or more”, and “pore volume of pores having a pore diameter of 10 ⁇ m or less”. It is a material suitable for producing a honeycomb structure that satisfies the numerical value range of “rate”.
  • the partition walls of the honeycomb structure preferably include 0.40% by mass or less of lithium in terms of Li 2 O in the partition walls.
  • the partition walls of the honeycomb structure preferably include 0.40% by mass or less of lithium in terms of Li 2 O in the partition walls.
  • the Li 2 O equivalent amount of lithium contained in the partition walls is more preferably 0.32% by mass or less.
  • the Li 2 O equivalent amount of lithium contained in the partition walls is preferably 0.08% by mass or more.
  • the Li 2 O equivalent amount of lithium contained in the partition walls is more preferably 0.16% by mass or more.
  • a honeycomb structure manufactured using a clay obtained by adding 1.0 mass part or less of lithium carbonate to 100 mass parts of the cordierite forming raw material is used.
  • a honeycomb structure includes 0.40% by mass or less of lithium in the partition wall in terms of Li 2 O.
  • the amount of lithium carbonate added is more preferably 0.8 parts by mass or less with respect to 100 parts by mass of the cordierite forming raw material.
  • a honeycomb structure manufactured using a clay using boehmite of 2 mass% or more and 8 mass% or less as an alumina source of the cordierite forming raw material may be used.
  • Such a honeycomb structure also has fewer pores where continuity is interrupted in the middle of the partition walls.
  • the cordierite forming raw material is a ceramic raw material blended so as to have a chemical composition falling within the range of 42 to 56% by mass of silica, 30 to 45% by mass of alumina, and 12 to 16% by mass of magnesia.
  • the cordierite forming raw material is fired to become cordierite.
  • the partition walls of the honeycomb structure include at least one selected from the group consisting of cerium oxide, zirconium oxide, and yttrium oxide at the following content ratio.
  • cerium oxide CeO 2
  • zirconium oxide ZrO 2
  • yttrium oxide Y 2 O 3
  • Such a honeycomb filter is manufactured using, for example, a clay obtained by adding at least one selected from the group consisting of cerium oxide, zirconium oxide, and yttrium oxide to a cordierite forming raw material. It is preferable that The amounts of cerium oxide, zirconium oxide, and yttrium oxide added to the cordierite forming raw material are as follows.
  • the addition amount of cerium oxide is 3.0 parts by mass or less with respect to 100 parts by mass of the cordierite forming raw material.
  • the addition amount of zirconium oxide is 2.5 parts by mass or less with respect to 100 parts by mass of the cordierite forming raw material.
  • the addition amount of yttrium oxide is 2.0 parts by mass or less with respect to 100 parts by mass of the cordierite forming raw material.
  • the honeycomb structure 4 has a cylindrical shape having a porous partition wall 1 that defines a plurality of cells 2 that extend from one end surface 11 to the other end surface 12 serving as a fluid flow path. belongs to.
  • the honeycomb structure 4 shown in FIGS. 1 and 2 further includes an outer peripheral wall 3 located on the outermost periphery.
  • the porosity, the permeability, the pore volume ratio of pores having a pore diameter of 40 ⁇ m or more, and the thermal expansion coefficient are as described above.
  • the pores are formed in the partition walls of the honeycomb structure.
  • particulate matter in the exhaust gas is collected by the partition walls. That is, the partition wall in which the pores are formed becomes a filter body in the honeycomb filter.
  • the end face of the honeycomb structure may be a circular cylinder, the end face may be an oval cylinder, and the end face may be a polygonal cylinder.
  • the polygon include a quadrangle, a pentagon, a hexagon, a heptagon, and an octagon. 1 and 2 show an example in which the honeycomb structure has a cylindrical shape with a circular end surface.
  • a quadrangle, a hexagon, an octagon, a circle, or a combination thereof can be given.
  • squares squares and rectangles are preferable.
  • Plugging portion As shown in FIGS. 1 and 2, in the honeycomb filter 100 of the present embodiment, plugged portions 5 are disposed at the opening end portions of the cells 2 of the honeycomb structure 4. Thus, in the honeycomb filter 100 of the present embodiment, any one open end portion of the cell 2 is sealed by the plugging portion 5.
  • the cell 2 in which the plugging portion 5 is disposed at one opening end portion may be referred to as an “outflow cell 2b”.
  • the cell 2 in which the plugging portion 5 is disposed at the other opening end may be referred to as an “inflow cell 2a”.
  • one open end portion of the cell means an end portion of the cell on the one end face 11 side of the honeycomb structure 4.
  • the other open end of the cell refers to the end of the cell on the other end face 12 side of the honeycomb structure 4.
  • the plugging portion 5 those configured in the same manner as a conventionally known honeycomb filter can be suitably used. Moreover, there is no restriction
  • the honeycomb filter 100 of the present embodiment it is preferable that the inflow cells 2a and the outflow cells 2b are alternately arranged with the partition walls 1 therebetween. By comprising in this way, the particulate matter in exhaust gas can be favorably collected with a partition.
  • the material of the plugging portion may be the same material as the material of the partition walls of the honeycomb structure, or may be a material different from the material of the partition walls of the honeycomb structure.
  • the manufacturing method of the honeycomb filter of this embodiment is a manufacturing method for obtaining one embodiment of the honeycomb filter of the present invention described so far.
  • the method for manufacturing a honeycomb filter of the present embodiment includes a clay preparation process, a honeycomb formed body manufacturing process, a honeycomb structure manufacturing process, and a plugging process.
  • the clay preparation step it is important to prepare the clay so that the following physical property values of the finally obtained honeycomb structure are within a predetermined numerical range.
  • the physical properties of the resulting honeycomb structure include the porosity of the partition walls, the permeability, the pore volume ratio of pores having a pore diameter of 40 ⁇ m or more, and the pore volume ratio of pores having a pore diameter of 10 ⁇ m or less. And the coefficient of thermal expansion.
  • the clay preparation step is a step of preparing the clay containing the cordierite forming raw material.
  • the honeycomb formed body manufacturing step is a step of forming the kneaded material obtained in the kneaded material preparing step to obtain a honeycomb formed body.
  • the honeycomb structure manufacturing process is a process of obtaining the honeycomb structure by firing the honeycomb molded body obtained in the honeycomb molded body manufacturing process.
  • the plugging step is a step of disposing a plugging portion at one opening end of a predetermined cell of the honeycomb structure obtained in the honeycomb structure manufacturing step and the other opening end of the remaining cell. is there.
  • the clay preparation step includes at least one of the following five operations.
  • the first operation is an operation of adding 0.2 to 1.0 parts by mass of lithium carbonate to 100 parts by mass of the cordierite forming raw material.
  • the second operation is an operation of adding 3.0 parts by mass or less of cerium oxide to 100 parts by mass of the cordierite forming raw material.
  • the third operation is an operation of adding 2.5 parts by mass or less of zirconium oxide to 100 parts by mass of the cordierite forming raw material.
  • the fourth operation is an operation of adding 2.0 parts by mass or less of yttrium oxide to 100 parts by mass of the cordierite forming raw material.
  • the fifth operation is an operation in which boehmite is used in an amount of 2% by mass or more and 8% by mass or less as an alumina source of the cordierite forming raw material.
  • the above five operations may be performed in combination in the clay preparation step. For example, a predetermined amount of lithium carbonate may be added to the cordierite forming raw material, and a predetermined amount of boehmite may be used as the alumina source of the cordierite forming raw material.
  • the formation of pores where the continuity is interrupted in the middle of the partition can be suppressed.
  • formation of pores having a small pore diameter can be suppressed.
  • Clay preparation process First, in the method for manufacturing a honeycomb filter of the present embodiment, a clay containing a cordierite forming raw material is prepared. Specifically, a forming raw material containing a cordierite forming raw material is mixed and kneaded to obtain a clay.
  • the cordierite forming raw material is a ceramic raw material blended so as to have a chemical composition that falls within a range of 42 to 56% by mass of silica, 30 to 45% by mass of alumina, and 12 to 16% by mass of magnesia. The cordierite forming raw material is fired to become cordierite.
  • the method for manufacturing a honeycomb filter of the present embodiment it is preferable to prepare clay by adding 1.0 mass part or less of lithium carbonate to 100 mass parts of the cordierite forming raw material.
  • the amount of lithium carbonate added exceeds 1.0 part by mass, the forming raw material may not be sintered at the time of firing the honeycomb formed body, and the structural strength necessary for the honeycomb filter may not be ensured.
  • the addition amount of lithium carbonate it is preferable that it is 0.2 mass part or more with respect to 100 mass parts of cordierite forming raw materials. If it is less than 0.2 parts by mass, the effect of suppressing the formation of pores with discontinuity may not be sufficiently exhibited.
  • the addition amount of lithium carbonate it is preferable that it is 0.2 mass part or more and 1.0 mass part or less with respect to 100 mass parts of cordierite forming raw materials, and 0.2 mass part or more and 0.8 mass part or less. More preferably, it is 0.4 mass part or more and 0.8 mass part or less.
  • the clay may be prepared by adding 3.0 parts by mass or less of cerium oxide to 100 parts by mass of the cordierite forming raw material.
  • the clay may be prepared by adding 2.5 parts by mass or less of zirconium oxide to 100 parts by mass of the cordierite forming raw material.
  • the clay may be prepared by adding 2.0 parts by mass or less of yttrium oxide to 100 parts by mass of the cordierite forming raw material.
  • the amount of cerium oxide added exceeds 3.0 parts by mass, melting may occur during firing of the honeycomb formed body, and the structural strength necessary for the honeycomb filter may not be maintained. Further, when the addition amount of zirconium oxide exceeds 2.5 parts by mass, or when the addition amount of yttrium oxide exceeds 2.0 parts by mass, as in the case of cerium oxide, at the time of firing the honeycomb formed body. In some cases, melting occurs and the structural strength necessary for the honeycomb filter cannot be maintained.
  • cerium oxide it is preferable that it is 1.0 mass part or more and 3.0 mass parts or less with respect to 100 mass parts of cordierite-forming raw materials, and 1.5 mass parts or more and 2.8 mass parts. More preferably, it is 1.8 mass parts or more and 2.5 mass parts or less. Further, the addition amount of zirconium oxide is preferably 0.5 parts by mass or more and 2.4 parts by mass or less, and 0.7 parts by mass or more and 2.3 parts by mass or less with respect to 100 parts by mass of the cordierite forming raw material. More preferably, it is 1.0 part by mass or more and 2.0 parts by mass or less.
  • the amount of yttrium oxide added is preferably 0.3 parts by mass or more and 1.8 parts by mass or less, and 0.5 parts by mass or more, 1.6 parts by mass with respect to 100 parts by mass of the cordierite forming raw material. More preferably, it is 0.8 parts by mass or more and 1.3 parts by mass or less.
  • boehmite may be used in an amount of 2% by mass or more and 8% by mass or less as an alumina source of the cordierite forming raw material. That is, cordierite is a ceramic containing a predetermined amount of silica, alumina, and magnesia. As the cordierite forming raw material, a silica source, an alumina source, and a magnesia source are used. In the clay preparation step, boehmite is used as the alumina source of the cordierite forming raw material.
  • the quantity of the boehmite shall be 2 mass% or more and 8 mass% or less with respect to the whole cordierite-ized raw material. With this configuration, it is possible to manufacture a honeycomb structure with a low porosity while suppressing the formation of pores not related to gas permeability and maintaining permeability.
  • the amount of boehmite is less than 2% by mass or more than 8% by mass, the effect of suppressing the formation of pores with discontinuity due to the addition of boehmite does not appear.
  • the amount of boehmite is not particularly limited as long as it is 2% by mass or more and 8% by mass or less.
  • a clay may be prepared by adding a dispersion medium to the above cordierite forming raw material.
  • Water can be used as the dispersion medium.
  • the addition amount of the dispersion medium is preferably 20 to 50 parts by mass with respect to 100 parts by mass of the cordierite forming raw material.
  • An organic binder may be added to the cordierite forming raw material.
  • the organic binder is preferably methyl cellulose, hydroxypropyl methyl cellulose, hydroxypropyl ethyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinyl alcohol, or a combination thereof. Further, the addition amount of the organic binder is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the cordierite forming raw material.
  • An inorganic binder may be added to the cordierite forming raw material. As the inorganic binder, inorganic fiber, colloidal oxide, clay and the like can be used.
  • a surfactant may be added to the cordierite forming raw material.
  • ethylene glycol, dextrin, fatty acid soap, polyalcohol and the like can be used. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the addition amount of the surfactant is preferably 0 to 5.0 parts by mass with respect to 100 parts by mass of the cordierite forming raw material.
  • the average particle diameter of the talc and silica raw material particles is preferably 5 ⁇ m or more and 35 ⁇ m or less. If the average particle diameter of the talc and silica raw material particles is too small, pores not related to gas permeability may increase. On the other hand, if the average particle size of the raw material particles is too large, many pores having a pore size of 40 ⁇ m or more may be formed.
  • the average particle diameter of the talc and silica raw material particles is more preferably 5 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 30 ⁇ m or less.
  • the average particle diameter is the median diameter (d50) in the particle diameter distribution of each raw material particle.
  • the method of kneading the forming raw material to form the clay is not particularly limited, and examples thereof include a method using a kneader, a vacuum kneader or the like.
  • honeycomb compact manufacturing process Next, the obtained clay is formed into a honeycomb shape to obtain a honeycomb formed body.
  • the method for forming the kneaded clay to form the honeycomb formed body There is no particular limitation on the method for forming the kneaded clay to form the honeycomb formed body.
  • the method for forming the honeycomb formed body include known forming methods such as extrusion molding and injection molding.
  • a method of forming a honeycomb formed body by extrusion molding using a die having a desired cell shape, partition wall thickness, and cell density can be cited as a suitable example.
  • As the material of the die a cemented carbide which does not easily wear is preferable.
  • the shape of the honeycomb formed body is not particularly limited, and a cylindrical shape, a cylindrical shape having an elliptical end surface, a polygonal cylindrical shape having an end surface of “square, rectangular, triangular, pentagonal, hexagonal, octagonal etc.” is preferable. .
  • honeycomb structure manufacturing process Next, the obtained honeycomb formed body is fired to obtain a honeycomb structure including porous partition walls that define a plurality of cells serving as fluid flow paths. Prior to firing the honeycomb formed body, the honeycomb formed body may be dried.
  • drying method There is no particular limitation on the drying method.
  • the drying method include hot air drying, microwave drying, dielectric drying, reduced pressure drying, vacuum drying, freeze drying, and the like. Among them, it is preferable to perform dielectric drying, microwave drying, or hot air drying alone or in combination.
  • the honeycomb formed body Prior to firing the honeycomb formed body, the honeycomb formed body is preferably calcined. Calcination is performed for degreasing. The calcination may be performed as long as at least a part of the organic matter in the honeycomb formed body can be removed. Generally, the combustion temperature of the organic binder is about 100 to 300 ° C. For this reason, it is preferable that the calcination is performed in an oxidizing atmosphere at a temperature of about 200 to 1000 ° C. for about 10 to 100 hours.
  • the firing of the honeycomb formed body is for sintering and densifying the forming raw material constituting the calcined formed body.
  • the partition wall has a predetermined strength.
  • the firing conditions can be appropriately selected depending on the type of molding raw material. That is, the firing temperature, firing time, firing atmosphere, and the like may be selected appropriately according to the type of molding raw material.
  • the firing temperature is preferably 1350 to 1440 ° C.
  • the firing time is preferably 3 to 10 hours at the maximum temperature.
  • the apparatus for performing the calcination and the main firing As an apparatus which performs calcination and main baking, an electric furnace, a gas furnace, etc. can be mentioned, for example.
  • the honeycomb structure which can be used for one embodiment of the honeycomb filter of the present invention can be manufactured.
  • Plugging step Next, plugging portions are disposed at one open end of a predetermined cell of the honeycomb structure and the other open end of the remaining cells. About the plugging process, it can carry out according to the process similar to the plugging process of the manufacturing method of a conventionally well-known honeycomb filter.
  • Examples of the method for disposing the plugging portion include a method of filling one opening end portion of a predetermined cell of the honeycomb structure and the other opening end portion of the remaining cell with a slurry-like plugging material. be able to. When filling the plugging material into the opening end of the cell of the honeycomb structure, first, the plugging material is filled into one opening end, and then the plugging material is filled into the other opening end. Fill.
  • the following method can be exemplified.
  • a sheet is attached to one end face of the honeycomb structure.
  • a hole for filling the plugging material is formed in the sheet.
  • the hole for filling the plugging material is located at a position where a cell in which the plugging portion is to be formed exists.
  • the honeycomb structure to which the sheet is attached is press-fitted into a container in which the plugging material is stored. That is, the end of the honeycomb structure to which the sheet is attached is press-fitted into the container. Thereby, the plugging material is filled into a predetermined cell through the hole of the sheet.
  • the other open end of the cell is filled with the plugging material in the same manner as described above. That is, a sheet is attached to the other end face of the honeycomb structure similarly to the one end face, and the plugging material is filled in the same manner as described above.
  • the plugging portion can be formed by drying the plugging material filled in the cells of the honeycomb structure.
  • the plugging material may be dried for each opening end.
  • Example 1 First, a honeycomb structure used for a honeycomb filter was produced.
  • a cordierite forming raw material was used as a ceramic raw material for producing the honeycomb structure.
  • a clay for molding was prepared by adding a dispersion medium, an inorganic binder, an organic binder, and a dispersant to the cordierite forming raw material.
  • the amount of the dispersion medium added was 35 parts by mass with respect to 100 parts by mass of the cordierite forming raw material.
  • the addition amount of the inorganic binder was 2 parts by mass with respect to 100 parts by mass of the cordierite forming raw material.
  • the addition amount of the organic binder was 4 parts by mass with respect to 100 parts by mass of the cordierite forming raw material.
  • a cordierite forming raw material As a cordierite forming raw material, a material containing 43.0% by mass of talc, 17.0% by mass of kaolin, 12.0% by mass of silica, 24.0% by mass of alumina, and 2.0% by mass of boehmite. Using. The average particle size of talc was 20 ⁇ m. The average particle size of silica was 20 ⁇ m. The average particle size of boehmite was 0.1 ⁇ m. The average particle diameter is the median diameter (d50) in the particle diameter distribution of each raw material particle. Tables 1 and 2 show the compounding prescription of the cordierite forming raw material. Further, the raw material used for preparing the kneaded material in Example 1 is referred to as “raw material batch 1”.
  • Water was used as a dispersion medium when preparing the clay.
  • clay was used as the inorganic binder.
  • colloidal oxides, inorganic fibers, and the like can be used as the inorganic binder.
  • Hydroxypropyl methylcellulose and methylcellulose were used as the organic binder.
  • potassium laurate soap was used as the dispersant.
  • the kneaded material obtained was extruded using a mold for forming a honeycomb formed body. In this way, a honeycomb formed body was produced. Then, the honeycomb formed body was dried with a microwave dryer. Both end surfaces of the dried honeycomb formed body were cut and adjusted to predetermined dimensions. Thereafter, the honeycomb formed body was further dried with a hot air dryer.
  • the dried honeycomb formed body was fired at 1425 ° C. for 7 hours. In this way, a honeycomb structure was produced.
  • the obtained honeycomb structure had a cylindrical shape with a circular end surface.
  • the diameter of the end face of the honeycomb structure was 144 mm.
  • the length in the cell extending direction of the honeycomb structure was 152 mm.
  • the partition wall thickness of the honeycomb structure was 304.8 ⁇ m.
  • the cell density of the honeycomb structure was 46.5 cells / cm 2 .
  • the porosity of the honeycomb structure was 45%.
  • the porosity is a value measured by “Autopore IV 9500 (trade name)” manufactured by Micromeritics.
  • honeycomb filter was manufactured using the obtained honeycomb structure. Specifically, plugged portions were disposed so that one open end portion and the other open end portion were alternately sealed in adjacent cells with respect to the cells of the honeycomb structure.
  • the permeability of the honeycomb structure was 1.1 ⁇ m 2 .
  • the pore volume ratio of pores having a pore diameter of 40 ⁇ m or more was 5.8%.
  • the pore volume ratio of pores having a pore diameter of 10 ⁇ m or less was 18.5%.
  • the pore volume ratio of pores having a pore diameter of 40 ⁇ m or more and the pore volume ratio of pores having a pore diameter of 10 ⁇ m or less are determined by “Autopore IV 9500 (trade name)” manufactured by Micromeritics. It is a value calculated from the measured pore volume.
  • the thermal expansion coefficient of the honeycomb structure at 40 ° C. to 800 ° C. was 0.5 ⁇ 10 ⁇ 6 / ° C. Table 3 shows the measurement results.
  • the thermal expansion coefficient is a value obtained by measuring the thermal expansion coefficient of the partition walls constituting the honeycomb structure in the cell extending direction.
  • honeycomb filter was evaluated for “maximum soot deposition amount”, “pressure loss”, and “collection efficiency” by the following methods. The results are shown in Table 3.
  • the specific method for measuring the maximum soot deposit is as follows. First, a ceramic non-thermally expandable mat was wound around the outer periphery of the honeycomb filter as a holding material. In this state, the honeycomb filter was pushed into a canning body made of stainless steel and fixed. Thereafter, the soot-containing combustion gas generated by the combustion of the diesel fuel was introduced from one end face of the honeycomb filter and out of the other end face. As a result, soot in the exhaust gas was deposited in the honeycomb filter. Then, after the honeycomb filter was once cooled to 25 ° C., combustion gas at 680 ° C. was introduced from one end face of the honeycomb filter to burn soot.
  • the soot accumulation amount (g / L) at the time of crack occurrence was defined as the value of the maximum soot accumulation amount.
  • Example 2 A honeycomb structure was manufactured in the same manner as in Example 1 except that the raw material used for preparing the kneaded material was changed to “raw material batch 2” as shown in Tables 1 and 2.
  • a honeycomb filter was manufactured using the obtained honeycomb structure.
  • the amount of talc was 43.0% by mass
  • the amount of kaolin was 9.0% by mass
  • the amount of silica was 17.0% by mass
  • the amount of alumina was 23.0% by mass
  • boehmite The amount was set to 6.0% by mass.
  • Example 3 A honeycomb structure was produced in the same manner as in Example 1 except that the raw material used for preparing the kneaded material was changed to “raw material batch 3” as shown in Tables 1 and 2.
  • a honeycomb filter was manufactured using the obtained honeycomb structure.
  • the amount of talc is 43.0% by mass
  • the amount of kaolin is 9.0% by mass
  • the amount of silica is 17.0% by mass
  • the amount of alumina is 21.0% by mass
  • boehmite Was set to 8.0% by mass.
  • Example 4 A honeycomb structure was manufactured in the same manner as in Example 1 except that the raw material used for preparing the kneaded material was changed to “raw material batch 4” as shown in Tables 1 and 2.
  • a honeycomb filter was manufactured using the obtained honeycomb structure.
  • the amount of talc was 43.0% by mass
  • the amount of kaolin was 17.0% by mass
  • the amount of silica was 12.0% by mass
  • the amount of alumina was 26.0% by mass.
  • no boehmite was used as the cordierite forming raw material, and 0.2 part by mass of lithium carbonate (Li 2 CO 3 ) was added to 100 parts by mass of the cordierite forming raw material.
  • Example 5 A honeycomb structure was manufactured in the same manner as in Example 4 except that 0.4 parts by mass of lithium carbonate was added to 100 parts by mass of the cordierite forming raw material to prepare clay (raw material batch 5). A honeycomb filter was manufactured using the obtained honeycomb structure.
  • Example 6 A honeycomb structure was manufactured in the same manner as in Example 4 except that 0.8 parts by mass of lithium carbonate was added to 100 parts by mass of the cordierite forming raw material to prepare clay (raw material batch 6). A honeycomb filter was manufactured using the obtained honeycomb structure.
  • Example 7 A honeycomb structure was produced in the same manner as in Example 1 except that the raw material used for preparing the kneaded material was changed to “raw material batch 7” as shown in Tables 1 and 2.
  • a honeycomb filter was manufactured using the obtained honeycomb structure.
  • the amount of talc was 43.0% by mass
  • the amount of kaolin was 9.0% by mass
  • the amount of silica was 17.0% by mass
  • the amount of alumina was 29.0% by mass.
  • boehmite was not used as the cordierite forming raw material, and 0.4 parts by mass of lithium carbonate was added to 100 parts by mass of the cordierite forming raw material.
  • Example 8 A honeycomb structure was manufactured in the same manner as in Example 1 except that the raw material used for preparing the kneaded material was changed to “raw material batch 8” as shown in Tables 1 and 2.
  • a honeycomb filter was manufactured using the obtained honeycomb structure.
  • the amount of talc was 43.0% by mass
  • the amount of kaolin was 9.0% by mass
  • the amount of silica was 17.0% by mass
  • the amount of alumina was 29.0% by mass.
  • boehmite was not used as the cordierite forming raw material, and 0.8 part by mass of lithium carbonate was added to 100 parts by mass of the cordierite forming raw material.
  • Example 9 A honeycomb structure was produced in the same manner as in Example 1 except that the raw material used for preparing the kneaded material was changed to “raw material batch 9” as shown in Tables 1 and 2.
  • a honeycomb filter was manufactured using the obtained honeycomb structure.
  • the amount of talc was 43.0% by mass
  • the amount of kaolin was 9.0% by mass
  • the amount of silica was 17.0% by mass
  • the amount of alumina was 29.0% by mass.
  • boehmite was not used as the cordierite forming raw material, and 1.0 part by mass of lithium carbonate was added to 100 parts by mass of the cordierite forming raw material.
  • Example 10 A honeycomb structure was manufactured in the same manner as in Example 1 except that the raw material used for preparing the kneaded material was changed to “raw material batch 10” as shown in Tables 1 and 2.
  • a honeycomb filter was manufactured using the obtained honeycomb structure.
  • the amount of talc was 43.0% by mass
  • the amount of kaolin was 9.0% by mass
  • the amount of silica was 17.0% by mass
  • the amount of alumina was 26.0% by mass
  • boehmite was 3.0 mass%.
  • 0.4 mass part of lithium carbonate was added with respect to 100 mass parts of cordierite-forming raw materials.
  • Example 11 to 17 A honeycomb structure was produced in the same manner as in Example 1, except that the raw material used for preparing the kneaded material was changed to “raw material batches 11 to 17” as shown in Tables 1 and 2.
  • a honeycomb filter was manufactured using the obtained honeycomb structure.
  • the amount of talc was 43.0% by mass
  • the amount of kaolin was 17.0% by mass
  • the amount of silica was 12.0% by mass
  • the amount of alumina was 26.0% by mass. did.
  • 1.0 part by mass of cerium oxide (CeO 2 ) was added to 100 parts by mass of the cordierite forming raw material.
  • Example 12 3.0 parts by mass of cerium oxide (CeO 2 ) was added to 100 parts by mass of the cordierite forming raw material.
  • Example 13 1.0 part by mass of zirconium oxide (ZrO 2 ) was added to 100 parts by mass of the cordierite forming raw material.
  • Example 14 2.0 parts by mass of zirconium oxide (ZrO 2 ) was added to 100 parts by mass of the cordierite forming raw material.
  • Example 15 2.5 parts by mass of zirconium oxide (ZrO 2 ) was added to 100 parts by mass of the cordierite forming raw material.
  • Example 16 1.0 part by mass of yttrium oxide (Y 2 O 3 ) was added to 100 parts by mass of the cordierite forming raw material.
  • Example 17 2.0 parts by mass of yttrium oxide (Y 2 O 3 ) was added to 100 parts by mass of the cordierite forming raw material.
  • Example 1 A honeycomb structure was manufactured in the same manner as in Example 1 except that the raw material used for preparing the kneaded material was changed to “raw material batches 18 to 30” as shown in Tables 4 and 5. A honeycomb filter was manufactured using the obtained honeycomb structure.
  • the honeycomb filters of Examples 1 to 17 all showed good results in the evaluation of the maximum soot deposition amount, the pressure loss, and the collection efficiency.
  • Table 6 in the honeycomb filters of Comparative Examples 1 to 13, in the evaluation of the maximum soot accumulation amount, the pressure loss, and the collection efficiency, either evaluation did not satisfy the acceptance criteria. .
  • FIG. 3 shows the relationship between the average pore diameter ( ⁇ m) and the porosity (%) in the honeycomb filters of Examples 1 to 4, 6 to 13, 15 to 17 and Comparative Examples 1, 4, 7, and 8. Indicates.
  • FIG. 3 is a graph showing the relationship between the average pore diameter ( ⁇ m) and the porosity (%) in the honeycomb filters of Examples 1 to 4, 6 to 13, 15 to 17 and Comparative Examples 1, 4, 7, and 8. It is.
  • the horizontal axis represents the average pore diameter ( ⁇ m).
  • the vertical axis indicates the porosity (%).
  • the “permeability equivalence line (estimation)” is drawn for the position where the permeability of the honeycomb filter is assumed to be equivalent. In other words, it is considered that the honeycomb filter present on this line with the same permeability exhibits the same value for the permeability even if the porosity and the average pore diameter are different.
  • the porosity reduction line by the silica reduction, the porosity reduction line by the boehmite addition, the porosity reduction line by the lithium carbonate addition, and the porosity reduction line by other additives are marked with arrows. I'm drawing a line. It can be seen that the porosity of the partition walls decreases in the direction indicated by each line. “Additives” in the porosity lowering line by other additives are cerium oxide (CeO 2 ), zirconium oxide (ZrO 2 ), and yttrium oxide (Y 2 O 3 ).
  • the lines drawn on Examples 11 and 12 are porosity reduction lines due to the addition of cerium oxide.
  • the lines drawn on Examples 13 and 15 are porosity reduction lines due to the addition of zirconium oxide.
  • the line drawn on Examples 16 and 17 is a porosity lowering line by adding zirconium oxide.
  • the target ranges of porosity and permeability are shown as hatched areas.
  • the target range of porosity and permeability means a range that satisfies the values of porosity and permeability in the honeycomb filter of the present invention.
  • FIG. 4 shows the transition of the pore size distribution of the partition walls when lithium carbonate is added to the forming raw material.
  • FIG. 4 is a graph showing the pore size distribution of the partition walls of the honeycomb structure used in the honeycomb filter.
  • the horizontal axis represents the pore diameter ( ⁇ m).
  • the vertical axis indicates log differential pore volume (cc / g).
  • the addition rate of lithium carbonate is the mass ratio of the addition amount of lithium carbonate when the cordierite forming raw material used as the forming raw material is 100 parts by mass.
  • FIG. 5 to 7 show enlarged micrographs of a cross section of the honeycomb filter cut perpendicular to the cell extending direction.
  • FIG. 5 is an image of the honeycomb filter when the addition rate of lithium carbonate is 0 part by mass.
  • FIG. 6 is an image of the honeycomb filter when the addition rate of lithium carbonate is 0.4 parts by mass.
  • FIG. 7 shows an image of the honeycomb filter when the addition rate of lithium carbonate is 0.8 parts by mass. Also from the micrographs of FIGS. 5 to 7, it is confirmed that pores having small pore diameters are reduced by adding lithium carbonate to the cordierite forming raw material.
  • the honeycomb filter of the present invention it is possible to suppress an increase in pressure loss by selectively blocking pores having a small pore diameter not related to gas permeability. Furthermore, by selectively plugging pores not related to gas permeability, the porosity of the honeycomb structure used in the honeycomb filter is lowered, and the heat capacity of the honeycomb filter is increased. Thereby, durability of a honeycomb filter becomes high and the maximum soot accumulation amount can be improved.
  • the honeycomb filter of the present invention can be used for purification of exhaust gas discharged from an internal combustion engine. In particular, it can be suitably used for purifying exhaust gas discharged from a diesel engine.
  • the manufacturing method of the honeycomb filter of the present invention can be used as the manufacturing method of the honeycomb filter of the present invention.

Abstract

 圧力損失の上昇を抑制しつつ、最大スス堆積量が多く、高い耐久性を実現することが可能なハニカムフィルタを提供する。流体の流路となる一方の端面から他方の端面まで延びる複数のセル2を区画形成する多孔質の隔壁1を有する筒状のハニカム構造体4と、所定のセル2aの一方の開口端部及び残余のセルの他方の開口端部に配設された目封止部5と、を備え、隔壁1の気孔率が、46%以下であり、ハニカム構造体4のパーミアビリティーが、0.8μm以上であり、細孔径が40μm以上の細孔の細孔容積率が、7.5%以下であり、且つ、細孔径が10μm以下の細孔の細孔容積率が、25%以下であり、ハニカム構造体4の40℃から800℃における熱膨張係数が、1.0×10-6/℃以下であるハニカムフィルタ100。

Description

ハニカムフィルタ、及びその製造方法
 本発明は、ハニカムフィルタ、及びその製造方法に関する。更に詳しくは、圧力損失の増加を抑制しつつ、最大スス堆積量が多く、高い耐久性を実現することが可能なハニカムフィルタ、及びこのようなハニカムフィルタの製造方法に関する。
 ディーゼルエンジンから排出される排ガスには、スス等の粒子状物質が含まれていることがある。この粒子状物質がそのまま大気中に放出されると、環境汚染を引き起こすことがある。排ガス中の粒子状物質を取り除くために、排ガス浄化用のフィルタが用いられている。例えば、ディーゼルエンジンから排出される排ガス中の粒子状物質を除去するためのフィルタとして、ディーゼルパティキュレートフィルタを挙げることができる。本明細書においては、粒子状物質を、「PM」ということがある。PMは、「Particulate Matter」の略である。また、ディーゼルパティキュレートフィルタを、「DPF」ということがある。
 このようなDPFとしては、例えば、複数のセルを区画形成する多孔質の隔壁を有するハニカム構造体を備えたものを挙げることができる。ハニカム構造体に形成されたセルが、流体(例えば、排ガス、浄化ガス)の流路となる。このようなハニカム構造体の製造方法として、特許文献1及び2を挙げることができる。
 ハニカム構造体をDPF等のフィルタとして用いる際には、ハニカム構造体に形成されたセルのいずれか一方の端部に、セルの開口部分を封止する目封止部が配設される。このようなフィルタの一方の端部から排ガスが導入されると、排ガス中の粒子状物質が隔壁によって捕捉される。
特開2010−260787号公報 国際公開第2006/030811号
 現在、このようなDPFにおいては、従来のものと比較して、更なる耐久性の向上が求められている。具体的には、従来のDPFと比較して、「最大スス堆積量」がより高いDPFが要求されている。最大スス堆積量は、「スートマスリミット」、又は「SML」とも称される。最大スス堆積量は、ハニカムフィルタの耐久性の指標となるものである。
 ハニカムフィルタを上記DPFとして用いた場合には、ハニカムフィルタの隔壁に、排ガス中のススが堆積する。ハニカムフィルタの隔壁にススが堆積すると、ハニカムフィルタの圧力損失が増大する。このため、ハニカムフィルタの隔壁に堆積したススを燃焼させて、ハニカムフィルタを再生することが行われている。
 例えば、ハニカムフィルタの再生の効率の観点からいえば、上記再生が、隔壁上により多くのススが堆積した段階で行われることが好ましい。一方で、隔壁に堆積するススの量が多くなると、多量のススが一度に燃焼することとなり、再生時におけるハニカムフィルタの温度上昇が大きくなる。再生時におけるハニカムフィルタの温度上昇が大きくなると、ハニカムフィルタにクラック等の破損が生じてしまうことがある。最大スス堆積量とは、上記再生を行った場合に、ハニカムフィルタにクラック等の破損が生じないススの最大の堆積量のことである。即ち、ハニカムフィルタにおいて、最大スス堆積量が高いということは、熱衝撃性等の耐久性が優れていることとなる。
 ハニカムフィルタの最大スス堆積量は、ハニカムフィルタの熱容量と相関がある。また、ハニカムフィルタの熱容量は、ハニカムフィルタの気孔率と相関がある。例えば、ハニカムフィルタの気孔率が低いほど、ハニカムフィルタの質量が増加し、ハニカムフィルタの熱容量も増加する。但し、ハニカムフィルタの気孔率を低くすると、ハニカムフィルタの圧力損失が高くなる。特に、ハニカムフィルタの気孔率が46%以下になると、圧力損失の増加が顕著になる。ハニカムフィルタの圧力損失が高くなると、フィルタ性能が低下してしまう。
 従来は、圧力損失の増加を抑制することと、耐久性を向上することとは、二律背反の関係にあるとされ、両者を同時に解決することは極めて困難であるとされていた。このため、圧力損失と耐久性とのいずれか一方を犠牲にして、使用形態に適したハニカムフィルタが作製されていた。
 例えば、上記特許文献1では、コージェライト原料中のタルクとシリカの粒度分布を制御することが行われている。特許文献1によって製造される多孔質ハニカム構造体では、捕集効率が高く、圧力損失の増大を防止することができるとされているが、実際には、原料の粒度制御が極めて困難である。特に、微小粒子径原料の低減が難しいため、低気孔率のハニカムフィルタにおいては、圧力損失について問題となっている。
 また、上記特許文献2には、細孔径15μm以下の細孔容積が0.07cc/cc以下、細孔径40μm以上の細孔容積が0.07cc/cc以下の多孔質材料が開示されている。この多孔質材料は、気孔率が40~75%であり、パーミアビリディーが1.5μm以上である。しかしながら、多孔質材料が、非酸化物系セラミックスであり、熱膨張係数が高いという問題があった。即ち、熱膨張係数の低い原料においては、圧力損失の増加を抑制しつつ、高い耐久性を実現することはできていなかった。
 また、従来、隔壁の低気孔率化の方法として、コージェライト化原料における、シリカ源としてのカオリンの量を増加し、相対的にシリカの量を減少させることが行われている。これにより、得られるハニカム構造体の隔壁の気孔率を低下させることができる。但し、このような方法では、シリカの量の減少に伴い、隔壁の一方の表面から他方の表面まで繋がる細孔が減少してしまい、ハニカム構造体の圧力損失が増大してしまうという問題があった。
 本発明は、上述した問題に鑑みてなされたものである。本発明は、圧力損失の増加を抑制しつつ、最大スス堆積量が多く、高い耐久性を実現することが可能なハニカムフィルタ、及びこのようなハニカムフィルタの製造方法を提供する。
 本発明によれば、以下に示す、ハニカムフィルタ、及びその製造方法が提供される。
[1] 流体の流路となる一方の端面から他方の端面まで延びる複数のセルを区画形成する多孔質の隔壁を有する筒状のハニカム構造体と、所定の前記セルの一方の開口端部及び残余の前記セルの他方の開口端部に配設された目封止部と、を備え、前記隔壁の気孔率が、46%以下であり、前記ハニカム構造体のパーミアビリティーが、0.8μm以上であり、細孔径が40μm以上の細孔の細孔容積率が、7.5%以下であり、且つ、細孔径が10μm以下の細孔の細孔容積率が、25%以下であり、前記ハニカム構造体の40℃から800℃における熱膨張係数が、1.0×10−6/℃以下であるハニカムフィルタ。
[2] 前記隔壁が、コージェライトを主成分とする多孔質体からなり、前記隔壁が、前記隔壁中に、リチウムをLiO換算で0.40質量%以下含む前記[1]に記載のハニカムフィルタ。
[3] 前記隔壁が、前記隔壁中に、酸化セリウム、酸化ジルコニウム、及び酸化イットリウムからなる群より選択される少なくとも1種を含み、前記酸化セリウムの含有率が3.0質量%以下であり、前記酸化ジルコニウムの含有率が2.5質量%以下であり、前記酸化イットリウムの含有率が2.0質量%以下である前記[1]又は[2]に記載のハニカムフィルタ。
[4] コージェライト化原料100質量部に対して、炭酸リチウムを1.0質量部以下添加して得られた坏土を用いて作製された前記[1]~[3]のいずれかに記載のハニカムフィルタ。
[5] コージェライト化原料に、酸化セリウム、酸化ジルコニウム、及び酸化イットリウムからなる群より選択される少なくとも1種を添加して得られた坏土を用いて作製されたものであり、前記コージェライト化原料100質量部に対して、前記酸化セリウムの添加量が3.0質量部以下、前記コージェライト化原料100質量部に対して、前記酸化ジルコニウムの添加量が2.5質量部以下、及び前記コージェライト化原料100質量部に対して、前記酸化イットリウムの添加量が2.0質量部以下である前記[1]~[4]のいずれかに記載のハニカムフィルタ。
[6] コージェライト化原料のアルミナ源としてベーマイトを2質量%以上、8質量%以下使用した坏土を用いて作製された前記[1]~[5]のいずれかに記載のハニカムフィルタ。
[7] コージェライト化原料を含む坏土を調製する坏土調製工程と、前記坏土を成形してハニカム成形体を得るハニカム成形体作製工程と、前記ハニカム成形体を焼成してハニカム構造体を得るハニカム構造体作製工程と、前記ハニカム構造体の所定のセルの一方の開口端部及び残余のセルの他方の開口端部に目封止部を配設する目封止工程と、を備え、前記坏土調製工程が、前記コージェライト化原料100質量部に対して、炭酸リチウムを0.2質量部以上、1.0質量部以下添加する操作、前記コージェライト化原料100質量部に対して、酸化セリウムを3.0質量部以下添加する操作、前記コージェライト化原料100質量部に対して、酸化ジルコニウムを2.5質量部以下添加する操作、前記コージェライト化原料100質量部に対して、酸化イットリウムを2.0質量部以下添加する操作、及び前記コージェライト化原料のアルミナ源としてベーマイトを2質量%以上、8質量%以下用いる操作のうちの少なくとも一の操作を含むハニカムフィルタの製造方法。
[8] 得られる前記ハニカム構造体の隔壁の気孔率が、46%以下であり、前記ハニカム構造体のパーミアビリティーが、0.8μm以上であり、細孔径が40μm以上の細孔の細孔容積率が、7.5%以下であり、且つ、細孔径が10μm以下の細孔の細孔容積率が、25%以下であり、前記ハニカム構造体の40℃から800℃における熱膨張係数が、1.0×10−6/℃以下である、前記[7]に記載のハニカムフィルタの製造方法。
 本発明のハニカムフィルタは、ハニカム構造体と、目封止部とを備えたものである。ハニカム構造体は、流体の流路となる一方の端面から他方の端面まで延びる複数のセルを区画形成する多孔質の隔壁を有する筒状のものである。また、このハニカム構造体の所定のセルの一方の開口端部及び残余のセルの他方の開口端部に、上記目封止部が配設されている。本発明のハニカムフィルタにおいては、隔壁の気孔率が、46%以下である。また、本発明のハニカムフィルタにおいては、ハニカム構造体のパーミアビリティーが、0.8μm以上である。また、本発明のハニカムフィルタにおいては、細孔径が40μm以上の細孔の細孔容積率が、7.5%以下であり、且つ、細孔径が10μm以下の細孔の細孔容積率が、25%以下である。更に、本発明のハニカムフィルタにおいては、ハニカム構造体の40℃から800℃における熱膨張係数が、1.0×10−6/℃以下である。
 本発明のハニカムフィルタは、圧力損失の増加を抑制しつつ、高い耐久性を実現することができる。即ち、本発明のハニカムフィルタにおいては、隔壁の気孔率を46%以下とすることで、高い耐久性を実現する。そして、本発明のハニカムフィルタにおいては、パーミアビリティーを0.8μm以上とし、細孔径が40μm以上の細孔の細孔容積率及び細孔径が10μm以下の細孔の細孔容積率を、上述した値とすることで、従来のハニカムフィルタと同程度の圧力損失とすることができる。
 より具体的には、本発明のハニカムフィルタにおいては、隔壁に形成される細孔のうち、ガス透過性に関係しない細孔を選択的に塞ぐことにより、圧力損失の上昇に対する影響を最小限にしている。更に、ガス透過性に関係しない細孔を選択的に塞ぐことにより、ハニカムフィルタに用いられるハニカム構造体の気孔率が低くなり、ハニカムフィルタの熱容量が増大する。これにより、ハニカムフィルタの耐久性が高くなり、最大スス堆積量を向上させることができる。
 本発明のハニカムフィルタの製造方法においては、上述した本発明のハニカムフィルタを簡便に製造することができる。本発明のハニカムフィルタの製造方法においては、ハニカム構造体を作製するための坏土を調製する工程において、下記に記載された5つの操作のうちの少なくとも一の操作を行う。これにより、隔壁に形成される細孔のうち、ガス透過性に関係しない細孔を選択的に塞ぐことができる。1つ目の操作は、コージェライト化原料100質量部に対して、炭酸リチウムを0.2質量部以上、1.0質量部以下添加する操作である。2つ目の操作は、コージェライト化原料100質量部に対して、酸化セリウムを3.0質量部以下添加する操作である。3つ目の操作は、コージェライト化原料100質量部に対して、酸化ジルコニウムを2.5質量部以下添加する操作である。4つ目の操作は、コージェライト化原料100質量部に対して、酸化イットリウムを2.0質量部以下添加する操作である。5つ目の操作は、コージェライト化原料のアルミナ源としてベーマイトを2質量%以上、8質量%以下用いる操作である。
本発明のハニカムフィルタの一の実施形態を模式的に示す斜視図である。 本発明のハニカムフィルタの一の実施形態の、セルの延びる方向に平行な断面を模式的に示す断面図である。 実施例1~4、6~13、15~17及び比較例1、4、7、8のハニカムフィルタにおける、平均細孔径(μm)と気孔率(%)との関係を示すグラフである。 ハニカムフィルタに用いられるハニカム構造体の隔壁の細孔径分布を示すグラフである。 ハニカムフィルタを、セルの延びる方向に垂直に切断した断面を拡大した顕微鏡写真である。 ハニカムフィルタを、セルの延びる方向に垂直に切断した断面を拡大した顕微鏡写真である。 ハニカムフィルタを、セルの延びる方向に垂直に切断した断面を拡大した顕微鏡写真である。
 以下、本発明の実施の形態について、図面を参照しながら具体的に説明する。本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。
(1)ハニカムフィルタ:
 本発明のハニカムフィルタの一の実施形態について説明する。図1及び図2に示すように、本実施形態のハニカムフィルタ100は、ハニカム構造体4と、目封止部5とを備えたものである。ハニカム構造体4は、流体の流路となる一方の端面11から他方の端面12まで延びる複数のセル2を区画形成する多孔質の隔壁1を有する筒状のものである。また、このハニカム構造体4の所定のセル2の一方の開口端部及び残余のセル2の他方の開口端部に、上記目封止部5が配設されている。本実施形態のハニカムフィルタ100の一方の端部から排ガスが導入されると、排ガス中の粒子状物質が、ハニカム構造体4の隔壁1によって捕捉される。
 ここで、図1は、本発明のハニカムフィルタの一の実施形態を模式的に示す斜視図である。図2は、本発明のハニカムフィルタの一の実施形態の、セルの延びる方向に平行な断面を模式的に示す断面図である。
 本実施形態のハニカムフィルタ100においては、隔壁1の気孔率が、46%以下である。また、本実施形態のハニカムフィルタ100においては、ハニカム構造体4のパーミアビリティーが、0.8μm以上である。また、本実施形態のハニカムフィルタ100においては、細孔径が40μm以上の細孔の細孔容積率が、7.5%以下であり、且つ、細孔径が10μm以下の細孔の細孔容積率が、25%以下である。更に、本実施形態のハニカムフィルタ100においては、ハニカム構造体4の40℃から800℃における熱膨張係数が、1.0×10−6/℃以下である。
 上述した構成を満足するハニカムフィルタ100とすることで、圧力損失の増加を抑制しつつ、最大スス堆積量が多く、高い耐久性を実現したハニカムフィルタとすることができる。より具体的には、本実施形態のハニカムフィルタ100においては、隔壁1に形成される細孔のうち、ガス透過性に関係しない細孔を選択的に塞ぐことにより、圧力損失の上昇に対する影響を最小限にしている。更に、ガス透過性に関係しない細孔を選択的に塞ぐことにより、ハニカム構造体4の気孔率が低くなり、ハニカムフィルタ100の熱容量が増大する。これにより、ハニカムフィルタ100の耐久性が高くなり、最大スス堆積量を向上させることができる。
 従来のハニカムフィルタにおいても、ハニカム構造体の気孔率を低くして、耐久性を向上させるという試みは行われていた。しかしながら、ハニカム構造体の気孔率を単純に低くすると、ハニカムフィルタの圧力損失が増大してしまう。また、従来、ハニカム構造体の気孔率を低くする際に、隔壁に形成される細孔の細孔径を大きくすることも行われている。細孔径を大きくすることにより、圧力損失の増大を抑制することはできるものの、ハニカムフィルタの捕集効率が著しく低下してしまう。
 ハニカム構造体の隔壁には、多数の細孔が形成されている。従来のハニカムフィルタに用いられているハニカム構造体においても、隔壁には多数の細孔が形成されている。このような細孔には、以下のような2種類の細孔がある。1つ目の細孔は、隔壁の一方の表面から他方の表面まで繋がっており、排ガスを通過させることができる細孔である。2つ目の細孔は、隔壁の一方の表面から他方の表面まで繋がっておらず、隔壁の途中で連続性が途切れている細孔である。
 上記1つ目の細孔の多寡により、ハニカムフィルタの圧力損失が決まるといえる。一方、上記2つ目の細孔においては、ハニカムフィルタの圧力損失には影響を与えない。この2つ目の細孔は、1つ目の細孔と比較的して、細孔径が小さい細孔であることが多い。ハニカムフィルタの耐久性を向上させるためには、ハニカム構造体の気孔率を低下させ、ハニカム構造体の重量を増大させることが有効である。即ち、上記2つ目の細孔を選択的に塞ぐことができれば、圧力損失の増加を抑制しつつ、高い耐久性を実現することができる。本実施形態のハニカムフィルタにおいては、上記2つ目の細孔が選択的に塞がれている構成を、気孔率、パーミアビリティー、細孔径が40μm以上の細孔の細孔容積率、及び細孔径が10μm以下の細孔の細孔容積率によって規定している。以下、上記2つ目の細孔が選択的に塞がれていることについて、更に詳細に説明する。
 本実施形態のハニカムフィルタにおいては、気孔率が、46%以下であり、且つパーミアビリティーが、0.8μm以上である。なお、「気孔率」は、水銀ポロシメータにより測定した値である。また、「パーミアビリティー」とは、下記式(1)により算出される物性値のことを意味する。このパーミアビリティーは、所定のガスが隔壁等を通過する際の通過抵抗を表す指標となる値である。
Figure JPOXMLDOC01-appb-M000001
 ここで、上記式(1)中、Cはパーミアビリティー(μm)、Fはガス流量(cm/s)、Tは試料厚み(cm)、Vはガス粘性(dynes・sec/cm)、Dは試料直径(cm)、Pはガス圧力(PSI)をそれぞれ示す。また、上記式(1)中の数値は、13.839(PSI)=1(atm)であり、68947.6(dynes・sec/cm)=1(PSI)である。
 上述したように、パーミアビリティーは、隔壁の通過抵抗を表す指標となる値である。隔壁の気孔率を46%以下とし、細孔径が40μm以上の細孔の細孔容積率を7.5%以下とし、細孔径が10μm以下の細孔の細孔容積率を25%以下とした場合に、ハニカム構造体のパーミアビリティーが、0.8μm以上であるならば、上記2つ目の細孔が選択的に塞がれていることといえる。即ち、本実施形態のハニカムフィルタにおいては、隔壁の途中で連続性が途切れている細孔径が小さな細孔が、選択的に塞がれていることといえる。
 例えば、通常のコージェライト質のハニカム構造体において、気孔率を46%以下とした場合に、パーミアビリティーを0.8μm以上とすることは極めて困難である。なお、隔壁に形成される細孔の細孔径を大きくして、特異的にパーミアビリティーを大きくすることは可能である。但し、このような場合には、細孔径が40μm以上の細孔の細孔容積率が大きくなる。細孔径が40μm以上の細孔の細孔容積率が大きくなると、ハニカムフィルタの捕集効率が大きく低下してしまう。例えば、細孔径が40μm以上の細孔の細孔容積率が大きくなると、捕集対象である粒子状物質が、隔壁の細孔を通過してしまうこととなる。
 本実施形態のハニカムフィルタは、細孔径が40μm以上の細孔の細孔容積率が、7.5%以下であるため、隔壁に形成される細孔の細孔径を大きくして、特異的にパーミアビリティーを大きくしたものではない。即ち、「気孔率」、「パーミアビリティー」、「細孔径が40μm以上の細孔の細孔容積率」、及び「細孔径が10μm以下の細孔の細孔容積率」の全てが、上述した数値範囲を満足することで、隔壁の途中で連続性が途切れている細孔が良好に塞がれているといえる。
 本実施形態のハニカムフィルタにおいては、隔壁の気孔率が46%以下である。隔壁の気孔率が46%超であると、隔壁の熱容量が低くなり、ハニカムフィルタの耐久性を高く維持することが困難である。従って、最大スス堆積量も低くなってしまう。このように、本実施形態のハニカムフィルタにおいては、隔壁の気孔率が46%以下とすることにより、最大スス堆積量を高くすることができる。
 なお、隔壁の気孔率が、42%以下であることが好ましく、40%以下であることが更に好ましい。このように構成することによって、最大スス堆積量を更に高くすることができる。
 隔壁の気孔率の下限値については、特に制限はないが、隔壁の気孔率が30%以上であることが好ましい。隔壁の気孔率が低すぎると、ハニカムフィルタの圧力損失が増加してしまうことがある。なお、隔壁の気孔率が、34%以上であることが更に好ましい。
 更に、本実施形態のハニカムフィルタにおいては、ハニカム構造体のパーミアビリティーが、0.8μm以上である。このように構成することによって、気孔率を低くしても、隔壁の通過抵抗を良好なものとすることができる。ハニカム構造体のパーミアビリティーが、1.0μm以上であることが好ましく、1.2μm以上であることが更に好ましい。このように構成することによって、気孔率の低減に比して、圧力損失の増加を有効に抑制することができる。
 ハニカム構造体のパーミアビリティーの上限値については、特に制限はない。ハニカム構造体のパーミアビリティーの上限値は、隔壁の気孔率と、細孔径が40μm以上の細孔の細孔容積率とも相関を有している。即ち、隔壁に形成された細孔の全てが、隔壁の一方の表面から他方の表面まで繋がっているもののみの場合に、ハニカム構造体のパーミアビリティーの実質的な上限となる。ハニカム構造体のパーミアビリティーの上限値は、6.0μm程度である。
 更に、本実施形態のハニカムフィルタにおいては、細孔径が40μm以上の細孔の細孔容積率が、7.5%以下である。細孔径が40μm以上の細孔の細孔容積率は、水銀ポロシメータでの測定結果より計算した値である。この「細孔径が40μm以上の細孔の細孔容積率」とは、全細孔の容積に対する、40μm以上の細孔の容積の比率を意味する。即ち、「細孔径が40μm以上の細孔の細孔容積率」は、全細孔の容積を100%とした場合の、40μm以上の細孔の容積の比率である。
 細孔径が40μm以上の細孔の細孔容積率が、7.5%超であると、細孔径が過剰に大きな細孔が多くなり、ハニカムフィルタの捕集効率が低下してしまう。即ち、排ガス中の粒子状物質が、細孔径が大きな細孔を通過してしまい、粒子状物質の捕集が困難になる。
 細孔径が40μm以上の細孔の細孔容積率が、6.0%以下であることが好ましく、4.0%以下であることが更に好ましい。このように構成することによって、良好な捕集効率のハニカムフィルタとすることができる。
 細孔径が40μm以上の細孔の細孔容積率の下限値については特に制限はない。細孔径が40μm以上の細孔の細孔容積率の実質的な下限値は、0%である。即ち、本実施形態のハニカムフィルタにおいては、細孔径が40μm以上の細孔が、実質的に形成されていないことが好ましい。
 本実施形態のハニカムフィルタにおいては、細孔径が10μm以下の細孔の細孔容積率が、25%以下である。細孔径が10μm以下の細孔の細孔容積率は、水銀ポロシメータでの測定結果より計算した値である。この「細孔径が10μm以下の細孔の細孔容積率」とは、全細孔の容積に対する、10μm以下の細孔の容積の比率を意味する。即ち、「細孔径が10μm以下の細孔の細孔容積率」は、全細孔の容積を100%とした場合の、10μm以下の細孔の容積の比率である。上述したように、細孔径が小さい細孔は、ハニカムフィルタの圧力損失の上昇に影響を与えることが考えられ、本実施形態のハニカムフィルタにおいては、この細孔径が小さい細孔の比率を、「細孔径が10μm以下の細孔の細孔容積率」によって規定している。細孔径が10μm以下の細孔の細孔容積率を25%以下とすることで、隔壁の途中で連続性が途切れている細孔の比率を、気孔率が同じで且つ細孔径が10μm以下の細孔の細孔容積率を25%超のハニカムフィルタと比較して、相対的に少なくすることができる。従って、本実施形態のハニカムフィルタは、圧力損失の増加を抑制しつつ、高い耐久性を実現することができる。
 本実施形態のハニカムフィルタにおいては、細孔径が10μm以下の細孔の細孔容積率が7.0%以下であることが好ましく、6.0%以下であることが更に好ましい。このように構成することによって、ハニカムフィルタの気孔率への影響を小さくしつつ、ハニカムフィルタの熱容量を増大させることができる。これにより、ハニカムフィルタの耐久性が高くなり、最大スス堆積量を向上させることができる。更に、細孔径が10μm以下の細孔容積率が減少することで圧力損失を低下させることができる。
 また、本実施形態のハニカムフィルタにおいては、ハニカム構造体の40℃から800℃における熱膨張係数が、1.0×10−6/℃以下である。このように構成することによって、耐熱性に優れたハニカムフィルタとすることができる。ハニカム構造体の40℃から800℃における熱膨張係数について、単に「ハニカム構造体の熱膨張係数」ということがある。本明細書において、「ハニカム構造体の熱膨張係数」というときは、ハニカム構造体を構成する隔壁の、セルの延びる方向における熱膨張係数のことをいう。
 ハニカム構造体の熱膨張係数が、0.7×10−6/℃以下であることが好ましく、0.4×10−6/℃以下であることが更に好ましい。このように構成することによって、本実施形態のハニカムフィルタを、ディーゼルエンジン等から排出される高温の排ガスを浄化するためのフィルタとして好適に用いることができる。
 ハニカム構造体の熱膨張係数の下限値については特に制限はない。即ち、熱膨張係数に関しては、好ましい下限値はなく、ハニカムフィルタの材質等に応じて、適宜より低い値であることが好ましい。ハニカム構造体の熱膨張係数の下限値としては、例えば、0.1×10−6/℃である。
 本実施形態のハニカムフィルタにおいては、隔壁が、コージェライトを主成分とする多孔質体からなることが好ましい。本明細書において、「主成分」とは、その構成材料中に含まれる成分が70質量%以上の成分のことを意味する。即ち、本実施形態のハニカムフィルタにおいては、ハニカム構造体の隔壁が、コージェライトを70質量%以上含む多孔質体からなることが好ましい。また、ハニカム構造体の隔壁が、コージェライトを、75質量%以上含む材料からなることが更に好ましく、80質量%以上含む材料からなることが更により好ましく、85質量%以上含む材料からなることが特に好ましい。コージェライトは、これまでに説明した、「気孔率」、「パーミアビリティー」、「細孔径が40μm以上の細孔の細孔容積率」、及び「細孔径が10μm以下の細孔の細孔容積率」の数値範囲を満足するハニカム構造体を作製するのに好適な材料である。
 更に、本実施形態のハニカムフィルタにおいては、ハニカム構造体の隔壁が、隔壁中に、リチウムをLiO換算で0.40質量%以下含むことが好ましい。隔壁中にリチウムをLiO換算で0.40質量%以下含むことにより、この隔壁に細孔径が小さい細孔が形成され難くなる。これにより、パーミアビリティーの値を維持したまま、隔壁の途中で連続性が途切れている細孔を少なくすることができる。隔壁中に含まれるリチウムのLiO換算量が、0.40質量%を超えると、成形原料が焼結せずに、ハニカムフィルタとして必要な構造強度を確保できなくなることがある。隔壁中に含まれるリチウムのLiO換算量は、0.32質量%以下であることが更に好ましい。
 隔壁中に含まれるリチウムのLiO換算量は、0.08質量%以上であることが好ましい。LiO換算量が少なすぎると、隔壁の途中で連続性が途切れている細孔を少なくする効果が発現し難くなる。上述した細孔を少なくする効果をより発現させるためには、隔壁中に含まれるリチウムのLiO換算量が、0.16質量%以上であることが更に好ましい。
 本実施形態のハニカムフィルタにおいては、コージェライト化原料100質量部に対して、炭酸リチウムを1.0質量部以下添加して得られた坏土を用いて作製されたハニカム構造体を用いることが好ましい。このようなハニカム構造体は、隔壁中にリチウムをLiO換算で0.40質量%以下含むものとなる。炭酸リチウムの添加量は、コージェライト化原料100質量部に対して、0.8質量部以下であることが更に好ましい。また、炭酸リチウムの添加量は、コージェライト化原料100質量部に対して、0.2質量部以上であることが好ましく、0.4質量部以上であることが更に好ましい。
 また、本実施形態のハニカムフィルタにおいては、コージェライト化原料のアルミナ源としてベーマイトを2質量%以上、8質量%以下使用した坏土を用いて作製されたハニカム構造体を用いてもよい。このようなハニカム構造体も、隔壁の途中で連続性が途切れている細孔が少なくなる。
 炭酸リチウムの添加と、ベーマイトの使用を併用した坏土を用いて作製されたハニカム構造体を用いてもよい。このように構成することによって、隔壁の途中で連続性が途切れている細孔をより少なくすることができる。
 なお、コージェライト化原料とは、シリカが42~56質量%、アルミナが30~45質量%、マグネシアが12~16質量%の範囲に入る化学組成となるように配合されたセラミック原料である。コージェライト化原料は、焼成されてコージェライトになるものである。
 また、本実施形態のハニカムフィルタにおいては、ハニカム構造体の隔壁が、この隔壁中に、酸化セリウム、酸化ジルコニウム、及び酸化イットリウムからなる群より選択される少なくとも1種を、下記の含有率で含むことも、好適な態様の1つである。なお、上記群より選択される少なくとも1種の含む場合の含有率は、酸化セリウム(CeO)の含有率が3.0質量%以下であり、酸化ジルコニウム(ZrO)の含有率が2.5質量%以下であり、酸化イットリウム(Y)の含有率が2.0質量%以下である。このようなハニカムフィルタは、例えば、コージェライト化原料に、酸化セリウム、酸化ジルコニウム、及び酸化イットリウムからなる群より選択される少なくとも1種を添加して得られた坏土を用いて作製されたものであることが好ましい。なお、コージェライト化原料に対する、酸化セリウム、酸化ジルコニウム、及び酸化イットリウムの各添加量は、以下の通りである。コージェライト化原料100質量部に対して、酸化セリウムの添加量が3.0質量部以下である。コージェライト化原料100質量部に対して、酸化ジルコニウムの添加量が2.5質量部以下である。コージェライト化原料100質量部に対して、酸化イットリウムの添加量が2.0質量部以下である。
 以下、本実施形態のハニカムフィルタの各構成要素について、更に詳細に説明する。
(1−1)ハニカム構造体:
 図1及び図2に示すように、ハニカム構造体4は、流体の流路となる一方の端面11から他方の端面12まで延びる複数のセル2を区画形成する多孔質の隔壁1を有する筒状のものである。図1及び図2に示すハニカム構造体4は、最外周に位置する外周壁3を更に備えたものである。ハニカム構造体4における、気孔率、パーミアビリティー、細孔径が40μm以上の細孔の細孔容積率、及び熱膨張係数は、これまでに説明した通りである。
 ハニカム構造体の隔壁には、細孔が形成されている。排ガスが隔壁の細孔を通過する際に、排ガス中の粒子状物質が、この隔壁によって捕集される。即ち、細孔が形成された隔壁が、ハニカムフィルタにおける濾過体となる。
 ハニカム構造体の形状については特に制限はない。例えば、ハニカム構造体の端面が円形の筒状、上記端面がオーバル形状の筒状、上記端面が多角形の筒状の形状を挙げることができる。多角形としては、四角形、五角形、六角形、七角形、八角形等を挙げることができる。図1及び図2においては、ハニカム構造体の形状が、端面が円形の筒状である場合の例を示す。
 セルの延びる方向に直交する断面におけるセルの形状としては、四角形、六角形、八角形、円形、又はこれらの組み合わせを挙げることができる。四角形の中でも、正方形、長方形が好ましい。
(1−2)目封止部:
 図1及び図2に示すように、本実施形態のハニカムフィルタ100においては、ハニカム構造体4のセル2の開口端部に、目封止部5が配設されている。このように、本実施形態のハニカムフィルタ100においては、目封止部5によって、セル2のいずれか一方の開口端部が封止されている。以下、一方の開口端部に目封止部5が配設されたセル2のことを、「流出セル2b」ということがある。他方の開口端部に目封止部5が配設されたセル2のことを、「流入セル2a」ということがある。また、セルの一方の開口端部とは、ハニカム構造体4の一方の端面11側のセルの端部のことをいう。セルの他方の開口端部とは、ハニカム構造体4の他方の端面12側のセルの端部のことをいう。
 この目封止部5については、従来公知のハニカムフィルタと同様に構成されたものを好適に用いることができる。また、目封止部5の配設位置については、特に制限はない。但し、本実施形態のハニカムフィルタ100においては、流入セル2aと流出セル2bとが、隔壁1を隔てて交互に配置されていることが好ましい。このように構成することによって、排ガス中の粒子状物質を隔壁によって良好に捕集することができる。
 目封止部の材質についても特に制限はない。目封止部の材質は、ハニカム構造体の隔壁の材質と同じ材質であってもよいし、ハニカム構造体の隔壁の材質と異なる材質であってもよい。
(2)ハニカムフィルタの製造方法:
 次に、本発明のハニカムフィルタの製造方法の一の実施形態について説明する。本実施形態のハニカムフィルタの製造方法は、これまでに説明した、本発明のハニカムフィルタの一の実施形態を得るための製造方法である。
 本実施形態のハニカムフィルタの製造方法は、坏土調製工程と、ハニカム成形体作製工程と、ハニカム構造体作製工程と、目封止工程と、を備える。特に、坏土調製工程において、最終的に得られるハニカム構造体の下記の物性値が、所定の数値範囲となるように、坏土の調製を行うことが重要である。得られるハニカム構造体の物性値としては、ハニカム構造体の隔壁の気孔率、パーミアビリティー、細孔径が40μm以上の細孔の細孔容積率、細孔径が10μm以下の細孔の細孔容積率、及び熱膨張係数を挙げることができる。
 坏土調製工程は、コージェライト化原料を含む坏土を調製する工程である。ハニカム成形体作製工程は、坏土調製工程にて得られた坏土を成形してハニカム成形体を得る工程である。ハニカム構造体作製工程は、ハニカム成形体作製工程にて得られたハニカム成形体を焼成してハニカム構造体を得る工程である。目封止工程は、ハニカム構造体作製工程にて得られたハニカム構造体の所定のセルの一方の開口端部及び残余のセルの他方の開口端部に目封止部を配設する工程である。以上の工程により、これまでに説明した本発明のハニカムフィルタの一の実施形態を良好に製造することができる。
 本実施形態のハニカムフィルタの製造方法においては、坏土調製工程が、以下の5つの操作のうち、少なくとも一の操作を含む。1つ目の操作は、コージェライト化原料100質量部に対して、炭酸リチウムを0.2質量部以上、1.0質量部以下添加する操作である。2つ目の操作は、コージェライト化原料100質量部に対して、酸化セリウムを3.0質量部以下添加する操作である。3つ目の操作は、コージェライト化原料100質量部に対して、酸化ジルコニウムを2.5質量部以下添加する操作である。4つ目の操作は、コージェライト化原料100質量部に対して、酸化イットリウムを2.0質量部以下添加する操作である。5つ目の操作は、コージェライト化原料のアルミナ源としてベーマイトを2質量%以上、8質量%以下用いる操作である。上記5つの操作は、坏土調製工程において、併用して行われてもよい。例えば、コージェライト化原料に、所定量の炭酸リチウムを添加し、且つ、コージェライト化原料のアルミナ源として所定量のベーマイトを用いてもよい。
 坏土調製工程において、上記5つの操作のうち、少なくとも一の操作を含むことにより、隔壁の途中で連続性が途切れている細孔の形成を抑制することができる。別言すれば、細孔径が小さな細孔の形成を抑制することができる。これにより、ガス透過性に関係しない細孔の形成を抑制し、パーミアビリティーを維持したまま、低気孔率のハニカム構造体を作製することができる。以下、本実施形態のハニカムフィルタの製造方法を、各工程毎に説明する。
(2−1)坏土調製工程:
 まず、本実施形態のハニカムフィルタの製造方法においては、コージェライト化原料を含む坏土を調製する。具体的には、コージェライト化原料を含む成形原料を混合し混練して坏土を得る。コージェライト化原料とは、シリカが42~56質量%、アルミナが30~45質量%、マグネシアが12~16質量%の範囲に入る化学組成となるように配合されたセラミック原料である。コージェライト化原料は、焼成されてコージェライトになるものである。
 ここで、本実施形態のハニカムフィルタの製造方法においては、コージェライト化原料100質量部に対して、炭酸リチウムを1.0質量部以下添加して坏土を調製することが好ましい。このよう構成することによって、ガス透過性に関係しない細孔の形成を抑制し、パーミアビリティーを維持したまま、低気孔率のハニカム構造体を作製することができる。なお、炭酸リチウムの添加量が、1.0質量部を超えると、ハニカム成形体の焼成時において成形原料が焼結せずに、ハニカムフィルタとして必要な構造強度を確保できなくなることがある。
 炭酸リチウムの添加量については、コージェライト化原料100質量部に対して、0.2質量部以上であることが好ましい。0.2質量部未満では、連続性が途切れている細孔の形成を抑制する効果が十分に発現しないことがある。炭酸リチウムの添加量については、コージェライト化原料100質量部に対して、0.2質量部以上、1.0質量部以下であることが好ましく、0.2質量部以上、0.8質量部以下であることが更に好ましく、0.4質量部以上、0.8質量部以下であることが更に好ましい。
 また、本実施形態のハニカムフィルタの製造方法においては、コージェライト化原料100質量部に対して、酸化セリウムを3.0質量部以下添加して坏土を調製してもよい。また、コージェライト化原料100質量部に対して、酸化ジルコニウムを2.5質量部以下添加して坏土を調製してもよい。更に、コージェライト化原料100質量部に対して、酸化イットリウムを2.0質量部以下添加して坏土を調製してもよい。このよう構成することによって、ガス透過性に関係しない細孔の形成を抑制し、パーミアビリティーを維持したまま、低気孔率のハニカム構造体を作製することができる。
 なお、酸化セリウムの添加量が、3.0質量部を超えると、ハニカム成形体の焼成時において、溶けが発生し、ハニカムフィルタとして必要な構造強度を保つことができないことがある。また、酸化ジルコニウムの添加量が、2.5質量部を超える、或いは、酸化イットリウムの添加量が、2.0質量部を超えると、酸化セリウムの場合と同様に、ハニカム成形体の焼成時において、溶けが発生し、ハニカムフィルタとして必要な構造強度を保つことができないことがある。
 酸化セリウムの添加量については、コージェライト化原料100質量部に対して、1.0質量部以上、3.0質量部以下であることが好ましく、1.5質量部以上、2.8質量部以下であることが更に好ましく、1.8質量部以上、2.5質量部以下であることが更に好ましい。また、酸化ジルコニウムの添加量については、コージェライト化原料100質量部に対して、0.5質量部以上、2.4質量部以下であることが好ましく、0.7質量部以上、2.3質量部以下であることが更に好ましく、1.0質量部以上、2.0質量部以下であることが更に好ましい。更に、酸化イットリウムの添加量については、コージェライト化原料100質量部に対して、0.3質量部以上、1.8質量部以下であることが好ましく、0.5質量部以上、1.6質量部以下であることが更に好ましく、0.8質量部以上、1.3質量部以下であることが更に好ましい。
 また、本実施形態のハニカムフィルタの製造方法においては、コージェライト化原料のアルミナ源として、ベーマイトを2質量%以上、8質量%以下用いてもよい。即ち、コージェライトは、シリカ、アルミナ、及びマグネシアを所定量含むセラミックであり、コージェライト化原料には、シリカ源、アルミナ源、及びマグネシア源となるものが用いられている。坏土調製工程においては、コージェライト化原料のアルミナ源として、ベーマイトを用いる。この際、そのベーマイトの量を、コージェライト化原料全体に対して、2質量%以上、8質量%以下とする。このよう構成することによって、ガス透過性に関係しない細孔の形成を抑制し、パーミアビリティーを維持したまま、低気孔率のハニカム構造体を作製することができる。ベーマイトの量が、2質量%未満、又は8質量%超であると、ベーマイトを添加することによる、連続性が途切れている細孔の形成を抑制する効果が発現しない。
 ベーマイトの量は、2質量%以上、8質量%以下であれは特に制限はない。
 上記コージェライト化原料に、分散媒を加えて坏土を調製してもよい。分散媒としては、水を用いることができる。分散媒の添加量は、コージェライト化原料100質量部に対して、20~50質量部であることが好ましい。
 コージェライト化原料には、有機バインダを加えてもよい。有機バインダとしては、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルエチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、又はこれらを組み合わせたものとすることが好ましい。また、有機バインダの添加量は、コージェライト化原料100質量部に対して、1~10質量部が好ましい。また、コージェライト化原料には、無機バインダを加えてもよい。無機バインダとしては、無機繊維、コロイド酸化物、粘土などを用いることができる。
 また、コージェライト化原料には、界面活性剤を加えてもよい。界面活性剤としては、エチレングリコール、デキストリン、脂肪酸石鹸、ポリアルコール等を用いることができる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。界面活性剤の添加量は、コージェライト化原料100質量部に対して、0~5.0質量部が好ましい。
 コージェライト化原料として使用する原料のうち、タルクとシリカの原料粒子の平均粒子径は、5μm以上、35μm以下であることが好ましい。タルクとシリカの原料粒子の平均粒子径が小さすぎると、ガス透過性に関係しない細孔が増加することがある。一方、原料粒子の平均粒子径が大きすぎると、細孔径が40μm以上の細孔が多数形成されてしまうことがある。タルクとシリカの原料粒子の平均粒子径は、5μm以上、30μm以下であることが更に好ましく、10μm以上、30μm以下であることが特に好ましい。上記平均粒子径は、各原料粒子の粒子径分布におけるメジアン径(d50)のことである。
 成形原料を混練して坏土を形成する方法としては特に制限はなく、例えば、ニーダー、真空土練機等を用いる方法を挙げることができる。
(2−2)ハニカム成形体作製工程:
 次に、得られた坏土をハニカム形状に成形してハニカム成形体を得る。坏土を成形してハニカム成形体を形成する方法としては特に制限はない。ハニカム成形体を形成する方法として、押出成形、射出成形等の公知の成形方法を挙げることができる。例えば、所望のセル形状、隔壁厚さ、セル密度を有する口金を用いて押出成形してハニカム成形体を形成する方法等を好適例として挙げることができる。口金の材質としては、摩耗し難い超硬合金が好ましい。
 ハニカム成形体の形状は、特に限定されず、円筒形状、端面が楕円形の筒形状、端面が「正方形、長方形、三角形、五角形、六角形、八角形等」の多角形の筒形状等が好ましい。
(2−3)ハニカム構造体作製工程:
 次に、得られたハニカム成形体を焼成して、流体の流路となる複数のセルを区画形成する多孔質の隔壁を備えたハニカム構造体を得る。ハニカム成形体を焼成する前に、ハニカム成形体を乾燥してもよい。
 乾燥方法については特に制限はない。乾燥方法としては、例えば、熱風乾燥、マイクロ波乾燥、誘電乾燥、減圧乾燥、真空乾燥、凍結乾燥等を挙げることができる。なかでも、誘電乾燥、マイクロ波乾燥又は熱風乾燥を単独で又は組み合わせて行うことが好ましい。
 ハニカム成形体を焼成する前には、このハニカム成形体を仮焼することが好ましい。仮焼は、脱脂のために行うものである。仮焼は、ハニカム成形体中の有機物の少なくとも一部を除去することができるものであればよい。一般に、有機バインダの燃焼温度は100~300℃程度である。このため、仮焼の条件としては、酸化雰囲気において、200~1000℃程度の温度で、10~100時間程度加熱することが好ましい。
 ハニカム成形体の焼成は、仮焼した成形体を構成する成形原料を焼結させて緻密化するためのものである。このような焼成により、隔壁が所定の強度を有するものとなる。焼成条件については、成形原料の種類により適宜選択することができる。即ち、焼成温度、焼成時間、焼成雰囲気等は、成形原料の種類に応じて適当な条件を選択すればよい。本実施形態のハニカムフィルタの製造方法においては、コージェライト化原料を使用しているため、焼成温度が1350~1440℃であることが好ましい。また、焼成時間としては、最高温度でのキープ時間が3~10時間であることが好ましい。仮焼、本焼成を行う装置については、特に制限はない。仮焼、本焼成を行う装置としては、例えば、電気炉、ガス炉等を挙げることができる。
 焼成を行うことにより、坏土中に含まれている炭酸リチウムやベーマイトが作用して、ガス透過性に関係しない細孔の形成が抑制される。これにより、本発明のハニカムフィルタの一の実施形態に用いることが可能なハニカム構造体を作製することができる。
(2−4)目封止工程:
 次に、ハニカム構造体の所定のセルの一方の開口端部及び残余のセルの他方の開口端部に目封止部を配設する。目封止工程については、従来公知のハニカムフィルタの製造方法の目封止工程と同様の工程に準じて行うことができる。
 目封止部を配設する方法としては、ハニカム構造体の所定のセルの一方の開口端部及び残余のセルの他方の開口端部に、スラリー状の目封止材料を充填する方法を挙げることができる。ハニカム構造体のセルの開口端部に目封止材料を充填する際には、まず、一方の開口端部に目封止材料を充填し、その後、他方の開口端部に目封止材料を充填する。
 一方の開口端部に目封止材料を充填する方法としては、以下の方法を挙げることができる。まず、ハニカム構造体の一方の端面にシートを貼り付ける。次に、このシートに、目封止材料を充填するための孔を開ける。目封止材料を充填するための孔は、目封止部を形成しようとするセルが存在する位置とする。シートが貼り付けられたハニカム構造体を、目封止材料が貯留された容器内に圧入する。即ち、シートが貼り付けられたハニカム構造体の端部を、上記容器内に圧入する。これにより、シートの孔を通じて、所定のセル内に、目封止材料が充填される。
 セルの一方の開口端部に目封止材料を充填した後、セルの他方の開口端部についても、これまでに説明した方法と同様の方法で、目封止材料を充填する。即ち、ハニカム構造体の他方の端面についても、一方の端面と同様にシートを貼り付け、上記と同様の方法で、目封止材料を充填する。
 ハニカム構造体のセルに充填された目封止材料を乾燥させることにより、目封止部を形成することができる。なお、目封止材料の乾燥は、一方の開口端部毎に行ってもよい。
 以下、本発明を実施例により更に具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。
(実施例1)
 まず、ハニカムフィルタに用いるハニカム構造体を作製した。ハニカム構造体を作製するセラミック原料としては、コージェライト化原料を用いた。コージェライト化原料に、分散媒、無機バインダ、有機バインダ、及び分散剤を添加して、成形用の坏土を調製した。分散媒の添加量は、コージェライト化原料100質量部に対して、35質量部とした。無機バインダの添加量は、コージェライト化原料100質量部に対して、2質量部とした。有機バインダの添加量は、コージェライト化原料100質量部に対して、4質量部とした。
 コージェライト化原料としては、タルクを43.0質量%、カオリンを17.0質量%、シリカを12.0質量%、アルミナを24.0質量%、ベーマイトを2.0質量%、含むものを用いた。タルクの平均粒子径は20μmであった。シリカの平均粒子径は20μmであった。ベーマイトの平均粒子径は0.1μmであった。上記平均粒子径は、各原料粒子の粒子径分布におけるメジアン径(d50)のことである。コージェライト化原料の配合処方を表1及び表2に示す。また、実施例1において坏土の調製に用いた原料を、「原料バッチ1」とする。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 坏土を調製する際の分散媒としては、水を用いた。また、無機バインダとしては、粘土を用いた。なお、無機バインダは、上述した粘土以外に、コロイド酸化物や無機繊維などを用いることもできる。有機バインダとしては、ヒドロキシプロピルメチルセルロース、メチルセルロースを用いた。分散剤としては、ラウリン酸カリ石鹸を用いた。
 次に、得られた坏土を、ハニカム成形体を成形するための金型を用いて押出成形した。このようにして、ハニカム成形体を作製した。そして、ハニカム成形体をマイクロ波乾燥機で乾燥した。乾燥したハニカム成形体の両端面を切断して、所定の寸法に整えた。その後、熱風乾燥機で更にハニカム成形体を乾燥した。
 乾燥したハニカム成形体を、1425℃で、7時間焼成した。このようにしてハニカム構造体を作製した。得られたハニカム構造体は、端面が円形の円筒状であった。ハニカム構造体の端面の直径は、144mmであった。ハニカム構造体のセルの延びる方向の長さは、152mmであった。ハニカム構造体の隔壁厚さは、304.8μmであった。ハニカム構造体のセル密度は、46.5個/cmであった。
 ハニカム構造体の気孔率は、45%であった。気孔率は、マイクロメリティクス社(Micromeritics社)製の「オートポアIV 9500(商品名)」によって測定した値である。
 次に、得られたハニカム構造体を用いて、ハニカムフィルタを製造した。具体的には、ハニカム構造体のセルに対して、一方の開口端部と他方の開口端部とが、隣接するセルにて交互に封止されるように目封止部を配設した。
 また、得られたハニカムフィルタにおいて、ハニカム構造体のパーミアビリティーは、1.1μmであった。また、ハニカム構造体において、細孔径が40μm以上の細孔の細孔容積率は、5.8%であった。また、ハニカム構造体において、細孔径が10μm以下の細孔の細孔容積率は、18.5%であった。細孔径が40μm以上の細孔の細孔容積率、及び細孔径が10μm以下の細孔の細孔容積率は、マイクロメリティクス社(Micromeritics社)製の「オートポアIV 9500(商品名)」によって測定した細孔容積から計算した値である。また、ハニカム構造体の40℃から800℃における熱膨張係数は、0.5×10−6/℃であった。各測定結果を表3に示す。上記熱膨張係数は、ハニカム構造体を構成する隔壁の、セルの延びる方向における熱膨張係数を測定した値である。
Figure JPOXMLDOC01-appb-T000004
 次に、得られたハニカムフィルタについて、以下の方法で、「最大スス堆積量」、「圧力損失」、及び「捕集効率」の評価を行った。結果を表3に示す。
[最大スス堆積量]
 各実施例及び比較例のハニカムフィルタを用いて、粒子状物質としてススを含む排ガスの浄化を行った。ハニカムフィルタの再生として、ハニカム構造体の隔壁上に堆積したススの燃焼を行った。順次、ススの堆積量を増加させて、ハニカムフィルタにクラックが発生する限界のススの堆積量を確認した。最大スス堆積量の評価においては、5.0g/L以上を合格とした。
 具体的な最大スス堆積量の測定方法としては、以下の通りである。まず、ハニカムフィルタの外周に、保持材としてセラミック製非熱膨張性マットを巻き付けた。この状態で、ハニカムフィルタをステンレス鋼製のキャニング用缶体に押し込み、固定した。その後、ディーゼル燃料の燃焼により発生させた、ススを含む燃焼ガスを、ハニカムフィルタの一方の端面より流入させ、他方の端面より流出させた。これにより、排ガス中のススを、ハニカムフィルタ内に堆積させた。そして、ハニカムフィルタを、一旦、25℃まで冷却した後、ハニカムフィルタの一方の端面より、680℃の燃焼ガスを流入させて、ススを燃焼させた。上記燃焼により、ハニカムフィルタの圧力損失が低下した際に、燃焼ガスの流量を減少させた。これにより、隔壁上に堆積したススを急燃焼させた。その後、ハニカムフィルタにおけるクラックの発生の有無を確認した。クラックの発生が認められるまで、ススの堆積量を増加して、繰り返し上記試験を行った。クラック発生時におけるススの堆積量(g/L)を、最大スス堆積量の値とした。
[圧力損失]
 まず、測定対象となるハニカムフィルタに、4g/Lのススを捕集させた。この状態で、2.27Nm/minの流速でガスを流し、ハニカムフィルタの入口側と、出口側とで圧力を測定した。入口側における圧力と、出口側における圧力との圧力差を、圧力損失(kPa)とした。圧力損失の評価においては、9.0kPa未満を合格とした。
[捕集効率]
 ディーゼルエンジンの排気系から排出される粒子状物質の個数を、上記排気系に各実施例又は比較例のハニカムフィルタを設置した場合と、ハニカムフィルタを設置しない場合とで測定した。得られた測定値から、各実施例及び比較例のハニカムフィルタの捕集効率(%)を求めた。捕集効率の評価においては、90%以上を合格とした。
(実施例2)
 坏土の調製に用いた原料を、表1及び表2に示すような「原料バッチ2」に変更した以外は、実施例1と同様の方法でハニカム構造体を作製した。得られたハニカム構造体を用いて、ハニカムフィルタを製造した。実施例2では、タルクの量を43.0質量%とし、カオリンの量を9.0質量%とし、シリカの量を17.0質量%とし、アルミナの量を23.0質量%とし、ベーマイトの量を6.0質量%とした。
(実施例3)
 坏土の調製に用いた原料を、表1及び表2に示すような「原料バッチ3」に変更した以外は、実施例1と同様の方法でハニカム構造体を作製した。得られたハニカム構造体を用いて、ハニカムフィルタを製造した。実施例3では、タルクの量を43.0質量%とし、カオリンの量を9.0質量%とし、シリカの量を17.0質量%とし、アルミナの量を21.0質量%とし、ベーマイトの量を8.0質量%とした。
(実施例4)
 坏土の調製に用いた原料を、表1及び表2に示すような「原料バッチ4」に変更した以外は、実施例1と同様の方法でハニカム構造体を作製した。得られたハニカム構造体を用いて、ハニカムフィルタを製造した。実施例4では、タルクの量を43.0質量%とし、カオリンの量を17.0質量%とし、シリカの量を12.0質量%とし、アルミナの量を26.0質量%とした。また、実施例4では、コージェライト化原料にベーマイトを用いず、且つコージェライト化原料100質量部に対して、炭酸リチウム(LiCO)を0.2質量部添加した。
(実施例5)
 コージェライト化原料100質量部に対して、炭酸リチウムを0.4質量部添加して坏土(原料バッチ5)を調製した以外は、実施例4と同様の方法でハニカム構造体を作製した。得られたハニカム構造体を用いて、ハニカムフィルタを製造した。
(実施例6)
 コージェライト化原料100質量部に対して、炭酸リチウムを0.8質量部添加して坏土(原料バッチ6)を調製した以外は、実施例4と同様の方法でハニカム構造体を作製した。得られたハニカム構造体を用いて、ハニカムフィルタを製造した。
(実施例7)
 坏土の調製に用いた原料を、表1及び表2に示すような「原料バッチ7」に変更した以外は、実施例1と同様の方法でハニカム構造体を作製した。得られたハニカム構造体を用いて、ハニカムフィルタを製造した。実施例7では、タルクの量を43.0質量%とし、カオリンの量を9.0質量%とし、シリカの量を17.0質量%とし、アルミナの量を29.0質量%とした。また、実施例7では、コージェライト化原料にベーマイトを用いず、且つコージェライト化原料100質量部に対して、炭酸リチウムを0.4質量部添加した。
(実施例8)
 坏土の調製に用いた原料を、表1及び表2に示すような「原料バッチ8」に変更した以外は、実施例1と同様の方法でハニカム構造体を作製した。得られたハニカム構造体を用いて、ハニカムフィルタを製造した。実施例8では、タルクの量を43.0質量%とし、カオリンの量を9.0質量%とし、シリカの量を17.0質量%とし、アルミナの量を29.0質量%とした。また、実施例8では、コージェライト化原料にベーマイトを用いず、且つコージェライト化原料100質量部に対して、炭酸リチウムを0.8質量部添加した。
(実施例9)
 坏土の調製に用いた原料を、表1及び表2に示すような「原料バッチ9」に変更した以外は、実施例1と同様の方法でハニカム構造体を作製した。得られたハニカム構造体を用いて、ハニカムフィルタを製造した。実施例9では、タルクの量を43.0質量%とし、カオリンの量を9.0質量%とし、シリカの量を17.0質量%とし、アルミナの量を29.0質量%とした。また、実施例9では、コージェライト化原料にベーマイトを用いず、且つコージェライト化原料100質量部に対して、炭酸リチウムを1.0質量部添加した。
(実施例10)
 坏土の調製に用いた原料を、表1及び表2に示すような「原料バッチ10」に変更した以外は、実施例1と同様の方法でハニカム構造体を作製した。得られたハニカム構造体を用いて、ハニカムフィルタを製造した。実施例10では、タルクの量を43.0質量%とし、カオリンの量を9.0質量%とし、シリカの量を17.0質量%とし、アルミナの量を26.0質量%とし、ベーマイトを3.0質量%とした。また、実施例10では、コージェライト化原料100質量部に対して、炭酸リチウムを0.4質量部添加した。
(実施例11~17)
 坏土の調製に用いた原料を、表1及び表2に示すような「原料バッチ11~17」に変更した以外は、実施例1と同様の方法でハニカム構造体を作製した。得られたハニカム構造体を用いて、ハニカムフィルタを製造した。実施例11~17では、タルクの量を43.0質量%とし、カオリンの量を17.0質量%とし、シリカの量を12.0質量%とし、アルミナの量を26.0質量%とした。また、実施例11では、コージェライト化原料100質量部に対して、酸化セリウム(CeO)を1.0質量部添加した。実施例12では、コージェライト化原料100質量部に対して、酸化セリウム(CeO)を3.0質量部添加した。実施例13では、コージェライト化原料100質量部に対して、酸化ジルコニウム(ZrO)を1.0質量部添加した。実施例14では、コージェライト化原料100質量部に対して、酸化ジルコニウム(ZrO)を2.0質量部添加した。実施例15では、コージェライト化原料100質量部に対して、酸化ジルコニウム(ZrO)を2.5質量部添加した。実施例16では、コージェライト化原料100質量部に対して、酸化イットリウム(Y)を1.0質量部添加した。実施例17では、コージェライト化原料100質量部に対して、酸化イットリウム(Y)を2.0質量部添加した。
(比較例1~13)
 坏土の調製に用いた原料を、表4及び表5に示すような「原料バッチ18~30」に変更した以外は、実施例1と同様の方法で、ハニカム構造体を作製した。得られたハニカム構造体を用いて、ハニカムフィルタを製造した。
 実施例2~17、比較例1~13のハニカムフィルタについても、実施例1と同様の方法で、「最大スス堆積量」、「圧力損失」、及び「捕集効率」の評価を行った。結果を表3及び表6に示す。なお、比較例9においては、焼成時にハニカム成形体の形状を維持することができなかった。このため、「最大スス堆積量」、「圧力損失」、及び「捕集効率」の評価について行っていない。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
(結果)
 表3に示すように、実施例1~17のハニカムフィルタは、最大スス堆積量、圧力損失、及び捕集効率の評価において、全て良好な結果であった。一方、表6に示すように、比較例1~13のハニカムフィルタにおいては、最大スス堆積量、圧力損失、及び捕集効率の評価において、いずれかの評価が合格基準を満たさないものであった。
 ここで、図3に、実施例1~4、6~13、15~17及び比較例1、4、7、8のハニカムフィルタにおける、平均細孔径(μm)と気孔率(%)との関係を示す。図3は、実施例1~4、6~13、15~17及び比較例1、4、7、8のハニカムフィルタにおける、平均細孔径(μm)と気孔率(%)との関係を示すグラフである。図3においては、横軸が、平均細孔径(μm)を示す。図3においては、縦軸が、気孔率(%)を示す。
 図3に示すグラフにおいては、ハニカムフィルタのパーミアビリティーが同等と推定される位置に対して、「パーミアビリティー同等ライン(推定)」を引いている。即ち、このパーミアビリティー同等ライン上に存在するハニカムフィルタについては、気孔率、及び平均細孔径が異なっていても、パーミアビリティーが同等の値を示すと考えられる。
 また、図3に示すグラフにおいては、シリカ減による気孔率低下ライン、ベーマイト添加による気孔率低下ライン、炭酸リチウム添加による気孔率低下ライン、及びその他の添加物による気孔率低下ラインについて、矢印付きのラインを引いている。各ラインの示す方向に、隔壁の気孔率が低下していることが分かる。その他の添加物による気孔率低下ラインにおける「添加物」とは、酸化セリウム(CeO)、酸化ジルコニウム(ZrO)、及び酸化イットリウム(Y)のことである。実施例11及び12上に引かれたラインが、酸化セリウム添加による気孔率低下ラインである。実施例13及び15上に引かれたラインが、酸化ジルコニウム添加による気孔率低下ラインである。実施例16及び17上に引かれたラインが、酸化ジルコニウム添加による気孔率低下ラインである。
 更に、図3に示すグラフにおいては、気孔率及びパーミアビリティーの目標範囲を、斜線を付した領域として示している。気孔率及びパーミアビリティーの目標範囲とは、本発明のハニカムフィルタにおける、気孔率及びパーミアビリティーの値を満足する範囲のことを意味する。
 また、図4に、炭酸リチウムを成形原料に添加した場合の、隔壁の細孔径分布の推移を示す。図4は、ハニカムフィルタに用いられるハニカム構造体の隔壁の細孔径分布を示すグラフである。図4において、横軸が、細孔径(μm)を示す。図4において、縦軸が、log微分細孔容積(cc/g)を示す。図4に示すグラフにおいては、炭酸リチウムの添加率が、0質量部、0.4質量部、0.8質量部の場合を示す。炭酸リチウムの添加率とは、成形原料として用いられるコージェライト化原料を100質量部とした場合の、炭酸リチウムの添加量の質量比率である。
 図4に示すグラフから、炭酸リチウムをコージェライト化原料に添加することにより、隔壁の細孔径分布における、細孔径が小さい側の分布が減少していることが分かる。一方、細孔径が大きい側の分布については、炭酸リチウムの添加率の差異により、特別な変化は確認されない。図4に示すグラフから、炭酸リチウムを添加することにより、隔壁に形成される細孔のうち、細孔径が小さな細孔の量が減少していることが分かる。このような細孔径が小さな細孔は、隔壁の一方の表面から他方の表面まで繋がっていないものであることが多く、細孔径が小さな細孔が減少しても、ハニカムフィルタの圧力損失の増加に大きな影響を与えない。但し、細孔径が小さい側の分布が減少することにより、隔壁の密実部分の量が増大するため、ハニカム構造体の熱容量が増大しているといえる。
 また、図5~図7に、ハニカムフィルタを、セルの延びる方向に垂直に切断した断面を拡大した顕微鏡写真を示す。図5は、炭酸リチウムの添加率が、0質量部の場合のハニカムフィルタを撮像したものである。図6は、炭酸リチウムの添加率が、0.4質量部の場合のハニカムフィルタを撮像したものである。図7は、炭酸リチウムの添加率が、0.8質量部の場合のハニカムフィルタを撮像したものである。図5~図7の顕微鏡写真からも、炭酸リチウムをコージェライト化原料に添加することにより、細孔径が小さい細孔が減少していることが確認される。
 このように、本発明のハニカムフィルタにおいては、ガス透過性に関係しない細孔径が小さな細孔を選択的に塞ぐことにより、圧力損失の上昇を抑制することができる。更に、ガス透過性に関係しない細孔を選択的に塞ぐことにより、ハニカムフィルタに用いられるハニカム構造体の気孔率が低くなり、ハニカムフィルタの熱容量が増大する。これにより、ハニカムフィルタの耐久性が高くなり、最大スス堆積量を向上させることができる。
 本発明のハニカムフィルタは、内燃機関から排出される排ガスの浄化に利用することができる。特に、ディーゼルエンジンから排出される排ガスの浄化に好適に利用することができる。本発明のハニカムフィルタの製造方法は、本発明のハニカムフィルタの製造方法として利用することができる。
1:隔壁、2:セル、2a:流入セル、2b:流出セル、3:外周壁、4:ハニカム構造体、5:目封止部、11:一方の端面、12:他方の端面、100:ハニカムフィルタ。

Claims (8)

  1.  流体の流路となる一方の端面から他方の端面まで延びる複数のセルを区画形成する多孔質の隔壁を有する筒状のハニカム構造体と、
     所定の前記セルの一方の開口端部及び残余の前記セルの他方の開口端部に配設された目封止部と、を備え、
     前記隔壁の気孔率が、46%以下であり、
     前記ハニカム構造体のパーミアビリティーが、0.8μm以上であり、
     細孔径が40μm以上の細孔の細孔容積率が、7.5%以下であり、且つ、細孔径が10μm以下の細孔の細孔容積率が、25%以下であり、
     前記ハニカム構造体の40℃から800℃における熱膨張係数が、1.0×10−6/℃以下であるハニカムフィルタ。
  2.  前記隔壁が、コージェライトを主成分とする多孔質体からなり、
     前記隔壁が、前記隔壁中に、リチウムをLiO換算で0.40質量%以下含む請求項1に記載のハニカムフィルタ。
  3.  前記隔壁が、前記隔壁中に、酸化セリウム、酸化ジルコニウム、及び酸化イットリウムからなる群より選択される少なくとも1種を含み、前記酸化セリウムの含有率が3.0質量%以下であり、前記酸化ジルコニウムの含有率が2.5質量%以下であり、前記酸化イットリウムの含有率が2.0質量%以下である請求項1又は2に記載のハニカムフィルタ。
  4.  コージェライト化原料100質量部に対して、炭酸リチウムを1.0質量部以下添加して得られた坏土を用いて作製された請求項1~3のいずれか一項に記載のハニカムフィルタ。
  5.  コージェライト化原料に、酸化セリウム、酸化ジルコニウム、及び酸化イットリウムからなる群より選択される少なくとも1種を添加して得られた坏土を用いて作製されたものであり、前記コージェライト化原料100質量部に対して、前記酸化セリウムの添加量が3.0質量部以下、前記コージェライト化原料100質量部に対して、前記酸化ジルコニウムの添加量が2.5質量部以下、及び前記コージェライト化原料100質量部に対して、前記酸化イットリウムの添加量が2.0質量部以下である請求項1~4のいずれか一項に記載のハニカムフィルタ。
  6.  コージェライト化原料のアルミナ源としてベーマイトを2質量%以上、8質量%以下使用した坏土を用いて作製された請求項1~5のいずれか一項に記載のハニカムフィルタ。
  7.  コージェライト化原料を含む坏土を調製する坏土調製工程と、
     前記坏土を成形してハニカム成形体を得るハニカム成形体作製工程と、
     前記ハニカム成形体を焼成してハニカム構造体を得るハニカム構造体作製工程と、
     前記ハニカム構造体の所定のセルの一方の開口端部及び残余のセルの他方の開口端部に目封止部を配設する目封止工程と、を備え、
     前記坏土調製工程が、前記コージェライト化原料100質量部に対して、炭酸リチウムを0.2質量部以上、1.0質量部以下添加する操作、前記コージェライト化原料100質量部に対して、酸化セリウムを3.0質量部以下添加する操作、前記コージェライト化原料100質量部に対して、酸化ジルコニウムを2.5質量部以下添加する操作、前記コージェライト化原料100質量部に対して、酸化イットリウムを2.0質量部以下添加する操作、及び前記コージェライト化原料のアルミナ源としてベーマイトを2質量%以上、8質量%以下用いる操作のうちの少なくとも一の操作を含むハニカムフィルタの製造方法。
  8.  得られる前記ハニカム構造体の隔壁の気孔率が、46%以下であり、前記ハニカム構造体のパーミアビリティーが、0.8μm以上であり、細孔径が40μm以上の細孔の細孔容積率が、7.5%以下であり、且つ、細孔径が10μm以下の細孔の細孔容積率が、25%以下であり、前記ハニカム構造体の40℃から800℃における熱膨張係数が、1.0×10−6/℃以下である、請求項7に記載のハニカムフィルタの製造方法。
PCT/JP2012/075876 2011-09-29 2012-09-28 ハニカムフィルタ、及びその製造方法 WO2013047908A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12821164.6A EP2604323A4 (en) 2011-09-29 2012-09-28 WABENFILTER AND MANUFACTURING METHOD THEREFOR
CN201280002137.XA CN103140269B (zh) 2011-09-29 2012-09-28 蜂窝过滤器及其制造方法
JP2012555229A JP5981854B2 (ja) 2011-09-29 2012-09-28 ハニカムフィルタ、及びその製造方法
US13/764,009 US8747511B2 (en) 2011-09-29 2013-02-11 Honeycomb filter, and manufacturing method of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-214741 2011-09-29
JP2011214741 2011-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/764,009 Continuation US8747511B2 (en) 2011-09-29 2013-02-11 Honeycomb filter, and manufacturing method of the same

Publications (1)

Publication Number Publication Date
WO2013047908A1 true WO2013047908A1 (ja) 2013-04-04

Family

ID=47995920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075876 WO2013047908A1 (ja) 2011-09-29 2012-09-28 ハニカムフィルタ、及びその製造方法

Country Status (5)

Country Link
US (1) US8747511B2 (ja)
EP (1) EP2604323A4 (ja)
JP (1) JP5981854B2 (ja)
CN (1) CN103140269B (ja)
WO (1) WO2013047908A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174039A (ja) * 2014-03-14 2015-10-05 日本碍子株式会社 目封止ハニカム構造体
DE102017002579A1 (de) 2016-03-24 2017-09-28 Ngk Insulators, Ltd. Poröser keramischer Strukturkörper
DE102017006390A1 (de) 2016-08-25 2018-03-01 Ngk Insulators, Ltd. Poröse Keramikstruktur

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8590158B2 (en) * 2010-10-29 2013-11-26 Corning Incorporated Methods of making filter apparatus and fabricating a porous ceramic article
JP5922629B2 (ja) * 2013-09-27 2016-05-24 日本碍子株式会社 多孔質材料及びその製造方法、並びにハニカム構造体
JP6254474B2 (ja) * 2014-03-31 2017-12-27 日本碍子株式会社 多孔質体,ハニカムフィルタ及び多孔質体の製造方法
KR102441764B1 (ko) * 2015-03-24 2022-09-07 히타치 긴조쿠 가부시키가이샤 세라믹 허니컴 구조체
JP6693477B2 (ja) 2017-06-13 2020-05-13 株式会社デンソー 排ガス浄化フィルタ
JP2019150737A (ja) * 2018-02-28 2019-09-12 日本碍子株式会社 ハニカム構造体
JP7123597B2 (ja) * 2018-03-29 2022-08-23 日本碍子株式会社 ハニカムフィルタ
DE102019115266A1 (de) 2018-06-27 2020-01-02 Denso Corporation Wabenstrukturkörper und abgasreinigungsfilter
JP2020158351A (ja) * 2019-03-27 2020-10-01 日本碍子株式会社 ハニカム構造体、および、ハニカム構造体の製造方法
JP7002504B2 (ja) * 2019-07-29 2022-02-04 株式会社Soken 排ガス浄化フィルタ
JP7274395B2 (ja) * 2019-10-11 2023-05-16 日本碍子株式会社 ハニカム構造体
JP7449721B2 (ja) * 2020-03-02 2024-03-14 日本碍子株式会社 ハニカムフィルタ
JP7353217B2 (ja) * 2020-03-02 2023-09-29 日本碍子株式会社 ハニカムフィルタ
JP7449720B2 (ja) * 2020-03-02 2024-03-14 日本碍子株式会社 ハニカムフィルタ
JP7353218B2 (ja) * 2020-03-02 2023-09-29 日本碍子株式会社 ハニカムフィルタ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510676A (ja) * 2000-10-02 2004-04-08 コーニング インコーポレイテッド リチウムアルミノケイ酸塩セラミック
WO2006030811A1 (ja) 2004-09-14 2006-03-23 Ngk Insulators, Ltd. 多孔質ハニカムフィルター
JP2010215447A (ja) * 2009-03-16 2010-09-30 Ngk Insulators Ltd アルミニウムチタネートセラミックスの製造方法
JP2010221153A (ja) * 2009-03-24 2010-10-07 Ngk Insulators Ltd ハニカム構造体
JP2010260787A (ja) 2008-03-31 2010-11-18 Denso Corp 多孔質ハニカム構造体の製造方法
JP2011504869A (ja) * 2007-11-27 2011-02-17 コーニング インコーポレイテッド 微細多孔性の低微小亀裂化セラミックハニカムおよび方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141667A (ja) * 1983-12-28 1985-07-26 日本碍子株式会社 セラミックハニカム構造体を接合若しくはコーティングまたは封着するためのセラミック材料組成物
EP0391321A3 (en) * 1989-04-07 1991-01-16 Asahi Glass Company Ltd. Ceramic filter for a dust-containing gas and method for its production
MXPA02011870A (es) 2000-06-01 2003-04-10 Corning Inc Cuerpo de cordierita.
US7179316B2 (en) * 2003-06-25 2007-02-20 Corning Incorporated Cordierite filters with reduced pressure drop
US7485170B2 (en) * 2005-11-30 2009-02-03 Corning Incorporated Narrow pore size distribution cordierite ceramic honeycomb articles and methods for manufacturing same
US7744980B2 (en) 2005-12-20 2010-06-29 Corning Incorporated Low CTE cordierite honeycomb article and method of manufacturing same
US7648550B2 (en) * 2006-08-25 2010-01-19 Corning Incorporated Narrow pore size distribution cordierite ceramic honeycomb articles and methods for manufacturing same
JP2009262125A (ja) 2008-03-31 2009-11-12 Denso Corp 多孔質ハニカム構造体及びその製造方法
JP2010046583A (ja) * 2008-08-20 2010-03-04 Honda Motor Co Ltd 排気浄化フィルタ及びこの排気浄化フィルタを使用した内燃機関の排気浄化装置
JP5064432B2 (ja) 2009-03-24 2012-10-31 日本碍子株式会社 ハニカム触媒体
HUE026104T2 (en) * 2010-02-01 2016-05-30 Johnson Matthey Plc Extruded SCR filter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510676A (ja) * 2000-10-02 2004-04-08 コーニング インコーポレイテッド リチウムアルミノケイ酸塩セラミック
WO2006030811A1 (ja) 2004-09-14 2006-03-23 Ngk Insulators, Ltd. 多孔質ハニカムフィルター
JP2011504869A (ja) * 2007-11-27 2011-02-17 コーニング インコーポレイテッド 微細多孔性の低微小亀裂化セラミックハニカムおよび方法
JP2010260787A (ja) 2008-03-31 2010-11-18 Denso Corp 多孔質ハニカム構造体の製造方法
JP2010215447A (ja) * 2009-03-16 2010-09-30 Ngk Insulators Ltd アルミニウムチタネートセラミックスの製造方法
JP2010221153A (ja) * 2009-03-24 2010-10-07 Ngk Insulators Ltd ハニカム構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2604323A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174039A (ja) * 2014-03-14 2015-10-05 日本碍子株式会社 目封止ハニカム構造体
US10029200B2 (en) 2014-03-14 2018-07-24 Ngk Insulators, Ltd. Plugged honeycomb structure
DE102017002579A1 (de) 2016-03-24 2017-09-28 Ngk Insulators, Ltd. Poröser keramischer Strukturkörper
JP2017171543A (ja) * 2016-03-24 2017-09-28 日本碍子株式会社 多孔質セラミックス構造体
US10252246B2 (en) 2016-03-24 2019-04-09 Ngk Insulators, Ltd. Porous ceramic structural body
DE102017002579B4 (de) 2016-03-24 2019-04-18 Ngk Insulators, Ltd. Poröser keramischer Strukturkörper
DE102017006390A1 (de) 2016-08-25 2018-03-01 Ngk Insulators, Ltd. Poröse Keramikstruktur
DE102017006390B4 (de) 2016-08-25 2019-05-09 Ngk Insulators, Ltd. Poröser Keramikkörper

Also Published As

Publication number Publication date
EP2604323A1 (en) 2013-06-19
EP2604323A4 (en) 2015-02-11
JP5981854B2 (ja) 2016-08-31
US20130145735A1 (en) 2013-06-13
US8747511B2 (en) 2014-06-10
JPWO2013047908A1 (ja) 2015-03-30
CN103140269A (zh) 2013-06-05
CN103140269B (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5981854B2 (ja) ハニカムフィルタ、及びその製造方法
JP4094830B2 (ja) 多孔質ハニカムフィルター及びその製造方法
JP4495152B2 (ja) ハニカム構造体及びその製造方法
JP4920752B2 (ja) ハニカム構造体
US8512433B2 (en) Low back pressure porous honeycomb and method
JP5270879B2 (ja) ハニカム構造体
JP5883410B2 (ja) ハニカム構造体の製造方法
JP2005530616A (ja) Dpf用途向けのケイ酸アルミニウムマグネシウム構造体
JP5997025B2 (ja) ハニカム触媒体
WO2004111398A1 (ja) ハニカム構造体
JP5997026B2 (ja) ハニカム触媒体
JP6110751B2 (ja) 目封止ハニカム構造体
JP2010221154A (ja) ハニカム触媒体
WO2012132005A1 (ja) ハニカム構造体
US20240116819A1 (en) Cordierite-indialite-pseudobrookite structured ceramic bodies, batch composition mixtures, and methods of manufacturing ceramic bodies therefrom
JP2007021483A (ja) ハニカム構造体
JP6231910B2 (ja) 目封止ハニカム構造体
CN113272042B (zh) 含堇青石的陶瓷体、批料组合物混合物和含堇青石的陶瓷体的制造方法
JP2014054622A (ja) 目封止ハニカム構造体
JP6231911B2 (ja) 目封止ハニカム構造体
US20220315496A1 (en) Porous honeycomb structure and method for manufacturing same
US11951434B2 (en) Ceramic honeycomb filter
JP2013128913A (ja) ハニカムフィルタ
US20230311112A1 (en) Pillar-shaped honeycomb structure
JP2013202590A (ja) ハニカム構造体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002137.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012555229

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012821164

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE