WO2013047698A1 - 光干渉計、情報取得装置、及び情報取得方法 - Google Patents

光干渉計、情報取得装置、及び情報取得方法 Download PDF

Info

Publication number
WO2013047698A1
WO2013047698A1 PCT/JP2012/074962 JP2012074962W WO2013047698A1 WO 2013047698 A1 WO2013047698 A1 WO 2013047698A1 JP 2012074962 W JP2012074962 W JP 2012074962W WO 2013047698 A1 WO2013047698 A1 WO 2013047698A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
frequency
laser
amplitude
wavelength
Prior art date
Application number
PCT/JP2012/074962
Other languages
English (en)
French (fr)
Inventor
宏治 由井
Original Assignee
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東京理科大学 filed Critical 学校法人東京理科大学
Priority to EP12837200.0A priority Critical patent/EP2762859B1/en
Priority to JP2013536406A priority patent/JP6008299B2/ja
Priority to US14/348,495 priority patent/US9599454B2/en
Publication of WO2013047698A1 publication Critical patent/WO2013047698A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4535Devices with moving mirror
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/04Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by beating two waves of a same source but of different frequency and measuring the phase shift of the lower frequency obtained
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • G01N2021/655Stimulated Raman

Definitions

  • the present invention relates to an optical interferometer, an information acquisition device, and an information acquisition method.
  • a Raman microscope that obtains an image by detecting Raman scattered light generated when a sample is irradiated with laser light is known.
  • the molecules contained in the sample can be identified from the Raman scattering spectrum of the sample, and the two-dimensional distribution of the molecule can be observed.
  • Japanese Patent Application Laid-Open No. 2011-158413 discloses two optical paths for guiding pulsed laser light having two different frequencies having a frequency difference equal to the frequency of a specific molecular vibration of a molecule in a sample, and two optical paths.
  • the microscopic image obtained by the Raman microscope is a “two-dimensional image”, and the distribution of molecules in the depth direction of the sample is superimposed with signals from all the optical paths of the laser light even if the focal depth direction is changed. Therefore, it cannot be observed strictly.
  • An object of the present invention is to provide an optical interferometer, an information acquisition apparatus, and an information acquisition method capable of obtaining molecular identification information for identifying the type of a molecule together with phase information of scattered light using a stimulated Raman scattering process. There is. Another object of the present invention is to provide a three-dimensional object having a molecular identification function added to a phase interference image based on phase information and molecular identification information of scattered light obtained using a stimulated Raman scattering process. An object is to provide an information acquisition apparatus and an information acquisition method capable of acquiring image information representing an image or a tomographic image.
  • the first aspect of the present invention emits coherent first light and second light having a frequency difference corresponding to the natural frequency of the target molecule with respect to the frequency of the first light.
  • a light source an amplitude modulating unit that modulates the amplitude of the second light, a dividing unit that divides the first light into reference light and first irradiation light, and an optical path length of the reference light.
  • the optical path length adjusting means and the second light whose amplitude is modulated are used as the second irradiation light, and the first irradiation light and the second irradiation light are irradiated onto the measurement position of the object.
  • the first light in which the frequency difference between the first light and the second light resonates with the target molecule and induced Raman loss or induced Raman gain occurs according to the amplitude modulation is used as signal light, and the signal light and the reference light Detecting means for detecting interference light with the optical interferometer.
  • the second aspect of the present invention emits coherent first light and second light having a frequency difference corresponding to the natural frequency of the target molecule with respect to the frequency of the first light.
  • the third aspect of the present invention emits coherent first light and second light having a frequency difference corresponding to the natural frequency of the target molecule with respect to the frequency of the first light.
  • a light source an amplitude modulating unit that modulates the amplitude of the second light, a dividing unit that divides the first light into reference light and first irradiation light, and a frequency of the first irradiation light.
  • Frequency modulating means for modulating Frequency modulating means for modulating, optical path length adjusting means for adjusting the optical path length of the reference light, second light that has been amplitude-modulated as second irradiation light, frequency-modulated first irradiation light and
  • the difference in frequency between the first light and the second light resonates with the target molecule, and induced Raman loss or induction according to the amplitude modulation.
  • a detector that detects the interference light between the signal light and the reference light, using the first light having the Raman gain as the signal light.
  • the excitation light in which induced Raman loss is generated according to the amplitude modulation is signal light.
  • the optical interferometer according to any one of the first to third aspects.
  • the first irradiation light is Stokes light and the second irradiation light is excitation light
  • Stokes light in which a stimulated Raman gain is generated according to the amplitude modulation is used as signal light.
  • the optical interferometer according to any one of the first to third aspects.
  • the light source emits the first laser that emits the first light, the second laser that emits the second light, and the oscillation of the first laser and the first laser.
  • the optical interferometer according to any one of the first to fifth aspects, having a synchronization circuit that synchronizes the oscillation of the two lasers.
  • the light source includes one laser, and a wavelength conversion device that converts the wavelength of light emitted from the one laser to generate the first light and the second light.
  • the optical interferometer according to any one of the first to fifth aspects.
  • the light source includes a laser, a wavelength converter that generates two coherent lights having different wavelengths by converting the wavelength of light emitted from the laser, and the wavelength.
  • One of the first to fifth aspects comprising: at least one wavelength conversion element that is disposed on the light emission side of the conversion device and that converts at least one of the two coherent lights having different wavelengths. This is an optical interferometer.
  • the light source has one laser, branching means for branching the light emitted from the one laser into two light waves, and wavelength conversion by converting the wavelength of one of the branched light waves.
  • a first wavelength converter that generates two different coherent lights
  • a second wavelength converter that generates two coherent lights having different wavelengths by converting the wavelength of the other branched light wave.
  • Any one of the first to fifth aspects comprising: a selecting unit that selects two coherent lights from the four coherent lights generated by the wavelength converter and the second wavelength converter. This is an optical interferometer.
  • the light source includes a first laser, a second laser, a synchronization circuit that synchronizes the oscillation of the first laser and the oscillation of the second laser, and the first laser.
  • a first wavelength converter for generating two coherent lights having different wavelengths by converting the wavelength of the light emitted from the light, and one coherent light among the two coherent lights generated by the first wavelength converter.
  • a first selection unit that selects interference light; a second wavelength conversion device that generates two coherent lights having different wavelengths by converting the wavelength of light emitted from the second laser; and the second wavelength.
  • a second selection unit that selects one coherent light from two coherent lights generated by the conversion device, and the optical interferometer according to any one of the first to fifth aspects is there.
  • the light source has one laser, branching means for branching the light emitted from the one laser into two light waves, and wavelength conversion by converting the wavelength of one of the branched light waves. 2 out of three coherent lights composed of a first wavelength conversion device that generates two different coherent lights and the other coherent light generated by the other branched light wave and the first wavelength converter.
  • the optical interferometer according to any one of the first to fifth aspects, comprising: a selecting unit that selects two coherent lights.
  • a twelfth aspect of the present invention from the first aspect to the eleventh aspect, further comprising measurement means for measuring a change in intensity of the second light in which the stimulated Raman loss or the stimulated Raman gain occurs according to the amplitude modulation. Any one of the optical interferometers.
  • a thirteenth aspect of the present invention emits coherent first light and second light having a frequency difference corresponding to the natural frequency of the target molecule with respect to the frequency of the first light.
  • a light source an amplitude modulating unit that modulates the amplitude of the second light, a dividing unit that divides the first light into reference light and first irradiation light, and an optical path length of the reference light.
  • the optical path length adjusting means and the second light whose amplitude is modulated are used as the second irradiation light, and the first irradiation light and the second irradiation light are irradiated onto the measurement position of the object.
  • the first light in which the frequency difference between the first light and the second light resonates with the target molecule and induced Raman loss or induced Raman gain occurs according to the amplitude modulation is used as signal light
  • the signal light and the reference light Detecting means for detecting the interference light, and the adjusted optical path length, the natural frequency of the target molecule, and the detection
  • First information acquisition means for acquiring phase information represented by a phase difference between the signal light and the reference light and molecular identification information for identifying the type of the molecule based on the interference light detected by the means; It is an information acquisition device.
  • scanning means for relatively moving the measurement position to scan the object, the phase information acquired by scanning the object by the scanning means at a plurality of measurement positions, and the phase information
  • a second information acquisition means for acquiring image information representing a stereoscopic image or a tomographic image of the object obtained by adding a molecular identification function to the phase interference image based on the molecular identification information. It is an information acquisition device of a mode.
  • the fifteenth aspect of the present invention uses coherent first light and second light having a frequency difference corresponding to the natural frequency of the target molecule with respect to the frequency of the first light.
  • the second light is modulated by modulating the amplitude of the second light
  • the first light is divided into reference light and first irradiation light
  • an optical path length of the reference light is adjusted
  • the first light is When the 1 irradiation light and the 2nd irradiation light are irradiated to the measurement position of the object, the frequency difference between the 1st light and the 2nd light resonates with the target molecule and the amplitude modulation is performed.
  • the first light having induced Raman loss or induced Raman gain is used as signal light to detect interference light between the signal light and the reference light, the adjusted optical path length, the natural frequency of the target molecule, and Based on the interference light detected by the detection means, the phase information represented by the phase difference between the signal light and the reference light and the numerator It obtains the molecular identification information for identifying a kind, an information acquisition method with.
  • the object is scanned by relatively moving the measurement position, and the phase interference image is obtained based on the phase information and the molecule identification information acquired at a plurality of measurement positions.
  • the fifteenth aspect of the information acquisition method according to the fifteenth aspect wherein image information representing a stereoscopic image or a tomographic image of the object to which a molecular identification function is added is acquired.
  • molecular identification information for identifying the type of molecule can be obtained together with the phase information of the scattered light by using the stimulated Raman scattering process. Further, according to the present invention, based on the phase information and molecular identification information of the scattered light obtained by using the stimulated Raman scattering process, a three-dimensional image of an object in which a molecular identification function is added to the phase interference image or Image information representing a tomographic image can be acquired.
  • FIG. 5 is a schematic diagram showing an output signal in a time domain during resonance of the optical interferometer shown in FIG. 4.
  • FIG. 5 is a schematic diagram showing an output signal in a frequency domain during resonance of the optical interferometer shown in FIG. 4.
  • FIG. 5 is a schematic diagram showing an output signal in a time domain when the optical interferometer shown in FIG. 4 is not resonant.
  • FIG. 5 is a schematic diagram illustrating an output signal in a frequency region when the optical interferometer illustrated in FIG. 4 is not resonant.
  • It is the schematic which shows an example of a structure of the optical interferometer which concerns on the 2nd Embodiment of this invention. It is a conceptual diagram which shows operation
  • FIG. 1 is a schematic diagram showing irradiation light and scattered light in a stimulated Raman scattering (SRS) process.
  • FIG. 2A is a schematic diagram showing excitation light and Stokes light used for stimulated Raman scattering. Although FIG. 2A illustrates a case where the Stokes light is amplitude-modulated, the excitation light may be amplitude-modulated as described later.
  • FIG. 2B is a schematic diagram for explaining the principle of detecting the stimulated Raman scattering process by the stimulated Raman loss effect or the stimulated Raman scattering Raman gain effect.
  • the sample S is irradiated with excitation light having a frequency ⁇ p and Stokes light having a frequency ⁇ s simultaneously.
  • the Stokes light frequency ⁇ s is smaller than the excitation light frequency ⁇ p .
  • the stimulated Raman scattering process occurs in a phase where the excitation light and the Stokes light are aligned, that is, in a coherent state. Therefore, the SRG light and the SRL light are also coherent light having the same phase, and the phase information of the excitation light and the Stokes light is obtained. Retained.
  • the intensity change of the SRG light or SRL light is usually detected as a signal.
  • the type of molecule is identified according to the natural frequency ⁇ of the molecule.
  • phase information of SRG light or SRL light is also detected by interference, which will be described later.
  • the stimulated Raman scattering process occurs only when the frequency difference ( ⁇ p ⁇ s ) matches the natural frequency ⁇ of the molecule. This phenomenon is called “resonance”. In other words, when there is no molecule having the natural frequency ⁇ that matches the frequency difference ( ⁇ p ⁇ s ), the stimulated Raman scattering process due to resonance does not occur. Therefore, there is an advantage that background noise called non-resonant background does not occur in the detection signal.
  • Raman scattering examples include spontaneous Raman scattering and coherent anti-Stokes Raman scattering (CARS).
  • spontaneous Raman scattering coherent scattered light cannot be obtained.
  • CARS has a higher detection signal intensity than stimulated Raman scattering, but the non-resonant background signal is also large and the signal-to-background ratio (S / B) is low.
  • Stimulated Raman scattering in which non-resonant background does not occur has an extremely high S / B and is superior in discriminating ability of molecular types compared to CARS.
  • each of the excitation light and the Stokes light is not limited to the pulsed laser light as long as it is a light that in principle generates a stimulated Raman scattering process.
  • light emitted from a super luminescent diode (SLD) or the like may be used as excitation light or Stokes light.
  • continuously oscillated laser light (CW light) may be used as excitation light and Stokes light.
  • light that is not related to the generation of stimulated Raman scattering among the excitation light and Stokes light, and light other than the portion of the reference light that interferes when acquiring the phase interference image may be in a non-coherent state.
  • the pumping light and the Stokes light need only have a specific frequency difference ( ⁇ p ⁇ s ), and the wavelength bands of the pumping light and the Stokes light are arbitrary. What is necessary is just to determine the wavelength range of excitation light and Stokes light according to a use.
  • near-infrared light that has high safety and high reach to the deep part of the living body is used for biological use.
  • near-infrared light is light having a wavelength of 800 nm to 2500 nm.
  • near infrared light in a wavelength range in which water is not absorbed is used.
  • OCT optical tomography
  • the visible light region of 800 nm or less is often used for the wavelength bands of excitation light and Stokes light.
  • the reason why the wavelength band is limited is that as the wavelength of the excitation light becomes longer, the intensity of the scattered light decreases in proportion to the fourth power of the wavelength of the excitation light.
  • the wavelength band that can be used in the optical interferometer according to the present embodiment will be described later.
  • FIG. 1 “backscattering” in which the SRG light and the SRL light are emitted in the direction opposite to the incident direction of the excitation light and the Stokes light with respect to the sample S is illustrated, but the SRG light and the SRL light are illustrated. Are observed in various directions. Irradiated SRG light (Stokes light with induced Raman gain) and SRL light (excitation light with induced Raman loss) are observed in a direction in which the SRG light or SRL light is transmitted, reflected, scattered, or refracted and emitted. To do.
  • FIGS. 3A, 3B, 3C, and 3D are schematic diagrams illustrating other examples of the observation direction of the SRG light or SRL light.
  • “forward scattered light” or transmitted light emitted in the same direction as the incident direction of the excitation light and Stokes light may be observed.
  • forward scattered light is observed, and in the case of a sample that does not transmit irradiation light, backscattered light is observed.
  • FIGS. 3A, 3B, 3C, and 3D are schematic diagrams illustrating other examples of the observation direction of the SRG light or SRL light.
  • forward scattered light or transmitted light emitted in the same direction as the incident direction of the excitation light and Stokes light may be observed.
  • forward scattered light is observed
  • backscattered light is observed.
  • FIG. 1 shows an example in which excitation light and Stokes light are incident on the sample S coaxially.
  • the present invention is not limited to coaxial incidence.
  • Excitation light and Stokes light may overlap at a desired position of the sample S, and excitation light and Stokes light may be incident on the sample S from the opposite side.
  • the optical axis of the excitation light and the optical axis of the Stokes light may be incident so as to intersect within the sample S.
  • Such a non-coaxial incident optical system is referred to as an “off-axis optical system”. The off-axis optical system will be described later.
  • FIG. 4 is a schematic diagram showing an example of the configuration of the optical interferometer according to the first embodiment of the present invention.
  • the optical interferometer 10 includes a light source 20 that emits two types of laser beams having different frequencies.
  • the light source 20 includes a laser 22 that emits laser light having a frequency ⁇ p used as excitation light, a laser 24 that emits laser light having a frequency ⁇ s used as Stokes light, and the oscillation and laser 24 of the laser 22.
  • a synchronizing circuit 26 for synchronizing the oscillation of In this embodiment, an example is described in which a pulse laser having a pulse width as short as picoseconds, femtoseconds, and the like and capable of repeatedly oscillating at a high frequency is used as the laser 22 and the laser 24.
  • a beam splitter 30 having a reflecting surface 30A is arranged on the light emission side of the laser 22, a beam splitter 30 having a reflecting surface 30A is arranged.
  • the beam splitter 30, the laser beam emitted vibration number omega p from the laser 22 is incident.
  • the beam splitter 30 transmits a part of incident light and reflects the remaining incident light by the reflecting surface 30A.
  • the light transmitted through the beam splitter 30 is referred to as “excitation light”, and the reflected light is referred to as “reference light”.
  • the use of the beam splitter 30 is not limited to this branching method, and it is also possible to use transmitted light as “reference light” and reflected light as “excitation light”.
  • a selective reflection mirror 32 and a beam splitter 34 having a reflection surface 34 ⁇ / b> A are arranged in this order from the beam splitter 30 side.
  • Selective reflective mirror 32 reflects the laser beam of the transmitted and frequency [omega s of the laser light of frequency [omega p.
  • selective reflection mirror 32 may be used as properties that transmits a laser beam of the reflected and frequency [omega s of the laser light of frequency [omega p.
  • a dichroic mirror or the like is generally used.
  • the beam splitter 34 transmits part or all of the light incident from one side (left side and upper side in FIG.
  • the beam splitter 34 generally, a half mirror, a beam splitter, a polarizing beam splitter, or the like is used.
  • the frequency modulation element 38 is a modulation element that modulates the frequency of incident light.
  • an acousto-optic element AO: Acousto-Optic Modulator
  • AOD acousto-optic deflector
  • EOM electro-optic modulator
  • the optical delay device 40 includes a pair of reflecting mirrors 42 and 44 and a mirror driving unit (not shown) such as a piezo element that moves the pair of reflecting mirrors 42 and 44 in the direction of arrow A.
  • the pair of reflection mirrors 42 and 44 folds the optical path of the reference light incident from the frequency modulation element 38 and irradiates the reflection mirror 46 with the reference light.
  • the optical path length of the reference light is adjusted by moving the pair of reflection mirrors 42 and 44.
  • the optical path length of the reference light (that is, the timing of the temporal overlap between the signal pulse light and the reference pulse light, and further the phase difference of the reference pulse light with respect to the signal pulse light) is adjusted, so that the signal light and the reference light described later are adjusted.
  • the phase difference is set.
  • the amplitude modulation element 50, the reflection mirror 52, the selective reflection mirror 32, and the beam splitter 34 are arranged in this order from the laser 24 side on the light emission side of the laser 24, that is, on the optical path of “Stokes light”. ing.
  • Laser light (Stokes light) having a frequency ⁇ s emitted from the laser 24 is incident on the amplitude modulation element 50.
  • the amplitude modulation element 50 is a modulation element that modulates the amplitude of incident light.
  • an acousto-optic element such as an AOD, an electro-optic modulation element such as a Pockels cell, or the like is used.
  • the beam splitter 34 transmits part or all of “excitation light” and “Stokes light” incident from the selective reflection mirror 32 and part or all of “reference light” incident from the reflection mirror 46.
  • the sample S which is a measurement object, is disposed on the excitation light emission side of the beam splitter 34.
  • a selective reflection mirror 54 such as a dichroic mirror and a photodetector 60 are arranged in this order from the beam splitter 34 side on the reference light emission side of the beam splitter 34.
  • the photodetector 60 is not particularly limited as long as it is sensitive to signal light and reference light and has sufficient response characteristics with respect to the frequency band to be measured.
  • a light receiving element such as a photodiode (PD: Photo Diode) or a charge coupled device (CCD: Charge Coupled Device) is used.
  • a signal processing device 64 such as a high-speed sampling device is electrically connected to the photodetector 60.
  • the signal processing device 64 is electrically connected to the analysis device 62.
  • As the analysis device 62 a lock-in amplifier, an FFT analyzer, or the like is generally used.
  • the analysis device 62 is electrically connected to the amplitude modulation element 50.
  • the analysis device 62 is electrically connected to an information processing device 66 that performs various types of information processing based on the obtained information such as “image information acquisition processing”.
  • “electrically connected” means that electrical signals can be exchanged.
  • a lock-in amplifier is an amplifier having both an amplification (amplifier) function and a specific signal detection (lock-in) function.
  • the FFT analyzer samples the input signal waveform digitally (discretely), performs Fourier transform on the sampled data using Fast Fourier Transform (FFT), and displays the result of the Fourier transform. It is a measuring instrument.
  • the information processing device 66 is configured as a computer that controls the entire device and performs various calculations. That is, the information processing device 66 includes a CPU (Central Processing Unit), a ROM (Read Only Memory) storing various programs, a RAM (Random Access Memory) used as a work area when executing the programs, and various information. And a non-volatile memory for storing and an input / output interface (I / O). Each of the CPU, ROM, RAM, nonvolatile memory, and I / O is connected via a bus.
  • the optical interferometer 10 is provided with a scanning mechanism for scanning the sample S that is a measurement object.
  • the measurement position is relatively moved by this scanning mechanism to scan the sample S, and measurement results at a plurality of measurement positions are acquired.
  • the laser 22 and the laser 24 oscillate in synchronization, the laser light having the frequency ⁇ p is emitted from the laser 22, and the laser light having the frequency ⁇ s is emitted from the laser 24.
  • Laser light emitted vibration number omega p from laser 22 is incident on the beam splitter 30 is split into the beam splitter 30 as the "reference beam” and "excitation light”.
  • Laser light of frequency [omega p which has passed through the reflection surface 30A of the beam splitter 30 (excitation light) is transmitted through the selective reflection mirror 32, passes through the reflection plane 34A of the beam splitter 34 is irradiated to the sample S.
  • the laser light of frequency [omega s emitted from the laser 24 (Stokes light) amplitude is modulated by the amplitude modulator 50.
  • the Stokes light whose amplitude is modulated is bent by the reflection mirror 52, reflected by the selective reflection mirror 32, and enters the beam splitter 34.
  • the amplitude-modulated Stokes light passes through the reflecting surface 34A of the beam splitter 34 and is irradiated onto the sample S.
  • the excitation light and the Stokes light are irradiated on the sample S coaxially by the selective reflection mirror 32 and the beam splitter 34.
  • SRG light and SRL light are emitted from the sample S.
  • excitation light and Stokes light are illustrated by solid lines
  • SRG light and SRL light are illustrated by dotted lines.
  • only SRL light is shown.
  • SRG light and SRL light are amplitude-modulated in the same manner as Stokes light.
  • the SRG light and the SRL light are reflected by the reflecting surface 34 ⁇ / b> A of the beam splitter 34 and enter the selective reflection mirror 54.
  • the selective reflection mirror 54 transmits the SRG light with the frequency ⁇ s and reflects the SRL light with the frequency ⁇ p .
  • the amplitude-modulated SRL light is reflected by the selective reflection mirror 54 and applied to the photodetector 60 as signal light.
  • the laser light of frequency [omega p that is reflected by the reflecting surface 30A of the beam splitter 30 (reference light) is by bending the optical path by the reflecting mirror 36, is incident on a frequency modulation device 38.
  • the reference light incident on the frequency modulation element 38 is modulated in frequency (that is, the frequency is shifted), the optical path length is adjusted by the optical delay device 40, the optical path is bent by the reflection mirror 46, and incident on the beam splitter 34.
  • the reference light that is frequency-modulated and adjusted in time overlap and phase difference with the signal light passes through the reflecting surface 34A of the beam splitter 34, is reflected by the selective reflection mirror 54, and is applied to the photodetector 60. .
  • the amplitude-modulated SRL light (signal light) and the frequency-modulated reference light whose phase difference with respect to the signal light is adjusted cause optical heterodyne interference.
  • the optical heterodyne interference will be described later.
  • the interference light between the signal light and the reference light is detected by the photodetector 60.
  • the detection signal of the photodetector 60 is input to the signal processing device 64.
  • the signal processing device 64 performs processing such as amplification and wavelength filtering on the input signal, and outputs the processed signal to the analysis device 62.
  • the analysis device 62 specifies the modulation frequency of the amplitude modulation element 50, and selects and detects a signal modulated at the specified frequency from the signal input from the signal processing device 64.
  • the analysis device 62 outputs the signal detected and detected as an output signal of the optical interferometer.
  • the output signal will be described later.
  • the information processing device 66 draws a phase interference image having the type and distribution information of the target molecule based on stimulated Raman scattering light (SRL light or SRG light), and forms a phase interference image having only a conventional shape.
  • Image information representing a stereoscopic image or tomographic image of an object to which a molecular identification function is added is acquired.
  • FIG. 5 is a conceptual diagram showing the operation of the optical interferometer shown in FIG. As shown in FIG. 5, in this embodiment, to divide the laser beam of frequency [omega p emitted from the laser 22 (excitation light), the excitation light for irradiating the reference beam and the sample S.
  • the reference light is frequency-modulated by the frequency modulation element 38.
  • the laser light of frequency [omega s emitted from the laser 24 (Stokes light) to generate a Stokes light amplitude-modulated by the amplitude modulator 50.
  • amplitude-modulated SRG light and SRL light are obtained in the same manner as Stokes light.
  • SRL light that is excitation light in which induced Raman loss has occurred is selected as signal light.
  • SRL light is a light that is split from the laser light having the vibration generated by the same laser 22 and the reference beam omega p, a reference beam and a coherent. Accordingly, optical heterodyne interference is caused between the amplitude-modulated SRL light (signal light) and the frequency-modulated reference light. Since the light emitted from the same light source is used as the signal light and the reference light, the phase fluctuation of these interference lights is reduced. It is not used for interference from an amplitude modulated SRG light, it is possible to obtain the induced Raman gain [Delta] I S.
  • the induced Raman gain ⁇ I S increases in proportion to the number of molecules resonating at the natural frequency ⁇ . Therefore, the induced Raman gain [Delta] I S obtained by observing the SRG light, may be used as molecular quantitative information.
  • optical heterodyne interference Here, the principle of signal intensity amplification by optical heterodyne interference will be described. Both the intensity change of the SRG light and the intensity change of the SRL light obtained in the stimulated Raman scattering process are weak. By causing the optical heterodyne interference, the intensity change of the SRL light used as the signal light is amplified.
  • the maximum amplitude of the electric field of the signal light is “E s0 ”, the frequency is “F”, and the phase is “ ⁇ s (x)”. Further, the maximum amplitude of the electric field of the reference light is “E r0 ”, the frequency after modulation is “F + f”, and the phase is “ ⁇ r (x)”.
  • Field strength E s and E r of the signal light and the reference light is represented by the following formula.
  • the intensity I of the interference light after optical heterodyne interference is expressed by the following equation.
  • a beat signal having a frequency f is newly generated due to optical heterodyne interference.
  • the reference light is frequency-modulated and the frequency F of the signal light is set to 1000 Hz and the frequency (F + f) of the reference light is set to 1005 Hz, a beat signal having a frequency of 5 Hz is generated.
  • the beat signal By selecting and detecting the beat signal with a synchronous detector or the like, measurement can be performed with high S / B.
  • the maximum electric field amplitude E s0 of the signal light is small, by increasing the maximum electric field amplitude E r0 of the reference light, the intensity of the interference light observed as a beat signal of the frequency f becomes double the electric field amplitude of the reference light. Amplified. For example, by setting the maximum electric field amplitude E r0 10,000 times larger than the maximum electric field amplitude E s0 of the signal light, in principle, a slight change in the amplitude of the induced Raman loss or the induced Raman gain of the signal light is 10,000 times or more. Can be amplified.
  • phase difference ( ⁇ s (x) ⁇ r (x)) between the signal light and the reference light is recorded as phase information.
  • position information of the molecule of the signal generation source is recorded with high accuracy. The recording of position information will be described next.
  • wavelength bands that can be used in the optical interferometer according to the present embodiment will be described.
  • the intensity of the scattered light decreases as the wavelength of the excitation light increases, so that the wavelength bands of the excitation light and Stokes light are limited.
  • the intensity of the interference light is amplified by the electric field amplitude times that of the reference light due to the optical heterodyne interference, so that the restriction on the wavelength bands of the excitation light and the Stokes light is relaxed.
  • the wavelength band of the excitation light and Stokes light can be set to 1000 nm or more.
  • phase information is recorded by interference between reflected light or Rayleigh scattered light and reference light.
  • phase information is recorded by interference between SRG light or SRL light obtained by stimulated Raman scattering and reference light.
  • the phase information can be recorded by changing the frequency of the Stokes light according to the natural frequency of the target molecule (that is, for each type of molecule) to obtain a signal due to interference.
  • the stimulated Raman scattering effect of various wavelengths may be detected at high speed by sweeping the wavelength of Stokes light at high speed.
  • the stimulated Raman scattering effect of various wavelengths may be detected at a time using light that includes wavelengths in the measurement wavelength range at once.
  • the wavelength of the Stokes light may be fixed and the wavelength of the excitation light may be swept at a high speed, or light including the wavelength in the measurement wavelength range at a time may be used as the excitation light.
  • the wavelength of the reference light is also swept at a high speed, or the reference light that includes the wavelengths in the measurement wavelength range is used at once to detect the stimulated Raman scattering effect of various wavelengths at once in the depth direction. It is good also as a system to perform.
  • the wavelength sweep method is the same as the method used in the conventional optical interference imaging method such as wavelength sweep type OCT (SS-OCT, Swept Source OCT) and spectral domain OCT (SD-OCT, Spectral-Domain OCT). This method can be used.
  • wavelength sweep type OCT SS-OCT, Swept Source OCT
  • SD-OCT Spectral-Domain OCT
  • FIG. 6A is an explanatory diagram for explaining the principle of obtaining a phase interference image at a predetermined depth of an object by optical interference imaging.
  • FIG. 6B is a schematic diagram illustrating a phase difference between the signal light and the reference light.
  • the optical path length of the reference light is changed (that is, the optical path length is swept) to adjust the temporal overlap between the signal light and the reference light and adjust the phase difference.
  • the optical delay device 40 can adjust the temporal overlap between the signal light and the reference light and adjust the phase difference.
  • the acquisition principle of the phase interference image is the same as the signal acquisition principle of time domain OCT (TD-OCT, time-domain OCT).
  • TD-OCT time domain OCT
  • the phase direction in the depth direction can be obtained without sweeping the optical path length by combining the above-described SS-OCT method or SD-OCT method, which is a wavelength sweep method, with respect to the signal light and the reference light.
  • An interference image can be constructed.
  • FIG. 6A schematically shows a state in which the signal light and the reference light overlap in time.
  • the phase interference image of the sample in the depth direction can be acquired with the accuracy of phase difference measurement.
  • the accuracy of the conventional phase difference measurement has reached 0.1 ° or more. For example, it is possible in principle to determine the unevenness of about 1 nm with light having a wavelength of 1000 nm.
  • FIG. 7A, 7B, 7C, and 7D are schematic diagrams illustrating output signals of the optical interferometer illustrated in FIG.
  • FIG. 7A when optical heterodyne interference occurs between the amplitude-modulated SRL light (signal light) and the frequency-modulated reference light, the SRL light is obtained by resonance with molecules.
  • an amplitude-modulated interference signal (interferogram) is detected.
  • the maximum electric field amplitude “E s0 ′” of the signal light varies due to amplitude modulation.
  • the amplitude of the beat signal is also periodically modulated.
  • the frequency difference ( ⁇ p ⁇ s ) between the excitation light and Stokes light is set to 1600 cm ⁇ 1 and the beat signal Observe the presence or absence of periodic amplitude modulation. If periodic modulation of the amplitude of the beat signal is observed, the target molecule is present at the measurement position, and SRL light is obtained by resonance with the target molecule. On the other hand, if no periodic modulation of the amplitude of the beat signal is observed, the target molecule does not exist at the measurement position.
  • the measurement position is relatively moved to scan the object.
  • the determination is made based on the presence / absence of amplitude modulation of the optical interference signal or the presence / absence of the sideband of the Fourier-transformed spectrum.
  • a target molecule When a target molecule is present, its amplitude intensity is proportional to the Raman scattering cross section of the vibration mode giving the natural frequency as well as the concentration of the target molecule.
  • phase interference image having the type of the target molecule and its spatial distribution information is acquired, and a molecular identification function is added to the phase interference image.
  • Image information representing a stereoscopic image or tomographic image of the object is acquired. Such information processing is performed by the information processing device 66 shown in FIG.
  • FIG. 8 is a schematic diagram showing an example of the configuration of an optical interferometer according to the second embodiment of the present invention.
  • the optical interferometer 10A according to the second embodiment has the same configuration as that of the first embodiment except that it is configured to reverse the excitation light and the Stokes light. A description thereof will be omitted.
  • the arrangement of the laser 22 and the laser 24 is reversed, and the laser light having the frequency ⁇ s emitted from the laser 24 is incident on the beam splitter 30, and “reference light” and “ It is divided into “Stokes light”.
  • the laser beam of frequency [omega p emitted from the laser 22 is incident on an amplitude modulator 50, the amplitude is modulated by the amplitude modulator 50.
  • FIG. 9 is a conceptual diagram showing the operation of the optical interferometer shown in FIG. As shown in FIG. 9, in this embodiment, to divide the laser beam of frequency [omega s emitted from a laser 24 (Stokes light), into a Stokes beam to be irradiated to the reference beam and the sample S.
  • the reference light is frequency-modulated by the frequency modulation element 38.
  • excitation light whose amplitude is modulated is generated from the laser light (excitation light) having the frequency ⁇ p emitted from the laser 22.
  • SRG light which is Stokes light in which stimulated Raman gain occurs
  • the SRG light is split from the laser light having the frequency ⁇ s generated by the same laser 24 as the reference light, and is coherent with the reference light. Accordingly, optical heterodyne interference is caused between the amplitude-modulated SRG light (signal light) and the frequency-modulated reference light. Thereby, the phase fluctuation of the interference light is reduced.
  • amplitude-modulated SRL light that is not used for interference may be used for molecular quantification.
  • ⁇ Modification of light source> In the first and second embodiments, the example using the light source including the synchronization circuit that synchronizes the oscillation of the two lasers and the two lasers has been described. However, the configuration of the light source is limited to this. Not a translation. There is no particular limitation as long as the light source can emit the excitation light having the frequency ⁇ p and the Stokes light having the frequency ⁇ s necessary for the stimulated Raman scattering process. Below, the modification of a light source is illustrated.
  • FIG. 10 is a schematic view showing a first modification of the light source.
  • the light source 20 ⁇ / b> A according to the first modification includes an excitation laser 70 and a wavelength conversion device 72 that converts the wavelength of light incident from the excitation laser 70 and emits two colors of light. And.
  • an optical parametric oscillator (OPO: Optical Parametric Oscillator) that generates laser light wavelength-converted by a nonlinear optical effect is used.
  • OPO optical parametric oscillator
  • the wavelength conversion device 72 generates and emits light of two colors having different frequencies from the light of one color incident from the excitation laser 70. Two colors of light are referred to as signal light and idler light. In general, idler light has a longer wavelength than signal light.
  • the signal light and the pump light of frequency [omega p, the idler light may be used as the Stokes beam frequency [omega s.
  • the light having the frequency ⁇ p and the light having the frequency ⁇ s are synchronized, and a synchronization circuit is not necessary.
  • OPO is used as the wavelength conversion device.
  • FIG. 11A is a schematic view showing a second modification of the light source.
  • FIG. 11B is a schematic view showing a modification of the light source shown in FIG. 11A.
  • the light source 20B according to the second modification is a two-color light (signal light and idler light) by converting the wavelength of light incident from the excitation laser 70 and the excitation laser 70.
  • a wavelength conversion element 74p inserted in the optical path of one of the two colors of light.
  • a wavelength conversion element 74p is inserted in the optical path of idler light.
  • the configuration is the same as that of the light source 20A according to the first modification except that the wavelength conversion element 74p is used.
  • the wavelength conversion element 74p As the wavelength conversion element 74p, a nonlinear optical crystal or the like used for generating the second harmonic and the third harmonic is used.
  • the wavelength of the idler light that has passed through the wavelength conversion element 74p is converted by the wavelength conversion element 74p into a wavelength that is a half of an integer such as 1/2 or 1/3 of the wavelength when emitted from the wavelength conversion device 72. Is done.
  • the wavelength of the wavelength-converted idler light is shorter than the signal light in the wavelength conversion element 74p, the idler light which transmitted through the wavelength conversion element 74p as an excitation light of frequency [omega p, the number vibration signal light omega What is necessary is just to use it as Stokes light of s .
  • wavelength conversion elements 74s and 74p may be inserted in the optical paths of the signal light and the idler light, respectively.
  • FIG. 12 is a schematic view showing a third modification of the light source.
  • the light source 20D according to the third modification includes an excitation laser 70, a selective reflection mirror 71A, a first wavelength conversion device 72A, a reflection mirror 71B, a second wavelength conversion device 72B, and a selection. Means 76 are provided.
  • the laser light emitted from the excitation laser 70 enters the selective reflection mirror 71A.
  • the selective reflection mirror 71A reflects a part of the incident laser light and transmits the remaining part.
  • the laser light transmitted through the selective reflection mirror 71A is reflected by the reflection mirror 71B and is incident on the first wavelength conversion device 72A. From the first wavelength conversion device 72A, two color-converted lights (signal light and idler light) are emitted.
  • the laser beam reflected by the selective reflection mirror 71A is incident on the second wavelength converter 72B. From the second wavelength conversion device 72B, wavelength-converted light of two colors (signal light and idler light) is emitted.
  • the selection means 76 selects two colors of light used as excitation light and Stokes light from a maximum of four colors emitted from the first wavelength conversion device 72A and the second wavelength conversion device 72B. .
  • an optical filter or the like that selectively transmits two colors of light is used.
  • one of the two light selected by the selecting means 76 the light of shorter wavelength as an excitation light of frequency [omega p, the other light may be used as the Stokes beam frequency [omega s.
  • the settable range of the frequency difference ( ⁇ p ⁇ s ) is generally wide.
  • FIG. 22 is a schematic view showing a fourth modification of the light source.
  • the light source 20F according to the fourth modification includes an excitation laser 70, a selective reflection mirror 71A, a wavelength conversion device 72, and a reflection mirror 71B.
  • the laser light emitted from the excitation laser 70 enters the selective reflection mirror 71A.
  • the selective reflection mirror 71A reflects a part of the incident laser light and transmits the remaining part.
  • the laser beam reflected by the selective reflection mirror 71A is incident on the wavelength converter 72. From the wavelength conversion device 72, the two color-converted lights (signal light and idler light) are emitted.
  • the laser light transmitted through the selective reflection mirror 71A is reflected in the same direction as the signal light and idler light by the reflection mirror 71B.
  • the light reflected by the reflecting mirror 71B and the excitation light of frequency [omega p, a signal light or idler light may be used as the Stokes beam frequency [omega s.
  • the excitation light which is not influenced by the intensity
  • a wavelength conversion element 74 that converts the wavelength of incident light may be inserted into one optical path of the two colors of light emitted from the wavelength conversion device 72.
  • the light source 20G has a wavelength conversion element 74.
  • the wavelength conversion element 74 is inserted in the optical path of signal light.
  • the configuration is the same as that of the light source 20F shown in FIG. In this case, light of three colors, that is, light reflected by the reflecting mirror 71B, wavelength-converted signal light, and idler light can be obtained.
  • the light source 20H includes a wavelength conversion element 74.
  • the wavelength conversion element 74 is inserted in the optical path of idler light.
  • the configuration is the same as that of the light source 20F shown in FIG. In this case, light of three colors, that is, light reflected by the reflection mirror 71B, signal light, and wavelength-converted idler light can be obtained.
  • two-color light to be used as excitation light and Stokes light is selected from the three colors of light by a selection unit (not shown).
  • the light of shorter wavelength as an excitation light of frequency [omega p the other light may be used as the Stokes beam frequency [omega s.
  • the light with the frequency ⁇ p and the light with the frequency ⁇ s are synchronized, and the synchronization circuit is not necessary.
  • the excitation light which is not influenced by the intensity
  • FIG. 13 is a schematic view showing a fifth modification of the light source.
  • a light source 20E according to a fifth modification includes a first laser 80, a second laser 82, and a synchronization circuit that synchronizes oscillations of the first laser 80 and the second laser 82.
  • a first wavelength conversion device 86 that converts the wavelength of light incident from the first laser 80 and emits two colors of light (signal light and idler light), and incident from the second laser 82.
  • the second wavelength conversion device 90 that emits two colors of light (signal light and idler light) by converting the wavelength of the reflected light, and one of the two colors of light emitted from the first wavelength conversion device 86 Selection means 88 for selecting color light and selection means 92 for selecting light of one color from the two colors of light emitted from the second wavelength converter 90 are provided.
  • the light selected by the selection means 88, of the selected by the selection means 92 lights, the light of shorter wavelength as an excitation light of frequency [omega p, Stokes light of the remaining frequency [omega s Can be used as According to this configuration, the settable range of the frequency difference ( ⁇ p ⁇ s ) is generally wide, and the time relationship between the two lights can be easily controlled.
  • the difference in frequency ( ⁇ p ⁇ s ) is determined as the crystal temperature in the wavelength conversion device. It is necessary to control the obtained constant temperature. When the crystal temperature varies, the oscillation wavelength fluctuates. If the frequency difference ( ⁇ p ⁇ s ) cannot be fixed, the stimulated Raman scattering process due to resonance cannot be maintained.
  • the other wavelength can be set regardless of one wavelength, and the wavelengths of both the excitation light and the Stokes light can be easily set to 1000 nm or more.
  • optical parametric oscillator an OPO using an optical crystal having a shape called “PERIODICALLY-POLED” (abbreviated as “PP crystal”) may be used.
  • PP crystal PERIODICALLY-POLED
  • the fluctuation of the optical path generated when the wavelength is converted is reduced.
  • FIG. 14 is a schematic diagram showing an example of the configuration of an optical interferometer according to the third embodiment of the present invention.
  • each element is arranged so as to constitute an off-axis optical system. Since the configuration and basic operation of each element of the optical interferometer 10B are the same as those of the first embodiment using the coaxial optical system, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the optical interferometer 10B includes a light source 20D illustrated as a third modification in FIG.
  • the light source 20D includes an excitation laser 70, a selective reflection mirror 71A, a first wavelength conversion device 72A, a first selection means 76A, a reflection mirror 71B, a second wavelength conversion device 72B, and a second selection means 76B.
  • the light source 20D emits two types of laser beams having different frequencies according to these configurations.
  • the laser light emitted from the excitation laser 70 enters the selective reflection mirror 71A.
  • the selective reflection mirror 71A reflects a part of the incident laser light and transmits the remaining part.
  • the laser light that has passed through the selective reflection mirror 71A is incident on the first wavelength conversion device 72A, is wavelength-converted, and emits light of two colors.
  • the first selection means 76A transmits the laser light having the frequency ⁇ s used as Stokes light among the two colors of light.
  • the laser beam reflected by the selective reflection mirror 71A is reflected by the reflection mirror 71B, is incident on the second wavelength conversion device 72B, is wavelength-converted, and emits light of two colors.
  • Second selecting means 76B is transmitted through the laser light of frequency [omega p used as the excitation light of the two colors of light.
  • the laser beam having the frequency ⁇ p is divided into “excitation light” and “reference light”.
  • the laser beam emitting side of the vibration frequency omega p of the light source 20D, the reflecting mirror 31, a beam splitter 30 having a reflection surface 30A is disposed.
  • the beam splitter 30 reflects a part of incident light by the reflecting surface 30A and transmits the remaining incident light.
  • the light transmitted through the beam splitter 30 is referred to as “excitation light”, and the reflected light is referred to as “reference light”.
  • a reflection mirror 32 On the light transmission side of the beam splitter 30, that is, on the optical path of “excitation light”, a reflection mirror 32, a lens 33, a lens 35, a light blocking member 37 having an aperture 37 A, and a beam splitter 34 having a reflection surface 34 A are provided. Arranged in this order from the 30th side.
  • the sample S is disposed between the lens 33 and the lens 35.
  • the reflection mirror 32 may be a normal reflection mirror instead of a selective reflection mirror.
  • a beam splitter 34 having a frequency modulation element 38, an optical delay device 40, a reflection mirror 46, and a reflection surface 34 A is provided from the beam splitter 30 side.
  • the optical delay device 40 includes a pair of reflecting mirrors 42 and 44 and a mirror driving unit (not shown) such as a piezo element that moves the pair of reflecting mirrors 42 and 44 in the arrow A direction.
  • the reflection mirror 51, the amplitude modulation element 50, the reflection mirror 52, the lens 33, the lens 35, and the aperture 37A are disposed on the laser beam emission side of the light source 20D at the frequency ⁇ s , that is, on the optical path of “Stokes light”. Are arranged in this order from the light source 20D side.
  • the beam splitter 34 reflects a part or all of the reference light incident from one side (upper side in FIG. 14) of the reflective surface 34A, and a signal incident from the other side (left side in FIG. 14) of the reflective surface 34A. Transmits part or all of the light.
  • a photodetector 60 is disposed on the reference light reflecting side (signal light transmitting side) of the beam splitter 34.
  • the optical detector 60 is electrically connected to the signal processing device 64 as in the optical interferometer shown in FIG. It is connected.
  • the signal processing device 64 is electrically connected to the analysis device 62.
  • the analysis device 62 is also electrically connected to the amplitude modulation element 50. Further, the analysis device 62 is electrically connected to the information processing device 66.
  • the laser light having the frequency ⁇ p and the laser light having the frequency ⁇ s are emitted from the light source 20D.
  • Laser light emitted vibration number omega p from the light source 20D is reflected by the reflecting mirror 31, enters the beam splitter 30.
  • the reflecting surface 30A of the beam splitter 30 reflects a portion of laser light of frequency [omega p and transmits the remainder.
  • “excitation light” is transmitted and “reference light” is reflected. That is, the laser light of frequency [omega p is divided into by the beam splitter 30 as "excitation light” and "reference light”.
  • the excitation light that has passed through the reflecting surface 30 ⁇ / b> A of the beam splitter 30 is incident on the lens 33 with the optical path bent by the reflecting mirror 32.
  • the incident excitation light is condensed by the lens 33 and irradiated onto the sample S.
  • the Stokes light emitted from the light source 20 ⁇ / b> S having the frequency ⁇ s is incident on the amplitude modulation element 50 with the optical path bent by the reflection mirror 52.
  • the amplitude of the incident Stokes light is modulated by the amplitude modulation element 50.
  • the Stokes light subjected to amplitude modulation is incident on the lens 33 after the optical path is bent by the reflection mirror 52.
  • the incident Stokes light is collected by the lens 33 and irradiated onto the sample S.
  • each optical element including the lens 33 is arranged so that the optical axis of the excitation light and the optical axis of the Stokes light intersect in the sample S to constitute an off-axis optical system. Accordingly, the excitation light and the Stokes light subjected to amplitude modulation are incident on the lens 33 non-coaxially and are irradiated so that the optical axes of the respective lights intersect within the sample S.
  • the sample S is irradiated with excitation light and Stokes light, if a stimulated Raman scattering effect due to resonance occurs, SRG light and SRL light are emitted from the intersection region of the excitation light and Stokes light in the sample S. . That is, in this embodiment, the stimulated Raman scattering process is realized by the off-axis optical system.
  • excitation light and Stokes light travel on the same optical path. For this reason, when there is a shield on the upstream side of the optical path in the sample S, the scattered light from the sample S on the downstream side of the optical path cannot be observed.
  • the excitation light and the Stokes light travel on different optical paths, and the optical axes of both lights intersect in the sample S. Accordingly, the scattered light from the sample S on the downstream side can be observed without being affected by the shielding on the upstream side. For example, even for a sample whose structure cannot be predicted, such as a living tissue having a nodule, the entire sample can be observed.
  • the optical path of the excitation light and the Stokes light overlap in the sample S, and on the optical path in the sample S, the stimulated Raman scattered light is emitted in all regions exceeding the light intensity threshold value that causes the stimulated Raman scattering effect. (Signal light) is generated.
  • stimulated Raman scattered light is generated only in a narrow region where excitation light and Stokes light overlap spatially, and scattered light is not generated in other regions.
  • the generation of false signals from other than the measurement target location is reduced, and the resolution in the light propagation direction is improved. That is, the stimulated Raman scattered light is observed at the measurement position (target depth).
  • excitation light and Stokes light pass through the sample S.
  • SRG light and SRL light are emitted from the intersecting region in the sample S in addition to transmitted excitation light and Stokes light.
  • FIG. 14 the excitation light and Stokes light transmitted through the sample S during non-resonance are illustrated by solid lines, and the SRG light and SRL light emitted from the intersecting region in the sample S during resonance are illustrated by dotted lines.
  • the SRG light generated by resonance travels on the same optical path as the Stokes light transmitted during non-resonance.
  • SRG light and SRL light are amplitude-modulated at the same frequency as Stokes light.
  • the SRG light, the SRL light, and the transmitted light are collimated by the lens 35 and applied to the light shielding member 37.
  • the excitation light or SRL light transmitted through the sample S passes through an aperture 37A provided on the light shielding member 37.
  • the light that has passed through the aperture 37A enters the beam splitter 34, passes through the reflecting surface 34A of the beam splitter 34, and is irradiated onto the photodetector 60.
  • the amplitude-modulated SRL light is irradiated to the photodetector 60 as signal light.
  • Stokes light or SRG light transmitted through the sample S is blocked by the light blocking member 37.
  • the reference light reflected by the reflecting surface 30A of the beam splitter 30 enters the frequency modulation element 38, and the frequency is modulated by the frequency modulation element 38.
  • the optical path length of the reference light whose frequency is modulated is adjusted by the optical delay device 40, the optical path is bent by the reflection mirror 46, and enters the beam splitter 34.
  • the reference light that has been frequency-modulated and that has been adjusted in time overlap and phase difference with the signal light is reflected by the reflecting surface 34A of the beam splitter 34 and applied to the photodetector 60.
  • the amplitude-modulated SRL light (signal light) and the frequency-modulated reference light whose phase difference with respect to the signal light is adjusted cause optical heterodyne interference.
  • the interference light between the signal light and the reference light is detected by the photodetector 60.
  • the detection signal of the photodetector 60 is input to the signal processing device 64.
  • the signal processing device 64 processes the input signal and outputs the processed signal to the analysis device 62.
  • the analysis device 62 selectively detects a signal modulated at a specific frequency from the signal input from the signal processing device 64.
  • the analysis device 62 outputs the signal detected and detected as an output signal of the optical interferometer.
  • polarized light may be used as the excitation light and Stokes light.
  • an element for controlling polarization such as a polarizing beam splitter and various wavelength plates, is appropriately used.
  • An optical fiber or the like may be used for the propagation, mixing, and separation of light.
  • an element for propagating, mixing, and separating light such as a fiber coupler is appropriately used.
  • the light source that emits the reference light may be a light source different from the light source that emits the excitation light and the Stokes light.
  • Excitation laser 70 An excitation laser was used to excite a mode-locked titanium sapphire laser using the second harmonic of an Nd: YVO 4 laser.
  • the product name “Verdi-V18” manufactured by Coherent was used as the Nd: YVO 4 laser.
  • the product name “Mira-HP” manufactured by Coherent was used as the titanium sapphire laser.
  • Wavelength converter 72A / 72B An optical parametric oscillator (OPO) using a PP crystal was used.
  • Optical delay device 40 A fine-motion optical delay device that drives a retroreflector that performs the same function as a pair of mirrors with a piezoelectric element and a coarse-motion optical delay device that mechanically drives a retroreflector that performs the same function as a pair of mirrors. .
  • the fine movement optical delay device corresponds to the optical delay device 40 of FIG.
  • the coarse optical delay device is arranged to adjust the optical path length.
  • coarse motion optical delay devices are arranged between the frequency modulation element 38 and the optical delay device 40 and between the beam splitter 30 and the reflection mirror 32, respectively.
  • the product name “P-753.11C” manufactured by Physik Instrumente GmbH was used as the fine optical delay device.
  • Photodetector 60 An InGaAs photodiode (PD) was used.
  • PD is a product name “ET-3040” manufactured by Electro-Optics Technology. Inc.
  • the output of OPO-I was fixed at a wavelength of 1100 nm and used as reference light for obtaining excitation light and interference signals in the stimulated Raman scattering process.
  • the reference light is referred to as OPO-I local oscillation light (LO).
  • the output of OPO-II was variable in the wavelength range of 1100 nm to 1600 nm.
  • the output wavelength of OPO-II is changed independently of the output wavelength of OPO-I.
  • the wavelength of the output light of OPO-II was set so as to satisfy, and the output light of the set wavelength was used as Stokes light.
  • FIG. 15 shows the result of detecting the output (Stokes light) from the OPO-II with an InGaAs photodiode and taking it in an oscilloscope (product name “MDO 4104-6” manufactured by TEKTRONIKS).
  • the vertical axis represents light intensity (Intensity).
  • the unit is an arbitrary unit (au).
  • the horizontal axis represents time.
  • the unit is microseconds ( ⁇ s).
  • FIG. 15 it can be seen that the optical pulses are output from the OPO-II at intervals of 13 nanoseconds (ns), and the intensity thereof is almost uniform.
  • FIG. 15 shows the result of detecting the output (Stokes light) from the OPO-II with an InGaAs photodiode and taking it in an oscilloscope (product name “MDO 4104-6” manufactured by TEKTRONIKS).
  • the vertical axis represents light intensity (Intensity).
  • the unit is an arbitrary unit (au).
  • FIG. 16 shows a result when the output is modulated with a sine function of 3 MHz by an EOM for amplitude modulation.
  • the vertical axis represents light intensity (Intensity), and the horizontal axis represents time.
  • the intensity of the light pulse changes periodically, and 6 cycles are included in a time of 2 microseconds ( ⁇ s). The frequency of this change corresponds to 3 MHz.
  • OPO-I local oscillation light (LO) that is not modulated by EOM for frequency modulation is taken into a mixed-domain oscilloscope (TEKTRONIKS product name “MDO 4104-6”), and the spectrum in the frequency domain is obtained.
  • the obtained result is shown in FIG.
  • the vertical axis represents light intensity (Intensity).
  • the unit is decibel (dB).
  • the horizontal axis represents frequency.
  • the unit is MHz.
  • the sharp band seen at 76.1 MHz corresponds to the pulse repetition frequency of the laser.
  • FIG. 18 shows the result of modulating this output with a 20 MHz sine function using an EOM for frequency modulation.
  • FIG. 18 shows the result of modulating this output with a 20 MHz sine function using an EOM for frequency modulation.
  • the vertical axis represents light intensity (Intensity), and the horizontal axis represents frequency (Frequency).
  • FIG. 18 it can be seen that bands are seen at frequencies of 56.1 MHz and 96.1 MHz, and the laser output of the original frequency of 76.1 MHz is modulated by 20 MHz. That is, it has been demonstrated that it is possible to apply frequency modulation of several tens of MHz using EOM.
  • the wavelength of the excitation light was fixed at 1100 nm, and the excitation light and the Stokes light were irradiated while changing the wavelength of the Stokes light in the range of 1100 nm to 1600 nm.
  • FIG. 19 shows the result of sweeping the delay time between the excitation light and the Stokes light.
  • the vertical axis represents light intensity (Intensity).
  • the unit is an arbitrary unit (au).
  • the horizontal axis represents the delay time (Time delay).
  • the unit is picoseconds (ps).
  • a signal is obtained due to downward stimulated Raman scattering (stimulated Raman loss) that resonates when the wavelength of the Stokes light is 1236.0 nm (frequency difference 1000.3 cm ⁇ 1 ) and has a delay time of about 0 ps. It was. Further, when the wavelength of Stokes light was 1240.0 nm (frequency difference 1026.4 cm ⁇ 1 ) and 1232.0 nm (frequency difference 974.0 cm ⁇ 1 ), it became non-resonant and the signal due to stimulated Raman scattering disappeared. The wavelength of the Stokes light 1236.4nm are reproduced resonance and returned to (1002.9cm -1 frequency difference) signal by stimulated Raman scattering is obtained. That is, the stimulated Raman scattering signal could be observed from the above sample using near infrared light of 1000 nm or more for both excitation light and Stokes light.
  • stimulated Raman scattering could be observed from the above sample using near infrared light of 1000 nm or more for both excitation light and Stokes
  • ⁇ Acquisition of stimulated Raman scattering interference signal> the natural frequency (1003 cm ⁇ 1 ) of the polystyrene benzene ring respiratory vibration was used as the resonance target of the stimulated Raman scattering, and the interference signal due to the optical heterodyne interference between the stimulated Raman scattered light and the reference light was observed.
  • the output of OPO-I was fixed at a wavelength of 1100 nm and used as excitation light and reference light (local oscillation light LO) in the stimulated Raman scattering process.
  • the output of OPO-II was fixed at a wavelength of 1236 nm and used as Stokes light in the stimulated Raman scattering process.
  • Stokes light was amplitude-modulated with a 3 MHz sine function by EOM.
  • the reference light LO was frequency-modulated with a sine function of 10 MHz by EOM.
  • the excitation light and the amplitude-modulated Stokes light were condensed so that the optical axes intersected in the sample, and irradiated on the test sample to realize a stimulated Raman scattering process by resonance.
  • the light with a wavelength of 1100 nm observed from the test sample includes a stimulated Raman loss signal (SRL light) that repeatedly increases and decreases at a frequency of 3 MHz.
  • SRL light stimulated Raman loss signal
  • the SRL light and the frequency-modulated reference light LO are made to enter the photodetector with their optical axes aligned so that the SRL light and the reference light LO overlap on the light receiving surface of the photodetector.
  • an interference signal having a frequency f ⁇ f ′ that is the sum or difference of the beat frequency f and the amplitude modulation frequency f ′ of the Stokes light is detected.
  • an interference signal having a frequency F i-SRS at the time of resonance was detected.
  • the frequency F i-SRS is given by the following equation.
  • 76.1 MHz is the original repetition frequency of the laser light pulse.
  • 10 MHz is the frequency f of the modulation applied to the reference light LO.
  • 3 MHz is a frequency f ′ of modulation applied to Stokes light.
  • the detection frequency of the mixed domain oscilloscope was adjusted to a range of 63.1 ⁇ 0.1 MHz. Thereby, an interference signal having the frequency F i-SRS is extracted.
  • FIG. 20 shows a result of plotting the light intensity of the observed interference signal while changing the delay between the SRL light and the reference light LO by 10 nm by the fine movement optical delay device.
  • the vertical axis represents light intensity (Intensity).
  • the unit is an arbitrary unit (au).
  • the horizontal axis represents relative delay.
  • the unit is nm. Further, stimulated Raman scattering due to resonance with respect to the natural frequency of 1000.3 cm ⁇ 1 was observed with the wavelength of the excitation light being 1100 nm and the wavelength of the Stokes light being 1236 nm.
  • the interference pattern between the SRL light and the reference light LO was observed only when stimulated Raman scattering was caused by resonance.
  • the vertical axis represents light intensity (Intensity), and the horizontal axis represents relative delay (Relative delay).
  • the wavelength of the excitation light was 1100 nm, and the wavelength of the Stokes light was 1230 nm.
  • the frequency difference between the excitation light and the Stokes light was 960.8 cm ⁇ 1 , which was a non-resonant state.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

 可干渉性の第1の光及び標的分子の固有振動数に相当する振動数差を有する第2の光を射出する光源と、第2の光の振幅を変調する振幅変調手段と、第1の光を参照光と第1の照射光とに分割する分割手段と、参照光の光路長を調整する光路長調整手段と、第1の照射光と第2の照射光(振幅変調された第2の光)とが対象物の計測位置に照射されたときに振動数差が標的分子と共鳴して振幅変調に応じて誘導ラマンロス又はゲインが生じた第1の光(信号光)と参照光との干渉光を検出する検出手段と、を有する光干渉計とする。

Description

光干渉計、情報取得装置、及び情報取得方法
 本発明は、光干渉計、情報取得装置、及び情報取得方法に関する。
 従来、レーザ光を試料に照射したとき発生するラマン散乱光を検出することで画像を得るラマン顕微鏡が知られている。ラマン顕微鏡では、試料のラマン散乱スペクトルから、試料に含まれる分子を同定すると共に、当該分子の二次元分布を観察することができる。
 例えば、特開2011-158413号公報には、標本中の分子の特定の分子振動の周波数に等しい周波数差を有する2つの異なる周波数を有するパルスレーザ光を導光する2つの光路と、2つの光路を導光されてきたパルスレーザ光を合波する合波手段と、前記2つの光路の少なくとも一方に設けられ、前記2つの光路を導光されるパルスレーザ光の周波数分散量を変調する周波数変調手段と、前記2つの光路の少なくとも一方に設けられ、前記2つの光路を導光されるパルスレーザ光の振幅を変調するパルスレーザ光振幅変調手段と、前記合波手段により合波された前記2つのパルスレーザ光を標本中に集光し、標本中の分子の特定の分子振動から発生した誘導ラマン散乱を前記パルスレーザ変調部の変調に同期して検出する変調信号検出手段と、を有することを特徴とするレーザ顕微鏡装置が開示されている。
 しかしながら、ラマン顕微鏡で得られる顕微画像は「二次元画像」であり、試料の深さ方向における分子の分布は、焦点深さ方向を変えても、レーザ光の光路すべてからの信号が重畳されるため、厳密に観察することができない。
 本発明の目的は、誘導ラマン散乱過程を利用して散乱光の位相情報と共に分子の種類を識別する分子識別情報を得ることができる、光干渉計、情報取得装置、及び情報取得方法を提供することにある。また、本発明の他の目的は、誘導ラマン散乱過程を利用して得られた散乱光の位相情報と分子識別情報とに基づいて、位相干渉像に分子識別機能が付加された対象物の立体画像又は断層画像を表す画像情報を取得することができる、情報取得装置及び情報取得方法を提供することにある。
 本発明の第1の態様は、可干渉性の第1の光、及び前記第1の光の振動数に対して標的分子の固有振動数に相当する振動数差を有する第2の光を射出する光源と、前記第2の光の振幅を変調する振幅変調手段と、前記第1の光を参照光と第1の照射光とに分割する分割手段と、前記参照光の光路長を調整する光路長調整手段と、振幅変調された第2の光を第2の照射光として、前記第1の照射光と前記第2の照射光とが対象物の計測位置に照射されたときに前記第1の光と前記第2の光の振動数差が標的分子と共鳴して前記振幅変調に応じて誘導ラマンロス又は誘導ラマンゲインが生じた第1の光を信号光とし、当該信号光と前記参照光との干渉光を検出する検出手段と、を有する光干渉計である。
 本発明の第2の態様は、可干渉性の第1の光、及び前記第1の光の振動数に対して標的分子の固有振動数に相当する振動数差を有する第2の光を射出する光源と、前記第2の光の振幅を変調する振幅変調手段と、前記第1の光を参照光と第1の照射光とに分割する分割手段と、前記参照光の周波数を変調する周波数変調手段と、前記参照光の光路長を調整する光路長調整手段と、振幅変調された第2の光を第2の照射光として、前記第1の照射光と前記第2の照射光とが対象物の計測位置に照射されたときに前記第1の光と前記第2の光の振動数差が標的分子と共鳴して前記振幅変調に応じて誘導ラマンロス又は誘導ラマンゲインが生じた第1の光を信号光とし、当該信号光と周波数変調された参照光との干渉光を検出する検出手段と、を有する光干渉計である。
 本発明の第3の態様は、可干渉性の第1の光、及び前記第1の光の振動数に対して標的分子の固有振動数に相当する振動数差を有する第2の光を射出する光源と、前記第2の光の振幅を変調する振幅変調手段と、前記第1の光を参照光と第1の照射光とに分割する分割手段と、前記第1の照射光の周波数を変調する周波数変調手段と、前記参照光の光路長を調整する光路長調整手段と、振幅変調された第2の光を第2の照射光とし、前記周波数変調された第1の照射光と前記第2の照射光とが対象物の計測位置に照射されたときに前記第1の光と前記第2の光の振動数差が標的分子と共鳴して前記振幅変調に応じて誘導ラマンロス又は誘導ラマンゲインが生じた第1の光を信号光とし、当該信号光と前記参照光との干渉光を検出する検出手段と、を有する光干渉計である。
 本発明の第4の態様は、前記第1の照射光を励起光とし、前記第2の照射光をストークス光とした場合に、前記振幅変調に応じて誘導ラマンロスが生じた励起光を信号光とする、第1の態様から第3の態様までの何れかの光干渉計である。
 本発明の第5の態様は、前記第1の照射光をストークス光とし、前記第2の照射光を励起光とした場合に、前記振幅変調に応じて誘導ラマンゲインが生じたストークス光を信号光とする、第1の態様から第3の態様までの何れかの光干渉計である。
 本発明の第6の態様は、前記光源が、前記第1の光を射出する第1のレーザ、前記第2の光を射出する第2のレーザ、及び前記第1のレーザの発振と前記第2のレーザの発振とを同期させる同期回路を有する、第1の態様から第5の態様までの何れかの光干渉計である。
 本発明の第7の態様は、前記光源が、1つのレーザと、当該1つのレーザから射出された光を波長変換して前記第1の光及び前記第2の光を生成する波長変換装置と、を有する、第1の態様から第5の態様までの何れかの光干渉計である。
 本発明の第8の態様は、前記光源が、1つのレーザと、当該1つのレーザから射出された光を波長変換して波長が異なる2つの可干渉光を生成する波長変換装置と、前記波長変換装置の光出射側に配置され且つ前記波長が異なる2つの可干渉光の少なくとも一方を波長変換する少なくとも1つの波長変換素子と、を有する、第1の態様から第5の態様までの何れかの光干渉計である。
 本発明の第9の態様は、前記光源が、1つのレーザと、当該1つのレーザから射出された光を2光波に分岐する分岐手段と、分岐された一方の光波を波長変換して波長が異なる2つの可干渉光を生成する第1の波長変換装置と、分岐された他方の光波を波長変換して波長が異なる2つの可干渉光を生成する第2の波長変換装置と、第1の波長変換装置及び第2の波長変換装置で生成された4つの可干渉光の中から2つの可干渉光を選択する選択手段と、を有する、第1の態様から第5の態様までの何れかの光干渉計である。
 本発明の第10の態様は、前記光源が、第1のレーザ、第2のレーザ、前記第1のレーザの発振と前記第2のレーザの発振とを同期させる同期回路、前記第1のレーザから射出された光を波長変換して波長が異なる2つの可干渉光を生成する第1の波長変換装置、前記第1の波長変換装置で生成された2つの可干渉光の中から1つの可干渉光を選択する第1の選択手段と、前記第2のレーザから射出された光を波長変換して波長が異なる2つの可干渉光を生成する第2の波長変換装置、前記第2の波長変換装置で生成された2つの可干渉光の中から1つの可干渉光を選択する第2の選択手段と、を有する、第1の態様から第5の態様までの何れかの光干渉計である。
 本発明の第11の態様は、前記光源が、1つのレーザと、当該1つのレーザから射出された光を2光波に分岐する分岐手段と、分岐された一方の光波を波長変換して波長が異なる2つの可干渉光を生成する第1の波長変換装置と、分岐された他方の光波及び第1の波長変換装置で生成された2つの可干渉光からなる3つの可干渉光の中から2つの可干渉光を選択する選択手段と、を有する、第1の態様から第5の態様までの何れかの光干渉計である。
 本発明の第12の態様は、前記振幅変調に応じて誘導ラマンロス又は誘導ラマンゲインが生じた第2の光の強度変化を計測する計測手段を更に備えた、第1の態様から第11の態様までの何れかの光干渉計である。
 本発明の第13の態様は、可干渉性の第1の光、及び前記第1の光の振動数に対して標的分子の固有振動数に相当する振動数差を有する第2の光を射出する光源と、前記第2の光の振幅を変調する振幅変調手段と、前記第1の光を参照光と第1の照射光とに分割する分割手段と、前記参照光の光路長を調整する光路長調整手段と、振幅変調された第2の光を第2の照射光として、前記第1の照射光と前記第2の照射光とが対象物の計測位置に照射されたときに前記第1の光と前記第2の光の振動数差が標的分子と共鳴して前記振幅変調に応じて誘導ラマンロス又は誘導ラマンゲインが生じた第1の光を信号光とし、当該信号光と前記参照光との干渉光を検出する検出手段と、前記調整された光路長、前記標的分子の固有振動数、及び前記検出手段で検出された干渉光に基づいて、前記信号光と前記参照光の位相差で表される位相情報と分子の種類を識別する分子識別情報とを取得する第1の情報取得手段と、を有する情報取得装置である。
 本発明の第14の態様は、前記計測位置を相対移動させて前記対象物を走査する走査手段と、前記走査手段により対象物を走査して複数の計測位置で取得された前記位相情報と前記分子識別情報とに基づいて、位相干渉像に分子識別機能が付加された前記対象物の立体画像又は断層画像を表す画像情報を取得する第2の情報取得手段と、を更に備えた第13の態様の情報取得装置である。
 本発明の第15の態様は、可干渉性の第1の光、及び前記第1の光の振動数に対して標的分子の固有振動数に相当する振動数差を有する第2の光を用い、前記第2の光の振幅を変調して第2の照射光とし、前記第1の光を参照光と第1の照射光とに分割し、前記参照光の光路長を調整し、前記第1の照射光と前記第2の照射光とが対象物の計測位置に照射されたときに前記第1の光と前記第2の光の振動数差が標的分子と共鳴して前記振幅変調に応じて誘導ラマンロス又は誘導ラマンゲインが生じた第1の光を信号光として、当該信号光と前記参照光との干渉光を検出し、前記調整された光路長、前記標的分子の固有振動数、及び前記検出手段で検出された干渉光に基づいて、前記信号光と前記参照光の位相差で表される位相情報と分子の種類を識別する分子識別情報とを取得する、を有する情報取得方法である。
 本発明の第16の態様は、前記計測位置を相対移動させて前記対象物を走査し、複数の計測位置で取得された前記位相情報と前記分子識別情報とに基づいて、前記位相干渉像に分子識別機能が付加された前記対象物の立体画像又は断層画像を表す画像情報を取得する、第15の態様の情報取得方法である。
 本発明によれば、誘導ラマン散乱過程を利用して散乱光の位相情報と共に分子の種類を識別する分子識別情報を得ることができる。また、本発明によれば、誘導ラマン散乱過程を利用して得られた散乱光の位相情報と分子識別情報とに基づいて、位相干渉像に分子識別機能が付加された対象物の立体画像又は断層画像を表す画像情報を取得することができる。
誘導ラマン散乱過程における照射光と散乱光とを示す模式図である。 誘導ラマン散乱に用いる励起光とストークス光とを示す模式図である。 誘導ラマン散乱過程を誘導ラマンロス効果または誘導ラマン散乱ラマンゲイン効果で検出する原理を説明する模式図である。 誘導ラマン散乱の観察方向が前方である例を示す模式図である。 誘導ラマン散乱の観察方向が斜め方向である例を示す模式図である。 誘導ラマン散乱の観察方向が斜め方向である例を示す模式図である。 誘導ラマン散乱の観察方向が横方向である例を示す模式図である。 本発明の実施の形態に係る光干渉計の構成の一例を示す概略図である。 図4に示す光干渉計の動作を示す概念図である。 光干渉画像法により対象物の所定深さにおける位相干渉像が取得される原理を説明する説明図である。 信号光と参照光との位相差を示す模式図である。 図4に示す光干渉計の共鳴時の時間領域での出力信号を示す模式図である。 図4に示す光干渉計の共鳴時の周波数領域での出力信号を示す模式図である。 図4に示す光干渉計の非共鳴時の時間領域での出力信号を示す模式図である。 図4に示す光干渉計の非共鳴時の周波数領域での出力信号を示す模式図である。 本発明の第2の実施の形態に係る光干渉計の構成の一例を示す概略図である。 図8に示す光干渉計の動作を示す概念図である。 光源の第1の変形例を示す概略図である。 光源の第2の変形例を示す概略図である。 図11Aに示す光源の変形例を示す概略図である。 光源の第3の変形例を示す概略図である。 光源の第5の変形例を示す概略図である。 本発明の第3の実施の形態に係る光干渉計の構成の一例を示す概略図である。 振幅変調前のストークス光の時間領域での光強度の変化を示すグラフである。 振幅変調後のストークス光の時間領域での光強度の変化を示すグラフである。 周波数変調前の参照光の周波数領域での光強度の変化を示すグラフである。 周波数変調後の参照光の周波数領域での光強度の変化を示すグラフである。 誘導ラマン散乱信号の検出結果を示すグラフである。 干渉信号の観測結果(共鳴時)を示すグラフである。 干渉信号の観測結果(非共鳴時)を示すグラフである。 光源の第4の変形例を示す概略図である。 図22に示す光源の変形例を示す概略図である。 図22に示す光源の他の変形例を示す概略図である。
 以下、図面を参照して本発明の実施の形態の一例を詳細に説明する。
<誘導ラマン散乱光>
 まず、誘導ラマン散乱について簡単に説明する。
 図1は誘導ラマン散乱(SRS:Stimulated Raman Scattering)過程における照射光と散乱光とを示す模式図である。図2Aは誘導ラマン散乱に用いる励起光とストークス光とを示す模式図である。図2Aでは、ストークス光が振幅変調されている場合を図示するが、後述する通り、励起光が振幅変調されていてもよい。図2Bは誘導ラマン散乱過程を誘導ラマンロス効果または誘導ラマン散乱ラマンゲイン効果で検出する原理を説明する模式図である。
 図1に示すように、誘導ラマン散乱では、試料Sに対して振動数ωの励起光と振動数ωのストークス光とを同時に照射する。ストークス光の振動数ωは、励起光の振動数ωより小さい。励起光とストークス光の振動数の差(ω-ω)が、標的分子のもつ固有振動数Ωに一致した場合には、励起光とストークス光とが重なり合った電場の下で誘導過程により励起光の光散乱が誘起される。
 図2Bに示すように、光散乱が誘起された結果として、ストークス光に「誘導ラマンゲイン(SRG)」と称される強度ゲインΔIが発生する。また、励起光に「誘導ラマンロス(SRL)」と称される強度ロスΔIが発生する。以下では、誘導ラマンゲインが生じたストークス光を「SRG光」と称し、誘導ラマンロスが生じた励起光を「SRL光」と称する。一定条件下で試料Sに励起光とストークス光とが入射すると、試料SからはSRG光とSRL光とが出射する。誘導ラマン散乱過程は、励起光とストークス光との位相が揃った、即ち、コヒーレントな状態で起こるので、SRG光及びSRL光も位相の揃ったコヒーレント光となり、励起光及びストークス光の位相情報が保持される。
 誘導ラマン散乱過程では、通常、上記のSRG光またはSRL光の強度変化を信号として検出する。振動数ωの値を振動数ωの値に対して変化させることで、分子の固有振動数Ωに応じて分子の種類が識別される。なお、本実施の形態では、干渉によりSRG光またはSRL光の位相情報も検出するが、これについては後述する。
 また、誘導ラマン散乱過程は、振動数差(ω-ω)が分子の固有振動数Ωに一致した場合にのみ起こる。この現象を「共鳴」と称する。換言すれば、振動数差(ω-ω)に一致する固有振動数Ωの分子が存在しない場合には、共鳴による誘導ラマン散乱過程は起こらない。従って、検出信号に非共鳴バックグラウンドと呼ばれる背景雑音が発生しないという利点を有する。
 ここで、共鳴時と非共鳴時との相違を図1に戻って説明する。非共鳴時には、試料Sを透過または試料Sで反射・散乱された励起光及びストークス光のみが観察される。一方、共鳴時には、出射したSRG光及びSRL光が、非共鳴時に観察された光に加えて観察される。なお、非共鳴時の散乱はレイリー散乱である。この通り、共鳴時と非共鳴時とで異なる光が観察される。
 他のラマン散乱としては、自発ラマン散乱、コヒーレント反ストークスラマン散乱(CARS:Coherent Anti-Stokes Raman Scattering)等が知られている。自発ラマン散乱では、コヒーレントな散乱光は得られない。また、CARSは誘導ラマン散乱に比べて検出信号の強度が大きいが、非共鳴バックグラウンド信号も大きく信号対バックグラウンド比(S/B)が低い。非共鳴バックグラウンドが発生しない誘導ラマン散乱は、S/Bが極めて高くCARSに比べて、分子の種類の識別能に優れている。
 励起光及びストークス光としては、一般には、ピコ秒、フェムト秒等とパルス幅が短く、且つ高周波数で繰り返し発振されるパルスレーザ光が使用されている。但し、本実施の形態では、励起光及びストークス光の各々は、原理的に誘導ラマン散乱過程を生じさせる光であればよく、パルスレーザ光に限定される訳ではない。例えば、励起光又はストークス光として、スーパールミネセントダイオード (SLD:Super Luminescent Diode)等から射出された光を用いてもよい。また、励起光及びストークス光として、連続発振されるレーザ光(CW光)を用いてもよい。また、本実施の形態では、励起光及びストークス光のうち誘導ラマン散乱の発生に関係しない光、また参照光のうち位相干渉像を取得する際に干渉させる部分以外の光は非コヒーレント状態でもよい。
 励起光及びストークス光は、振動数差(ω-ω)が特定の値となればよく、励起光及びストークス光の波長帯域は任意である。励起光及びストークス光の波長帯域は、用途に応じて決定すればよい。例えば、生体用途には、安全性が高く、生体深部への到達度が高い近赤外光が用いられる。一般に、近赤外光とは、波長800nm~2500nmの光である。生体用途には、水の吸収が無い波長範囲の近赤外光が用いられる。例えば、後述する光断層画像法(OCT)で1375nm以下の近赤外光を用いた例がある。
 しかしながら、誘導ラマン散乱では、通常、励起光及びストークス光の波長帯域は800nm以下の可視域が用いられることが多い。波長帯域が制限される理由は、励起光の波長が長くなると、励起光の波長の4乗に比例して散乱光の強度が低下するためである。なお、本実施の形態に係る光干渉計で使用可能な波長帯域については後述する。
 なお、図1では、SRG光及びSRL光が、試料Sに対して励起光及びストークス光の入射方向とは反対の方向に出射する「後方散乱」を図示しているが、SRG光及びSRL光は種々の方向で観測される。照射光由来のSRG光(誘導ラマンゲインが生じたストークス光)やSRL光(誘導ラマンロスが生じた励起光)は、当該SRG光又はSRL光が透過、反射、散乱又は屈折されて出射する方向で観測する。
 図3A、図3B、図3C及び図3Dは当該SRG光又はSRL光の観察方向の他の例を示す模式図である。図3Aに示すように、励起光及びストークス光の入射方向と同じ方向に出射する「前方散乱光」や透過光を観測してもよい。例えば、照射光を透過する試料の場合は、前方散乱光を観測し、照射光を透過しない試料の場合は後方散乱光を観測する。また、図3B及び図3Cに示すように、励起光及びストークス光の入射方向に対し試料Sの内部構造等に起因して反射、散乱又は屈折されて斜め方向に出射する光を観測してもよい。或いは、図3Dに示すように、試料Sから横方向に出射する光を観測してもよい。
 また、図1では、励起光及びストークス光が試料Sに対して同軸で入射する例を示しているが、同軸入射に限定される訳ではない。励起光とストークス光とが試料Sの所望の位置で重なり合えばよく、励起光及びストークス光を試料Sに対して反対側から入射させてもよい。また、励起光の光軸とストークス光の光軸とが試料S内で交差するように入射させてもよい。このような非同軸の入射光学系を「off-axis光学系」と称する。なお、off-axis光学系については後述する。
<光干渉計-第1の実施の形態->
 次に、誘導ラマン散乱過程を利用した光干渉計について説明する。
(光干渉計の構成例)
 まず、光干渉計の構成について説明する。
 図4は本発明の第1の実施の形態に係る光干渉計の構成の一例を示す概略図である。図4に示すように、光干渉計10は、振動数の異なる2種類のレーザ光を射出する光源20を備えている。光源20は、励起光として使用される振動数ωのレーザ光を射出するレーザ22、ストークス光として使用される振動数ωのレーザ光を射出するレーザ24、及びレーザ22の発振とレーザ24の発振とを同期させる同期回路26を備えている。本実施の形態では、レーザ22及びレーザ24として、ピコ秒、フェムト秒等とパルス幅が短く、且つ高周波数で繰り返し発振可能なパルスレーザを用いる例について説明する。
 レーザ22の光出射側には、反射面30Aを有するビームスプリッタ30が配置されている。ビームスプリッタ30には、レーザ22から射出された振動数ωのレーザ光が入射する。ビームスプリッタ30は、反射面30Aにより一部の入射光を透過し且つ残りの入射光を反射する。ここでは、ビームスプリッタ30を透過した光を「励起光」、反射した光を「参照光」としている。なお、ビームスプリッタ30の用途として、この分岐方法に限定するものではなく、透過した光を「参照光」、反射した光を「励起光」とすることも可能である。
 ビームスプリッタ30の光透過側、即ち「励起光」の光路上には、選択反射ミラー32と、反射面34Aを有するビームスプリッタ34とが、ビームスプリッタ30側からこの順で配置されている。選択反射ミラー32は、振動数ωのレーザ光を透過し且つ振動数ωのレーザ光を反射する。なお、選択反射ミラー32として、振動数ωのレーザ光を反射し且つ振動数ωのレーザ光を透過する性状のものを用いてもよい。選択反射ミラー32としては、一般に、ダイクロイックミラー等が用いられる。ビームスプリッタ34は、反射面34Aの一方の側(図4の左側及び上側)から入射した光の一部又は全部を透過し且つ反射面34Aの他方の側(図4の右側及び下側)から入射した光の一部又は全部を反射する。ビームスプリッタ34としては、一般に、ハーフミラー(半透鏡)、ビームスプリッタ、偏光ビームスプリッタ等が用いられる。
 ビームスプリッタ30の光反射側、即ち「参照光」の光路上には、反射ミラー36、周波数変調素子38、光学遅延装置40、及び反射ミラー46が、ビームスプリッタ30側からこの順に配置されている。周波数変調素子38は、入射した光の周波数を変調する変調素子である。周波数変調素子38としては、音響光学偏向素子(AOD:Acousto-Optic Deflector)等の音響光学素子(AO又はAOM:Acousto-Optic Modulator)、ポッケルスセル等の電気光学変調素子(EOM:Electro-Optic Modulator)等が用いられる。
 光学遅延装置40は、一対の反射ミラー42、44と、一対の反射ミラー42、44を矢印A方向に移動させるピエゾ素子等のミラー駆動部(図示せず)とを備えている。一対の反射ミラー42、44は、周波数変調素子38から入射した参照光の光路を折り返して、参照光を反射ミラー46に照射する。一対の反射ミラー42、44が移動することで、参照光の光路長が調整される。
 参照光の光路長(即ち、信号パルス光と参照パルス光の時間的な重なりのタイミング、さらには信号パルス光に対する参照パルス光の位相差)が調整されて、後述する信号光と参照光との位相差が設定される。なお図示されていないが、参照光のパルス幅を適当な光学素子により短くすることにより、信号光と時間的に重なる部分をより短くすることで、測定個所をより限定して空間分解能を上げることもできる。これについては後述する。
 一方、レーザ24の光出射側には、即ち「ストークス光」の光路上には、振幅変調素子50、反射ミラー52、選択反射ミラー32、及びビームスプリッタ34が、レーザ24側からこの順に配置されている。レーザ24から射出された振動数ωのレーザ光(ストークス光)は、振幅変調素子50に入射する。振幅変調素子50は、入射した光の振幅を変調する変調素子である。振幅変調素子50としては、AOD等の音響光学素子、ポッケルスセル等の電気光学変調素子等が用いられる。
 ビームスプリッタ34は、選択反射ミラー32から入射した「励起光」及び「ストークス光」の一部又は全部と、反射ミラー46から入射した「参照光」の一部又は全部とを透過する。なお、計測対象物である試料Sは、ビームスプリッタ34の励起光出射側に配置される。ビームスプリッタ34の参照光出射側には、ダイクロイックミラー等の選択反射ミラー54と、光検出器60とが、ビームスプリッタ34側からこの順で配置されている。光検出器60は、信号光及び参照光に感度を有し、測定する周波数帯域に対し充分な応答特性をもつ光検出器であれば特に制限はない。光検出器60としては、フォトダイオード(PD:Photo Diode)、電荷結合素子(CCD:Charge Coupled Device)等の受光素子が用いられる。
 光検出器60には、高速サンプリング装置等の信号処理装置64が電気的に接続されている。信号処理装置64は、解析装置62に電気的に接続されている。解析装置62としては、一般に、ロックインアンプ、FFTアナライザ等が用いられる。また、解析装置62は、振幅変調素子50と電気的に接続されている。更に、解析装置62は、「画像情報の取得処理」等、得られた情報に基づいて各種の情報処理を行う情報処理装置66に電気的に接続されている。ここで「電気的に接続」とは、電気信号の授受が可能であることを意味している。
 なお、ロックインアンプとは、増幅(アンプ)機能と特定信号検出(ロックイン)機能を併せ持った増幅器である。また、FFTアナライザとは、入力された信号波形をディジタル的(離散的)にサンプリングし、サンプリングデータを高速フーリエ変換(FFT:Fast Fourier Transform)を用いてフーリエ変換して、フーリエ変換の結果を表示する計測器である。
 また、情報処理装置66は、装置全体の制御及び各種演算を行うコンピュータとして構成されている。即ち、情報処理装置66は、CPU(中央処理装置; Central Processing Unit)、各種プログラムを記憶したROM(Read Only Memory)、プログラムの実行時にワークエリアとして使用されるRAM(Random Access Memory)、各種情報を記憶する不揮発性メモリ、及び入出力インターフェース(I/O)を備えている。CPU、ROM、RAM、不揮発性メモリ、及びI/Oの各々は、バスを介して接続されている。
 また、図示はしていないが、光干渉計10には、計測対象物である試料Sを走査する走査機構が設けられている。光干渉計10では、この走査機構により計測位置を相対移動させて試料Sを走査し、複数の計測位置での計測結果を取得する。
(光干渉計の概略動作)
 次に、上記の光干渉計の動作について簡単に説明する。
 光干渉計10では、レーザ22とレーザ24とが同期されて発振し、レーザ22から振動数ωのレーザ光が射出され、レーザ24から振動数ωのレーザ光が射出される。レーザ22から射出された振動数ωのレーザ光は、ビームスプリッタ30に入射し、ビームスプリッタ30により「参照光」と「励起光」とに分割される。
 ビームスプリッタ30の反射面30Aを透過した振動数ωのレーザ光(励起光)は、選択反射ミラー32を透過し、ビームスプリッタ34の反射面34Aを透過して、試料Sに照射される。一方、レーザ24から射出された振動数ωのレーザ光(ストークス光)は、振幅変調素子50により振幅が変調される。振幅変調されたストークス光は、反射ミラー52で光路が折り曲げられ、選択反射ミラー32で反射されて、ビームスプリッタ34に入射する。振幅変調されたストークス光は、ビームスプリッタ34の反射面34Aを透過して、試料Sに照射される。本実施の形態では、励起光とストークス光は、選択反射ミラー32及びビームスプリッタ34により同軸で試料Sに照射される。
 試料Sに励起光及びストークス光が照射されると、試料SからはSRG光及びSRL光が出射する。図4では、励起光及びストークス光を実線で図示し、SRG光及びSRL光を点線で図示している。なお、図4ではSRL光だけを図示している。SRG光及びSRL光は、ストークス光と同様に振幅変調されている。SRG光とSRL光とは、ビームスプリッタ34の反射面34Aで反射されて、選択反射ミラー54に入射する。選択反射ミラー54は、振動数ωのSRG光を透過し且つ振動数ωのSRL光を反射する。振幅変調されたSRL光が、選択反射ミラー54で反射されて、信号光として光検出器60に照射される。
 一方、ビームスプリッタ30の反射面30Aで反射された振動数ωのレーザ光(参照光)は、反射ミラー36で光路が折り曲げられて、周波数変調素子38に入射する。周波数変調素子38に入射した参照光は、周波数が変調され(即ち、周波数がシフトされ)、光学遅延装置40により光路長が調整され、反射ミラー46により光路が折り曲げられて、ビームスプリッタ34に入射する。周波数変調され且つ信号光との時間的重なりや位相差が調整された参照光が、ビームスプリッタ34の反射面34Aを透過し、選択反射ミラー54で反射されて、光検出器60に照射される。
 本実施の形態では、振幅変調されたSRL光(信号光)と、周波数変調され且つ信号光に対する位相差が調整された参照光とが、光ヘテロダイン干渉する。なお、光ヘテロダイン干渉については後述する。これら信号光と参照光との干渉光が、光検出器60で検出される。光検出器60の検出信号は、信号処理装置64に入力される。信号処理装置64は、入力された信号に対し、増幅や波長フィルタリング等の処理を行い、処理された信号を解析装置62に出力する。
 解析装置62は、振幅変調素子50の変調周波数を特定し、信号処理装置64から入力された信号から、特定された周波数で変調された信号を選択検出する。解析装置62は、選択検出された信号を光干渉計の出力信号として出力する。なお、出力信号については後述する。また、情報処理装置66は、後述する通り、誘導ラマン散乱光(SRL光もしくはSRG光)に基づく標的分子の種類及び分布情報をもつ位相干渉像を作画し、従来の形状のみの位相干渉像に分子識別機能が付加された対象物の立体画像又は断層画像を表す画像情報を取得する。
 ここで、光干渉計10の動作を更に概念的に説明する。
 図5は図4に示す光干渉計の動作を示す概念図である。図5に示すように、本実施の形態では、レーザ22から射出された振動数ωのレーザ光(励起光)を、参照光と試料Sに照射する励起光とに分割する。参照光は、周波数変調素子38により周波数変調される。また、レーザ24から射出された振動数ωのレーザ光(ストークス光)から、振幅変調素子50により振幅変調されたストークス光を生成する。試料Sに励起光と振幅変調されたストークス光とを照射することで、ストークス光と同様に振幅変調されたSRG光及びSRL光が得られる。
 本実施の形態では、誘導ラマンロスが生じた励起光であるSRL光を信号光として選択する。SRL光は、参照光と同じレーザ22で生成された振動数ωのレーザ光から分割された光であり、参照光と可干渉である。従って、振幅変調されたSRL光(信号光)と、周波数変調された参照光と、を光ヘテロダイン干渉させる。同一の光源から射出された光を信号光と参照光にしているので、これらの干渉光の位相ゆらぎが低減される。なお、干渉に使用しない振幅変調されたSRG光からも、誘導ラマンゲインΔIを得ることができる。誘導ラマンゲインΔIは、固有振動数Ωで共鳴している分子の個数に比例して増加する。このため、SRG光を観測して得られた誘導ラマンゲインΔIを、分子定量情報として用いてもよい。
(光ヘテロダイン干渉)
 ここで、光ヘテロダイン干渉による信号強度の増幅原理について説明する。
 誘導ラマン散乱過程で得られるSRG光の強度変化及びSRL光の強度変化はいずれも微弱である。光ヘテロダイン干渉させることで、信号光として使用されるSRL光の強度変化が増幅されることになる。
 信号光の電場の最大振幅を「Es0」、周波数を「F」、位相を「θ(x)」とする。また、参照光の電場の最大振幅を「Er0」、変調後の周波数を「F+f」、位相を「θ(x)」とする。信号光と参照光の電場強度E及びEは下記式で表される。
Figure JPOXMLDOC01-appb-M000001
 また、光ヘテロダイン干渉後の干渉光の強度Iは、下記式で表される。
Figure JPOXMLDOC01-appb-M000002
  
 上記式の第3項から以下の3つのことが分かる。
 まず、光ヘテロダイン干渉により、周波数fを有するうなり信号が新たに発生することが分かる。例えば、参照光を周波数変調して、信号光の周波数Fを1000Hz、参照光の周波数(F+f)を1005Hzに設定すると、周波数5Hzのうなり信号が発生する。上記うなり信号を同期検波器等で選別検出することにより、高いS/Bで計測を行うことができる。
 また、信号光の最大電場振幅Es0が小さくても、参照光の最大電場振幅Er0を大きくすることで、周波数fのうなり信号として観測される干渉光の強度は参照光の電場振幅倍に増幅される。例えば、最大電場振幅Er0を信号光の最大電場振幅Es0の1万倍大きく設定することにより、信号光の誘導ラマンロスまたは誘導ラマンゲインの僅かな振幅の変化を、原理的には1万倍以上に増幅できる。
 更に、信号光と参照光との位相差(θ(x)-θ(x))が位相情報として記録される。これにより、信号発生源の分子の位置情報が精度よく記録されることになる。なお、位置情報の記録については次に説明する。
 ここで、本実施の形態に係る光干渉計で使用可能な波長帯域について説明する。
 上述した通り、誘導ラマン散乱では、励起光の波長が長くなると散乱光の強度が低下するため、励起光及びストークス光の波長帯域が制限される。しかしながら、本実施の形態では、光ヘテロダイン干渉により干渉光の強度は参照光の電場振幅倍に増幅されるので、励起光及びストークス光の波長帯域の制限が緩和される。例えば、励起光及びストークス光の波長帯域を、1000nm以上とすることも可能である。励起光の波長を長くすることで、深さ方向での計測範囲が拡大する。
(光干渉画像法)
 従来の光断層画像法(OCT:Optical Coherence Tomography)などの光干渉画像法では、反射光若しくはレイリー散乱光と参照光との干渉により位相情報を記録する。これに対して、本実施の形態では、誘導ラマン散乱で得られたSRG光又はSRL光と参照光との干渉により位相情報を記録する。本実施の形態では、標的分子の固有振動数に応じてストークス光の周波数を変えて(即ち、分子の種類毎に)干渉による信号を取得して、位相情報を記録することができる。
 例えば、励起光の波長を固定した場合、ストークス光の波長を高速で掃引することにより、種々の波長の誘導ラマン散乱効果を高速で検出してもよい。また、測定波長範囲の波長を一度に含む光を用いて、種々の波長の誘導ラマン散乱効果を一度に検出してもよい。このとき、ストークス光の波長を固定して、励起光の波長を高速で掃引する、もしくは、測定波長範囲の波長を一度に含む光を励起光として用いても良い。両者の方式について、さらに参照光の波長も高速で掃引、もしくは測定波長範囲の波長を一度に含む参照光を用いることで、種々の波長の誘導ラマン散乱効果の検出を、深さ方向について一度で行う方式としてもよい。
 上記波長掃引方式としては、波長掃引型OCT(SS-OCT,Swept Source OCT)や、スペクトラルドメインOCT(SD-OCT, Spectral-Domain OCT)など、従来の光干渉画像法で使用される方式と同様の方式を用いることができる。
 なお、位相情報の記録原理は、従来の光干渉画像法と同じである。
 図6Aは光干渉画像法により対象物の所定深さにおける位相干渉像が取得される原理を説明する説明図である。図6Bは信号光と参照光との位相差を示す模式図である。図6Aに示すように、内部に積層構造を有する試料からの反射により信号光を得る場合には、深部からの反射光ほど深さに比例した時間及び位相遅れを生じる。光干渉画像法では、図6Bに示すように、参照光の光路長を変化させて(即ち、光路長を掃引して)、信号光と参照光の時間的重なりを調整すると共に位相差を調整する。本実施の形態では、光学遅延装置40により、信号光と参照光の時間的重なりを調整すると共に位相差を調整することができる。
 上記の位相干渉像の取得原理は、タイムドメインOCT(TD-OCT,time-domain OCT)の信号取得原理と同様である。なお、位相干渉像の取得に際しては、信号光及び参照光に対して波長掃引方式である上述したSS-OCT方式またはSD-OCT方式を組み合わせることにより、光路長の掃引なしで深さ方向の位相干渉像を構築することができる。
 なお、参照光のパルス時間幅や、位相が保たれている時間幅を短くすることで、信号光と可干渉な時間的重なりを限定することで、深さ方向の計測分解能を高めることもできる。図6Aでは、信号光と参照光とが時間的に重なる様子を模式的に示している。
 信号光と参照光の時間的重なりの中で、さらにそれらの位相差がゼロの場合に、信号光と参照光とが最も強め合う。従って、所定深さからの反射光(信号光)と参照光とを時間的に重ね合わせ、さらにそれらの位相差をゼロにすることで、所定深さからの反射光が最も増幅される。これにより、位相差計測の精度で、試料の深さ方向の位相干渉像を取得することができる。一般に従来の位相差計測の精度は0.1°以上に達しており、例えば、波長1000nmの光で1nm程度の凹凸を見極めることが原理的に可能となる。
(出力信号の特徴)
 次に、光干渉計の出力信号について説明する。
 図7A、図7B、図7C及び図7Dの各々は、図4に示す光干渉計の出力信号を示す模式図である。図7Aに示すように、振幅変調されたSRL光(信号光)と、周波数fで周波数変調された参照光とを光ヘテロダイン干渉させると、分子との共鳴によりSRL光が得られている場合には、時間領域で見ると振幅変調された干渉信号(インターフェログラム)が検出される。
 図7Bに示すように、振幅変調された干渉信号を周波数領域で見ると、うなり周波数fの両側にSRL光由来のサイドバンドが出現する。例えば、うなり周波数fを30MHzとし、振幅変調の変調周波数を3MHzとした場合には、うなり周波数fから±3MHzの位置、即ち、27MHzと33MHzとにサイドバンドが現れる。一方、標的分子が所定の計測位置に存在せず、共鳴が起きない場合には、図7Cに示すように、干渉信号の振幅は一定となる。この場合には、図7Dに示すように、周波数領域で見ると、うなり周波数fのバンドだけが計測され、サイドバンドは計測されない。
 振幅変調された信号光の電場振幅を「E´」、その最大電場振幅を「Es0´」に変更すると、光ヘテロダイン干渉後の干渉光の強度Iは、下記式に書き直される。
Figure JPOXMLDOC01-appb-M000003
 信号光の最大電場振幅「Es0´」は振幅変調により変動する。上記式から分かるように、分子との共鳴によりSRL光が得られている場合には、うなり信号の振幅も周期的に変調される。例えば、1600cm-1に固有振動数を有する分子の分布を計測する場合には、励起光とストークス光との振動数差(ω-ω)を1600cm-1に設定して、うなり信号の振幅の周期的変調の有無を観測する。うなり信号の振幅の周期的変調が観測されれば、計測位置に標的分子が存在し、標的分子との共鳴によりSRL光が得られている。一方、うなり信号の振幅の周期的変調が観測されなければ、計測位置に標的分子は存在しない。
 上記の通り、本実施の形態では、計測位置を相対移動させて対象物を走査する。計測位置に標的分子が存在する場合と存在しない場合は、光干渉信号の振幅変調の有無、ないしはフーリエ変換されたスペクトルのサイドバンドの有無で判別される。標的分子が存在する場合、その振幅強度は、固有振動数を与える振動モードのラマン散乱断面積ならびに標的分子の濃度に比例する。ストークス光の振動数を掃引することで、また対象物を走査することで、複数の計測位置での分子識別情報(標的分子の種類や量)及びそれらの空間分布を表す情報が取得される。
 これら分子識別情報と信号光と参照光の位相差情報とに基づいて、標的分子の種類及びその空間分布情報をもつ位相干渉像が取得されると共に、位相干渉像に分子識別機能が付加された対象物の立体画像又は断層画像を表す画像情報が取得される。これらの情報処理は、図4に示す情報処理装置66により行われる。
 なお、振動数ωの励起光だけを試料Sに空間的に走査しながら照射して、予め対象物の反射光若しくはレイリー散乱光と、参照光の位相干渉像を取得すると、対象物の形状のみの情報が得られる。一方、誘導ラマン散乱光と参照光との分子識別的な位相干渉像を合成、比較すれば、対象物の形状に対する標的分子の空間分布や存在量などの解析が行える。
<第2の実施の形態>
 次に、第2の実施の形態に係る光干渉計について説明する。
 図8は本発明の第2の実施の形態に係る光干渉計の構成の一例を示す概略図である。第2の実施の形態に係る光干渉計10Aは、励起光とストークス光を逆転させるように構成した以外は、第1の実施の形態と同じ構成であるため、同じ構成部分には同じ符号を付して説明を省略する。
 光干渉計10Aでは、レーザ22とレーザ24の配置が逆になり、レーザ24から射出された振動数ωのレーザ光が、ビームスプリッタ30に入射し、ビームスプリッタ30により「参照光」と「ストークス光」とに分割される。また、レーザ22から射出された振動数ωのレーザ光が、振幅変調素子50に入射し、振幅変調素子50により振幅が変調される。
 図9は図8に示す光干渉計の動作を示す概念図である。
 図9に示すように、本実施の形態では、レーザ24から射出された振動数ωのレーザ光(ストークス光)を、参照光と試料Sに照射するストークス光とに分割する。参照光は、周波数変調素子38により周波数変調される。また、レーザ22から射出された振動数ωのレーザ光(励起光)から、振幅変調された励起光を生成する。試料Sに振幅変調された励起光とストークス光とを照射することで、励起光と同様に振幅変調されたSRG光及びSRL光が得られる。
 ここで、誘導ラマンゲインが生じたストークス光であるSRG光を信号光として選択する。SRG光は、参照光と同じレーザ24で生成された振動数ωのレーザ光から分割された光であり、参照光と可干渉である。従って、振幅変調されたSRG光(信号光)と、周波数変調された参照光と、を光ヘテロダイン干渉させる。これにより、干渉光の位相ゆらぎが低減される。なお、第1の実施の形態と同様、干渉に使用しない振幅変調されたSRL光を分子定量に使用してもよい。
<光源の変形例>
 なお、上記第1及び第2の実施の形態では、2台のレーザと2台のレーザの発振を同期させる同期回路を備える光源を用いる例について説明したが、光源の構成はこれに限定される訳ではない。誘導ラマン散乱過程に必要な、振動数ωの励起光と振動数ωのストークス光とを射出できる光源であれば特に制限はない。以下に、光源の変形例を例示する。
 図10は光源の第1の変形例を示す概略図である。図10に示すように、第1の変形例に係る光源20Aは、励起用レーザ70と、励起用レーザ70から入射された光の波長を変換して2色の光を射出する波長変換装置72とを備えている。
 波長変換装置72としては、非線形光学効果により波長変換したレーザ光を発生させる光パラメトリック発振器(OPO:Optical Parametric Oscillator)等が用いられる。波長変換装置72としてOPOを用いた場合、波長変換装置72は、励起用レーザ70から入射された1色の光から振動数の異なる2色の光を生成して射出する。2色の光は、シグナル光及びアイドラー光と称される。一般にアイドラー光はシグナル光より波長が長い。
 この場合、シグナル光を振動数ωの励起光とし、アイドラー光を振動数ωのストークス光として使用すればよい。この構成によれば、1台のレーザで発振させるので、振動数ωの光と振動数ωの光とは同期しており、同期回路は不要となる。以下、波長変換装置としてOPOを用いた場合の事例で説明する。
 図11Aは光源の第2の変形例を示す概略図である。図11Bは図11Aに示す光源の変形例を示す概略図である。図11Aに示すように、第2の変形例に係る光源20Bは、励起用レーザ70と、励起用レーザ70から入射された光の波長を変換して2色の光(シグナル光とアイドラー光)を射出する波長変換装置72と、2色の光の一方の光の光路に挿入された波長変換素子74pと、を備えている。この例では、アイドラー光の光路に波長変換素子74pが挿入されている。波長変換素子74pを用いる以外は、第1の変形例に係る光源20Aと同じ構成である。
 波長変換素子74pとしては、第二高調波、第三高調波の生成に使用される非線形光学結晶等が用いられる。波長変換素子74pを透過したアイドラー光の波長は、波長変換素子74pにより、波長変換装置72を出射したときの波長に対して1/2、1/3等、整数分の1倍の波長に変換される。ここで、波長変換素子74pで波長変換されたアイドラー光の波長がシグナル光よりも短い場合は、波長変換素子74pを透過したアイドラー光を振動数ωの励起光とし、シグナル光を振動数ωのストークス光として使用すればよい。この構成によれば、1台のレーザで発振させるので、振動数ωの光と振動数ωの光とは同期しており、同期回路は不要となる。また、より低振動数まで計測が可能になる。なお、図11Bに示すように、シグナル光とアイドラー光の各々の光路に、波長変換素子74s、74pを挿入してもよい。
 図12は光源の第3の変形例を示す概略図である。図12に示すように、第3の変形例に係る光源20Dは、励起用レーザ70、選択反射ミラー71A、第1の波長変換装置72A、反射ミラー71B、第2の波長変換装置72B、及び選択手段76を備えている。励起用レーザ70から射出されたレーザ光は、選択反射ミラー71Aに入射する。選択反射ミラー71Aは、入射したレーザ光の一部を反射し且つ残部を透過する。
 選択反射ミラー71Aを透過したレーザ光は、反射ミラー71Bで反射されて第1の波長変換装置72Aに入射される。第1の波長変換装置72Aからは、波長変換された2色の光(シグナル光とアイドラー光)が射出される。選択反射ミラー71Aで反射されたレーザ光は、第2の波長変換装置72Bに入射される。第2の波長変換装置72Bからは、波長変換された2色の光(シグナル光とアイドラー光)が射出される。
 選択手段76は、第1の波長変換装置72A及び第2の波長変換装置72Bから射出された最大で4色の光の中から、励起光及びストークス光として使用される2色の光を選択する。選択手段76としては、2色の光を選択的に透過する光学フィルタ等が用いられる。この場合は、選択手段76で選択された2つの光のうち、波長の短い方の光を振動数ωの励起光とし、他方の光を振動数ωのストークス光として使用すればよい。この構成によれば、1台のレーザで発振させるので、振動数ωの光と振動数ωの光とは同期しており、同期回路は不要となる。また、1台の波長変換装置を用いる場合に比べて、2台の独立した波長変換装置を用いているので振動数差(ω-ω)の設定可能範囲が一般に広範となる。
 図22は光源の第4の変形例を示す概略図である。図22に示すように、第4の変形例に係る光源20Fは、励起用レーザ70、選択反射ミラー71A、波長変換装置72、及び反射ミラー71Bを備えている。
 励起用レーザ70から射出されたレーザ光は、選択反射ミラー71Aに入射する。選択反射ミラー71Aは、入射したレーザ光の一部を反射し且つ残部を透過する。選択反射ミラー71Aで反射されたレーザ光は、波長変換装置72に入射される。波長変換装置72からは、波長変換された2色の光(シグナル光とアイドラー光)が射出される。一方、選択反射ミラー71Aを透過したレーザ光は、反射ミラー71Bによりシグナル光及びアイドラー光と同じ方向に反射される。
 この場合、反射ミラー71Bで反射された光を振動数ωの励起光とし、シグナル光またはアイドラー光を振動数ωのストークス光として使用すればよい。この構成によれば、1台のレーザで発振させるので、振動数ωの光と振動数ωの光とは同期しており、同期回路は不要となる。また、波長変換装置由来の強度や位相変化の影響を受けていない励起光を得ることができる。
 また、波長変換装置72から射出される2色の光の一方の光路に、入射光の波長を変換する波長変換素子74を挿入してもよい。図23に示す例では、光源20Gは波長変換素子74を有している。波長変換素子74はシグナル光の光路に挿入されている。これ以外は図22に示す光源20Fと同じ構成であるため、同じ構成部分には同じ符号を付して説明を省略する。この場合は、反射ミラー71Bで反射された光、波長変換されたシグナル光、アイドラー光の3色の光が得られる。
 一方、図24に示す例では、光源20Hは波長変換素子74を有している。波長変換素子74はアイドラー光の光路に挿入されている。これ以外は図22に示す光源20Fと同じ構成であるため、同じ構成部分には同じ符号を付して説明を省略する。この場合は、反射ミラー71Bで反射された光、シグナル光、波長変換されたアイドラー光の3色の光が得られる。
 図23及び図24に示す例では、図示しない選択手段により、3色の光の中から励起光及びストークス光として使用される2色の光が選択される。選択された2つの光のうち、波長の短い方の光を振動数ωの励起光とし、他方の光を振動数ωのストークス光として使用すればよい。図23及び図24に示す例でも、振動数ωの光と振動数ωの光とは同期しており、同期回路は不要となる。また、波長変換装置由来の強度や位相変化の影響を受けていない励起光を得ることができる。
 図13は光源の第5の変形例を示す概略図である。図13に示すように、第5の変形例に係る光源20Eは、第1のレーザ80と、第2のレーザ82と、第1のレーザ80と第2のレーザ82の発振を同期させる同期回路84と、第1のレーザ80から入射された光の波長を変換して2色の光(シグナル光とアイドラー光)を射出する第1の波長変換装置86と、第2のレーザ82から入射された光の波長を変換して2色の光(シグナル光とアイドラー光)を射出する第2の波長変換装置90と、第1の波長変換装置86から射出された2色の光の中から1色の光を選択する選択手段88と、第2の波長変換装置90から射出された2色の光の中から1色の光を選択する選択手段92と、を備えている。
 この場合は、選択手段88で選択された光と、選択手段92で選択された光のうち、波長の短い方の光を振動数ωの励起光とし、残りを振動数ωのストークス光として使用すればよい。この構成によれば、振動数差(ω-ω)の設定可能範囲が一般に広範となり、かつ2つの光の時間関係の制御が容易になる。
 上記の第3の変形例(図12参照)及び第5の変形例(図13参照)では、2台の波長変換装置を用いて振動数ωと振動数ωの2色の光を得ている。1台の波長変換装置のみを用いて振動数ωと振動数ωの2色の光を同時に得るためには、波長変換装置内の結晶温度を振動数差(ω-ω)が得られる一定温度に制御する必要がある。結晶温度が変動すると、発振波長に揺らぎが発生する。振動数差(ω-ω)が固定できなければ、共鳴による誘導ラマン散乱過程は維持できない。
 これに対し、2台の波長変換装置を用いた場合には、波長変換装置毎に発振波長を固定することが容易になる。また、2台の波長変換装置を用いることで、一方の波長と無関係に他方の波長を設定することができ、励起光及びストークス光の両方の波長を1000nm以上にすることが容易となる。
 なお、上記の光パラメトリック発振器(OPO)としては、「PERIODICALLY-POLED」と称される形状の光学結晶(「PP結晶」と略称される。)を用いたOPOを用いてもよい。このPP結晶を用いたOPOでは、波長変換した際に発生する光路の変動が低減される。
<第3の実施の形態>
 次に、第3の実施の形態に係る光干渉計について説明する。
 図14は本発明の第3の実施の形態に係る光干渉計の構成の一例を示す概略図である。第3の実施の形態に係る光干渉計10Bは、off-axis光学系を構成するように各要素を配置したものである。光干渉計10Bの各要素の構成及び基本動作は、同軸光学系を用いた第1の実施の形態と同様であるため、同じ構成部分には同じ符号を付して説明を省略する。
 図14に示すように、光干渉計10Bは、図12に第3の変形例として図示した光源20Dを備えている。光源20Dは、励起用レーザ70、選択反射ミラー71A、第1の波長変換装置72A、第1の選択手段76A、反射ミラー71B、第2の波長変換装置72B、及び第2の選択手段76Bを備えている。光源20Dは、以下に説明する通り、これらの構成により振動数の異なる2種類のレーザ光を射出する。
 励起用レーザ70から射出されたレーザ光は、選択反射ミラー71Aに入射する。選択反射ミラー71Aは、入射したレーザ光の一部を反射し且つ残部を透過する。選択反射ミラー71Aを透過したレーザ光は、第1の波長変換装置72Aに入射され、波長変換されて2色の光を射出する。第1の選択手段76Aは、2色の光のうちストークス光として使用される振動数ωのレーザ光を透過する。
 一方、選択反射ミラー71Aで反射されたレーザ光は、反射ミラー71Bで反射されて、第2の波長変換装置72Bに入射され、波長変換されて2色の光を射出する。第2の選択手段76Bは、2色の光のうち励起光として使用される振動数ωのレーザ光を透過する。本実施の形態では、第1の実施の形態と同様に、振動数ωのレーザ光を「励起光」と「参照光」とに分割する。
 光源20Dの振動数ωのレーザ光出射側には、反射ミラー31、反射面30Aを有するビームスプリッタ30が配置されている。ビームスプリッタ30には、反射ミラー31で反射された振動数ωのレーザ光が入射する。ビームスプリッタ30は、反射面30Aにより一部の入射光を反射し且つ残りの入射光を透過する。ここでは、ビームスプリッタ30を透過した光を「励起光」、反射された光を「参照光」としている。
 ビームスプリッタ30の光透過側、即ち「励起光」の光路上には、反射ミラー32、レンズ33、レンズ35、アパーチャ37Aを有する遮光部材37、及び反射面34Aを有するビームスプリッタ34が、ビームスプリッタ30側からこの順で配置されている。本実施の形態では、試料Sはレンズ33とレンズ35との間に配置される。なお、第1の実施の形態と異なり、反射ミラー32は、選択反射ミラーではなく通常の反射ミラーでよい。
 ビームスプリッタ30の光反射側、即ち「参照光」の光路上には、周波数変調素子38、光学遅延装置40、反射ミラー46、及び反射面34Aを有するビームスプリッタ34が、ビームスプリッタ30側からこの順に配置されている。光学遅延装置40は、一対の反射ミラー42、44と、一対の反射ミラー42、44を矢印A方向に移動させるピエゾ素子等のミラー駆動部(図示せず)とを備えている。
 一方、光源20Dの振動数ωのレーザ光出射側には、即ち「ストークス光」の光路上には、反射ミラー51、振幅変調素子50、反射ミラー52、レンズ33、レンズ35、及びアパーチャ37Aを有する遮光部材37が、光源20D側からこの順に配置されている。
 ビームスプリッタ34は、反射面34Aの一方の側(図14の上側)から入射した参照光の一部又は全部を反射すると共に、反射面34Aの他方の側(図14の左側)から入射した信号光の一部又は全部を透過する。ビームスプリッタ34の参照光反射側(信号光透過側)には、光検出器60が配置されている。
 なお、第1の実施の形態と同様であるため、電気的構成については図示を省略するが、図4に示す光干渉計と同様に、光検出器60は、信号処理装置64に電気的に接続されている。また、信号処理装置64は、解析装置62に電気的に接続されている。また、解析装置62は、振幅変調素子50とも電気的に接続されている。更に、解析装置62は、情報処理装置66に電気的に接続されている。
 次に、上記の光干渉計の動作について簡単に説明する。
 光干渉計10Bでは、光源20Dから振動数ωのレーザ光と振動数ωのレーザ光とが射出される。光源20Dから射出された振動数ωのレーザ光は、反射ミラー31で反射されて、ビームスプリッタ30に入射する。ビームスプリッタ30の反射面30Aは、振動数ωのレーザ光の一部を反射し且つ残部を透過する。ここでは、「励起光」を透過し且つ「参照光」を反射する。即ち、振動数ωのレーザ光は、ビームスプリッタ30により「励起光」と「参照光」とに分割される。
 ビームスプリッタ30の反射面30Aを透過した励起光は、反射ミラー32で光路が折り曲げられて、レンズ33に入射する。入射した励起光は、レンズ33により集光されて試料Sに照射される。一方、光源20Dから射出された振動数ωのストークス光は、反射ミラー52で光路が折り曲げられて振幅変調素子50に入射する。入射したストークス光は、振幅変調素子50により振幅が変調される。振幅変調されたストークス光は、反射ミラー52で光路が折り曲げられて、レンズ33に入射する。入射したストークス光は、レンズ33により集光されて試料Sに照射される。
 本実施の形態では、レンズ33を含む各光学要素が、励起光の光軸とストークス光の光軸とが試料S内で交差するように配置されて、off-axis光学系を構成する。従って、励起光と振幅変調されたストークス光とは、非同軸でレンズ33に入射し、各光の光軸が試料S内で交差するように照射される。試料Sに励起光及びストークス光が照射されると、共鳴による誘導ラマン散乱効果が生じた場合には、試料S内の励起光とストークス光との交差領域からはSRG光及びSRL光が出射する。即ち、本実施の形態では、off-axis光学系により、誘導ラマン散乱過程を実現している。
 同軸光学系では、励起光とストークス光とが同じ光路を進む。このため、試料S内の光路の上流側に遮蔽物が存在する場合には、光路の下流側の試料Sからの散乱光は観察できなくなる。これに対し、off-axis光学系では、励起光とストークス光とは異なる光路を進み、両光の光軸は試料S内で交差する。従って、上流側に在る遮蔽物の影響を受けずに、下流側の試料Sからの散乱光を観察することができる。例えば、結節を有する生体組織等、構造が予測できない試料であっても、試料全体を観察することが可能になる。
 また、同軸光学系では、試料S内で励起光とストークス光の光路が重なり、試料S内の光路上では、誘導ラマン散乱効果を生じさせる光強度の閾値を超えた領域すべてで誘導ラマン散乱光(信号光)が発生する。これに対し、off-axis光学系では、励起光とストークス光とが空間的に重なる狭い領域でだけ誘導ラマン散乱光が発生し、他の領域では散乱光が発生しない。これにより測定目的箇所以外からの偽信号の発生が低減され、光の伝搬方向における分解能が向上する。即ち、計測位置(目的とする深度)で誘導ラマン散乱光が観察される。
 非共鳴の場合には、励起光及びストークス光が試料Sを透過する。一方、共鳴した場合には、透過する励起光及びストークス光に加え、SRG光及びSRL光が試料S内の交差領域から出射する。図14では、非共鳴時に試料Sを透過する励起光及びストークス光を実線で図示し、共鳴時に試料S内の交差領域から出射されるSRG光及びSRL光を点線で図示している。なお、図示はしていないが、共鳴により発生するSRG光は、非共鳴時に透過するストークス光と同じ光路を進む。SRG光及びSRL光は、ストークス光と同じ周波数で振幅変調されている。SRG光、SRL光及びと透過光は、レンズ35により平行光化されて、遮光部材37に照射される。
 試料Sを透過した励起光またはSRL光は、遮光部材37に設けられたアパーチャ37Aを通過する。アパーチャ37Aを通過した光は、ビームスプリッタ34に入射し、ビームスプリッタ34の反射面34Aを透過して、光検出器60に照射される。ここでは、振幅変調されたSRL光が、信号光として光検出器60に照射される。一方、試料Sを透過したストークス光またはSRG光は、遮光部材37により遮断される。
 一方、ビームスプリッタ30の反射面30Aで反射された参照光は、周波数変調素子38に入射して、周波数変調素子38により周波数が変調される。周波数が変調された参照光は、光学遅延装置40により光路長が調整され、反射ミラー46により光路が折り曲げられて、ビームスプリッタ34に入射する。周波数変調され且つ信号光との時間的重なりや位相差が調整された参照光が、ビームスプリッタ34の反射面34Aで反射されて、光検出器60に照射される。
 本実施の形態では、振幅変調されたSRL光(信号光)と、周波数変調され且つ信号光に対する位相差が調整された参照光とが、光ヘテロダイン干渉する。これら信号光と参照光との干渉光が、光検出器60で検出される。
 図4に示す第1の実施の形態と同様に、光検出器60の検出信号は、信号処理装置64に入力される。信号処理装置64は、入力された信号を処理し、処理された信号を解析装置62に出力する。解析装置62は、信号処理装置64から入力された信号から、特定の周波数で変調された信号を選択検出する。解析装置62は、選択検出された信号を光干渉計の出力信号として出力する。
 なお、上記各実施形態で説明した構成は一例であり、本発明の主旨を逸脱しない範囲内においてその構成を変更してもよいことは言うまでもない。例えば、励起光及びストークス光として偏光を用いてもよい。この場合には、偏光ビームスプリッタや各種波長板等、偏光制御のための素子を適宜使用する。また、光の伝搬・混合・分離に光ファイバー等を用いてもよい。この場合はファイバーカップラーなどの光の伝搬・混合・分離のための素子を適宜使用する。また、干渉に支障が無い場合には、参照光を射出する光源を、励起光及びストークス光を射出する光源とは別の光源としてもよい。
 なお、日本出願2011-218220の開示はその全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 以下、実施例により本発明をより具体的に説明する。但し、本発明は実施例に限定されるものではない。
<光干渉計の構成>
 図14に示すoff-axis光学系を有する光干渉計と同じ構成を備える光干渉計を用意した。主な光学要素の詳細を以下に記載する。なお、その他の光学要素としては、汎用の光学素子を用いた。
(1)励起レーザ70:
 Nd:YVOレーザの第二高調波を用いて、モード同期のチタンサファイアレーザを励起する励起レーザを使用した。Nd:YVOレーザとしては、Coherent社製の製品名「Verdi-V18」を用いた。チタンサファイアレーザとしては、Coherent社製の製品名「Mira-HP」を用いた。
(2)波長変換装置72A/72B:
 PP結晶を用いた光パラメトリック発振器(OPO)を用いた。励起光用のOPO-I及びストークス光用のOPO- IIの各々としては、Angewandte Physik & Electronik GmbH社製の製品名「OPO PP Automatic」を用いた。
(3)振幅変調素子50/周波数変調素子38:
 電気光学変調素子(EOM)を用いた。振幅変調素子用のEOM及び周波数変調素子用のEOMの各々としては、CONOPTICS社製の製品名「M-360-160(MD)LNB」を用いた。
(4)光学遅延装置40:
 一対のミラーと同等の機能を果たすリトロリフレクターをピエゾ素子で駆動する微動光学遅延装置と、一対のミラーと同等の機能を果たすリトロリフレクターをメカニカルに駆動する粗動光学遅延装置とを組み合わせて用いた。微動光学遅延装置が、図14の光学遅延装置40に相当する。粗動光学遅延装置は、光路長を調節するために配置されるものである。本実施例では、周波数変調素子38と光学遅延装置40との間、ビームスプリッタ30と反射ミラー32との間の各々に、粗動光学遅延装置を配置した。微動光学遅延装置としては、Physik Instrumente GmbH社製の製品名「P-753.11C」を用いた。粗動光学遅延装置としては、シグマテック社製の製品名「FS-1020X」を用いた。
(5)光検出器60:
 InGaAsフォトダイオード(PD)を用いた。PDは、Electro-Optics Technology. Inc.社製の製品名「ET-3040」である。
<励起光及びストークス光の生成>
 Nd:YVOレーザの第二高調波(波長532nm、出力14.5W)を用いてモード同期チタンサファイアレーザ(波長800nm、パルス幅2ps、出力3.8W、パルス繰り返し76.1MHz)を励起し、得られた出力を2つに分割して、励起光用のOPO-Iとストークス光用のOPO-IIとに導入した。
 OPO-Iの出力を波長1100nmに固定して、誘導ラマン散乱過程における励起光及び干渉信号を得るための参照光として使用した。以下では、参照光をOPO-Iの局所発振光(LO:Local Oscillator)と称する。OPO-IIの出力を1100nm~1600nmの波長範囲で可変とした。OPO-IIの出力波長は、OPO-Iの出力波長とは独立に変更される。OPO-Iの出力光の振動数をωとし、OPO-IIの出力光の振動数ωとしたとき、試料中の標的分子の固有振動数Ωが、Ω=ω-ωの関係を満たすように、OPO-IIの出力光の波長を設定し、設定された波長の出力光をストークス光として使用した。
<ストークス光の振幅変調>
 OPO-IIからの出力(ストークス光)をInGaAsフォトダイオードで検出し、オシロスコープ(TEKTRONIKS社製の製品名「MDO 4104-6」)に取り込んだ結果を図15に示す。縦軸は光強度(Intensity)を表す。単位は任意単位(a.u.)である。横軸は時間を表す。単位はマイクロ秒(μs)である。図15に示すように、OPO-IIから光パルスが13ナノ秒(ns)の間隔で出力されており、その強度がほぼ一様であることがわかる。この出力に対して、振幅変調用のEOMによって3MHzのサイン関数で変調をかけたときの結果を図16に示す。図15と同様に、縦軸は光強度(Intensity)を表し、横軸は時間を表す。図16に示すように、光パルスの強度が周期的に変化しており、2マイクロ秒(μs)の時間内に6周期含まれていることが分かる。この変化の周波数が3MHzに対応する。
<参照光の周波数変調>
 周波数変調用のEOMによる変調をかけていないOPO-Iの局所発振光(LO)を、ミックスドドメインオシロスコープ(TEKTRONIKS社製の製品名「MDO 4104-6」)に取り込み、周波数領域でのスペクトルを得た結果を図17に示す。縦軸は光強度(Intensity)を表す。単位はデシベル(dB)である。横軸は周波数(Frequency)を表す。単位はMHzである。図17に示すスペクトルにおいて、76.1MHzに見られるシャープなバンドは、レーザのパルス繰り返し周波数に対応する。この出力に対して、周波数変調用のEOMを用いて20MHzのサイン関数で変調をかけた結果を図18に示す。図17と同様に、縦軸は光強度(Intensity)を表し、横軸は周波数(Frequency)を表す。図18に示すように、周波数56.1MHzと96.1MHzとにバンドが見られ、元の周波数76.1MHzのレーザ出力に対して20MHzの変調がかかっていることが分かる。即ち、EOMを用いて数十MHzの周波数変調をかけることが可能であることが実証された。
<誘導ラマン散乱信号の検出>
 試験試料としてポリスチレンフィルム(旭化成ケミカルズ社製の製品名「OPSフィルム(GMグレード)」、厚さ100μm(=25μm×4層))を用い、ポリスチレンのベンゼン環呼吸振動の固有振動数(1003cm-1)を、誘導ラマン散乱の共鳴対象として選択した。励起光の波長を1100nmに固定し、ストークス光の波長を1100nm~1600nmの範囲で変化させながら、励起光とストークス光とを照射した。励起光とストークス光とを両光が試料内で交差するように照射した。励起光とストークス光との遅延時間を掃引した結果を図19に示す。縦軸は光強度(Intensity)を表す。単位は任意単位(a.u.)である。横軸は遅延時間(Time delay)を表す。単位はピコ秒(ps)である。
 図19に示すように、ストークス光の波長が1236.0nm(振動数差1000.3cm-1)のときに共鳴し、遅延時間0ps付近に下向きの誘導ラマン散乱(誘導ラマンロス)による信号が得られた。また、ストークス光の波長が1240.0nm(振動数差1026.4cm-1)、1232.0nm(振動数差974.0cm-1)になると非共鳴となり、誘導ラマン散乱による信号が消失した。ストークス光の波長を1236.4nm(振動数差1002.9cm-1)に戻すと共鳴が再現されて、誘導ラマン散乱による信号が得られた。即ち、励起光とストークス光の両方に1000nm以上の近赤外光を用いて、上記の試料内から誘導ラマン散乱信号を観測することができた。
<誘導ラマン散乱干渉信号の取得>
 上記した通り、ポリスチレンのベンゼン環呼吸振動の固有振動数(1003cm-1)を誘導ラマン散乱の共鳴対象として、誘導ラマン散乱光と参照光との光ヘテロダイン干渉による干渉信号の観測を行った。OPO-Iの出力を波長1100nmに固定して、誘導ラマン散乱過程における励起光及び参照光(局所発振光LO)として用いた。OPO-IIの出力を波長1236nmに固定して、誘導ラマン散乱過程におけるストークス光として用いた。ストークス光にはEOMにより3MHzのサイン関数で振幅変調をかけた。参照光LOにはEOMにより10MHzのサイン関数で周波数変調をかけた。
 励起光と振幅変調されたストークス光とを、光軸が試料内で交差するように集光して試験試料に照射して、共鳴による誘導ラマン散乱過程を実現した。試験試料から観測される波長1100nmの光には、3MHzの周波数で増減を繰り返す誘導ラマンロス信号(SRL光)が含まれることになる。SRL光と参照光LOとが光検出器の受光面上で重なり合うように、SRL光と周波数変調された参照光LOとを光軸を合せて光検出器に入射させた。
 SRL光と周波数変調された参照光LOとが光ヘテロダイン干渉することで、うなり周波数fとストークス光の振幅変調周波数f´との和もしくは差の周波数f±f´の干渉信号が検出される。ここでは、共鳴時の周波数Fi-SRSの干渉信号を検出した。周波数Fi-SRSは下記式で与えられる。
Figure JPOXMLDOC01-appb-M000004
 ここで、76.1MHzは元来のレーザ光パルスの繰り返し周波数である。10MHzは参照光LOにかけた変調の周波数fである。3MHzはストークス光にかけた変調の周波数f´である。
ミックスドドメインオシロスコープの検出周波数を、63.1±0.1MHzの範囲に調整した。これにより、周波数Fi-SRSの干渉信号が抽出される。
SRL光と参照光LOとの間の遅延を微動光学遅延装置によって10nmずつ変化させながら、観測される干渉信号の光強度をプロットした結果を図20に示す。縦軸は光強度(Intensity)を表す。単位は任意単位(a.u.)である。横軸は相対的な遅延(Relative delay)を表す。単位はnmである。また、励起光の波長を1100nmとし、ストークス光の波長を1236nmとして、固有振動数1000.3cm-1に対する共鳴による誘導ラマン散乱を観測した。
干渉信号が微弱であるため、1時間のあいだ積算を行った。また、干渉信号をサイン関数で最小二乗法によりフィッティングした結果を同時に太い実線で示した。図20に見られるように、現時点では微弱ではあるが、SRL光と参照光LOとの干渉パターンが観測された。
なお、SRL光と参照光LOとの干渉パターンは、共鳴による誘導ラマン散乱が生じている場合にのみ観測された。非共鳴時にはSRL光が発生せず、図21に示すように、ノイズのみが観測された。図20と同様に、縦軸は光強度(Intensity)を表し、横軸は相対的な遅延(Relative delay)を表す。なお、励起光の波長を1100nmとし、ストークス光の波長を1230nmとした。このとき、励起光とストークス光との振動数差は960.8cm-1であり、非共鳴状態となった。

Claims (16)

  1.  可干渉性の第1の光、及び前記第1の光の振動数に対して標的分子の固有振動数に相当する振動数差を有する第2の光を射出する光源と、
     前記第2の光の振幅を変調する振幅変調手段と、
     前記第1の光を参照光と第1の照射光とに分割する分割手段と、
     前記参照光の光路長を調整する光路長調整手段と、
     振幅変調された第2の光を第2の照射光として、前記第1の照射光と前記第2の照射光とが対象物の計測位置に照射されたときに前記第1の光と前記第2の光の振動数差が標的分子と共鳴して前記振幅変調に応じて誘導ラマンロス又は誘導ラマンゲインが生じた第1の光を信号光とし、当該信号光と前記参照光との干渉光を検出する検出手段と、
     を有する光干渉計。
  2.  可干渉性の第1の光、及び前記第1の光の振動数に対して標的分子の固有振動数に相当する振動数差を有する第2の光を射出する光源と、
     前記第2の光の振幅を変調する振幅変調手段と、
     前記第1の光を参照光と第1の照射光とに分割する分割手段と、
     前記参照光の周波数を変調する周波数変調手段と、
     前記参照光の光路長を調整する光路長調整手段と、
     振幅変調された第2の光を第2の照射光として、前記第1の照射光と前記第2の照射光とが対象物の計測位置に照射されたときに前記第1の光と前記第2の光の振動数差が標的分子と共鳴して前記振幅変調に応じて誘導ラマンロス又は誘導ラマンゲインが生じた第1の光を信号光とし、当該信号光と周波数変調された参照光との干渉光を検出する検出手段と、
     を有する光干渉計。
  3.  可干渉性の第1の光、及び前記第1の光の振動数に対して標的分子の固有振動数に相当する振動数差を有する第2の光を射出する光源と、
     前記第2の光の振幅を変調する振幅変調手段と、
     前記第1の光を参照光と第1の照射光とに分割する分割手段と、
     前記第1の照射光の周波数を変調する周波数変調手段と、
     前記参照光の光路長を調整する光路長調整手段と、
     振幅変調された第2の光を第2の照射光とし、前記周波数変調された第1の照射光と前記第2の照射光とが対象物の計測位置に照射されたときに前記第1の光と前記第2の光の振動数差が標的分子と共鳴して前記振幅変調に応じて誘導ラマンロス又は誘導ラマンゲインが生じた第1の光を信号光とし、当該信号光と前記参照光との干渉光を検出する検出手段と、
     を有する光干渉計。
  4.  前記第1の照射光を励起光とし、前記第2の照射光をストークス光とした場合に、
     前記振幅変調に応じて誘導ラマンロスが生じた励起光を信号光とする、
     請求項1から請求項3までの何れか1項に記載の光干渉計。
  5.  前記第1の照射光をストークス光とし、前記第2の照射光を励起光とした場合に、
     前記振幅変調に応じて誘導ラマンゲインが生じたストークス光を信号光とする、
     請求項1から請求項3までの何れか1項に記載の光干渉計。
  6.  前記光源が、前記第1の光を射出する第1のレーザ、前記第2の光を射出する第2のレーザ、及び前記第1のレーザの発振と前記第2のレーザの発振とを同期させる同期回路を有する、請求項1から請求項5までの何れか1項に記載の光干渉計。
  7.  前記光源が、1つのレーザと、当該1つのレーザから射出された光を波長変換して前記第1の光及び前記第2の光を生成する波長変換装置と、を有する、請求項1から請求項5までの何れか1項に記載の光干渉計。
  8.  前記光源が、1つのレーザと、当該1つのレーザから射出された光を波長変換して波長が異なる2つの可干渉光を生成する波長変換装置と、前記波長変換装置の光出射側に配置され且つ前記波長が異なる2つの可干渉光の少なくとも一方を波長変換する少なくとも1つの波長変換素子と、を有する、請求項1から請求項5までの何れか1項に記載の光干渉計。
  9.  前記光源が、1つのレーザと、当該1つのレーザから射出された光を2光波に分岐する分岐手段と、分岐された一方の光波を波長変換して波長が異なる2つの可干渉光を生成する第1の波長変換装置と、分岐された他方の光波を波長変換して波長が異なる2つの可干渉光を生成する第2の波長変換装置と、第1の波長変換装置及び第2の波長変換装置で生成された4つの可干渉光の中から2つの可干渉光を選択する選択手段と、を有する、請求項1から請求項5までの何れか1項に記載の光干渉計。
  10.  前記光源が、第1のレーザ、第2のレーザ、前記第1のレーザの発振と前記第2のレーザの発振とを同期させる同期回路、前記第1のレーザから射出された光を波長変換して波長が異なる2つの可干渉光を生成する第1の波長変換装置、前記第1の波長変換装置で生成された2つの可干渉光の中から1つの可干渉光を選択する第1の選択手段と、前記第2のレーザから射出された光を波長変換して波長が異なる2つの可干渉光を生成する第2の波長変換装置、前記第2の波長変換装置で生成された2つの可干渉光の中から1つの可干渉光を選択する第2の選択手段と、を有する、請求項1から請求項5までの何れか1項に記載の光干渉計。
  11.  前記光源が、1つのレーザと、当該1つのレーザから射出された光を2光波に分岐する分岐手段と、分岐された一方の光波を波長変換して波長が異なる2つの可干渉光を生成する第1の波長変換装置と、分岐された他方の光波及び第1の波長変換装置で生成された2つの可干渉光からなる3つの可干渉光の中から2つの可干渉光を選択する選択手段と、を有する、請求項1から請求項5までの何れか1項に記載の光干渉計。
  12.  前記振幅変調に応じて誘導ラマンロス又は誘導ラマンゲインが生じた第2の光の強度変化を計測する計測手段を更に備えた、請求項1から請求項11までの何れか1項に記載の光干渉計。
  13.  可干渉性の第1の光、及び前記第1の光の振動数に対して標的分子の固有振動数に相当する振動数差を有する第2の光を射出する光源と、
     前記第2の光の振幅を変調する振幅変調手段と、
     前記第1の光を参照光と第1の照射光とに分割する分割手段と、
     前記参照光の光路長を調整する光路長調整手段と、
     振幅変調された第2の光を第2の照射光として、前記第1の照射光と前記第2の照射光とが対象物の計測位置に照射されたときに前記第1の光と前記第2の光の振動数差が標的分子と共鳴して前記振幅変調に応じて誘導ラマンロス又は誘導ラマンゲインが生じた第1の光を信号光とし、当該信号光と前記参照光との干渉光を検出する検出手段と、
     前記調整された光路長、前記標的分子の固有振動数、及び前記検出手段で検出された干渉光に基づいて、前記信号光と前記参照光の位相差で表される位相情報と分子の種類を識別する分子識別情報とを取得する第1の情報取得手段と、
     を有する情報取得装置。
  14.  前記計測位置を相対移動させて前記対象物を走査する走査手段と、
     前記走査手段により対象物を走査して複数の計測位置で取得された前記位相情報と前記分子識別情報とに基づいて、位相干渉像に分子識別機能が付加された前記対象物の立体画像又は断層画像を表す画像情報を取得する第2の情報取得手段と、
     を更に備えた請求項13に記載の情報取得装置。
  15.  可干渉性の第1の光、及び前記第1の光の振動数に対して標的分子の固有振動数に相当する振動数差を有する第2の光を用い、
     前記第2の光の振幅を変調して第2の照射光とし、
     前記第1の光を参照光と第1の照射光とに分割し、
     前記参照光の光路長を調整し、
     前記第1の照射光と前記第2の照射光とが対象物の計測位置に照射されたときに前記第1の光と前記第2の光の振動数差が標的分子と共鳴して前記振幅変調に応じて誘導ラマンロス又は誘導ラマンゲインが生じた第1の光を信号光として、当該信号光と前記参照光との干渉光を検出し、
     前記調整された光路長、前記標的分子の固有振動数、及び前記検出手段で検出された干渉光に基づいて、前記信号光と前記参照光の位相差で表される位相情報と分子の種類を識別する分子識別情報とを取得する、
     を有する情報取得方法。
  16.  前記計測位置を相対移動させて前記対象物を走査し、
     複数の計測位置で取得された前記位相情報と前記分子識別情報とに基づいて、前記位相干渉像に分子識別機能が付加された前記対象物の立体画像又は断層画像を表す画像情報を取得する、 
     請求項15に記載の情報取得方法。
PCT/JP2012/074962 2011-09-30 2012-09-27 光干渉計、情報取得装置、及び情報取得方法 WO2013047698A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12837200.0A EP2762859B1 (en) 2011-09-30 2012-09-27 Optical interferometer, information acquisition apparatus, and information acquisition method
JP2013536406A JP6008299B2 (ja) 2011-09-30 2012-09-27 光干渉計、情報取得装置、及び情報取得方法
US14/348,495 US9599454B2 (en) 2011-09-30 2012-09-27 Optical interferometer, data acquisition device, and data acquisition method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011218220 2011-09-30
JP2011-218220 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013047698A1 true WO2013047698A1 (ja) 2013-04-04

Family

ID=47995725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074962 WO2013047698A1 (ja) 2011-09-30 2012-09-27 光干渉計、情報取得装置、及び情報取得方法

Country Status (4)

Country Link
US (1) US9599454B2 (ja)
EP (1) EP2762859B1 (ja)
JP (1) JP6008299B2 (ja)
WO (1) WO2013047698A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174530A (ja) * 2012-02-27 2013-09-05 Saitama Medical Univ 計測装置及び計測方法
WO2015079786A1 (ja) * 2013-11-27 2015-06-04 株式会社日立ハイテクノロジーズ 光計測装置及び光計測方法
WO2016006224A1 (en) * 2014-07-11 2016-01-14 Canon Kabushiki Kaisha Light pulse synchronizer, illumination apparatus, optical microscope, and light pulse synchronization method
JPWO2015115221A1 (ja) * 2014-01-28 2017-03-23 学校法人 埼玉医科大学 計測装置及び計測方法
JP2021519437A (ja) * 2019-04-29 2021-08-10 アトナープ株式会社 ハイブリッド光学システム
WO2024143124A1 (ja) * 2022-12-28 2024-07-04 株式会社堀場製作所 分光分析装置及び分光分析方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9658162B2 (en) * 2014-03-07 2017-05-23 The Regents Of The University Of California Method and apparatus for direct measurement of the amplitude and/or phase of a molecular vibration
EP3362778B1 (en) 2015-10-13 2022-08-03 Omega Biosystems Incorporated Multi-modal fluorescence imaging flow cytometry system
WO2017217534A1 (ja) 2016-06-17 2017-12-21 学校法人埼玉医科大学 被験対象可視化装置
CA2976874C (en) 2016-08-22 2020-10-06 Institut National D'optique Method and device for determining the presence of a spill of a petroleum product by the detection of a petroleum-derived volatile organic compound
US20180188019A1 (en) * 2016-12-31 2018-07-05 Alcatel-Lucent Usa Inc. Hybrid Raman And Optical Coherence Tomography Imaging
US20220326151A1 (en) * 2019-08-14 2022-10-13 Agency For Science, Technology And Research Optical system and method of forming the same
EP4089400B1 (en) * 2020-01-09 2024-03-06 National Univeristy Corporation Tokyo University Of Agriculture And Technology Light detection device, and light detection method
CN112229804B (zh) * 2020-09-17 2021-07-06 中国科学院上海光学精密机械研究所 具有温场调控功能的非共轴透射式超快瞬态吸收系统和测量方法
CN113777073B (zh) * 2021-08-12 2024-05-14 香港理工大学深圳研究院 一种基于光学相位放大的气体检测方法和系统
US12106479B2 (en) * 2022-03-22 2024-10-01 T-Jet Meds Corporation Limited Ultrasound image recognition system and data output module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055698A (ja) * 1990-08-15 1993-01-14 Hitachi Ltd 光計測装置および光学的計測方法
JP2008529062A (ja) * 2005-01-21 2008-07-31 プレジデント アンド フェローズ オブ ハーバード カレッジ オフィス オブ テクノロジー アンド トレードマーク ライセンシング 非線形振動分光法および顕微鏡法のための2周波出力を提供する同調可能な光パラメトリック発振器レーザシステムを提供するシステムおよび方法
JP2010048805A (ja) * 2008-08-22 2010-03-04 President & Fellows Of Harvard College 誘導ラマン分光を対比機構として利用する顕微撮像システム及び方法
JP2010145270A (ja) * 2008-12-19 2010-07-01 Yokogawa Electric Corp 誘導ラマン分光分析装置
JP2010526345A (ja) * 2007-05-04 2010-07-29 アーペーエー アンゲヴァンテ フュジーク ウント エレクトローニク ゲゼルシャフト ミット ベシュレンクテル ハフツング 励起フィールドによって励起された材料において非線形の光信号を生成するための方法および光学的装置、ならびに、該方法の使用および該光学的装置の使用
JP2011158413A (ja) 2010-02-03 2011-08-18 Olympus Corp レーザ顕微鏡装置
JP2011218220A (ja) 2011-08-08 2011-11-04 Toshiba Corp 医用画像撮影装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59209937A (ja) 1983-05-13 1984-11-28 Nissan Motor Co Ltd ワイパ制御装置
US7586618B2 (en) * 2005-02-28 2009-09-08 The Board Of Trustees Of The University Of Illinois Distinguishing non-resonant four-wave-mixing noise in coherent stokes and anti-stokes Raman scattering
WO2011041472A1 (en) * 2009-10-02 2011-04-07 Imra America, Inc. Optical signal processing with modelocked lasers
US9001321B2 (en) * 2010-02-10 2015-04-07 Osaka University Microscope and observation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055698A (ja) * 1990-08-15 1993-01-14 Hitachi Ltd 光計測装置および光学的計測方法
JP2008529062A (ja) * 2005-01-21 2008-07-31 プレジデント アンド フェローズ オブ ハーバード カレッジ オフィス オブ テクノロジー アンド トレードマーク ライセンシング 非線形振動分光法および顕微鏡法のための2周波出力を提供する同調可能な光パラメトリック発振器レーザシステムを提供するシステムおよび方法
JP2010526345A (ja) * 2007-05-04 2010-07-29 アーペーエー アンゲヴァンテ フュジーク ウント エレクトローニク ゲゼルシャフト ミット ベシュレンクテル ハフツング 励起フィールドによって励起された材料において非線形の光信号を生成するための方法および光学的装置、ならびに、該方法の使用および該光学的装置の使用
JP2010048805A (ja) * 2008-08-22 2010-03-04 President & Fellows Of Harvard College 誘導ラマン分光を対比機構として利用する顕微撮像システム及び方法
JP2010145270A (ja) * 2008-12-19 2010-07-01 Yokogawa Electric Corp 誘導ラマン分光分析装置
JP2011158413A (ja) 2010-02-03 2011-08-18 Olympus Corp レーザ顕微鏡装置
JP2011218220A (ja) 2011-08-08 2011-11-04 Toshiba Corp 医用画像撮影装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174530A (ja) * 2012-02-27 2013-09-05 Saitama Medical Univ 計測装置及び計測方法
WO2013129412A1 (ja) * 2012-02-27 2013-09-06 学校法人埼玉医科大学 計測装置及び計測方法
US9521953B2 (en) 2012-02-27 2016-12-20 Saitama Medical University Measurement device and measurement method
WO2015079786A1 (ja) * 2013-11-27 2015-06-04 株式会社日立ハイテクノロジーズ 光計測装置及び光計測方法
JP2015102505A (ja) * 2013-11-27 2015-06-04 株式会社日立ハイテクノロジーズ 光計測装置及び光計測方法
US9625389B2 (en) 2013-11-27 2017-04-18 Hitachi High-Technologies Corporation Light measuring device and light measuring method
JPWO2015115221A1 (ja) * 2014-01-28 2017-03-23 学校法人 埼玉医科大学 計測装置及び計測方法
WO2016006224A1 (en) * 2014-07-11 2016-01-14 Canon Kabushiki Kaisha Light pulse synchronizer, illumination apparatus, optical microscope, and light pulse synchronization method
JP2021519437A (ja) * 2019-04-29 2021-08-10 アトナープ株式会社 ハイブリッド光学システム
JP7477882B2 (ja) 2019-04-29 2024-05-02 アトナープ株式会社 ハイブリッド光学システム
WO2024143124A1 (ja) * 2022-12-28 2024-07-04 株式会社堀場製作所 分光分析装置及び分光分析方法

Also Published As

Publication number Publication date
US9599454B2 (en) 2017-03-21
JPWO2013047698A1 (ja) 2015-03-26
US20140253919A1 (en) 2014-09-11
EP2762859A1 (en) 2014-08-06
EP2762859A4 (en) 2015-08-05
JP6008299B2 (ja) 2016-10-19
EP2762859B1 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
JP6008299B2 (ja) 光干渉計、情報取得装置、及び情報取得方法
US9594023B2 (en) Measurement apparatus and measurement method
JP5643329B2 (ja) 多重パルスインパルシブ誘導ラマン分光装置および測定方法
JP5329449B2 (ja) 顕微鏡イメージングを実行する方法
JP5037929B2 (ja) テラヘルツ波を用いた対象物の情報取得装置及び方法
EP2574273A1 (en) Optical coherence tomography apparatus
US20080304046A1 (en) Imaging Apparatus for Infrared Rays Nonlinear Molecular Vibrational Microscopy
US20160047750A1 (en) Device and method for stimulated raman detection
US10345224B2 (en) Optical response measuring device and optical response measuring method
JP6512756B2 (ja) 光源装置およびこれを用いた情報取得装置
JP2007298461A (ja) 偏光感受光画像計測装置
JP5713501B2 (ja) ホモダイン検波方式電磁波分光測定システム
CN110274880A (zh) 一种高精度空间分辨的光谱探测方法和系统
EP2096430A2 (en) Apparatus and method for obtaining images using coherent anti-stokes Raman scattering
EP3474001B1 (en) Test object visualizing device
JP2011175093A (ja) レーザ顕微鏡装置
KR102261858B1 (ko) 2차원 분광 시스템 및 분석 방법
JP2014092425A (ja) 光干渉断層撮像装置及び光干渉断層撮像方法
US20150357786A1 (en) Light source apparatus and information acquisition apparatus using the same
JP2010175271A (ja) 光断層画像表示システム
WO2015115221A1 (ja) 計測装置及び計測方法
JP2017102265A (ja) 走査型顕微鏡
JP2004156946A (ja) 薄膜評価装置
JP2024535178A (ja) Carsスペクトルを取得するための方法およびシステム
JP2014126491A (ja) 情報取得システム、情報取得装置、および情報取得方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837200

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013536406

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14348495

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012837200

Country of ref document: EP