JP2014092425A - 光干渉断層撮像装置及び光干渉断層撮像方法 - Google Patents

光干渉断層撮像装置及び光干渉断層撮像方法 Download PDF

Info

Publication number
JP2014092425A
JP2014092425A JP2012242529A JP2012242529A JP2014092425A JP 2014092425 A JP2014092425 A JP 2014092425A JP 2012242529 A JP2012242529 A JP 2012242529A JP 2012242529 A JP2012242529 A JP 2012242529A JP 2014092425 A JP2014092425 A JP 2014092425A
Authority
JP
Japan
Prior art keywords
light
interference
unit
optical
interference light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012242529A
Other languages
English (en)
Inventor
Takefumi Ota
健史 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012242529A priority Critical patent/JP2014092425A/ja
Priority to US14/068,055 priority patent/US20140125992A1/en
Publication of JP2014092425A publication Critical patent/JP2014092425A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】分光器や検出部を複数必要とすることなく、単純な構成で差動検出をすることが可能となる光干渉断層撮像装置を提供する。
【解決手段】光源部からの光を分岐部で測定光と参照光に分岐し、
前記測定光を照射した被検査物からの反射または散乱光と、前記測定光に対応する参照光とを干渉部で干渉させ、前記干渉部で干渉させた干渉光を光検出部で受光して該干渉光の強度を検出し、
前記検出部で検出された前記干渉光の強度に基づいて、前記被検査物の断層画像を取得する光干渉断層撮像装置であって、
前記干渉部は、互いの干渉成分の位相がπ異なる、第一の干渉光と第二の干渉光を出力するように構成され、
前記干渉部から出力された第一の干渉光と第二の干渉光は、時間差が付けられて前記検出部に到達可能に構成されていることを特徴とする
【選択図】 図1

Description

本発明は、光の干渉信号に基づいて被測定対象の断層情報を取得する光干渉断層撮像装置及び光干渉断層撮像方法に関する。
光干渉信号に基づいて被測定対象の断層情報を取得する光干渉断層撮像装置(Optical Coherence Tomography:OCT)が提案されている。
OCTでは、光源出力を二つ以上に分け、一つを参照光とし他の光を検体への照射光として検体に照射する。照射光が照射された検体から散乱光あるいは反射光が戻り、前述の参照光との光干渉信号を取得する。
OCTには、参照光路長を変化させて取得された干渉信号の強度から断層情報を取得する時間領域OCT(Time Domain−OCT:TD−OCT)と、
光スペクトル干渉信号取得し、取得された光スペクトル干渉信号をフーリエ変換することによって被測定対象の断層情報信号を取得するフーリエ領域光干渉断層撮像装置(Fourier Domain−OCT:FD−OCT)とが提案されている。
さらにFD−OCTには二つの方法が提案されている。
一つは、特許文献1のような波長掃引光源光断層撮像装置(Swept Source−Optical Coherence Tomography:SS−OCT)と呼ばれる方法である。
この方法では、出力される波長が時間的に変化する波長掃引光源を用い、時間的に展開された光スペクトル干渉信号を取得する。
FD−OCTのもう一つは非特許文献1のようなスペクトル領域光干渉断層撮像装置(Spectral Domain−Optical Coherence Tomography:SD−OCT)と呼ばれる方法である。
これは、回折格子などの分光素子とラインセンサとで構成された分光器を用いて空間的に展開された前記光スペクトル干渉信号を取得する方法である。
この方法は、該光スペクトル干渉信号を一括取得できるため高速撮像が可能である。
感度について言えば、光干渉信号の強度は参照光と測定対象からの戻り光の強度の積に比例するため、測定対象からの戻り光が吸収や散乱、あるいは透過によって減衰しても、高強度な参照光との干渉によって高感度に断層情報信号を得ることができる。
また、断層信号の信号対雑音比(SNR)を向上させるために、差動検出と呼ばれる検出方法がOCTにおいて行われてきた。
差動検出を行うことで、干渉する直前の前記散乱光あるいは反射光あるいは参照光のみによる成分をキャンセルし、干渉成分だけを検出することができる。
そして、分解能については、光源が出力するスペクトル帯域が広ければ広いほど奥行き方向に高い分解能(層構造を分解表示できる能力)を有した断層情報信号が得られる。
Donghak Choi、et al.¨Fourier domain optical coherence tomography using optical demultiplexers imaging at 60、000、000 lines/s¨,Optics Letters,Vol.33, Issue 12,pp.1318−1320(2008)
特開2011−221043号公報
上記従来のTD−OCTやSS−OCTにおいて、差動検出する場合、同時に光を検出する複数の検出器が必要であった。
また、SD−OCTにおいてスペクトル干渉信号を差動検出する場合には、2台の分光器と2台のラインセンサが必要となり、構成が複雑になった。
また、スペクトル干渉信号を2台の分光器を用いて差動検出する場合、前記2台の分光器によるそれぞれの分光状態を全く同一にし、2台のラインセンサにおいて差動を取るピクセル同士で受光されるスペクトルを全ピクセルについて全く同一にする必要がある。しかし、そのようなことは非常に困難であることから、差動検出が困難となり、断層像の画質の向上が困難であった。
本発明は、上記課題に鑑み、分光器や検出部を複数必要とすることなく、単純な構成で差動検出をすることが可能となる光干渉断層撮像装置及び光干渉断層撮像方法の提供を目的とする。
本発明の光干渉断層撮像装置は、光源部からの光を分岐部で測定光と参照光に分岐し、
前記測定光を照射した被検査物からの反射または散乱光と、前記測定光に対応する参照光とを干渉部で干渉させ、前記干渉部で干渉させた干渉光を検出部で受光して該干渉光の強度を検出し、
前記検出部で検出された前記干渉光の強度に基づいて、前記被検査物の断層画像を取得する光干渉断層撮像装置であって、
前記干渉部は、互いの干渉成分の位相がπ異なる、第一の干渉光と第二の干渉光を出力するように構成され、
前記干渉部から出力された第一の干渉光と第二の干渉光は、時間差が付けられて前記検出部に到達可能に構成されていることを特徴とする。
本発明の光干渉断層撮像方法は、光源部からの測定光を照射した被検査物からの反射または散乱光と、前記測定光に対応する参照光とを干渉部で干渉させ、前記干渉部で干渉させた干渉光を受光して該干渉光の強度を検出し、
前記検出された前記干渉光の強度に基づいて、前記被検査物の断層画像を取得する光干渉断層撮像方法であって、
前記干渉部で、互いの干渉成分の位相がπ異なる、第一の干渉光と第二の干渉光を出力する工程と、
前記干渉部から出力された第一の干渉光と第二の干渉光を、互いに異なる光学的光路長を介して時間差を付けて受光し、該時間差を付けられた前記第一の干渉光と第二の干渉光の強度を検出する工程と、
を有することを特徴とする。
本発明によれば、分光器や検出部を複数必要とすることなく、単純な構成で差動検出をすることが可能となる光干渉断層撮像装置及び光干渉断層撮像方法を実現することができる。
本発明の実施形態における光干渉断層撮像装置の構成の概略について説明する模式図。 本発明の実施形態における光干渉断層撮像装置の信号処理について説明する模式図。 本発明の実施形態における光干渉断層撮像装置の差動検出の原理について説明する模式図。 本発明の実施例1における光干渉断層撮像装置の構成について説明する模式図。 本発明の実施例2における光干渉断層撮像装置の構成について説明する模式図。
本発明の実施形態における光干渉断層撮像装置の構成の概略について、図1を用いて説明する。
本実施形態における光干渉断層撮像装置の光源部101には、広帯域な波長帯域を発振する広帯域光源を用いる。
広帯域光源は、ランプ光源やSLDの出力を時間的に間欠させた光源、短パルス光源、短パルス光源のスペクトルを非線形光学効果の利用により広げられたスーパーコンティニュウム光(SC光)等である。
前記広帯域光源101から出力された光は、分岐部102によって参照光と検体(被検査物)への照射光(測定光)とに分岐される。
分岐部102はビームスプリッタや光ファイバカプラである。
前記照射光は検体照射部及び検体103において検体へ照射され反射光あるいは散乱光を得る。
一方参照光は、参照光路104を伝搬する。
前記反射光あるいは散乱光と前記参照光は、干渉部105に入力され、互いの干渉成分の位相がπ異なる第一の干渉光と第二の干渉光が出力される。干渉部は、光ファイバカプラやビームスプリッタで構成される。
前記第一の干渉光と第二の干渉光は、遅延部106あるいは107を伝搬し、前記第一の干渉光と第二の干渉光の間に、検出器(検出部)108に到達するまでの時間差が付けられる。遅延部106及び107は、光ファイバや空間で構成される。
ここで、前記到達するまでの時間差は、前記時間的な間欠の周期と異なっていれば良い。以上により、前記時間差を付けられた互いの干渉成分の位相がπ異なる第一と第二の干渉光は、別々の時間において、検出器108によって検出される。
前記検出器108によって検出された第一と第二の干渉信号を用いて、信号処理部(情報取得部)109において差を取ることで干渉成分のみを有する差動光スペクトル干渉信号が取得される。
このように差動検出を行うことで、非干渉成分が減衰され、非干渉成分由来の雑音を下げることができる。
このことにより、断層情報信号の信号対雑音比(SNR)を改善することができる。
前記取得された差動光スペクトル干渉信号をフーリエ変換することで、前記検体について照射光の照射方向に沿った断層信号を取得する。ここで、フーリエ変換は高速フーリエ変換でも良い。
前記検体に対する前記照射光の照射位置あるいは方向を走査し、各照射位置あるいは方向について上記した工程を繰返し行い断層信号を取得し、前記各照射位置あるいは方向についての断層信号を並べることで画像化を行う。
ここで、照射光の位置あるいは方向は角度が変わるミラーによって走査される、あるいは、検体を移動させることで走査される。
つぎに、本実施形態で取得される信号及び信号処理について、図2を用いて説明する。図2(a)は干渉信号を時間軸と波数軸に展開したスペクトログラムである。図2(b)
は干渉信号の時間変化である。図2(c)は干渉信号がスペクトル干渉であることを示す図である。
時間差を付けられた第一の干渉光201と第二の干渉光202が検出器に到達可能に構成されている。
そのため、第一の干渉光201と第二の干渉光202は、別々の時間において、検出器によって検出される。
図2(c)において、第一の干渉光201と第二の干渉光202の互いの干渉成分の位相がπ異なることを示している。
図2(d)において、前記検出器によって検出された第一と第二の干渉信号は、信号処理部において差を取ることで干渉成分のみを有する差動光スペクトル干渉信号213が取得される。
次の光軸における断層についての干渉信号では、第一の干渉光203と第二の干渉光204が検出器に到達し、差動光スペクトル干渉信号214が取得される。前記取得された差動光スペクトル干渉信号をフーリエ変換することで、前記検体について照射光の照射方向に沿った断層信号が取得される。
図3を用いて、本実施形態の光干渉断層撮像装置における差動検出の原理を説明する。ここで、干渉部を分岐比1:1のビームスプリッタ301であると考える。
ビームスプリッタ301に前記反射あるいは散乱光を意味する信号光302(E)と前記参照光303(E)を入射する。
その時、前記信号光302はビームスプリッタにより、透過光304と反射光305に分けられる。同様に前記参照光もビームスプリッタにより、透過光306と反射光307に分けられる。
信号光による反射光305と参照光による透過光306が重ね合わされて光検出器308において検出され、第一の干渉強度信号310が得られる。
同様に、信号光による透過光304と参照光による反射光307が重ね合わされて光検出器309において検出され、第二の干渉強度信号311が得られる。
これら第一の干渉強度信号310及び第二の干渉強度信号311は、それぞれ以下の式(1)および式(2)を用いて表現される。
Figure 2014092425
Figure 2014092425
ここで、E、E、はそれぞれ前記参照光と信号光の電界を表し、角周波数ω、参照光の光学的光路長(以下、光路長と記す。)lAR、信号光の光路長lAS、光速cをそれぞれ表す。
また、式(1)及び式(2)において、cosの成分を有する項が干渉成分を表す項である。
cosの成分を有する項は式(1)と式(2)を比較すると符号が反転しており、干渉成分の強度が反転している(つまり位相がπ異なっている)ことが分かる。
このことは、図2における第一の干渉信号201と第二の干渉信号202に対応している。
つぎに、以下の式(3)に示すように、式(1)と式(2)の差を取る。
この式(3)より、干渉成分のみが残っていることが分かる。この信号は、図2における差動光スペクトル干渉信号213に対応している。以上の説明が差動検出の原理である。
Figure 2014092425
[実施例1]
実施例1として、広帯域光源が時間的に間欠して出力されている光源(パルスSC光、駆動電源を変調したSLDやランプ)を用いた構成例について、図4を用いて説明する。本実施例において、光源部401には、広帯域な波長幅を有し時間的に間欠して出力される光源を用いる。
例えば、広帯域にスペクトルが広がった短パルス光源である。また、非常に広帯域にスペクトルが広がったスーパーコンティニュウムパルス光や、スーパールミネッセントダイオード(SLD)を時間的に間欠させて駆動した光源、時間的に間欠して駆動したランプ光源を用いても良い。
光源の時間的間欠の周期は70kHzである。これは、光を検出するラインセンサ419の応答速度140kHzの1/2に対応している。
また、間欠のデューティ比は50%である。このことにより、光をロスすること無く光検出器が光を検出できる。
間欠のデューティ比は50%で無くても本発明の効果は得られる。間欠のデューティ比が50%で無い場合は、第一の干渉光と第二の干渉光とが重ならない時間に検出された干渉信号を用いれば良い。このことにより、光検出器の応答速度誤差を緩和することができる。
本実施例におけるOCT撮像干渉計は、つぎのような構成を有している。
前記光源401から出力された光は、光分岐部である光ファイバカプラ402によって検体に照射される照射光と、参照光に分けられる。
参照光は、レンズ408によって平行光束に変換される。そして、検体407に照射される光の光路に対して波長分散を調整する分散補償部409と光路長を調整する光ディレイライン410を伝搬し、レンズ411によって再び光ファイバに結合される。
光ファイバに結合された参照光は、光ファイバ偏波コントローラ412を伝搬し偏光状態を調整されて光ファイバカプラ413へと導波される。
一方、検体407への照射光は、レンズ403により平行光束に変換され、直交するように配置された2枚のガルバノミラー404及び405で構成された照射方向を走査する光学系を伝搬し、検体407に応じたビーム伝搬プロファイルとなるよう検体照射用光学系406を通って検体へ照射される。
検体407に照射され散乱あるいは反射して戻ってきた光は、再び光ファイバへと伝搬し、光ファイバカプラ402を伝搬して光ファイバカプラ413へと伝搬する。
光ファイバカプラ413において、検体407からの散乱光あるいは反射光と前記参照光とが重ね合わされ干渉光を発生させる。
光ファイバカプラ413からの二つの出力端から出力された干渉光をそれぞれ光検出すると、非干渉成分の強度は同じで干渉成分が反転した強度信号が得られる。
参照光と照射光に分岐した光ファイバカプラ402から干渉光を発生させる光ファイバカプラ413までの、参照光の光路長と、検体407に照射されて戻ってきた光の光路長がほぼ一致するように、前記光ディレイライン410は調整される。
また、照射光の方向は前記2枚のガルバノミラー404及び405によって制御され、14.63msの間に検体上の一つのライン上を走査される。このことにより、およそ1024方向の断層情報信号が得られる。
前記二つの干渉光に時間差を付ける構成とその方法について説明する。
前記二つの干渉光のうちの、一方を光路414を伝搬させ、他方を光ディレイライン415を伝搬させて、前記二つの干渉光の間に時間差を付ける。
ここで、光ディレイライン415は、屈折率がおよそ1.45の光ファイバで構成される。70kHzに対応する周期14.28usの1/2に対応する7.14us遅延させるために、前記光ファイバの長さは1.48kmである。
また、ここで、時間差は正確に7.14usで無くても良い。その場合は、第一と第二の干渉光が時間的に重ならない信号を取得すれば良い。このことで、光ディレイラインの長さの誤差を緩和することが可能となる。
時間的にずれた干渉光を同じ光路にする方法について説明する。
前記時間差を付けられた二つの干渉光は、光結合部である光ファイバカプラ416によって、結合される。
前記光結合部は、光スイッチや回折素子を利用した光結合器、偏波を利用した光結合器を用いても良い。
光スイッチや回折素子を利用した光結合器、偏波を利用した光結合器を用いることで、前記光ファイバカプラでは2出力の内の一方から出てしまう光のロスをなくすことが可能となる。
そして、つぎのように二つの干渉光が同じ分光状態となって検出され、差動検出される。
前記結合部により、同じ光路を通る時間差を付けられた二つの干渉光は、レンズ417により平行光束にされ、透過型回折格子(波長分散素子)418により波長に応じて空間的
に分散され、ラインセンサ419によって受光される。
ラインセンサ419の応答速度は140kHzであり、前記時間差を付けられた二つの干渉光は7.14us毎にラインセンサ419によって検出される。したがって、前記時間差を付けられた二つの干渉光の干渉信号は、別々の時間に検出される。
前記検出された二つの干渉信号をPC420に取込み、差を取ることで非干渉成分をキャンセルし、干渉成分のみを取得することが可能となる。
このようにして取得された干渉成分を、つぎのようにフーリエ変換して断層情報を取得する。
すなわち、前記PC420により取得された干渉成分を波長軸上から波数軸上に並べ直しフーリエ変換することで、非干渉成分による雑音成分をキャンセルされた断層信号が得られる。
ここで、断層信号は前記検体について照射光の照射方向に沿った断層信号である。
前記光源の時間間欠の周波数で一つの断層信号を取得できる。そして、前記2枚のガルバノミラー404及び405を14.63msの間に検体上の一つのライン上を走査することで、およそ1024方向の断層情報信号が得られる。該1024方向の断層情報信号を並べることで一枚の断層画像が得られる。
以上の本実施例の構成によれば、SD−OCTで差動検出が可能となり、断層画像の画質を向上することが可能となる。
[実施例2]
実施例2として、サーキュレータを用いた構成例について、図5を用いて説明する。
本実施例における光干渉断層撮像装置の光源部は、実施例1と同様の構成とした。そこで、図5においては、図4で説明したこれら部材と同一の部材には同じ番号を付すこととし、重複した説明は省略する。
本実施例におけるOCT撮像干渉計は、つぎのような構成を有している。
前記光源401から出力された光は、光分岐部である光ファイバカプラ402によって検体に照射される照射光と、参照光に分けられる。
参照光は、光ファイバサーキュレータ502を伝搬し、光ディレイライン505へと向かう。
そして、レンズ503によって平行光束に変換され、検体407に照射される光の光路に対して波長分散を調整する分散補償部504と光路長を調整する光ディレイライン505を伝搬し反射され、レンズ503によって再び光ファイバに結合される。
光ファイバに結合された参照光は、再び光ファイバサーキュレータ502を伝搬し、光ファイバ偏波コントローラ412を伝搬し光ファイバカプラ413へと導波される。
一方検体407への照射光は、光ファイバサーキュレータ501を伝搬し、検体407へと向かう。
レンズ403により平行光束に変換され、直交するように配置された2枚のガルバノミラー404及び405で構成された照射方向を走査する光学系を伝搬し、検体407に応じたビーム伝搬プロファイルとなるよう検体照射用光学系406を通って検体へ照射される。
検体407に照射され散乱あるいは反射して戻ってきた光は、再び光ファイバへ結合し、再び光ファイバサーキュレータ501を伝搬し光ファイバカプラ413へと導波される。光ファイバカプラ413において、検体407からの前記散乱光あるいは反射光と前記参照光とが重ねあわされ干渉光を発生させる。
光ファイバカプラ413からの二つの出力端から出力された干渉光をそれぞれ光検出すると、非干渉成分の強度は同じで干渉成分が反転した強度信号が得られる。
参照光と照射光に分岐した光ファイバカプラ402から干渉光を発生させる光ファイバカ
プラ413までの参照光の光路長と、検体407に照射されて戻ってきた光の光路長がほぼ一致するように、前記光ディレイライン505は調整される。
また、照射光の方向は前記2枚のガルバノミラー404及び405によって制御され、14.63msの間に検体上の一つのライン上を走査される。このことにより、およそ1024方向の断層情報信号が得られる。
また、以上における二つの干渉信号に時間差をつけ、断層画像を取得する構成等については、実施例1と同様のものとした。
以上の本実施例の構成によれば、検体からの散乱あるいは反射光を光源側に戻すことなく、干渉させることが可能となる。
このことにより、検体からの散乱あるいは反射光のほとんどを干渉光発生に利用することができる。
[実施例3]
実施例3として、光源部と分岐部の間に光を間欠させる強度変調部を構成し、その他の構成については実施例1、2と同じとした構成例について説明する。
本実施例における光干渉断層撮像装置の光源部には、広帯域な波長幅を有する光源を用いる。例えば、スーパールミネッセントダイオード(SLD)である。
また、ランプ光源や、後述する強度変調器による強度変調周波数(70kHz)よりも高周波数の繰返し周波数を有する広帯域にスペクトルが広がった短パルス光源、非常に広帯域にスペクトルが広がったスーパーコンティニュウムパルス光を用いても良い。
そして、本実施例では光源から出力された光を、強度変調器を通して時間的に間欠させる。例えば電気光学変調器(EOM)である。また、音響光学変調器(AOM)や光チョッパーを用いても良い。
光源の時間的間欠の周期は70kHzである。これは、光を検出するラインセンサ419の応答速度140kHzの1/2に対応している。
また、間欠のデューティ比は50%である。このことにより、光をロスすること無く光検出器が光を検出できる。
間欠のデューティ比は50%で無くても本発明の効果は得られる。間欠のデューティ比が50%で無い場合は、第一の干渉光と第二の干渉光とが重ならない時間に検出された干渉信号を用いれば良い。このことにより、光検出器の応答速度誤差を緩和することができる。
以上の本実施例の構成によれば、パルス光でない光源を用いることが可能となる。
[実施例4]
実施例4として、分岐部と干渉光を出力する干渉部との間に光を間欠させる強度変調部を構成し、その他の構成については実施例1、2と同じとした構成例について説明する。本実施例における広帯域光源は、実施例3と同様の構成とした。そして、本実施例では、強度変調器がつぎのように構成されている光路中に挿入される。
すなわち、照射光と参照光に光を分岐する光ファイバカプラ402と、干渉を発生させる光ファイバカプラ413の間において、検体407を伝搬する光路と光ディレイラインを伝搬する光路とのそれぞれの光路中に光強度変調器を挿入する。
そして、前記それぞれの光路中の光強度変調器による光源の時間的間欠の周期は70kHzである。これは、光を検出するラインセンサ419の応答速度140kHzの1/2に対応している。
また、干渉信号を生成するために挿入された2台の光強度変調器は同期を取る。以上の本実施例の構成によれば、パルス光でない光源を用いることが可能となる。
また、光強度変調器が光ファイバカプラ402と検体407の間の光路中にあれば、検体への照射光強度を調整することが可能となる。
[実施例5]
実施例5として、干渉光を出力する干渉部と検出部の間に、光を間欠させる強度変調部を構成した構成例について説明する。
なお、本実施例では、検体からの散乱あるいは反射光と参照光とを重ね合わせる干渉計等については、実施例1、2と同じ構成である。
また、本実施例における広帯域光源は、実施例3と同様の構成とした。そして、本実施例では、強度変調器がつぎのように干渉光に時間差を付ける部分に挿入される。
干渉計により得られた二つの干渉光の一方を、光強度変調器を伝搬させることで70kHzの周波数で時間的に間欠されて光ディレイラインへと導波する。
そして、該光ディレイラインにより、前記二つの干渉光の間に時間差を付ける。ここで、該光ディレイラインは、屈折率がおよそ1.45の光ファイバで構成される。
70kHzに対応する周期14.28usの1/2に対応する7.14us遅延させるために、前記光ファイバの長さは1.48kmである。
ここで、時間差は正確に7.14usで無くても良い。その場合は、第一と第二の干渉光が時間的に重ならない信号を取得すれば良い。このことで、光ディレイラインの長さの誤差を緩和することが可能となる。
前記二つの干渉光のもう一方は、別の光強度変調器を伝搬させることで70kHzの周波数で時間的に間欠される。
前記時間差を付けられ時間的に間欠された二つの干渉光を、光結合部である光ファイバカプラに伝搬させ、結合する。
ここで、前記遅延を付ける側の光強度変調器を置く場所は、光ディレイラインの中でも後でも良い。また、前記光結合部である光ファイバカプラにおいて、二つの干渉光が同時に来ないように、前記二台の光強度変調器は同期を取る。
以上の本実施例の構成によれば、パルス光でない光源を用いることが可能となる。
[実施例6]
実施例6として、波長掃引パルス光源を用いて、1パルスずつ差動を取るようにした構成例について説明する。
なお、本実施例では、検体からの散乱あるいは反射光と参照光とを重ね合わせる干渉計等については、実施例1、2と同様の構成である。
本実施例における光干渉断層撮像装置の光源部には、波長掃引パルス光源を用いる。
波長掃引パルス光源は、共振器のFSRが波長毎に異なり、共振器内で光強度変調をかけ、該強度変調の周波数を変化させることで出力波長を変化させる分散チューニングファイバレーザである。
また、波長可変ソリトンパルス光源や、広帯域光源の出力を時間的に間欠しながら透過する波長を切り替えるフィルタを用いた光源でも良い。
前記波長掃引パルス光源のパルス繰返し周波数は410MHzであり、一波長掃引の周波数は100kHzとした。このことにより、およそ4100点の異なる波数の信号を得ることができる。
本実施例においては、前記干渉計より得られた二つの干渉光に時間差を付けるように、つぎのように構成される。
前記二つの干渉光の一方を、光ディレイラインを伝搬させ、前記二つの干渉光の間に時間差を付ける。
ここで、光ディレイラインは、屈折率がおよそ1.45の光ファイバで構成される。410MHzの2倍の820MHzに対応する1.19ns遅延させるために、前記光ファイバの長さは246mmである。
そして、時間的にずれた干渉光を、つぎのようにして同じ光路にする。
前記時間差を付けられた二つの干渉光は、光結合部である光ファイバカプラによって、結合される。
前記光結合部は、光スイッチや回折素子を利用した光結合器、偏波を利用した光結合器を用いても良い。
光スイッチや回折素子を利用した光結合器、偏波を利用した光結合器を用いることで、前記光ファイバカプラでは2出力の内の一方から出てしまう光のロスをなくすことが可能となる。
また、つぎのように、二つの干渉光が同じ分光状態となって検出され、差動検出される。
前記結合部により、同じ光路を通る時間差を付けられた二つの干渉光は、光検出器によって検出される。
該光検出器の応答速度は820MHzであり、前記結合された干渉光のパルス繰返し周波数と一致する。
そして、前記時間差を付けられた二つの干渉光の干渉信号は、同じ中心波長をもつパルスが別々の時間に検出される。
前記検出された二つの干渉信号をPCに取込み、同一周波数を持つ干渉信号同士の差を取ることで非干渉成分をキャンセルし、干渉成分のみを取得することが可能となる。
本実施例においては、つぎのようにフーリエ変換して断層情報が取得される。
前記PCにより取得された干渉成分を波数軸上に並べ直しフーリエ変換することで、非干渉成分による雑音成分をキャンセルされた断層信号が得られる。
ここで、断層信号は前記検体について照射光の照射方向に沿った断層信号である。
また、波数軸上に並べるために、波長掃引パルス光源から出力される波長掃引パルスの中心波長が等波数間隔で変化していく光源とした。あるいは、マッハチェンダー干渉計に基づいた波数をモニタリングする部を用いて波数情報を取得し、前記取得された波数情報に基づいて波数軸上に並べ直しても良い。
このようにして、一波長掃引で一つの断層信号を取得でき、前記干渉計内にある2枚のガルバノミラーを10.24msの間に検体上の一つのライン上を走査することで、およそ1024方向の断層情報信号が得られ、該1024方向の断層情報信号を並べることで一枚の断層画像が得られる。
以上の本実施例の構成によれば、一つの光検出器を用いて差動検出することが可能となる。また高速な光検出が可能となり、光ディレイラインを短くすることが可能となる。
[実施例7]
実施例7として、パルスで無いものも含む波長掃引光源を用いて、1掃引ずつ差動を取るようにした構成例について説明する。
なお、本実施例では、検体からの散乱あるいは反射光と参照光とを重ね合わせる干渉計等については、実施例1、2と同様の構成である。
本実施例における光干渉断層撮像装置の光源部には、波長掃引光源を用いる。波長掃引光源は、回折格子により空間的に広げた光をスリット状のミラーを移動させることで切出した光源である。
また、波長掃引光源は、広帯域利得媒体から出力された光をファブリー・ペロー・チューナブルフィルタや回折格子、リングキャビティ、ファイバブラッググレーティング等のスペクトルフィルタを用いて切出した光源を用いても良い。あるいは、回折格子により空間的に広げた光を回転するポリゴンミラーで切出した光源や、広帯域光を分散媒質によって時間的に広げた光源を用いても良い。また、実施例6で述べた光源でも良い。
一波長掃引の周期を10us(すなわち、周波数は100kHz)とし、一波長掃引にかかる時間は5usとした。つまり、デューティ比50%で100kHzの波長掃引光源とした。このことにより、光をロスすること無く光検出器が光を検出できる。
波長掃引光源のデューティ比は50%で無くても本発明の効果は得られる。波長掃引光源のデューティ比が50%で無い場合は、第一の干渉光と第二の干渉光とが重ならない時間に検出された干渉信号を用いれば良い。このことにより、波長掃引光源の掃引速度誤差が緩和される。
本実施例では、干渉信号の片方を遅らせるように、つぎのように構成される。前記二つの干渉光の一方を、光ディレイラインを伝搬させ、前記二つの干渉光の間に時間差を付ける。
ここで、光ディレイラインは、屈折率がおよそ1.45の光ファイバで構成される。
一波長掃引の周期10usの1/2に対応する5us遅延させるために、前記光ファイバの長さは1.03kmである。
ここで、時間差は正確に5usで無くても良い。その場合は、波長掃引光源の波長掃引周期とデューティ比に応じて時間差を調整し、第一と第二の干渉光が時間的に重ならない信号を取得すれば良い。このことで、光ディレイラインの長さの誤差を緩和することが可能となる。
また、本実施例では、つぎのように時間的にずれた干渉光を同じ光路にする。
前記時間差を付けられた二つの干渉光は、光結合部である光ファイバカプラによって、結合される。
前記光結合部は、光スイッチや回折素子を利用した光結合器、偏波を利用した光結合器を用いても良い。
光スイッチや回折素子を利用した光結合器、偏波を利用した光結合器を用いることで、前記光ファイバカプラでは2出力の内の一方から出てしまう光のロスをなくすことが可能となる。
以降における、差動検出され断層画像を取得する構成等は、実施例6と同様とした。
以上の本実施例の構成によれば、一つの光検出器を用いて差動検出することが可能となる。
また、高速な光検出が可能となり、光ディレイラインを短くすることが可能となる。また、パルスで無い波長掃引光源を用いることが可能となる。
101:光源部
102:分岐部
103:検体照射部及び検体
104:参照光路
105:干渉部
106:遅延部
107:遅延部
108:検出器
109:信号処理部

Claims (15)

  1. 光源部からの光を分岐部で測定光と参照光に分岐し、
    前記測定光を照射した被検査物からの反射または散乱光と、前記測定光に対応する参照光とを干渉部で干渉させ、前記干渉部で干渉させた干渉光を検出部で受光して該干渉光の強度を検出し、
    前記検出部で検出された前記干渉光の強度に基づいて、前記被検査物の断層画像を取得する光干渉断層撮像装置であって、
    前記干渉部は、互いの干渉成分の位相がπ異なる、第一の干渉光と第二の干渉光を出力するように構成され、
    前記干渉部から出力された第一の干渉光と第二の干渉光は、時間差が付けられて前記検出部に到達可能に構成されていることを特徴とする光干渉断層撮像装置。
  2. 前記干渉部から出力された第一の干渉光と第二の干渉光は、互いに異なる光学的光路長を介して前記検出部で受光されることを特徴とする請求項1に記載の光干渉断層撮像装置。
  3. 前記干渉部と前記検出部との間に、波長に応じて分散させる分散素子を有することを特徴とする請求項1または請求項2に記載の光干渉断層撮像装置。
  4. 前記干渉部と前記検出部との間に、前記時間差が付けられた第一の干渉光と第二の干渉光とを結合して同じ光路とする光結合部を有することを特徴とする請求項1乃至3のいずれか1項に記載の光干渉断層撮像装置。
  5. 前記光源部が、時間的に波長を変化させる波長掃引光源であることを特徴とする請求項1に記載の光干渉断層撮像装置。
  6. 前記干渉部と前記検出部との間に、前記時間差が付けられた第一の干渉光と第二の干渉光とを結合して同じ光路とする光結合部を有することを特徴とする請求項5に記載の光干渉断層撮像装置。
  7. 前記検出部で検出された時間差が付けられた前記第一と第二の干渉光をそれぞれ取得し、該第一の干渉光と第二の干渉光の強度の差を取った信号に基づいて、前記被検査物の情報を取得する情報取得部を有することを特徴とする請求項1乃至6のいずれか1項に記載の光干渉断層撮像装置。
  8. 前記光源部は、光を時間的に間欠して出力する光源によって構成されていることを特徴とする請求項1乃至7のいずれか1項に記載の光干渉断層撮像装置。
  9. 前記光源部と前記分岐部の間に、光を間欠させる強度変調部を有することを特徴とする請求項1乃至7のいずれか1項に記載の光干渉断層撮像装置。
  10. 前記分岐部と前記第一と第二の干渉光を出力する干渉部との間に、光を間欠させる強度変調部を有することを特徴とする請求項1乃至7のいずれか1項に記載の光干渉断層撮像装置。
  11. 前記第一と第二の干渉光を出力する干渉部と前記検出部の間に、光を間欠させる強度変調部を有することを特徴とする請求項1乃至7のいずれか1項に記載の光干渉断層撮像装置。
  12. 前記第一と第二の干渉光は、それぞれ間欠の周期の1/2の時間に前記第一と第二の干渉光がそれぞれ出力されることを特徴とする請求項8乃至11のいずれか1項に記載の光干渉断層撮像装置。
  13. 前記第一と第二の干渉光が前記検出部に到達する時間差が、間欠の周期の1/2の時間であることを特徴とする請求項1乃至7のいずれか1項に記載の光干渉断層撮像装置。
  14. 光源部からの測定光を照射した被検査物からの反射または散乱光と、前記測定光に対応する参照光とを干渉部で干渉させ、前記干渉部で干渉させた干渉光を受光して該干渉光の強度を検出し、
    前記検出された前記干渉光の強度に基づいて、前記被検査物の断層画像を取得する光干渉断層撮像方法であって、
    前記干渉部で、互いの干渉成分の位相がπ異なる、第一の干渉光と第二の干渉光を出力する工程と、
    前記干渉部から出力された第一の干渉光と第二の干渉光を、互いに異なる光学的光路長を介して時間差を付けて受光し、該時間差を付けられた前記第一の干渉光と第二の干渉光の強度を検出する工程と、
    を有することを特徴とする光干渉断層撮像方法。
  15. 前記時間差が付けられた前記第一と第二の干渉光をそれぞれ取得し、該第一の干渉光と第二の干渉光の強度の差を取った信号に基づいて、前記被検査物の情報を取得する工程を有することを特徴とする請求項14に記載の光干渉断層撮像方法。
JP2012242529A 2012-11-02 2012-11-02 光干渉断層撮像装置及び光干渉断層撮像方法 Withdrawn JP2014092425A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012242529A JP2014092425A (ja) 2012-11-02 2012-11-02 光干渉断層撮像装置及び光干渉断層撮像方法
US14/068,055 US20140125992A1 (en) 2012-11-02 2013-10-31 Optical coherence tomography apparatus and optical coherence tomography method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012242529A JP2014092425A (ja) 2012-11-02 2012-11-02 光干渉断層撮像装置及び光干渉断層撮像方法

Publications (1)

Publication Number Publication Date
JP2014092425A true JP2014092425A (ja) 2014-05-19

Family

ID=50622082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242529A Withdrawn JP2014092425A (ja) 2012-11-02 2012-11-02 光干渉断層撮像装置及び光干渉断層撮像方法

Country Status (2)

Country Link
US (1) US20140125992A1 (ja)
JP (1) JP2014092425A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016059939A1 (ja) * 2014-10-16 2016-04-21 国立研究開発法人産業技術総合研究所 光断層イメージング法、その装置およびプログラム
WO2016143696A1 (ja) * 2015-03-06 2016-09-15 リオン株式会社 パーティクルカウンタ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11098999B2 (en) * 2017-12-22 2021-08-24 University Of Rochester Cascade Fourier domain optical coherence tomography

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080252901A1 (en) * 2003-09-26 2008-10-16 School Jiridical Person Kitasato Gakuen Wavelength-Tunable Light Source And Optical Coherence Tomography

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016059939A1 (ja) * 2014-10-16 2016-04-21 国立研究開発法人産業技術総合研究所 光断層イメージング法、その装置およびプログラム
JPWO2016059939A1 (ja) * 2014-10-16 2017-06-22 国立研究開発法人産業技術総合研究所 光断層イメージング法、その装置およびプログラム
US10161855B2 (en) 2014-10-16 2018-12-25 National Institute Of Advanced Industrial Science And Technology Optical tomographic imaging method, optical tomographic imaging apparatus, and program
WO2016143696A1 (ja) * 2015-03-06 2016-09-15 リオン株式会社 パーティクルカウンタ
US10054529B2 (en) 2015-03-06 2018-08-21 Rion Co., Ltd. Particle counter

Also Published As

Publication number Publication date
US20140125992A1 (en) 2014-05-08

Similar Documents

Publication Publication Date Title
US11320256B2 (en) Apparatus and methods for high-speed and long depth range imaging using optical coherence tomography
JP5939866B2 (ja) 光干渉断層撮像装置及び撮像方法
EP2574273B1 (en) Optical coherence tomography apparatus
JP4494160B2 (ja) 光画像計測装置
US9599454B2 (en) Optical interferometer, data acquisition device, and data acquisition method
JP5361243B2 (ja) 光断層画像撮像装置
JP4869895B2 (ja) 光断層画像化装置
EP2995245B1 (en) Optical tomographic device
JP2011174920A (ja) 光干渉計測方法および光干渉計測装置
JP2015112207A (ja) 光断層画像装置用サンプルクロック発生装置、および光断層画像装置
JP2005283155A (ja) 光干渉断層像撮像法における分散補正装置
JP4696319B2 (ja) フィルタ方式高速波長掃引光源
JP2014092425A (ja) 光干渉断層撮像装置及び光干渉断層撮像方法
JP6214020B2 (ja) 光断層イメージング法、その装置およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151102

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20160707