WO2013047467A1 - 希土類永久磁石及び希土類永久磁石の製造方法 - Google Patents

希土類永久磁石及び希土類永久磁石の製造方法 Download PDF

Info

Publication number
WO2013047467A1
WO2013047467A1 PCT/JP2012/074471 JP2012074471W WO2013047467A1 WO 2013047467 A1 WO2013047467 A1 WO 2013047467A1 JP 2012074471 W JP2012074471 W JP 2012074471W WO 2013047467 A1 WO2013047467 A1 WO 2013047467A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
permanent magnet
rare earth
sintering
earth permanent
Prior art date
Application number
PCT/JP2012/074471
Other languages
English (en)
French (fr)
Inventor
孝志 尾崎
克也 久米
利昭 奥野
出光 尾関
智弘 大牟礼
啓介 太白
山本 貴士
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to IN1766CHN2014 priority Critical patent/IN2014CN01766A/en
Priority to EP12836769.5A priority patent/EP2763147A4/en
Priority to US14/241,511 priority patent/US20140241929A1/en
Priority to KR1020147011139A priority patent/KR20140082741A/ko
Priority to CN201280047635.6A priority patent/CN103843081A/zh
Publication of WO2013047467A1 publication Critical patent/WO2013047467A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0536Alloys characterised by their composition containing rare earth metals sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a rare earth permanent magnet and a method for producing a rare earth permanent magnet.
  • Permanent magnet motors used in hybrid cars, hard disk drives, and the like have been required to be smaller, lighter, higher in output, and more efficient. Further, in order to realize a reduction in size and weight, an increase in output, and an increase in efficiency in the permanent magnet motor, further improvement in magnetic characteristics is required for the permanent magnet embedded in the permanent magnet motor.
  • Permanent magnets include ferrite magnets, Sm—Co magnets, Nd—Fe—B magnets, Sm 2 Fe 17 N x magnets, and Nd—Fe—B magnets with particularly high residual magnetic flux density. Used as a permanent magnet for a permanent magnet motor.
  • a powder sintering method is generally used as a manufacturing method of the permanent magnet.
  • the powder sintering method first, raw materials are roughly pulverized, and magnet powder is manufactured by finely pulverizing with a jet mill (dry pulverization) or a wet bead mill (wet pulverization). Thereafter, the magnet powder is put into a mold and press-molded into a desired shape while applying a magnetic field from the outside. Then, it is manufactured by sintering the solid magnet powder formed into a desired shape at a predetermined temperature (for example, 800 ° C. to 1150 ° C. for Nd—Fe—B magnets).
  • a predetermined temperature for example, 800 ° C. to 1150 ° C. for Nd—Fe—B magnets.
  • JP 3298219 A (pages 4 and 5)
  • the magnetic performance of the permanent magnet is basically improved if the crystal grain size of the sintered body is reduced because the magnetic properties of the magnet are derived by the single domain fine particle theory. .
  • wet bead mill pulverization which is one of the pulverization methods used when pulverizing magnet raw materials, is filled with beads (media) in a container and rotated, and a slurry in which the raw materials are mixed in a solvent is added.
  • This is a method of grinding and crushing raw materials.
  • wet bead milling even when wet bead milling is used, it is difficult to pulverize most of the magnet raw material to a fine particle size range (for example, 0.1 ⁇ m to 5.0 ⁇ m).
  • the present invention has been made in order to solve the problems in the prior art, and in the case of wet pulverizing the magnet raw material, the wet pulverization property of the wet pulverization can be improved by wet pulverization with a specific organometallic compound added.
  • An object of the present invention is to provide a rare earth permanent magnet and a method for producing a rare earth permanent magnet that can be improved, and as a result, can reduce the crystal grain size after sintering, and have improved magnetic performance.
  • the rare earth permanent magnet according to the present invention includes a magnet raw material and a general formula M- (OR) x (where M is Nd, Al, Cu, Ag, Dy, Tb, V, Mo, Zr, At least one of Ta, Ti, W, and Nb is included, R is a substituent composed of a hydrocarbon having a carbon chain length of 2 to 16, and may be linear or branched, and x is an arbitrary integer.
  • a magnet powder obtained by pulverizing the magnet raw material by wet pulverization in an organic solvent, and attaching the organometallic compound to the particle surface of the magnet powder It is manufactured by a step of producing a molded body by molding powder and a step of sintering the molded body.
  • the rare earth permanent magnet according to the present invention is characterized in that R in the general formula is an alkyl group.
  • the step of producing the molded body includes forming a slurry in which the magnet powder, the organic solvent, and a binder resin are mixed, and molding the slurry into a sheet shape. A green sheet is produced as the molded body.
  • the rare earth permanent magnet according to the present invention is removed by scattering the binder resin by holding the molded body at a binder resin decomposition temperature for a predetermined time in a non-oxidizing atmosphere before sintering the molded body. It is characterized by doing.
  • the molded body in the step of removing the binder resin by scattering, is kept at 200 ° C. to 900 ° C. for a certain time in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas. It is characterized by holding.
  • the method for producing a rare earth permanent magnet according to the present invention includes a magnet raw material and a general formula M- (OR) x (where M is Nd, Al, Cu, Ag, Dy, Tb, V, Mo, Zr, Ta). , Ti, W, and Nb, and R is a substituent composed of hydrocarbon having a carbon chain length of 2 to 16, which may be linear or branched, and x is an arbitrary integer.)
  • the method for producing a rare earth permanent magnet according to the present invention is characterized in that R in the general formula is an alkyl group.
  • the step of producing the molded body includes generating a slurry in which the magnet powder, the organic solvent, and a binder resin are mixed, and molding the slurry into a sheet shape.
  • a green sheet is produced as the molded body.
  • the method for producing a rare earth permanent magnet according to the present invention before sintering the molded body, scatters the binder resin by holding the molded body at a binder resin decomposition temperature for a certain time in a non-oxidizing atmosphere. It is made to remove.
  • the molded body in the step of scattering and removing the binder resin, is 200 ° C. to 900 ° C. in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas. And holding for a certain time.
  • wet pulverization is performed by wet pulverizing the magnet raw material and the organometallic compound in an organic solvent. It becomes possible to improve grindability. For example, most of the magnet raw material can be pulverized to a fine particle size range (for example, 0.1 ⁇ m to 5.0 ⁇ m). As a result, the crystal grain size after sintering can be reduced, and the magnetic performance can be improved.
  • the organometallic compound adheres to the particle surface of the magnet powder.
  • elements such as Nd, Al, Cu, Ag, Dy, Tb, V, Mo, Zr, Ta, Ti, W, Nb, etc.
  • the organometallic compound can be easily dissolved in a general-purpose solvent such as toluene, and the magnet powder can be appropriately attached to the particle surface.
  • the organometallic compound composed of an alkyl group is used as the organometallic compound added to the magnet powder, the organometallic compound can be easily thermally decomposed. Become. As a result, it is possible to more reliably reduce the amount of carbon in the molded body when calcining.
  • the permanent magnet is constituted by a magnet obtained by sintering a green sheet formed from a slurry in which magnet powder, a resin binder, and an organic solvent are mixed. Since it becomes uniform, deformation such as warping and dent after sintering does not occur, and pressure unevenness at the time of pressing is eliminated, so there is no need for correction processing after sintering, which has been done conventionally, and the manufacturing process It can be simplified. Thereby, a permanent magnet can be formed with high dimensional accuracy. Further, even when the permanent magnet is thinned, it is possible to prevent the processing man-hours from increasing without reducing the material yield.
  • the rare earth permanent magnet according to the present invention before the green sheet is calcined, the binder resin is scattered and removed by holding the green sheet at a binder resin decomposition temperature for a predetermined time in a non-oxidizing atmosphere. Therefore, the amount of carbon contained in the magnet can be reduced in advance. As a result, it is possible to suppress the precipitation of ⁇ Fe in the main phase of the magnet after sintering, to densely sinter the entire magnet, and to prevent the coercive force from being lowered.
  • the carbon sheet contained in the magnet is calcined in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas by calcining a green sheet kneaded with a binder resin. The amount can be reduced more reliably.
  • wet pulverization is performed by wet pulverizing a magnet raw material and an organometallic compound in an organic solvent in a wet pulverization process that is a process for producing a rare earth permanent magnet. It becomes possible to improve the pulverization property. For example, most of the magnet raw material can be pulverized to a fine particle size range (for example, 0.1 ⁇ m to 5.0 ⁇ m). As a result, the crystal grain size after sintering can be reduced, and the magnetic performance of the manufactured rare earth permanent magnet can be improved.
  • the organometallic compound adheres to the particle surface of the magnet powder.
  • elements such as Nd, Al, Cu, Ag, Dy, Tb, V, Mo, Zr, Ta, Ti, W, Nb, etc.
  • the organometallic compound can be easily dissolved in a general-purpose solvent such as toluene, and the magnet powder can be appropriately attached to the particle surface.
  • an organometallic compound composed of an alkyl group is used as the organometallic compound to be added to the magnet powder, so that the organometallic compound can be easily pyrolyzed. Is possible. As a result, it is possible to more reliably reduce the amount of carbon in the molded body when calcining.
  • the permanent magnet is constituted by a magnet obtained by sintering a green sheet formed from a slurry in which magnet powder, a resin binder, and an organic solvent are mixed. Due to the uniform shrinkage caused by deformation, deformation such as warping and dent after sintering does not occur, and pressure unevenness at the time of pressing is eliminated, so there is no need for conventional post-sintering correction processing, The manufacturing process can be simplified. Thereby, a permanent magnet can be formed with high dimensional accuracy. Further, even when the permanent magnet is thinned, it is possible to prevent the processing man-hours from increasing without reducing the material yield.
  • the binder resin before calcining the green sheet, the binder resin is scattered by holding the green sheet at a binder resin decomposition temperature for a certain time in a non-oxidizing atmosphere. Therefore, the amount of carbon contained in the magnet can be reduced in advance. As a result, it is possible to suppress the precipitation of ⁇ Fe in the main phase of the magnet after sintering, to densely sinter the entire magnet, and to prevent the coercive force from being lowered.
  • the green sheet kneaded with the binder resin is calcined in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas, so that it is contained in the magnet.
  • the amount of carbon to be reduced can be more reliably reduced.
  • FIG. 1 is an overall view showing a permanent magnet according to the present invention.
  • FIG. 2 is an enlarged schematic view showing the vicinity of the grain boundary of the permanent magnet according to the present invention.
  • FIG. 3 is a diagram for explaining the effect at the time of sintering based on the improvement of the thickness accuracy of the green sheet according to the present invention.
  • FIG. 4 is a diagram for explaining the effect during sintering based on the improvement of the thickness accuracy of the green sheet according to the present invention.
  • FIG. 5 is an explanatory view showing a manufacturing process of the permanent magnet according to the present invention.
  • FIG. 6 is an explanatory view showing a green sheet forming step in particular among the manufacturing steps of the permanent magnet according to the present invention.
  • FIG. 7 is an explanatory diagram showing the pressure-sintering step of the green sheet, among the manufacturing steps of the permanent magnet according to the present invention.
  • FIG. 8 is an enlarged photograph showing the magnet powder after wet pulverization of the permanent magnet of Example 1.
  • FIG. 9 is an enlarged photograph showing the magnet powder after wet pulverization of the permanent magnet of Example 2.
  • FIG. 10 is an enlarged photograph showing the magnet powder after wet pulverization of the permanent magnet of Example 3.
  • FIG. 11 is an enlarged photograph showing the magnet powder after wet pulverization for the permanent magnet of Comparative Example 1.
  • FIG. 1 is an overall view showing a permanent magnet 1 according to the present invention.
  • the permanent magnet 1 shown in FIG. 1 has a fan shape, but the shape of the permanent magnet 1 varies depending on the punched shape.
  • the permanent magnet 1 according to the present invention is an Nd—Fe—B based magnet.
  • the content of each component is Nd: 27 to 40 wt%, B: 1 to 2 wt%, and Fe (electrolytic iron): 60 to 70 wt%.
  • FIG. 1 is an overall view showing a permanent magnet 1 according to the present embodiment.
  • the permanent magnet 1 is a thin film-like permanent magnet having a thickness of, for example, 0.05 mm to 10 mm (for example, 4 mm). And it is produced by sintering the green sheet shape
  • the permanent magnet 1 has a portion of Nd in the surface portion (outer shell) of the crystal grains of the Nd crystal particles 2 constituting the permanent magnet 1 with Al, Cu, Ag, By generating the layer 3 (hereinafter referred to as the outer shell layer 3) substituted with Dy, Tb, V, Mo, Zr, Ta, Ti, W, Nb or the like, Make it unevenly distributed.
  • FIG. 2 is an enlarged view showing Nd crystal particles 2 constituting the permanent magnet 1.
  • substitution of Dy or the like is performed by adding an organometallic compound containing Dy or the like before forming a pulverized magnet powder as described below.
  • M- (OR) x wherein M is Nd, Al, Cu, Ag, Dy, Tb, V, Mo, Zr, Ta, Including at least one of Ti, W, and Nb, wherein R is a substituent composed of a hydrocarbon having a carbon chain length of 2 to 16, which may be linear or branched, and x is any integer.
  • An organometallic compound containing M represented (for example, niobium decanoxide, niobium tetradecanoxide, niobium butoxide, etc.) is added and mixed with the magnet powder in a wet state.
  • M represented for example, niobium decanoxide, niobium tetradecanoxide, niobium butoxide, etc.
  • the organometallic compound containing Dy or Tb is dispersed in an organic solvent, and the organometallic compound containing Dy or Tb is efficiently dispersed on the particle surface of the Nd magnet particle. It becomes possible to adhere. And when sintering the magnetic powder to which the organometallic compound containing Dy or Tb is added, the Dy or Tb in the organometallic compound uniformly adhered to the particle surface of the Nd magnet particles by wet dispersion becomes Nd magnet particles. Substitution is performed by diffusion and penetration into the crystal growth region, and a Dy layer or a Tb layer is formed as the outer shell layer 3 on the surface of the Nd crystal particle 2.
  • Dy or Tb can be unevenly distributed at the grain boundaries of the magnet particles.
  • the Dy layer is made of, for example, (Dy x Nd 1-x ) 2 Fe 14 B intermetallic compound. Then, Dy and Tb unevenly distributed at the grain boundaries suppress the generation of reverse magnetic domains at the grain boundaries, so that the coercive force can be improved.
  • the amount of Dy or Tb added can be reduced as compared with the conventional case, and a decrease in residual magnetic flux density can be suppressed.
  • M contains a refractory metal element such as V, Mo, Zr, Ta, Ti, W, or Nb (hereinafter referred to as Nb)
  • Nb a refractory metal element
  • an organometallic compound containing Nb or the like is dispersed in an organic solvent. It becomes possible to uniformly adhere an organometallic compound containing Nb or the like to the particle surface of the Nd magnet particle.
  • the magnet powder is sintered, Nb or the like in the organometallic compound uniformly adhered to the surface of the Nd magnet particles by wet dispersion diffuses and penetrates into the crystal growth region of the Nd crystal particles.
  • a refractory metal layer is formed as the outer shell layer 3 on the surface of the Nd crystal particle 2.
  • the refractory metal layer is made of, for example, an NbFeB intermetallic compound.
  • the refractory metal layer coated on the surface of the Nd crystal particles functions as a means for suppressing so-called grain growth in which the average particle diameter of the Nd crystal particles increases when the permanent magnet 1 is sintered. As a result, it is possible to suppress grain growth of crystal grains during sintering.
  • the crystal grain size of the Nd crystal particles 2 is preferably 0.1 ⁇ m to 5.0 ⁇ m.
  • the magnetic performance can be improved.
  • the crystal grain size is a single domain grain size, the magnetic performance of the permanent magnet 1 can be dramatically improved.
  • M- (OR) x (wherein M includes at least one of Nd, Al, Cu, Ag, Dy, Tb, V, Mo, Zr, Ta, Ti, W, and Nb.
  • R Is a substituent composed of a hydrocarbon having a carbon chain length of 2 to 16, which may be linear or branched.
  • X is an arbitrary integer.
  • a metal alkoxide is an organometallic compound satisfying the general formula: The metal alkoxide is represented by the general formula M- (OR) n (M: metal element, R: organic group, n: valence of metal or metalloid).
  • Nd, Pr, Dy, Tb, W, Mo, V, Nb, Ta, Ti, Zr, Ir, Fe, Co, Ni, Cu, Zn, Cd, Al, Ga, In, Ge, Sb, Y, lanthanide, etc. are mentioned.
  • Nd, Al, Cu, Ag, Dy, Tb, V, Mo, Zr, Ta, Ti, W, and Nb are particularly used.
  • the type of alkoxide is not particularly limited, and examples thereof include methoxide, ethoxide, propoxide, isopropoxide, butoxide, alkoxide having 4 or more carbon atoms, and the like.
  • those having a low molecular weight are used for the purpose of suppressing residual coal by low-temperature decomposition as described later.
  • the methoxide having 1 carbon atom is easily decomposed and difficult to handle, and moreover, since the alkoxide is used as a dispersant for wet grinding as described later, the carbon chain length of R is particularly preferably 2 to 16. Is preferably 6 to 14, more preferably 10 to 14 alkoxide. Specific examples include butoxide having a carbon chain length of 4, hexoxide having a carbon chain length of 6, decanoxide having a carbon chain length of 10, tetradecanoxide having a carbon chain length of 14, and the like.
  • the carbon chain length of the organometallic compound to be used is too long, the organometallic compound is difficult to dissolve in a general-purpose solvent such as toluene.
  • the carbon chain length is set to 16 or less, more preferably 14 or less, in order to uniformly attach the organometallic compound to the surface of the Nd magnet particle.
  • organometallic compound composed of an alkyl group if used, the organometallic compound can be more easily thermally decomposed. That is, in the present invention, M- (OR) x (wherein M is Nd, Al, Cu, Ag, Dy, Tb, V, Mo, Zr, Ta, Ti, At least one of W and Nb is included, R is an alkyl group having a carbon chain length (alkyl chain length) of 2 to 16, which may be linear or branched, and x is an arbitrary integer. It is desirable to use organometallic compounds.
  • the molded body is sintered under appropriate firing conditions, it is possible to prevent M from diffusing and penetrating (solid solution) into the main phase.
  • the substitution region by M can be made only the outer shell portion.
  • the core Nd 2 T 14 B intermetallic compound phase occupies a high volume ratio. Thereby, the fall of the residual magnetic flux density (magnetic flux density when the intensity of an external magnetic field is set to 0) of the magnet can be suppressed.
  • the permanent magnet 1 of this invention is produced by sintering the green sheet shape
  • pressure sintering is used as a method of sintering a green sheet. It is done.
  • pressure sintering include hot press sintering, hot isostatic pressing (HIP) sintering, ultra-high pressure synthetic sintering, gas pressure sintering, and discharge plasma (SPS) sintering.
  • HIP hot isostatic pressing
  • SPS discharge plasma
  • a sintering method that can reduce the warpage generated in the magnet after sintering. Therefore, in the present invention, among the above sintering methods, it is desirable to use uniaxial pressure sintering in which pressure is applied in the uniaxial direction and SPS sintering in which sintering is performed by current sintering.
  • SPS sintering is a sintering method in which a graphite sintering mold having a sintering object disposed therein is heated while being pressed in a uniaxial direction.
  • SPS sintering in addition to the thermal and mechanical energy used in general sintering by pulse current heating and mechanical pressure, electromagnetic energy due to pulse current and self-heating of the workpiece and The discharge plasma energy generated between the particles is used as a driving force for the sintering. Therefore, rapid heating / cooling is possible compared to atmosphere heating in an electric furnace or the like, and sintering can be performed in a lower temperature range.
  • a green body obtained by punching a green sheet into a desired product shape (for example, a fan shape shown in FIG. 1) is placed in a sintering mold of an SPS sintering apparatus.
  • the multiple (for example, 10 pieces) molded object 5 is arrange
  • the plurality of molded bodies 5 are arranged in one space, but may be arranged in different spaces for each molded body 5.
  • the punches that pressurize the compact 5 for each space are configured so as to be integrated between the spaces (that is, pressurization can be performed simultaneously).
  • the thickness accuracy of the green sheet is within ⁇ 5%, more preferably within ⁇ 3%, and even more preferably within ⁇ 1% of the design value.
  • the thickness accuracy of the green sheet is low (for example, ⁇ 5% or more with respect to the design value)
  • a plurality of (for example, ten) molded bodies 5 are simultaneously placed in the sintering mold 6 as shown in FIG.
  • the thickness d of each molded body 5 varies, so that an imbalance in the current flow of the pulse current for each molded body 5 occurs.
  • the binder resin kneaded with the magnetic powder when producing the green sheet includes polyisobutylene (PIB), butyl rubber (IIR), polyisoprene (IR), polybutadiene, polystyrene, and styrene-isoprene block.
  • PIB polyisobutylene
  • IIR butyl rubber
  • IR polyisoprene
  • polybutadiene polystyrene
  • polystyrene-isoprene block polymer
  • SBS Styrene-butadiene block copolymer
  • 2-methyl-1-pentene polymer resin 2-methyl-1-butene polymer resin
  • ⁇ -methylstyrene polymer resin polybutyl methacrylate
  • polymethyl Use methacrylate or the like polyisobutylene
  • the binder resin in order to reduce the amount of oxygen contained in the magnet, it is desirable to use a polymer (for example, polyisobutylene) made of hydrocarbon, having depolymerization properties and excellent in thermal decomposability. .
  • a resin other than polyethylene and polypropylene in order to appropriately dissolve the binder resin in a general-purpose solvent such as toluene, it is desirable to use a resin other than polyethylene and polypropylene as the binder resin.
  • the amount of binder resin added is an amount that appropriately fills the gaps between the magnet particles in order to improve the sheet thickness accuracy when the slurry is formed into a sheet.
  • the ratio of the binder resin to the total amount of magnet powder and binder resin in the slurry after addition of the binder resin is 4 wt% to 40 wt%, more preferably 7 wt% to 30 wt%, and even more preferably 10 wt% to 20 wt%. .
  • the magnet raw material is pulverized by wet pulverization such as a bead mill.
  • wet pulverization an organic solvent is generally used as a solvent for mixing the magnet raw material. Therefore, when producing a green sheet, it becomes possible to make magnet powder into a slurry form by adding binder resin in the organic solvent containing the ground magnet powder, for example.
  • the organic solvent used for wet pulverization include alcohols such as isopropyl alcohol, ethanol and methanol, lower hydrocarbons such as pentane and hexane, aromatics such as benzene, toluene and xylene, and esters such as ethyl acetate.
  • one or more organic solvents selected from organic compounds consisting of hydrocarbons are used for the purpose of reducing the amount of oxygen contained in the magnet as described later. It is desirable to use it.
  • the one or more organic solvents selected from organic compounds composed of hydrocarbons include toluene, hexane, pentane, benzene, xylene, and mixtures thereof.
  • toluene or hexane is used.
  • the organic solvent may contain a small amount of an organic compound other than the organic compound made of hydrocarbon.
  • the magnet raw material when the magnet raw material is pulverized by wet pulverization such as a bead mill, the above-described organometallic compound (for example, niobium decanoxide, niobium tetradecanoxide, niobium butoxide, etc.) is added as a dispersant.
  • the pulverization property of the wet pulverization is improved, and most of the magnet raw material can be pulverized to a fine particle size range (for example, 0.1 ⁇ m to 5.0 ⁇ m).
  • a fine particle size range for example, 0.1 ⁇ m to 5.0 ⁇ m.
  • the magnet powder may be made into a slurry by adding an organic solvent and a binder resin.
  • organic solvents selected from organic compounds that are also composed of hydrocarbons as the organic solvent added to the dried magnet powder.
  • FIG. 5 is an explanatory view showing a manufacturing process of the permanent magnet 1 according to the present embodiment.
  • an ingot made of a predetermined fraction of Nd—Fe—B (eg, Nd: 32.7 wt%, Fe (electrolytic iron): 65.96 wt%, B: 1.34 wt%) is manufactured. Thereafter, the ingot is roughly pulverized to a size of about 200 ⁇ m by a stamp mill or a crusher. Alternatively, the ingot is melted, flakes are produced by strip casting, and coarsely pulverized by hydrogen crushing. Thereby, coarsely pulverized magnet powder 10 is obtained.
  • Nd—Fe—B eg, Nd: 32.7 wt%, Fe (electrolytic iron): 65.96 wt%, B: 1.34 wt
  • the coarsely pulverized magnet powder 10 is finely pulverized into a predetermined range of particle size (for example, 0.1 ⁇ m to 5.0 ⁇ m) by a wet method using a bead mill, and the magnet powder is dispersed in a solvent to prepare a dispersion solution 11. Further, when pulverizing, an organometallic compound containing Nd, Al, Cu, Ag, Dy, Tb, V, Mo, Zr, Ta, Ti, W, or Nb is added as a dispersant to the solvent.
  • Detailed pulverization conditions by wet pulverization are as follows.
  • ⁇ Crushing device Bead mill
  • ⁇ Crushing media After grinding with ⁇ 2 mm zirconia beads for 2 hours, grinding with ⁇ 0.5 mm zirconia beads for 2 hours.
  • M- (OR) x (wherein M is Nd, Al, Cu, Ag, Dy, Tb, V, Mo, Zr, Ta, Ti, W, Nb) R is a substituent composed of a hydrocarbon having a carbon chain length of 2 to 16, which may be linear or branched, and x is an arbitrary integer)) (for example, Niobium decanoxide, niobium tetradecanoxide, niobium butoxide, etc.) are preferably used.
  • pulverization is an organic solvent
  • an organic solvent it is desirable to use the 1 or more types of organic solvent selected from the organic compound which consists of a hydrocarbon as mentioned above.
  • organic solvent there are toluene, hexane, pentane, benzene, xylene, a mixture thereof, and the like.
  • toluene or hexane is used.
  • the amount of the organometallic compound to be added is not particularly limited, but in order to properly function as a dispersant and to uniformly adhere the organometallic compound to the particle surface of the magnet powder, 0.1 part to The amount is 10 parts, preferably 0.2 to 8 parts, more preferably 0.5 to 5 parts (for example, 1 part).
  • a binder resin is further added to the dispersion solution 11. Thereby, a slurry 12 is produced in which a fine powder of a magnet raw material in which an organometallic compound is uniformly attached to the particle surface, a binder resin, and an organic solvent are mixed.
  • the binder resin it is desirable to use a polymer which is made of hydrocarbon as described above, has depolymerization properties, and is excellent in thermal decomposability. For example, polyisobutylene is used. Moreover, you may add binder resin in the state diluted with the solvent.
  • the amount of binder resin added is 4 wt% to 40 wt%, more preferably 7 wt% to 30 wt%, still more preferably the ratio of binder resin to the total amount of magnet powder and binder resin in the slurry after addition as described above. Is an amount of 10 wt% to 20 wt%.
  • the binder resin is added in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, or He gas.
  • a green sheet 13 is formed from the generated slurry 12.
  • the produced slurry 12 can be applied by an appropriate method on a support substrate 14 such as a separator and dried as necessary.
  • the coating method is preferably a method having excellent layer thickness controllability such as a doctor blade method, a die method, or a comma coating method.
  • it is desirable to use a die method or a comma coating method that is particularly excellent in layer thickness controllability that is, a method capable of high accuracy on the base material.
  • a die method is used.
  • the support base material 14 for example, a silicone-treated polyester film is used.
  • the green sheet 13 is dried by holding at 90 ° C. for 10 minutes and then holding at 130 ° C. for 30 minutes. Furthermore, it is preferable to sufficiently defoam the mixture so that bubbles do not remain in the spreading layer by using an antifoaming agent in combination.
  • FIG. 6 is a schematic view showing a process of forming the green sheet 13 by a die method.
  • the die 15 used in the die system is formed by overlapping the blocks 16 and 17 with each other, and the slit 18 and the cavity (liquid reservoir) 19 are formed by a gap between the blocks 16 and 17.
  • the cavity 19 communicates with a supply port 20 provided in the block 17.
  • the supply port 20 is connected to a slurry supply system constituted by a metering pump (not shown) or the like, and the measured slurry 12 is supplied to the cavity 19 via the supply port 20 by a metering pump or the like. Is done.
  • the slurry 12 supplied to the cavity 19 is fed to the slit 18 and is discharged from the discharge port 21 of the slit 18 with a predetermined application width with a uniform amount in the width direction by a constant amount per unit time.
  • the support base material 14 is conveyed at a preset speed with the rotation of the coating roll 22. As a result, the discharged slurry 12 is applied to the support base material 14 with a predetermined thickness.
  • the thickness accuracy of the green sheet 13 to be formed is within ⁇ 5%, more preferably within ⁇ 3%, and even more preferably within ⁇ 1% with respect to the design value (for example, 4 mm).
  • the set thickness of the green sheet 13 is desirably set in the range of 0.05 mm to 10 mm.
  • the productivity must be reduced because multiple layers must be stacked.
  • the thickness is greater than 10 mm, it is necessary to reduce the drying speed in order to suppress foaming during drying, and productivity is significantly reduced.
  • a pulsed magnetic field is applied to the green sheet 13 coated on the support base material 14 in a direction crossing the transport direction before drying.
  • the intensity of the applied magnetic field is 5000 [Oe] to 50000 [Oe], preferably 10,000 [Oe] to 20000 [Oe].
  • the direction in which the magnetic field is oriented needs to be determined in consideration of the direction of the magnetic field required for the permanent magnet 1 formed from the green sheet 13, but is preferably in the in-plane direction.
  • the green sheet 13 formed from the slurry 12 is punched into a desired product shape (for example, a fan shape shown in FIG. 1), and a formed body 25 is formed.
  • a desired product shape for example, a fan shape shown in FIG. 1
  • the molded body 25 is maintained in hydrogen by holding it for several hours (for example, 5 hours) at a binder resin decomposition temperature in a non-oxidizing atmosphere (in particular, a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas in the present invention).
  • a non-oxidizing atmosphere in particular, a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas in the present invention.
  • Perform calcination In the case of performing in a hydrogen atmosphere, for example, the supply amount of hydrogen during calcination is set to 5 L / min.
  • the binder resin can be decomposed into monomers by a depolymerization reaction or the like and scattered to be removed. That is, so-called decarbonization for reducing the amount of carbon in the molded body 25 is performed.
  • the calcination treatment in hydrogen is performed under the condition that the carbon content in the molded body 25 is 1500 ppm or less, more preferably 1000 ppm or less. Accordingly, the entire permanent magnet 1 can be densely sintered by the subsequent sintering process, and the residual magnetic flux density and coercive force are not reduced.
  • the binder resin decomposition temperature is determined based on the analysis result of the binder resin decomposition product and decomposition residue. Specifically, a temperature range is selected in which decomposition products of the binder are collected, decomposition products other than the monomers are not generated, and products due to side reactions of the remaining binder components are not detected even in the analysis of the residues. Although it varies depending on the type of the binder resin, it is set to 200 ° C. to 900 ° C., more preferably 400 ° C. to 600 ° C. (eg 600 ° C.).
  • a sintering process is performed to sinter the molded body 25 that has been calcined by the calcining process in hydrogen.
  • sintering is performed by pressure sintering.
  • pressure sintering include hot press sintering, hot isostatic pressing (HIP) sintering, ultra-high pressure synthetic sintering, gas pressure sintering, and discharge plasma (SPS) sintering.
  • HIP hot isostatic pressing
  • SPS discharge plasma
  • FIG. 7 is a schematic view showing a pressure sintering process of the compact 25 by SPS sintering.
  • SPS sintering As shown in FIG. 7, first, the molded body 25 is placed on a graphite sintering die 31. Note that the above-described calcination treatment in hydrogen may also be performed in a state where the molded body 25 is installed in the sintering mold 31. Then, the compact 25 placed on the sintering die 31 is held in the vacuum champ 32, and an upper punch 33 and a lower punch 34 made of graphite are set.
  • the plurality of molded bodies 5 are arranged in one space, but may be arranged in different spaces for each molded body 5.
  • the upper punch 33 and the lower punch 34 that pressurize the molded body 5 for each space are configured so as to be integrated between the spaces (that is, pressure can be applied simultaneously).
  • Specific sintering conditions are shown below. Pressurized value: 30 MPa Sintering temperature: raised to 940 ° C. at 10 ° C./min and held for 5 minutes
  • Atmosphere vacuum atmosphere of several Pa or less
  • toluene was used as an organic solvent for wet grinding.
  • 1 part of Nb decanoxide Nb (OC 10 H 21 ) 5
  • the pulverization was first pulverized with ⁇ 2 mm zirconia beads for 2 hours, and then pulverized with ⁇ 0.5 mm zirconia beads for 2 hours.
  • polyisobutylene was used as a binder resin to be added when the slurry was generated, and a slurry in which the ratio of the resin in the slurry after the addition was 16.7 w% was generated. Thereafter, the slurry was applied to a substrate by a die method to form a green sheet, and further punched into a desired product shape. The other steps are the same as those described in the above [Permanent magnet manufacturing method].
  • Example 2 The organometallic compound to be added when wet grinding was Nb tetradecanoxide (Nb (OC 14 H 29 ) 5 ). Other conditions are the same as in the example.
  • Example 3 The organometallic compound added when performing wet grinding was Nb butoxide (Nb (OC 4 H 9 ) 5 ). Other conditions are the same as in the example.
  • FIG. 8 to 11 are enlarged photographs showing magnet powders after wet pulverization of the permanent magnets of Examples 1 to 3 and Comparative Example 1.
  • FIG. 8 to 11 the particle size distribution of each magnet powder was measured, and D50 (median diameter) was calculated. Comparing each of the enlarged photographs of Examples 1 to 3 and Comparative Example 1, compared to Comparative Example 1 in which no organometallic compound was added in wet grinding, Examples 1 to 3 in which organometallic compound was added in wet grinding. Then, it turns out that the magnet raw material has been grind
  • Examples 1 to 3 D50 was 1.7 ⁇ m, 2.0 ⁇ m, and 3.7 ⁇ m, respectively, and most of the magnet raw material could be pulverized into a magnet powder having a particle size of 0.1 ⁇ m to 5.0 ⁇ m. Yes.
  • Comparative Example 1 D50 was 8.0 ⁇ m, indicating that the magnet raw material could not be pulverized to a magnet powder having a particle size of 0.1 ⁇ m to 5.0 ⁇ m.
  • the permanent magnets of Examples 1 to 3 can have a smaller crystal grain size after sintering than the permanent magnet of Comparative Example 1, and can improve the magnetic performance.
  • Nb1-eicosoxide which is an organometallic compound
  • Nb1-eicosoxide could not be dissolved in toluene. Therefore, it can be seen that when the carbon chain length of the organometallic compound is too long, the organometallic compound is difficult to dissolve in a general-purpose solvent such as toluene.
  • the added organometallic compound functions as a dispersant and improves the grindability of wet grinding.
  • an organometallic compound having a substituent R having a carbon chain length of 2 to 16 is used as the organometallic compound, most of the magnet raw material is 0.1 ⁇ m to while the organometallic compound is uniformly attached to the surface of the magnet particle. It turns out that it becomes possible to grind
  • Example 2 can pulverize the magnet raw material to a smaller particle size than Example 3, and Example 1 further pulverizes the magnetic material to a smaller particle size than Example 2. is made of. Therefore, compared with Nb butoxide having a carbon chain length of the substituent R of 4, Nb decanoxide having a carbon chain length of the substituent R of 10 or Nb tetradecanoxide having a carbon chain length of 14 is used for wet grinding. It can be seen that it is possible to improve the pulverization property.
  • the grindability of wet grinding varies depending on the carbon chain length of the substituent R of the organometallic compound to be added, and the carbon chain length is 2 to 16, more preferably 6 to 14, and even more preferably 10 to 14. As a result, the pulverizability can be improved.
  • the coarsely pulverized magnet powder and the general formula M- (OR) x (where M is Nd, Al, Cu, It contains at least one of Ag, Dy, Tb, V, Mo, Zr, Ta, Ti, W, and Nb, where R is a substituent composed of a hydrocarbon having a carbon chain length of 2 to 16, Branches may be used.
  • X is an arbitrary integer.
  • the permanent magnet 1 is manufactured by shaping
  • wet pulverization process which is a manufacturing process of the permanent magnet
  • wet pulverization can be improved by wet pulverizing the magnet raw material and the organometallic compound in an organic solvent.
  • most of the magnet raw material can be pulverized to a fine particle size range (for example, 0.1 ⁇ m to 5.0 ⁇ m). As a result, the crystal grain size after sintering can be reduced, and the magnetic performance can be improved.
  • the organometallic compound can be easily dissolved in a general-purpose solvent such as toluene, and the magnet powder is appropriately attached to the particle surface. It becomes possible. Also, by adding an organometallic compound containing Nd, Al, Cu, Ag, Dy, Tb, V, Mo, Zr, Ta, Ti, W, Nb, etc., the organometallic compound adheres to the particle surface of the magnet powder. In the case where elements such as Nd, Al, Cu, Ag, Dy, Tb, V, Mo, Zr, Ta, Ti, W, and Nb are added to improve the magnet characteristics. Each element can be efficiently distributed with respect to the grain boundary of the magnet.
  • the magnetic characteristics of the permanent magnet to be manufactured can be improved, and the amount of each element added can be made smaller than in the prior art, so that a decrease in residual magnetic flux density can be suppressed.
  • the permanent magnet is manufactured by sintering a green sheet formed from a slurry in which magnet powder, a resin binder, and an organic solvent are mixed, the manufactured permanent magnet is uniformly contracted by sintering. Because there is no deformation such as warping or dent after sintering, and pressure unevenness at the time of pressing is eliminated, there is no need for correction processing after sintering, which has been done conventionally, and the manufacturing process is simplified Can do. Thereby, a permanent magnet can be formed with high dimensional accuracy.
  • the binder resin is scattered and removed by performing a calcination process in which the green sheet is kept at the binder resin decomposition temperature for a certain period of time in a non-oxidizing atmosphere.
  • the amount of carbon contained therein can be reduced in advance. As a result, it is possible to suppress the precipitation of ⁇ Fe in the main phase of the magnet after sintering, to densely sinter the entire magnet, and to prevent the coercive force from being lowered.
  • the organometallic compound when an organometallic compound composed of an alkyl group is used as the organometallic compound to be added, the organometallic compound can be thermally decomposed at a low temperature when calcining the magnet powder in a hydrogen atmosphere. Thereby, the thermal decomposition of the organometallic compound can be more easily performed on the entire magnet particle. Further, in the calcining treatment, the green sheet kneaded with the binder resin is held at 200 ° C. to 900 ° C., more preferably 400 ° C. to 600 ° C. for a certain time in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas. Therefore, the amount of carbon contained in the magnet can be more reliably reduced.
  • the pulverization conditions, kneading conditions, calcination conditions, sintering conditions, etc. of the magnet powder are not limited to the conditions described in the above examples.
  • the magnet powder is made into a slurry to produce a green sheet, and the green sheet is sintered to produce a permanent magnet.
  • the powder after the wet-pulverized magnet powder is dried. It is good also as sintering by a sintering method and producing a permanent magnet.
  • the green sheet is formed by the die method, but the green sheet is formed by using another method (for example, comma coating method, injection molding, mold molding, doctor blade method, etc.). Also good. However, it is desirable to use a system that can apply the slurry to the substrate with high accuracy. Further, the sintering method is not limited to pressure sintering, and may be sintered by vacuum firing. Moreover, in the said Example, although the wet bead mill is used as a means to wet pulverize magnet powder, you may use another wet pulverization system. For example, a nanomizer or the like may be used.
  • the magnet powder is made into a slurry by adding a binder resin to an organic solvent containing the pulverized magnet powder.
  • the magnet powder may be made into a slurry by adding an organic solvent and a binder resin.
  • toluene or hexane is used as the organic solvent added to the magnet powder, but other organic solvents may be used.
  • pentane, benzene, xylene, or a mixture thereof may be used.
  • Examples 1 and 2 as an organometallic compound containing Nd, Al, Cu, Ag, Dy, Tb, V, Mo, Zr, Ta, Ti, W, Nb, etc. added to the organic solvent during wet grinding.
  • Niobium decanoxide and niobium butoxide are used, but M- (OR) x (wherein M is Nd, Al, Cu, Ag, Dy, Tb, V, Mo, Zr, Ta, Ti, W, Nb R is a substituent composed of a hydrocarbon having a carbon chain length of 2 to 16, which may be linear or branched, and x is an arbitrary integer.) Any other organometallic compound may be used. Further, M may be configured to include an element other than the metal element.
  • the Nd—Fe—B system magnet has been described as an example, but other magnets may be used. Further, in the present invention, the Nd component is larger than the stoichiometric composition in the present invention, but it may be stoichiometric.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

 湿式粉砕の粉砕性を向上させることにより、磁気性能を向上させた希土類永久磁石及び希土類永久磁石の製造方法を提供する。 粗粉砕された磁石粉末と一般式M-(OR)(式中、MはNd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素鎖長が2~16の炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物とを有機溶媒中で湿式粉砕することにより、磁石原料を粉砕して磁石粉末を得るとともに該磁石粉末の粒子表面に有機金属化合物を付着させる。その後、有機金属化合物を付着させた磁石粉末を成形して焼結を行うことによって永久磁石1を製造する。

Description

希土類永久磁石及び希土類永久磁石の製造方法
 本発明は、希土類永久磁石及び希土類永久磁石の製造方法に関する。
 近年、ハイブリッドカーやハードディスクドライブ等に使用される永久磁石モータでは、小型軽量化、高出力化、高効率化が要求されている。そして、上記永久磁石モータにおいて小型軽量化、高出力化、高効率化を実現するに当たって、永久磁石モータに埋設される永久磁石について、更なる磁気特性の向上が求められている。尚、永久磁石としてはフェライト磁石、Sm-Co系磁石、Nd-Fe-B系磁石、SmFe17系磁石等があるが、特に残留磁束密度の高いNd-Fe-B系磁石が永久磁石モータ用の永久磁石として用いられる。
 ここで、永久磁石の製造方法としては、一般的に粉末焼結法が用いられる。ここで、粉末焼結法は、先ず原材料を粗粉砕し、ジェットミル(乾式粉砕)や湿式ビーズミル(湿式粉砕)により微粉砕した磁石粉末を製造する。その後、その磁石粉末を型に入れて、外部から磁場を印加しながら所望の形状にプレス成形する。そして、所望形状に成形された固形状の磁石粉末を所定温度(例えばNd-Fe-B系磁石では800℃~1150℃)で焼結することにより製造する。
特開第3298219号公報(第4頁、第5頁)
 また、永久磁石の磁気特性は、磁石の磁気特性が単磁区微粒子理論により導かれるために、焼結体の結晶粒径を微小にすれば磁気性能が基本的に向上することが知られている。そして、焼結体の結晶粒径を微小にするためには、焼結前の磁石原料の粒径も微小にする必要がある。
 ここで、磁石原料を粉砕する際に用いられる粉砕方法の一つである湿式ビーズミル粉砕は、容器の中にビーズ(メディア)を充填して回転させ、原料を溶媒に混入したスラリーを加えて、原料を摺りつぶして粉砕する方法である。そして、湿式ビーズミル粉砕を行うことによって、磁石原料を微小な粒径範囲まで粉砕することが可能となる。しかしながら、従来の技術では、湿式ビーズミル粉砕を用いた場合であっても、磁石原料の大半を微小な粒径範囲(例えば0.1μm~5.0μm)まで粉砕することは困難であった。
 本発明は前記従来における問題点を解消するためになされたものであり、磁石原料を湿式粉砕する場合において、特定の有機金属化合物を添加した状態で湿式粉砕することにより、湿式粉砕の粉砕性を向上させ、その結果、焼結後の結晶粒径を微小にすることが可能となり、磁気性能を向上させた希土類永久磁石及び希土類永久磁石の製造方法を提供することを目的とする。
 前記目的を達成するため本発明に係る希土類永久磁石は、磁石原料と一般式M-(OR)(式中、MはNd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素鎖長が2~16の炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物とを有機溶媒中で湿式粉砕することにより、前記磁石原料を粉砕して磁石粉末を得るとともに該磁石粉末の粒子表面に前記有機金属化合物を付着させる工程と、前記磁石粉末を成形することにより成形体を作製する工程と、前記成形体を焼結する工程と、により製造されることを特徴とする。
 また、本発明に係る希土類永久磁石は、前記一般式中のRは、アルキル基であることを特徴とする。
 また、本発明に係る希土類永久磁石は、前記成形体を作製する工程は、前記磁石粉末と前記有機溶媒とバインダー樹脂とが混合されたスラリーを生成し、前記スラリーをシート状に成形することにより、前記成形体としてグリーンシートを作製することを特徴とする。
 また、本発明に係る希土類永久磁石は、前記成形体を焼結する前に、前記成形体を非酸化性雰囲気下でバインダー樹脂分解温度に一定時間保持することにより前記バインダー樹脂を飛散させて除去することを特徴とする。
 また、本発明に係る希土類永久磁石は、前記バインダー樹脂を飛散させて除去する工程では、前記成形体を水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下において200℃~900℃で一定時間保持することを特徴とする。
 また、本発明に係る希土類永久磁石の製造方法は、磁石原料と一般式M-(OR)(式中、MはNd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素鎖長が2~16の炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物とを有機溶媒中で湿式粉砕することにより、前記磁石原料を粉砕して磁石粉末を得るとともに該磁石粉末の粒子表面に前記有機金属化合物を付着させる工程と、前記磁石粉末を成形することにより成形体を作製する工程と、前記成形体を焼結する工程と、を有することを特徴とする。
 また、本発明に係る希土類永久磁石の製造方法は、前記一般式中のRは、アルキル基であることを特徴とする。
 また、本発明に係る希土類永久磁石の製造方法は、前記成形体を作製する工程は、前記磁石粉末と前記有機溶媒とバインダー樹脂とが混合されたスラリーを生成し、前記スラリーをシート状に成形することにより、前記成形体としてグリーンシートを作製することを特徴とする。
 また、本発明に係る希土類永久磁石の製造方法は、前記成形体を焼結する前に、前記成形体を非酸化性雰囲気下でバインダー樹脂分解温度に一定時間保持することにより前記バインダー樹脂を飛散させて除去することを特徴とする。
 更に、本発明に係る希土類永久磁石の製造方法は、前記バインダー樹脂を飛散させて除去する工程では、前記成形体を水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下において200℃~900℃で一定時間保持することを特徴とする。
 前記構成を有する本発明に係る希土類永久磁石によれば、希土類永久磁石の製造工程である湿式粉砕の工程において、磁石原料と有機金属化合物とを有機溶媒中で湿式粉砕することにより、湿式粉砕の粉砕性を向上させることが可能となる。例えば、磁石原料の大半を微小な粒径範囲(例えば0.1μm~5.0μm)まで粉砕することが可能となる。その結果、焼結後の結晶粒径を微小にすることができ、磁気性能を向上させることが可能となる。
 また、Nd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nb等を含む有機金属化合物を添加することにより、磁石粉末の粒子表面に有機金属化合物を付着させ、その後に焼結を行うので、磁石特性を向上させる為にNd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nb等の元素を添加する場合において、各元素を磁石の粒界に対して効率よく偏在させることができる。その結果、永久磁石の磁石特性を向上させるとともに、各元素の添加量を従来に比べて少量にできるので、残留磁束密度の低下を抑制することができる。
 また、有機金属化合物をトルエン等の汎用溶媒に対して容易に溶解させることができ、磁石粉末の粒子表面への付着を適切に行うことが可能となる。
 また、本発明に係る希土類永久磁石によれば、磁石粉末に添加する有機金属化合物として、アルキル基から構成される有機金属化合物を用いるので、有機金属化合物の熱分解を容易に行うことが可能となる。その結果、仮焼を行う場合に成形体中の炭素量をより確実に低減させることが可能となる。
 また、本発明に係る希土類永久磁石によれば、磁石粉末と樹脂バインダーと有機溶媒とが混合されたスラリーから成形したグリーンシートを焼結した磁石により永久磁石を構成するので、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、また、プレス時の圧力むらが無くなることから、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で永久磁石を成形可能となる。また、永久磁石を薄膜化した場合であっても、材料歩留まりを低下させることなく、加工工数が増加することも防止できる。
 また、本発明に係る希土類永久磁石によれば、グリーンシートを仮焼する前に、グリーンシートを非酸化性雰囲気下でバインダー樹脂分解温度に一定時間保持することによりバインダー樹脂を飛散させて除去するので、磁石内に含有する炭素量を予め低減させることができる。その結果、焼結後の磁石の主相内にαFeが析出することを抑え、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。
 ままた、本発明に係る希土類永久磁石によれば、バインダー樹脂が混練されたグリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下で仮焼することにより、磁石内に含有する炭素量をより確実に低減させることができる。
 また、本発明に係る希土類永久磁石の製造方法によれば、希土類永久磁石の製造工程である湿式粉砕の工程において、磁石原料と有機金属化合物とを有機溶媒中で湿式粉砕することにより、湿式粉砕の粉砕性を向上させることが可能となる。例えば、磁石原料の大半を微小な粒径範囲(例えば0.1μm~5.0μm)まで粉砕することが可能となる。その結果、焼結後の結晶粒径を微小にすることができ、製造される希土類永久磁石の磁気性能を向上させることが可能となる。
 また、Nd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nb等を含む有機金属化合物を添加することにより、磁石粉末の粒子表面に有機金属化合物を付着させ、その後に焼結を行うので、磁石特性を向上させる為にNd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nb等の元素を添加する場合において、各元素を磁石の粒界に対して効率よく偏在させることができる。その結果、製造される永久磁石の磁石特性を向上させるとともに、各元素の添加量を従来に比べて少量にできるので、残留磁束密度の低下を抑制することができる。
 また、有機金属化合物をトルエン等の汎用溶媒に対して容易に溶解させることができ、磁石粉末の粒子表面への付着を適切に行うことが可能となる。
 また、本発明に係る希土類永久磁石の製造方法によれば、磁石粉末に添加する有機金属化合物として、アルキル基から構成される有機金属化合物を用いるので、有機金属化合物の熱分解を容易に行うことが可能となる。その結果、仮焼を行う場合に成形体中の炭素量をより確実に低減させることが可能となる。
 また、本発明に係る希土類永久磁石の製造方法によれば、磁石粉末と樹脂バインダーと有機溶媒とが混合されたスラリーから成形したグリーンシートを焼結した磁石により永久磁石を構成するので、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、また、プレス時の圧力むらが無くなることから、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で永久磁石を成形可能となる。また、永久磁石を薄膜化した場合であっても、材料歩留まりを低下させることなく、加工工数が増加することも防止できる。
 また、本発明に係る希土類永久磁石の製造方法によれば、グリーンシートを仮焼する前に、グリーンシートを非酸化性雰囲気下でバインダー樹脂分解温度に一定時間保持することによりバインダー樹脂を飛散させて除去するので、磁石内に含有する炭素量を予め低減させることができる。その結果、焼結後の磁石の主相内にαFeが析出することを抑え、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。
 更に、本発明に係る希土類永久磁石の製造方法によれば、バインダー樹脂が混練されたグリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下で仮焼することにより、磁石内に含有する炭素量をより確実に低減させることができる。
図1は、本発明に係る永久磁石を示した全体図である。 図2は、本発明に係る永久磁石の粒界付近を拡大して示した模式図である。 図3は、本発明に係るグリーンシートの厚み精度の向上に基づく焼結時の効果を説明した図である。 図4は、本発明に係るグリーンシートの厚み精度の向上に基づく焼結時の効果を説明した図である。 図5は、本発明に係る永久磁石の製造工程を示した説明図である。 図6は、本発明に係る永久磁石の製造工程の内、特にグリーンシートの形成工程を示した説明図である。 図7は、本発明に係る永久磁石の製造工程の内、特にグリーンシートの加圧焼結工程を示した説明図である。 図8は、実施例1の永久磁石について、湿式粉砕後の磁石粉末を示した拡大写真である。 図9は、実施例2の永久磁石について、湿式粉砕後の磁石粉末を示した拡大写真である。 図10は、実施例3の永久磁石について、湿式粉砕後の磁石粉末を示した拡大写真である。 図11は、比較例1の永久磁石について、湿式粉砕後の磁石粉末を示した拡大写真である。
 以下、本発明に係る希土類永久磁石及び希土類永久磁石の製造方法について具体化した一実施形態について以下に図面を参照しつつ詳細に説明する。
[永久磁石の構成]
 先ず、本発明に係る永久磁石1の構成について説明する。図1は本発明に係る永久磁石1を示した全体図である。尚、図1に示す永久磁石1は扇型形状を備えるが、永久磁石1の形状は打ち抜き形状によって変化する。
 本発明に係る永久磁石1はNd-Fe-B系磁石である。尚、各成分の含有量はNd:27~40wt%、B:1~2wt%、Fe(電解鉄):60~70wt%とする。また、磁気特性向上の為、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nb等の他元素を少量含んでも良い。図1は本実施形態に係る永久磁石1を示した全体図である。
 ここで、永久磁石1は例えば0.05mm~10mm(例えば4mm)の厚さを備えた薄膜状の永久磁石である。そして、後述のようにバインダー樹脂が混練され、スラリー状態とした磁石粉末から成形されたグリーンシートを焼結することによって作製される。
 また、本発明に係る永久磁石1は、図2に示すように永久磁石1を構成するNd結晶粒子2の結晶粒の表面部分(外殻)において、Ndの一部をAl、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W又はNb等で置換した層3(以下、外殻層3という)を生成することにより、Dy等をNd結晶粒子2の粒界に対して偏在させる。図2は永久磁石1を構成するNd結晶粒子2を拡大して示した図である。
 また、本発明ではDy等の置換は、後述のように粉砕された磁石粉末を成形する前にDy等を含む有機金属化合物が添加されることにより行われる。具体的には、磁石原料を湿式粉砕する際に、有機溶媒中にM-(OR)(式中、MはNd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素鎖長が2~16の炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされるMを含む有機金属化合物(例えば、ニオブデカノキシド、ニオブテトラデカノキシド、ニオブブトキシドなど)を添加し、湿式状態で磁石粉末に混合する。
 その際に、特にMとしてDy、Tbを含める場合には、Dy又はTbを含む有機金属化合物を有機溶媒中で分散させ、Nd磁石粒子の粒子表面にDy又はTbを含む有機金属化合物を効率よく付着することが可能となる。そして、Dy又はTbを含む有機金属化合物を添加した磁石粉末を焼結する際に、湿式分散によりNd磁石粒子の粒子表面に均一付着された該有機金属化合物中のDy又はTbが、Nd磁石粒子の結晶成長領域へと拡散侵入して置換が行われ、Nd結晶粒子2の表面に外殻層3としてDy層又はTb層を形成する。その結果、磁石粒子の粒界にDy又はTbを偏在化することが可能となる。尚、Dy層は例えば(DyxNd1-x2Fe14B金属間化合物から構成される。そして、粒界に偏在されたDyやTbが粒界の逆磁区の生成を抑制することで、保磁力の向上が可能となる。また、DyやTbの添加量が従来に比べて少なくすることができ、残留磁束密度の低下を抑制することができる。
 一方、特にMとしてV、Mo、Zr、Ta、Ti、W、Nb(以下、Nb等という)の高融点金属元素を含める場合には、Nb等を含む有機金属化合物を有機溶媒中で分散させ、Nd磁石粒子の粒子表面にNb等を含む有機金属化合物を均一付着することが可能となる。その結果、磁石粉末を焼結する際に、湿式分散によりNd磁石粒子の粒子表面に均一付着された該有機金属化合物中のNb等が、Nd結晶粒子の結晶成長領域へと拡散侵入して置換が行われ、Nd結晶粒子2の表面に外殻層3として高融点金属層を形成する。尚、高融点金属層は例えばNbFeB金属間化合物から構成される。そして、Nd結晶粒子の表面にコーティングされた高融点金属層は、永久磁石1の焼結時においてはNd結晶粒子の平均粒径が増加する所謂粒成長を抑制する手段として機能する。その結果、焼結時における結晶粒の粒成長を抑制することが可能となる。
 また、Nd結晶粒子2の結晶粒径は0.1μm~5.0μmとすることが望ましい。焼結体の結晶粒径を微小にすることによって、磁気性能を向上させることが可能となる。特に、その結晶粒径を単磁区粒径とすれば、永久磁石1の磁気性能を飛躍的に向上させることが可能となる。
 ここで、上記M-(OR)(式中、MはNd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素鎖長が2~16の炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)の一般式を満たす有機金属化合物として金属アルコキシドがある。金属アルコキシドとは、一般式M-(OR)(M:金属元素、R:有機基、n:金属又は半金属の価数)で表される。また、金属アルコキシドを形成する金属又は半金属としては、Nd、Pr、Dy、Tb、W、Mo、V、Nb、Ta、Ti、Zr、Ir、Fe、Co、Ni、Cu、Zn、Cd、Al、Ga、In、Ge、Sb、Y、lanthanideなどが挙げられる。但し、本発明では特に、Nd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbを用いる。
 また、アルコキシドの種類は特に限定されることなく、例えば、メトキシド、エトキシド、プロポキシド、イソプロポキシド、ブトキシド、炭素数4以上のアルコキシド等が挙げられる。但し、本発明では後述のように低温分解で残炭を抑制する目的から、低分子量のものを用いる。また、炭素数1のメトキシドについては分解し易く、取扱いが困難であり、更に、後述のようにアルコキシドを湿式粉砕の分散剤として用いる為に、特にRの炭素鎖長が2~16、より好ましくは6~14、更に好ましくは10~14のアルコキシドを用いることが好ましい。具体的には、炭素鎖長が4のブトキシド、炭素鎖長が6のヘキソキシド、炭素鎖長が10のデカノキシド、炭素鎖長が14のテトラデカノキシド等がある。
 尚、用いる有機金属化合物の炭素鎖長が長すぎると、有機金属化合物がトルエン等の汎用溶媒に対して溶解し難くなる。特に炭素鎖長が17以上となると溶解性が悪化し、有機金属化合物をNd磁石粒子の表面に均一に付着させることが困難となる。そこで、有機金属化合物をNd磁石粒子の表面に均一に付着させる為に、炭素鎖長は16以下、より好ましくは14以下とする。
 また、アルキル基から構成される有機金属化合物を用いることとすれば、有機金属化合物の熱分解をより容易に行うことが可能となる。即ち、本発明では、特に磁石粉末に添加する有機金属化合物としてM-(OR)(式中、MはNd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素鎖長(アルキル鎖長)が2~16のアルキル基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物を用いることが望ましい。
 また、成形された成形体を適切な焼成条件で焼結すれば、Mが主相内へと拡散浸透(固溶化)することを防止できる。それにより、本発明では、Mを添加したとしてもMによる置換領域を外殻部分のみとすることができる。その結果、結晶粒全体としては(すなわち、焼結磁石全体としては)、コアのNd214B金属間化合物相が高い体積割合を占めた状態となる。それにより、その磁石の残留磁束密度(外部磁場の強さを0にしたときの磁束密度)の低下を抑制することができる。
 また、本発明の永久磁石1は、スラリー状態とした磁石粉末から成形されたグリーンシートを焼結することによって作製されるが、グリーンシートを焼結する方法としては、例えば加圧焼結が用いられる。加圧焼結としては、例えば、ホットプレス焼結、熱間静水圧加圧(HIP)焼結、超高圧合成焼結、ガス加圧焼結、放電プラズマ(SPS)焼結等がある。但し、焼結時の磁石粒子の粒成長を抑制する為に、より短時間且つ低温で焼結する焼結方法を用いることが望ましい。また、焼結後の磁石に生じる反りを減少させることが可能な焼結方法を用いることが望ましい。従って、特に本発明では、上記焼結方法の内、一軸方向に加圧する一軸加圧焼結であって且つ通電焼結により焼結するSPS焼結を用いることが望ましい。
 ここで、SPS焼結は、焼結対象物を内部に配置したグラファイト製の焼結型を、一軸方向に加圧しながら加熱する焼結方法である。また、SPS焼結では、パルス通電加熱と機械的な加圧により、一般的な焼結に用いられる熱的および機械的エネルギに加えて、パルス通電による電磁的エネルギや被加工物の自己発熱および粒子間に発生する放電プラズマエネルギーなどを複合的に焼結の駆動力としている。従って、電気炉等の雰囲気加熱よりも急速昇温・冷却が可能となり、また、低い温度域で焼結することが可能となる。その結果、焼結工程での昇温・保持時間を短縮でき、磁石粒子の粒成長を抑制した緻密な焼結体の作製が可能となる。また、焼結対象物は一軸方向に加圧された状態で焼結されるので、焼結後に生じる反りを減少させることが可能となる。
 また、SPS焼結を行う際には、グリーンシートを所望の製品形状(例えば、図1に示す扇形形状)に打ち抜いた成形体をSPS焼結装置の焼結型内に配置して行う。そして、本発明では、生産性を向上させる為に、図3に示すように複数(例えば10個)の成形体5を同時に焼結型6内に配置して行う。尚、図3に示す例では複数の成形体5は一の空間にそれぞれ配置されているが、成形体5毎に異なる空間に配置するようにしても良い。但し、その場合でも空間毎に成形体5を加圧する各パンチは各空間の間で一体とする(即ち同時に加圧ができる)ように構成する。ここで、本発明では、後述のようにグリーンシートの厚み精度を設計値に対して±5%以内、より好ましくは±3%以内、更に好ましくは±1%以内とする。その結果、本発明では図3に示すように、複数(例えば10個)の成形体5を同時に焼結型6内に配置して焼結を行った場合であっても、各成形体5の厚みdが均一である為に、各成形体5について加圧値や焼結温度のバラつきが生じず、適切に焼結することが可能となる。一方、グリーンシートの厚み精度が低い(例えば設計値に対して±5%以上)と、図4に示すように、複数(例えば10個)の成形体5を同時に焼結型6内に配置して焼結を行った場合において、各成形体5の厚みdにバラつきがある為に、成形体5毎のパルス電流の通電の不均衡が生じ、また、各成形体5について加圧値や焼結温度のバラつきが生じ、適切に焼結することができない。
 また、本発明ではグリーンシートを作製する際に磁石粉末に混練されるバインダー樹脂はとしては、ポリイソブチレン(PIB)、ブチルゴム(IIR)、ポリイソプレン(IR)、ポリブタジエン、ポリスチレン、スチレン-イソプレンブロック共重合体(SIS)、スチレン-ブタジエンブロック共重合体(SBS)、2-メチル-1-ペンテン重合樹脂、2-メチル-1-ブテン重合樹脂、α-メチルスチレン重合樹脂、ポリブチルメタクリレート、ポリメチルメタクリレート等を用いる。尚、α-メチルスチレン重合樹脂は柔軟性を与えるために低分子量のポリイソブチレンを添加することが望ましい。また、バインダー樹脂としては、磁石内に含有する酸素量を低減させる為に、炭化水素からなり、且つ解重合性があり、熱分解性に優れるポリマー(例えば、ポリイソブチレン等)を用いることが望ましい。
 尚、バインダー樹脂をトルエン等の汎用溶媒に対して適切に溶解させる為に、バインダー樹脂としてはポリエチレン、ポリプロピレン以外の樹脂を用いることが望ましい。
 また、バインダー樹脂の添加量は、スラリーをシート状に成形する際にシートの厚み精度を向上させる為に、磁石粒子間の空隙を適切に充填する量とする。例えば、バインダー樹脂添加後のスラリー中における磁石粉末とバインダー樹脂の合計量に対するバインダー樹脂の比率が、4wt%~40wt%、より好ましくは7wt%~30wt%、更に好ましくは10wt%~20wt%とする。
 また、本発明では、磁石原料をビーズミル等の湿式粉砕により粉砕する。また、湿式粉砕では、一般的に磁石原料を混入する溶媒として有機溶媒が用いられる。従って、グリーンシートを作製する際には、例えば粉砕された磁石粉末を含む有機溶媒中にバインダー樹脂を添加することにより磁石粉末をスラリー状とすることが可能となる。ここで、湿式粉砕に用いられる有機溶媒としては、イソプロピルアルコール、エタノール、メタノールなどのアルコール類、ペンタン、ヘキサンなどの低級炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族類、酢酸エチルなどのエステル類、ケトン類、それらの混合物等が使用できるが、本発明では後述のように磁石に含まれる酸素量を低減させる目的で、炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いることが望ましい。ここで、炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いるのが望ましい。ここで、炭化水素からなる有機化合物から選択される1種以上の有機溶媒としては、トルエン、ヘキサン、ペンタン、ベンゼン、キシレン、それらの混合物等がある。例えば、トルエン又はヘキサンを用いる。尚、有機溶媒には炭化水素からなる有機化合物以外の有機化合物を少量含む構成としても良い。
 また、本発明では、磁石原料をビーズミル等の湿式粉砕により粉砕する際に、分散剤として上述した有機金属化合物(例えば、ニオブデカノキシド、ニオブテトラデカノキシド、ニオブブトキシドなど)を添加する。それによって、湿式粉砕の粉砕性が向上し、磁石原料の大半を微小な粒径範囲(例えば0.1μm~5.0μm)まで粉砕することが可能となる。更に、湿式粉砕の過程で、磁石原料を粉砕すると同時に粉砕された磁石粉末の粒子表面に有機金属化合物を均一に付着させることが可能となる。
 尚、湿式粉砕された磁石粉末を一旦乾燥させた後に、有機溶媒とバインダー樹脂とを添加することによって磁石粉末をスラリー状にしても良い。但し、その場合において、乾燥させた磁石粉末に添加する有機溶媒は、同じく炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いるのが望ましい。
[永久磁石の製造方法]
 次に、本発明に係る永久磁石1の製造方法について図5を用いて説明する。図5は本実施形態に係る永久磁石1の製造工程を示した説明図である。
 先ず、所定分率のNd-Fe-B(例えばNd:32.7wt%、Fe(電解鉄):65.96wt%、B:1.34wt%)からなる、インゴットを製造する。その後、インゴットをスタンプミルやクラッシャー等によって200μm程度の大きさに粗粉砕する。若しくは、インゴットを溶解し、ストリップキャスト法でフレークを作製し、水素解砕法で粗粉化する。それによって、粗粉砕磁石粉末10を得る。
 次いで、粗粉砕磁石粉末10をビーズミルによる湿式法で所定範囲の粒径(例えば0.1μm~5.0μm)に微粉砕するとともに溶媒中に磁石粉末を分散させ、分散溶液11を作製する。また、粉砕を行うに際して、溶媒中にはNd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W又はNbを含む有機金属化合物を分散剤として添加する。
 尚、詳細な湿式粉砕による粉砕条件は以下の通りである。
  ・粉砕装置:ビーズミル
  ・粉砕メディア:φ2mmジルコニアビーズで2時間粉砕後に、φ0.5mmジルコニアビーズで2時間粉砕。
 ここで、溶解させる有機金属化合物としては、M-(OR)(式中、MはNd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素鎖長が2~16の炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)に該当する有機金属化合物(例えば、ニオブデカノキシド、ニオブテトラデカノキシド、ニオブブトキシドなど)を用いることが望ましい。また、粉砕に用いる溶媒は有機溶媒であるが、有機溶媒としては、上述したように炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いることが望ましい。例えば、トルエン、ヘキサン、ペンタン、ベンゼン、キシレン、それらの混合物等があるが、本発明では特にトルエン又はヘキサンを用いることとする。また、添加する有機金属化合物の量は特に制限されないが、分散剤として適切に機能させるとともに磁石粉末の粒子表面に有機金属化合物を均一に付着させる為に、磁石粉末に対して0.1部~10部、好ましくは0.2部~8部、より好ましくは0.5部~5部(例えば1部)とする。
 その後、分散溶液11に対して、更にバインダー樹脂を添加する。それによって、有機金属化合物が粒子表面に均一に付着された磁石原料の微粉末とバインダー樹脂と有機溶媒とが混合されたスラリー12を生成する。ここで、バインダー樹脂としては、上述したように炭化水素からなり、且つ解重合性があり、熱分解性に優れるポリマーを用いることが望ましい。例えばポリイソブチレンを用いる。また、バインダー樹脂は溶媒に希釈させた状態で添加しても良い。更に、バインダー樹脂の添加量は、上述したように添加後のスラリー中における磁石粉末とバインダー樹脂の合計量に対するバインダー樹脂の比率が4wt%~40wt%、より好ましくは7wt%~30wt%、更に好ましくは10wt%~20wt%となる量とする。尚、バインダー樹脂の添加は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行う。
 続いて、生成したスラリー12からグリーンシート13を形成する。グリーンシート13の形成する方法としては、例えば、生成したスラリー12を適宜な方式で必要に応じセパレータ等の支持基材14上に塗工して乾燥させる方法などにより行うことができる。尚、塗工方式は、ドクターブレード方式やダイ方式やコンマ塗工方式等の層厚制御性に優れる方式が好ましい。また、高い厚み精度を実現する為には、特に層厚制御性に優れた(即ち、基材に高精度することが可能な方式)であるダイ方式やコンマ塗工方式を用いることが望ましい。例えば、以下の実施例では、ダイ方式を用いる。また、支持基材14としては、例えばシリコーン処理ポリエステルフィルムを用いる。また、グリーンシート13の乾燥は、90℃×10分で保持した後、130℃×30分で保持することにより行う。更に、消泡剤を併用するなどして展開層中に気泡が残らないよう充分に脱泡処理することが好ましい。
 以下に、図6を用いてダイ方式によるグリーンシート13の形成工程についてより詳細に説明する。図6はダイ方式によるグリーンシート13の形成工程を示した模式図である。
 図6に示すようにダイ方式に用いられるダイ15は、ブロック16、17を互いに重ね合わせることにより形成されており、ブロック16、17との間の間隙によってスリット18やキャビティ(液溜まり)19を形成する。キャビティ19はブロック17に設けられた供給口20に連通される。そして、供給口20は定量ポンプ(図示せず)等によって構成されるスラリー供給系へと接続されており、キャビティ19には供給口20を介して、計量されたスラリー12が定量ポンプ等により供給される。更に、キャビティ19に供給されたスラリー12はスリット18へ送液されて単位時間一定量で幅方向に均一な圧力でスリット18の吐出口21から予め設定された塗布幅により吐出される。一方で、支持基材14はコーティングロール22の回転に伴って予め設定された速度で搬送される。その結果、吐出したスラリー12が支持基材14に対して所定厚さで塗布される。
 また、ダイ方式によるグリーンシート13の形成工程では、塗工後のグリーンシート13のシート厚みを実測し、実測値に基づいてダイ15と支持基材14間のギャップDをフィードバック制御することが望ましい。また、ダイ15に供給するスラリー量の変動は極力低下させ(例えば±0.1%以下の変動に抑える)、更に塗工速度の変動についても極力低下させる(例えば±0.1%以下の変動に抑える)ことが望ましい。それによって、グリーンシート13の厚み精度を更に向上させることが可能である。尚、形成されるグリーンシート13の厚み精度は、設計値(例えば4mm)に対して±5%以内、より好ましくは±3%以内、更に好ましくは±1%以内とする。
 尚、グリーンシート13の設定厚みは、0.05mm~10mmの範囲で設定することが望ましい。厚みを0.05mmより薄くすると、多層積層しなければならないので生産性が低下することとなる。一方で、厚みを10mmより厚くすると、乾燥時の発泡を抑制する為に乾燥速度を低下する必要があり、生産性が著しく低下する。
 また、支持基材14に塗工したグリーンシート13には、乾燥前に搬送方向に対して交差する方向にパルス磁場をかける。印加する磁場の強さは5000[Oe]~50000[Oe]、好ましくは、10000[Oe]~20000[Oe]とする。尚、磁場を配向させる方向は、グリーンシート13から成形される永久磁石1に求められる磁場方向を考慮して決定する必要があるが、面内方向とすることが好ましい。
 次に、スラリー12から形成したグリーンシート13を所望の製品形状(例えば、図1に示す扇形形状)に打ち抜きし、成形体25を成形する。
 その後、成形された成形体25を非酸化性雰囲気(特に本発明では水素雰囲気又は水素と不活性ガスの混合ガス雰囲気)においてバインダー樹脂分解温度で数時間(例えば5時間)保持することにより水素中仮焼処理を行う。水素雰囲気下で行う場合には、例えば仮焼中の水素の供給量は5L/minとする。水素中仮焼処理を行うことによって、バインダー樹脂を解重合反応等によりモノマーに分解し飛散させて除去することが可能となる。即ち、成形体25中の炭素量を低減させる所謂脱カーボンが行われることとなる。また、水素中仮焼処理は、成形体25中の炭素量が1500ppm以下、より好ましくは1000ppm以下とする条件で行うこととする。それによって、その後の焼結処理で永久磁石1全体を緻密に焼結させることが可能となり、残留磁束密度や保磁力を低下させることが無い。
 尚、バインダー樹脂分解温度は、バインダー樹脂分解生成物および分解残渣の分析結果に基づき決定する。具体的にはバインダーの分解生成物を補集し、モノマー以外の分解生成物が生成せず、かつ残渣の分析においても残留するバインダー成分の副反応による生成物が検出されない温度範囲が選ばれる。バインダー樹脂の種類により異なるが200℃~900℃、より好ましくは400℃~600℃(例えば600℃)とする。
 尚、水素中仮焼処理によって仮焼された成形体25を続いて真空雰囲気で保持することにより脱水素処理を行っても良い。脱水素処理では、水素中仮焼処理によって生成された成形体25中のNdH3(活性度大)を、NdH3(活性度大)→NdH2(活性度小)へと段階的に変化させることによって、水素仮焼中処理により活性化された仮焼体82の活性度を低下させる。それによって、水素中仮焼処理によって仮焼された仮焼体82をその後に大気中へと移動させた場合であっても、Ndが酸素と結び付くことを防止し、残留磁束密度や保磁力を低下させることが無い。
 続いて、水素中仮焼処理によって仮焼された成形体25を焼結する焼結処理を行う。本発明では、加圧焼結により焼結を行う。加圧焼結としては、例えば、ホットプレス焼結、熱間静水圧加圧(HIP)焼結、超高圧合成焼結、ガス加圧焼結、放電プラズマ(SPS)焼結等がある。但し、本発明では上述したように焼結時の磁石粒子の粒成長を抑制するとともに焼結後の磁石に生じる反りを抑える為に、一軸方向に加圧する一軸加圧焼結であって且つ通電焼結により焼結するSPS焼結を用いることが望ましい。
 以下に、図7を用いてSPS焼結による成形体25の加圧焼結工程についてより詳細に説明する。図7はSPS焼結による成形体25の加圧焼結工程を示した模式図である。
 図7に示すようにSPS焼結を行う場合には、先ず、グラファイト製の焼結型31に成形体25を設置する。尚、上述した水素中仮焼処理についても成形体25を焼結型31に設置した状態で行っても良い。そして、焼結型31に設置された成形体25を真空チャンパー32内に保持し、同じくグラファイト製の上部パンチ33と下部パンチ34をセットする。そして、上部パンチ33に接続された上部パンチ電極35と下部パンチ34に接続された下部パンチ電極36とを用いて、低電圧且つ高電流の直流パルス電圧・電流を印加する。それと同時に、上部パンチ33及び下部パンチ34に対して加圧機構(図示せず)を用いて夫々上下方向から荷重を付加する。その結果、焼結型31内に設置された成形体25は、加圧されつつ焼結が行われる。また、上述したように本発明では、生産性を向上させる為に、複数(例えば10個)の成形体を同時に焼結型31内に配置してSPS焼結を行う。尚、図7に示す例では複数の成形体5は一の空間にそれぞれ配置されているが、成形体5毎に異なる空間に配置するようにしても良い。但し、その場合でも空間毎に成形体5を加圧する上部パンチ33や下部パンチ34は各空間の間で一体とする(即ち同時に加圧ができる)ように構成する。
 尚、具体的な焼結条件を以下に示す。
   加圧値:30MPa
   焼結温度:940℃まで10℃/分で上昇させ、5分保持
   雰囲気:数Pa以下の真空雰囲気
 上記SPS焼結を行った後冷却し、再び600℃~1000℃で2時間熱処理を行う。そして、焼結の結果、永久磁石1が製造される。
 以下に、本発明の実施例について比較例と比較しつつ説明する。
(実施例1)
 実施例1はNd-Fe-B系磁石であり、合金組成はwt%でNd/Fe/B=32.7/65.96/1.34とする。また、湿式粉砕を行う際の有機溶媒としてトルエンを用いた。また、湿式粉砕を行う際には、有機金属化合物としてNbデカノキシド(Nb(OC10215)を磁石粉末に対して1部添加した。また、粉砕は、先ずφ2mmジルコニアビーズで2時間粉砕し、その後に、φ0.5mmジルコニアビーズで2時間粉砕した。更に、スラリーを生成する際に添加するバインダー樹脂としてポリイソブチレンを用い、添加後のスラリー中の樹脂の比率が16.7w%となるスラリーを生成した。その後、スラリーをダイ方式により基材に塗工してグリーンシートを成形し、更に、所望の製品形状に打ち抜きした。尚、他の工程は上述した[永久磁石の製造方法]と同様の工程とする。
(実施例2)
 湿式粉砕を行う際に添加する有機金属化合物をNbテトラデカノキシド(Nb(OC14295)とした。他の条件は実施例と同様である。
(実施例3)
 湿式粉砕を行う際に添加する有機金属化合物をNbブトキシド(Nb(OC495)とした。他の条件は実施例と同様である。
(比較例1)
 有機金属化合物を添加せずに湿式粉砕を行った。他の条件は実施例1と同様である。
(比較例2)
 湿式粉砕を行う際に添加する有機金属化合物をNb1-アイコソキシド(Nb(OC20415)とした。他の条件は実施例と同様である。
(実施例と比較例との比較)
 図8~図11は、実施例1~3と比較例1の永久磁石について、湿式粉砕後の磁石粉末を示した拡大写真である。また、実施例1~3と比較例1の永久磁石について、各磁石粉末の粒度分布を測定し、D50(メジアン径)を算出した。
 実施例1~3と比較例1の各拡大写真を比較すると、湿式粉砕において有機金属化合物を添加しなかった比較例1と比較して、湿式粉砕において有機金属化合物を添加した実施例1~3では、磁石原料を微小な粒径まで粉砕できていることが分かる。具体的に、実施例1~3では、D50がそれぞれ1.7μm、2.0μm、3.7μmとなり、磁石原料の大半を0.1μm~5.0μmの粒径を有する磁石粉末に粉砕できている。一方、比較例1では、D50が8.0μmとなり、磁石原料を0.1μm~5.0μmの粒径を有する磁石粉末まで粉砕できていないことが分かる。
 その結果、実施例1~3の永久磁石は、比較例1の永久磁石と比較して、焼結後の結晶粒径を微小にすることができ、磁気性能を向上させることが可能となる。
 また、比較例2では、有機金属化合物であるNb1-アイコソキシドをトルエンに溶解させることができなかった。従って、有機金属化合物の炭素鎖長が長すぎると、有機金属化合物がトルエン等の汎用溶媒に対して溶解し難くなることが分かる。
 以上の結果より、実施例1~3では、添加された有機金属化合物が分散剤として機能し、湿式粉砕の粉砕性を向上させていることが分かる。特に、有機金属化合物として、置換基Rの炭素鎖長が2~16の有機金属化合物を用いれば、有機金属化合物を磁石粒子の表面に均一に付着させつつ、磁石原料の大半を0.1μm~5.0μmの粒径を有する磁石粉末まで粉砕することが可能となることが分かる。
 また、実施例1~実施例3を比較すると、実施例2は実施例3より微小な粒径まで磁石原料を粉砕でき、更に実施例1は実施例2より微小な粒径まで磁石原料を粉砕できている。従って、置換基Rの炭素鎖長が4のNbブトキシドと比較して、置換基Rの炭素鎖長が10のNbデカノキシドや炭素鎖長が14のNbテトラデカノキシドを用いれば、より湿式粉砕の粉砕性を向上させることが可能となることが分かる。ここで、湿式粉砕の粉砕性は、添加する有機金属化合物の置換基Rの炭素鎖長によって変化し、炭素鎖長を2~16、より好ましくは6~14、更に好ましくは10~14とすることによって、その粉砕性を向上させることが可能となる。
 以上説明したように、本実施形態に係る永久磁石1及び永久磁石1の製造方法では、粗粉砕された磁石粉末と一般式M-(OR)(式中、MはNd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素鎖長が2~16の炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物とを有機溶媒中で湿式粉砕することにより、磁石原料を粉砕して磁石粉末を得るとともに該磁石粉末の粒子表面に有機金属化合物を付着させる。その後、有機金属化合物を付着させた磁石粉末を成形して焼結を行うことによって永久磁石1を製造する。そして、永久磁石の製造工程である湿式粉砕の工程において、磁石原料と有機金属化合物とを有機溶媒中で湿式粉砕することにより、湿式粉砕の粉砕性を向上させることが可能となる。例えば、磁石原料の大半を微小な粒径範囲(例えば0.1μm~5.0μm)まで粉砕することが可能となる。その結果、焼結後の結晶粒径を微小にすることができ、磁気性能を向上させることが可能となる。
 また、炭素鎖長が2~16の有機金属化合物を用いることによって、有機金属化合物をトルエン等の汎用溶媒に対して容易に溶解させることができ、磁石粉末の粒子表面への付着を適切に行うことが可能となる。
 また、Nd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nb等を含む有機金属化合物を添加することにより、磁石粉末の粒子表面に有機金属化合物を付着させ、その後に焼結を行うので、磁石特性を向上させる為にNd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nb等の元素を添加する場合において、各元素を磁石の粒界に対して効率よく偏在させることができる。その結果、製造される永久磁石の磁石特性を向上させるとともに、各元素の添加量を従来に比べて少量にできるので、残留磁束密度の低下を抑制することができる。
 また、磁石粉末と樹脂バインダーと有機溶媒とが混合されたスラリーから成形したグリーンシートを焼結することにより永久磁石を製造するので、製造された永久磁石は、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、また、プレス時の圧力むらが無くなることから、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で永久磁石を成形可能となる。また、永久磁石を薄膜化した場合であっても、材料歩留まりを低下させることなく、加工工数が増加することも防止できる。
 また、グリーンシートを焼結により焼結する前に、グリーンシートを非酸化性雰囲気下でバインダー樹脂分解温度に一定時間保持する仮焼処理を行うことによりバインダー樹脂を飛散させて除去するので、磁石内に含有する炭素量を予め低減させることができる。その結果、焼結後の磁石の主相内にαFeが析出することを抑え、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。
 また、特に添加する有機金属化合物としてアルキル基から構成される有機金属化合物を用いれば、水素雰囲気で磁石粉末を仮焼する際に、低温で有機金属化合物の熱分解を行うことが可能となる。それによって、有機金属化合物の熱分解を磁石粒子全体に対してより容易に行うことができる。
 更に、仮焼処理では、バインダー樹脂が混練されたグリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下で200℃~900℃、より好ましくは400℃~600℃に一定時間保持するので、磁石内に含有する炭素量をより確実に低減させることができる。
 尚、本発明は前記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。
 例えば、磁石粉末の粉砕条件、混練条件、仮焼条件、焼結条件などは上記実施例に記載した条件に限られるものではない。例えば、上記実施例では、磁石粉末をスラリー状にしてグリーンシートを作製し、グリーンシートを焼結することにより永久磁石を作製することとしているが、湿式粉砕後の磁石粉末を乾燥させた後に粉末焼結法により焼結して永久磁石を作製することとしても良い。また、射出成形、圧延成形、押出成形等により成形体を成形することとしても良い。また、上記実施例では、ダイ方式によりグリーンシートを形成しているが、他の方式(例えばコンマ塗工方式、射出成型、金型成型、ドクターブレード方式等)を用いてグリーンシートを形成しても良い。但し、スラリーを基材に高精度塗工することが可能な方式を用いることが望ましい。また、焼結方法は加圧焼結に限られることなく、真空焼成により焼結しても良い。また、上記実施例では、磁石粉末を湿式粉砕する手段として湿式ビーズミルを用いているが、他の湿式粉砕方式を用いても良い。例えば、ナノマイザー等を用いても良い。
 また、上記実施例では湿式粉砕した後に、粉砕された磁石粉末を含む有機溶媒にバインダー樹脂を添加することによって磁石粉末をスラリー状にしているが、湿式粉砕された磁石粉末を一旦乾燥させた後に、有機溶媒とバインダー樹脂とを添加することによって磁石粉末をスラリー状にしても良い。但し、その場合において、乾燥させた磁石粉末に添加する有機溶媒は、同じく炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いるのが望ましい。
 また、本実施例では磁石粉末に添加する有機溶媒としてトルエン又はヘキサンを用いたが、他の有機溶媒であっても良い。例えば、ペンタン、ベンゼン、キシレン、それらの混合物でも良い。
 また、上記実施例1、2では湿式粉砕時において有機溶媒に添加するNd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nb等を含む有機金属化合物としてニオブデカノキシド、ニオブブトキシドを用いているが、M-(OR)(式中、MはNd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素鎖長が2~16の炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物であれば、他の有機金属化合物であっても良い。また、Mとしては上記金属元素以外の元素を含む構成としても良い。
 また、本発明ではNd-Fe-B系磁石を例に挙げて説明したが、他の磁石を用いても良い。また、磁石の合金組成は本発明ではNd成分を量論組成より多くしているが、量論組成としても良い。
  1     永久磁石
  10    粗粉砕磁石粉末
  11    分散溶液
  12    スラリー
  13    グリーンシート
  25    成形体

Claims (10)

  1.  磁石原料と以下の一般式
     M-(OR)
    (式中、MはNd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素鎖長が2~16の炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)
    で表わされる有機金属化合物とを有機溶媒中で湿式粉砕することにより、前記磁石原料を粉砕して磁石粉末を得るとともに該磁石粉末の粒子表面に前記有機金属化合物を付着させる工程と、
     前記磁石粉末を成形することにより成形体を作製する工程と、
     前記成形体を焼結する工程と、により製造されることを特徴とする希土類永久磁石。
  2.  前記一般式中のRは、アルキル基であることを特徴とする請求項1に記載の希土類永久磁石。
  3.  前記成形体を作製する工程は、
       前記磁石粉末と前記有機溶媒とバインダー樹脂とが混合されたスラリーを生成し、
       前記スラリーをシート状に成形することにより、前記成形体としてグリーンシートを作製することを特徴とする請求項1又は請求項2に記載の希土類永久磁石。
  4.  前記成形体を焼結する前に、前記成形体を非酸化性雰囲気下でバインダー樹脂分解温度に一定時間保持することにより前記バインダー樹脂を飛散させて除去することを特徴とする請求項3に記載の希土類永久磁石。
  5.  前記バインダー樹脂を飛散させて除去する工程では、前記成形体を水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下において200℃~900℃で一定時間保持することを特徴とする請求項4に記載の希土類永久磁石。
  6.  磁石原料と以下の一般式
     M-(OR)
    (式中、MはNd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素鎖長が2~16の炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)
    で表わされる有機金属化合物とを有機溶媒中で湿式粉砕することにより、前記磁石原料を粉砕して磁石粉末を得るとともに該磁石粉末の粒子表面に前記有機金属化合物を付着させる工程と、
     前記磁石粉末を成形することにより成形体を作製する工程と、
     前記成形体を焼結する工程と、を有することを特徴とする希土類永久磁石の製造方法。
  7.  前記一般式中のRは、アルキル基であることを特徴とする請求項6に記載の希土類永久磁石の製造方法。
  8.  前記成形体を作製する工程は、
       前記磁石粉末と前記有機溶媒とバインダー樹脂とが混合されたスラリーを生成し、
       前記スラリーをシート状に成形することにより、前記成形体としてグリーンシートを作製することを特徴とする請求項6又は請求項7に記載の希土類永久磁石の製造方法。
  9.  前記成形体を焼結する前に、前記成形体を非酸化性雰囲気下でバインダー樹脂分解温度に一定時間保持することにより前記バインダー樹脂を飛散させて除去することを特徴とする請求項8に記載の希土類永久磁石の製造方法。
  10.  前記バインダー樹脂を飛散させて除去する工程では、前記成形体を水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下において200℃~900℃で一定時間保持することを特徴とする請求項9に記載の希土類永久磁石の製造方法。
PCT/JP2012/074471 2011-09-30 2012-09-25 希土類永久磁石及び希土類永久磁石の製造方法 WO2013047467A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
IN1766CHN2014 IN2014CN01766A (ja) 2011-09-30 2012-09-25
EP12836769.5A EP2763147A4 (en) 2011-09-30 2012-09-25 PERMANENT MAGNET BASED ON RARE EARTHS AND PRODUCTION METHOD FOR PERMANENT MAGNET BASED ON RARE EARTHS
US14/241,511 US20140241929A1 (en) 2011-09-30 2012-09-25 Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
KR1020147011139A KR20140082741A (ko) 2011-09-30 2012-09-25 희토류 영구 자석 및 희토류 영구 자석의 제조 방법
CN201280047635.6A CN103843081A (zh) 2011-09-30 2012-09-25 稀土类永久磁铁和稀土类永久磁铁的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-218589 2011-09-30
JP2011218589A JP5908246B2 (ja) 2011-09-30 2011-09-30 希土類永久磁石の製造方法

Publications (1)

Publication Number Publication Date
WO2013047467A1 true WO2013047467A1 (ja) 2013-04-04

Family

ID=47995499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074471 WO2013047467A1 (ja) 2011-09-30 2012-09-25 希土類永久磁石及び希土類永久磁石の製造方法

Country Status (8)

Country Link
US (1) US20140241929A1 (ja)
EP (1) EP2763147A4 (ja)
JP (1) JP5908246B2 (ja)
KR (1) KR20140082741A (ja)
CN (1) CN103843081A (ja)
IN (1) IN2014CN01766A (ja)
TW (1) TW201330022A (ja)
WO (1) WO2013047467A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170169922A1 (en) * 2014-02-12 2017-06-15 Nitto Denko Corporation Rare earth permanent magnet and method for producing rare earth permanent magnet
JP6511779B2 (ja) * 2014-11-12 2019-05-15 Tdk株式会社 R−t−b系焼結磁石
CN104599833B (zh) * 2015-01-16 2017-07-04 浙江和也健康科技有限公司 一种高韧性的稀土柔性磁条及其生产方法
AU2016253743B2 (en) * 2015-04-30 2018-12-20 Ihi Corporation Rare earth permanent magnet and method for producing rare earth permanent magnet
FR3069096B1 (fr) * 2017-07-12 2020-12-25 Commissariat Energie Atomique Procede de fabrication d'un aimant permanent
KR102398932B1 (ko) 2018-08-31 2022-05-16 주식회사 엘지화학 자석 분말의 제조 방법 및 자석 분말
CN110534331A (zh) * 2019-09-23 2019-12-03 广西科技大学 一种高磁能积、高矫顽力烧结钕铁硼磁体的制备方法
CN111331129A (zh) * 2020-04-26 2020-06-26 杭州屹通新材料股份有限公司 一种低松装密度CuSn10粉的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320708A (ja) * 1992-01-10 1993-12-03 Kawasaki Steel Corp 焼結性粉末射出成形用バインダおよび組成物
JP3298219B2 (ja) 1993-03-17 2002-07-02 日立金属株式会社 希土類―Fe−Co−Al−V−Ga−B系焼結磁石
JP2007134417A (ja) * 2005-11-08 2007-05-31 Neomax Co Ltd 希土類焼結磁石の製造方法
JP2009259957A (ja) * 2008-04-15 2009-11-05 Nitto Denko Corp 永久磁石及び永久磁石の製造方法
JP2009259955A (ja) * 2008-04-15 2009-11-05 Nitto Denko Corp 永久磁石及び永久磁石の製造方法
JP2009259956A (ja) * 2008-04-15 2009-11-05 Nitto Denko Corp 永久磁石及び永久磁石の製造方法
WO2011125591A1 (ja) * 2010-03-31 2011-10-13 日東電工株式会社 永久磁石及び永久磁石の製造方法
WO2011125592A1 (ja) * 2010-03-31 2011-10-13 日東電工株式会社 永久磁石及び永久磁石の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996022A (en) * 1989-07-14 1991-02-26 Juki Corporation Process for producing a sintered body
JPH0669009A (ja) * 1992-08-19 1994-03-11 Matsushita Electric Ind Co Ltd 希土類−鉄系磁石の製造方法
JP4448987B2 (ja) * 2000-06-09 2010-04-14 川研ファインケミカル株式会社 ビスマスアルコキシドの製造方法
JP2002363607A (ja) * 2001-06-13 2002-12-18 Sumitomo Metal Mining Co Ltd 希土類系磁性粉末、その製造方法及びこれを用いた磁石
JP2004031781A (ja) * 2002-06-27 2004-01-29 Nissan Motor Co Ltd 希土類磁石およびその製造方法、ならびに希土類磁石を用いてなるモータ
JP4525072B2 (ja) * 2003-12-22 2010-08-18 日産自動車株式会社 希土類磁石およびその製造方法
JP2005191187A (ja) * 2003-12-25 2005-07-14 Nissan Motor Co Ltd 希土類磁石およびその製造方法
JP2005197299A (ja) * 2003-12-26 2005-07-21 Tdk Corp 希土類焼結磁石及びその製造方法
DE112006000070T5 (de) * 2005-07-15 2008-08-14 Hitachi Metals, Ltd. Seltenerdmetall-Sintermagnet und Verfahren zu seiner Herstellung
US7569254B2 (en) * 2005-08-22 2009-08-04 Eastman Kodak Company Nanocomposite materials comprising high loadings of filler materials and an in-situ method of making such materials
EP2133891B1 (en) * 2007-03-30 2017-03-08 TDK Corporation Process for producing magnet
JP5320708B2 (ja) * 2007-09-06 2013-10-23 セイコーエプソン株式会社 文書管理装置、文書管理方法及び文書管理プログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320708A (ja) * 1992-01-10 1993-12-03 Kawasaki Steel Corp 焼結性粉末射出成形用バインダおよび組成物
JP3298219B2 (ja) 1993-03-17 2002-07-02 日立金属株式会社 希土類―Fe−Co−Al−V−Ga−B系焼結磁石
JP2007134417A (ja) * 2005-11-08 2007-05-31 Neomax Co Ltd 希土類焼結磁石の製造方法
JP2009259957A (ja) * 2008-04-15 2009-11-05 Nitto Denko Corp 永久磁石及び永久磁石の製造方法
JP2009259955A (ja) * 2008-04-15 2009-11-05 Nitto Denko Corp 永久磁石及び永久磁石の製造方法
JP2009259956A (ja) * 2008-04-15 2009-11-05 Nitto Denko Corp 永久磁石及び永久磁石の製造方法
WO2011125591A1 (ja) * 2010-03-31 2011-10-13 日東電工株式会社 永久磁石及び永久磁石の製造方法
WO2011125592A1 (ja) * 2010-03-31 2011-10-13 日東電工株式会社 永久磁石及び永久磁石の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2763147A4

Also Published As

Publication number Publication date
CN103843081A (zh) 2014-06-04
IN2014CN01766A (ja) 2015-05-29
EP2763147A1 (en) 2014-08-06
TW201330022A (zh) 2013-07-16
JP2013080738A (ja) 2013-05-02
EP2763147A4 (en) 2015-10-14
JP5908246B2 (ja) 2016-04-26
KR20140082741A (ko) 2014-07-02
US20140241929A1 (en) 2014-08-28

Similar Documents

Publication Publication Date Title
JP5908246B2 (ja) 希土類永久磁石の製造方法
JP5103553B1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5411956B2 (ja) 希土類永久磁石、希土類永久磁石の製造方法及び希土類永久磁石の製造装置
WO2013137134A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5969781B2 (ja) 希土類永久磁石の製造方法
JP2013030742A (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5203520B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
WO2015121915A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5203522B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5969782B2 (ja) 希土類永久磁石の製造方法
WO2015121914A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5203521B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
WO2015121913A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5307912B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
WO2012176510A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP2013191607A (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5969783B2 (ja) 希土類永久磁石の製造方法
JP2013191614A (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP2013191616A (ja) 希土類永久磁石及び希土類永久磁石の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836769

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14241511

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012836769

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012836769

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147011139

Country of ref document: KR

Kind code of ref document: A