WO2013047232A1 - スパッタリング用タンタル製コイルの再生方法及び該再生方法によって得られたタンタル製コイル - Google Patents

スパッタリング用タンタル製コイルの再生方法及び該再生方法によって得られたタンタル製コイル Download PDF

Info

Publication number
WO2013047232A1
WO2013047232A1 PCT/JP2012/073586 JP2012073586W WO2013047232A1 WO 2013047232 A1 WO2013047232 A1 WO 2013047232A1 JP 2012073586 W JP2012073586 W JP 2012073586W WO 2013047232 A1 WO2013047232 A1 WO 2013047232A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
sputtering
tantalum
cutting
regenerating
Prior art date
Application number
PCT/JP2012/073586
Other languages
English (en)
French (fr)
Inventor
塚本 志郎
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to KR1020167013884A priority Critical patent/KR20160067188A/ko
Priority to KR1020137034112A priority patent/KR20140071969A/ko
Priority to JP2012554904A priority patent/JP5280589B1/ja
Priority to CN201280040678.1A priority patent/CN103748258A/zh
Priority to US14/234,699 priority patent/US9536715B2/en
Priority to EP12835348.9A priority patent/EP2719793B1/en
Publication of WO2013047232A1 publication Critical patent/WO2013047232A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3476Testing and control
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/3288Maintenance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3447Collimators, shutters, apertures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49718Repairing
    • Y10T29/49748Repairing by shaping, e.g., bending, extruding, turning, etc.

Definitions

  • a coil in order to prevent generation of particles and arcing, a coil is arranged so as to surround a space between the substrate and the sputtering target in the sputtering apparatus.
  • the present invention relates to a method for regenerating a tantalum coil for sputtering, which regenerates the coil by removing sputtered particles deposited on the surface of a used coil, and a regenerated tantalum coil.
  • the tantalum coil for sputtering has a curved surface as shown in the drawings, which will be described later, but the surface of the coil can be an inner surface or an outer surface. Therefore, “the surface of the coil” described below means both the inner surface and the outer surface of the coil. The same applies hereinafter.
  • a sputtering method capable of easily controlling the film thickness and components has been frequently used as one of film forming methods for materials for electronic and electrical parts.
  • a target composed of a positive electrode and a negative electrode is opposed to each other, and an electric field is generated by applying a high voltage between the substrate and the target in an inert gas atmosphere.
  • Ionized electrons collide with inert gas to form a plasma, and cations in the plasma collide with the target (negative electrode) surface to strike out target constituent atoms, and the surface of the substrate where the ejected atoms face each other
  • This is based on the principle that a film is formed by adhering to the film.
  • a coil is arranged in a space portion between a sputtering target and a substrate to increase the density of plasma and to make the flying sputtered particles face the substrate as much as possible.
  • the sputtering rate is increased, the uniformity of the film is improved, and the quality of the film deposited on the substrate can be improved comprehensively.
  • This coil may be sputtered and eroded, but may not be sputtered and sputtered particles may come and adhere (a redeposited film may be formed). This changes according to the bias to the coil (see Patent Documents 1 and 2).
  • the coil material is often the same material as the target material or a material constituting a part of the material constituting the sputtered film deposited on the substrate.
  • the shape of the coil ranges from a circular shape to a spiral type (see Patent Documents 1, 2, and 3), and there are examples in which these are arranged in multiple stages.
  • the coil as described above is arranged between the target and the substrate to increase the plasma density and to make the flying sputtered particles face the substrate as much as possible
  • the thin film forming apparatus other than the substrate Although the amount of flight to the inner wall and the equipment inside is reduced, there is a problem that it accumulates on the coil itself.
  • Patent Document 3 proposes that the upper end on the inner surface side of the coil is scraped to reduce the thickness of the inner periphery.
  • the upper end of the coil is sharply pointed upward, so that deposits that should accumulate on the top of the coil will not be washed off and collected, and new sputtered particles will collide and clean.
  • the upper part of the coil is not the only part deposited by sputtering. It can also deposit on the surface of the coil, ie the outer and inner surfaces. In this case, the flakes peeled off from the surface of the coil on which the sputtered particles are deposited are scattered and adhered directly to the substrate surface, causing the generation of particles, but this measure is not taken. As described above, the generation of particles from such locations is also a major problem because of the demand for higher integration and miniaturization of electronic device circuits.
  • Patent Document 4 discloses that a diamond-like or cross-hatch-like (mesh-like) pattern is formed by knurling on a coil used for a flange, a side wall, a shield, a cover ring and the like of a target.
  • the depth is 0.350 mm to 1.143 mm.
  • the unevenness of the processed surface is a simple shape, there is a possibility that a sufficient anchor effect cannot be obtained.
  • Patent Document 5 proposes that the deposited material is exposed to at least one etching solution selected from the group consisting of H 3 PO 4 , HNO 3 and HF in order to extend the reuse life of the processing kit.
  • Patent Document 6 and Patent Document 7 propose to remove particles (redeposited film) attached by etching or pickling. In order to remove the redeposite membrane stably and efficiently with these techniques, there are still further improvements.
  • an object of the present invention is to efficiently regenerate a tantalum coil, thereby eliminating the waste of manufacturing a new coil, improving productivity, and providing a technique that can stably provide the coil. If the coil can be regenerated, it is possible to improve the quality and productivity of electronic components and provide a technology that can stably provide semiconductor elements and devices.
  • the present invention is 1) A method for regenerating a tantalum coil for sputtering disposed between a substrate and a sputtering target, wherein a used tantalum coil is cut entirely or partially to form irregularities and knurling on a redeposited film or an erosion part.
  • the tantalum for sputtering is characterized by removing the redeposition film formed during sputtering by cutting until a smooth surface is obtained after removing the processing trace, and then applying new knurling to the cut location.
  • a method for regenerating a coil is defined as Ra ⁇ 1.6 ⁇ m.
  • the present invention also provides: 2) Cutting and cutting conditions of 0.4 to 0.8 mm, feed 0.05 to 0.2 mm / rev, and rotation speed 20 to 80 rpm eliminate the unevenness and knurling marks on the redeposited film or erosion part, and smooth
  • the method for regenerating a tantalum coil for sputtering according to any one of claims 1 to 4) 4)
  • the roughness of the new knurling process is Ra ⁇ 15 ⁇ m.
  • Regeneration method of tantalum coil for sputtering 5) Variation in coil thickness after newly knurled coiling (difference between maximum thickness and minimum thickness) The method for regenerating a tantalum coil for sputtering according to any one of 1 to 4 above, wherein the cutting amount is adjusted according to the thickness of the redeposited film, The method for regenerating a tantalum coil for sputtering according to any one of 1 to 5 above. 7) The tantalum coil for sputtering obtained by the method for regenerating a tantalum coil for sputtering according to any one of 1 to 6 above. Coil.
  • sputtered particles are deposited (redeposited) on the surface of a tantalum coil placed between the substrate and the sputtering target.
  • the sputtered particles deposited on the used coil are cut after the sputtering is completed.
  • coil reproduction can be performed easily and with high accuracy, so that it is possible to improve the quality and productivity of electronic components and provide a technology that can stably provide semiconductor elements and devices.
  • the sputtered particles deposited on the surface of the coil are peeled off, and the flakes are scattered and attached to the substrate surface, preventing the generation of particles, The occurrence of arcing can be suppressed, and the removal of sputtered particles deposited on the surface of the coil can be effectively suppressed.
  • particles sputtered from the tantalum target are not only on the wafer but also on the surface of the tantalum coil around the target.
  • Deposit and deposit form redepo film. Also, this coil expands upon receiving heat during sputtering.
  • the film peels off due to an increase in stress, and the film flies and adheres to the substrate, causing particles and arcing.
  • the coil is knurled, the surface is roughened, and the peeling resistance is improved.
  • This knurling process is to form irregularities by strongly pressing the knurl against the work or cutting the work with the knurl.
  • the present invention can perform such a knurling coil regeneration process.
  • a typical example of a knurled coil is shown in FIG.
  • the used tantalum coil As described above, particles scattered by sputtering adhere to the used tantalum coil. In general, this is called a redepo film.
  • the cost can be reduced.
  • the entire surface or a part of the used tantalum coil is drawn by cutting to remove the redeposit film formed during sputtering.
  • One surface drawing in this case means cutting until the unevenness of the redeposited film or the erosion part and the knurling trace are eliminated, that is, until a smooth surface is obtained.
  • the cutting conditions in this case are as follows.
  • the cutting depth is 0.4 to 0.8 mm
  • the feed is 0.05 to 0.2 mm / rev
  • the rotation speed is 20 to 80 rpm.
  • a new knurling is applied to the cut portion to regenerate the tantalum coil for sputtering.
  • the variation in the coil thickness after the new knurling process difference between the maximum thickness and the minimum thickness
  • the variation in the coil thickness is large, the coil may be deformed into a deformed shape due to the thermal effects of sputtering when reused, and the thickness of the redeposited film or the erosion part of the coil is likely to fluctuate. It is.
  • the amount of cutting can be adjusted by the thickness of the redeposition film or the thickness of the coil portion that has undergone erosion.
  • the present invention can provide a tantalum coil for sputtering obtained by the method for regenerating a tantalum coil for sputtering as described above.
  • a tantalum coil regenerated under the conditions of the present invention can ensure the same quality as a new coil.
  • Example 2 For a coil in which a redepo film is attached to a part of the coil and half of the coil is subjected to erosion, the inner surface, the upper and lower edge portions, and the outer surface are cut into 0.8 mm, the feed is 0.2 mm / rev, and the rotational speed is 20 to 50 rpm.
  • One surface was drawn by cutting. That is, cutting was performed until the redeposited film and the knurling trace disappeared and became smooth. Next, a new knurling process was performed on the cut portion.
  • sputter particles are deposited (redeposited) on the surface of a tantalum coil disposed between a substrate and a sputtering target during sputtering. It is possible to cut the sputtered particles and efficiently regenerate the tantalum coil, thereby eliminating the waste of new coil production, improving productivity, and providing an excellent effect that can stably provide the coil. Have.
  • coil reproduction can be performed easily and with high accuracy, so that it is possible to improve the quality and productivity of electronic components and provide a technology that can stably provide semiconductor elements and devices.
  • this regenerative coil as with a new coil, the sputtered particles deposited on the surface of the coil are peeled off, and the flakes are scattered and attached to the substrate surface, preventing the generation of particles, Since arcing can be suppressed and the spattering of the sputtered particles deposited on the surface of the coil can be effectively suppressed, it is useful for a sputtering apparatus using a tantalum coil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

基板とスパッタリングターゲットとの間に配置するスパッタリング用タンタル製コイルの再生方法であって、使用済みのタンタル製コイルをコイル全面あるいは一部を切削加工により、一面引き(リデポ膜及びナーリング加工跡がなくなるまで切削)して、スパッタリング中に形成されたリデポ膜を除去し、その後、切削した箇所に、新たにナーリングをかけることを特徴とするスパッタリング用タンタル製コイルの再生方法に関する。スパッタリング中に、基板とスパッタリングターゲットとの間に配置したタンタル製コイルの表面にスパッタ粒子が堆積(リデポ)するが、スパッタリング終了後に、この使用済みのコイルに堆積したスパッタ粒子を切削により除去して、タンタル製コイルを効率良く再生するものであり、これによって新コイル作製の無駄を排除し、生産性を向上させ、同コイルを安定して提供できる技術を提供することを課題とする。

Description

スパッタリング用タンタル製コイルの再生方法及び該再生方法によって得られたタンタル製コイル
 本発明は、パーティクル及びアーキングの発生の原因となることを防止するために、スパッタリング装置内の基板とスパッタリングターゲットとの間の空間部を囲むようにコイルを配置するが、スパッタリングの終了後、この使用済みのコイルの表面に堆積したスパッタ粒子を除去して同コイルを再生する、スパッタリング用タンタル製コイルの再生方法及び再生したタンタル製コイルに関する。
 スパッタリング用タンタル製コイルは、後述する図面に示すように湾曲した曲面を持つが、コイルの表面は内表面と外表面のいずれの表面も対象となる。したがって、以下に記述する「コイルの表面」は、コイルの内表面と外表面の双方を意味することとする。以下、同様である。
 近年、膜厚や成分を容易に制御できるスパッタリング法が、電子・電気部品用材料の成膜法の一つとして多く使用されている。
 このスパッタリング法は正の電極と負の電極とからなるターゲットとを対向させ、不活性ガス雰囲気下でこれらの基板とターゲットの間に高電圧を印加して電場を発生させるものであり、この時電離した電子と不活性ガスが衝突してプラズマが形成され、このプラズマ中の陽イオンがターゲット(負の電極)表面に衝突してターゲット構成原子を叩きだし、この飛び出した原子が対向する基板表面に付着して膜が形成されるという原理を用いたものである。
 最近のスパッタリング技術として、スパッタリングターゲットと基板との間の空間部にコイルを配置して、プラズマの密度を高め、かつ飛翔するスパッタ粒子を極力基板方向に向かわせるようにする技術がある。この結果、スパッタリング速度が速くなり、膜の均一性が良好となり、総合的に基板へ堆積される膜の品質を高めることができるものである。このコイルは、スパッタされてエロージョンを受ける場合もあるが、スパッタされずに、スパッタ粒子が飛来して付着する(リデポ膜が形成される)場合もある。これは、コイルへのバイアスに応じて変わるものである(特許文献1、2参照)
 以上から、一般にコイルの材料はターゲット材料と同一の材料か又は基板上に堆積するスパッタ膜を構成する材料の一部を構成する材料を使用することが多い。しかし、特にコイル材が基板上の薄膜を汚染しない材料であれば、特に制限されない。また、コイルの形状も円形のものから螺旋式のものがあり(特許文献1、2、3参照)、これらを多段に配置する例もある。
 ところが、ターゲットと基板との間に上記のようなコイルを配置し、プラズマの密度を高め、かつ飛翔するスパッタ粒子を極力基板方向に向かわせるようにした場合には、基板以外の薄膜形成装置の内壁や内部にある機器に飛翔する量が減少するが、コイル自体に堆積するという問題がある。
 このような問題を避けるために、前記特許文献3では、コイルの内面側の上端を削り、内周の厚さを減少させるという提案がなされている。この場合、コイルの上端部は上に向かって鋭く尖った形状になるので、コイルの頂部に堆積するはずの堆積物が、払い落とされ溜まることがなく、また新たなスパッタ粒子が衝突するので清浄化されているという説明がなされている。
 しかし、スパッタリングにより堆積する部位は、コイルの上端だけではない。コイルの表面、すなわち外表面及び内表面にも堆積する可能性がある。この場合には、スパッタ粒子が堆積したコイルの表面から剥離した薄片が直接基板表面に飛散して付着し、パーティクル発生の原因となるが、この対策が講じられていない。上記のように電子デバイス回路の高集積度化や微細化の要請から、このような箇所からのパーティクルの発生も大きな問題となる。
 このような問題を解決しようとして、ターゲット側面及びバッキングプレートの近傍部分をブラスト処理し、アンカー効果により付着力を向上させる提案がある。
 しかし、この場合、ブラスト材の残留による製品への汚染の問題、残留ブラスト材上に堆積した付着粒子の剥離の問題、さらには付着膜の選択的かつ不均一な成長による剥離の問題が新たに生じ、根本的解決にはならない。特に、コイルがタンタルのような硬質の材料では、ブラスト処理する程度では、凹凸を設けることすら困難であり、効果的な付着力の増強効果を得ることはできない。
 また、特許文献4には、ターゲットのフランジ、側壁、シールド、カバーリング等に使用するコイルに、ダイヤモンド状又はクロスハッチ状(網目状)のパターンをナーリング加工により形成することが開示されている。この場合、深さが0.350mm~1.143mmとしているが、加工面の凹凸が単純な形状なので、充分なアンカー効果が得られない可能性がある。
 上記の通り、使用済みのコイルは、大きく分けて2種類あるが、エロージョンを受けないコイルの場合には、リデポ膜を除去する必要がある。このリデポ膜を除去せずに、再使用すると、リデポ膜が剥離し、パーティクルの発生原因となるからである。
 このようなスパッタリング法による薄膜の形成において、スパッタリングが終了した後、使用済みのコイルからリデポ膜を効率よく除去し、コイルを再生できれば、大きくコストダウンを図ることができる。
 従来、このような観点から特許文献がいくつか存在する。特許文献5は、処理キットの再使用寿命を延ばすために、堆積した材料をHPO、HNO、HFからなる群から選択した少なくとも1つのエッチング液に晒すことが提案されている。また、エッチング又は酸洗により付着したパーティクル(リデポ膜)の除去を行う提案が特許文献6及び特許文献7に提案されている。これらの技術でリデポ膜を、安定して効率良く除去するためには、さらに改良する点が残されている。
特表2005-538257号公報 特開2001-214264号公報 特表2008-534777号公報 WO2009/099775(PCT/US2009/031777) US2007/0012658 CN101519767 CN101591767
 スパッタリング中に、基板とスパッタリングターゲットとの間に配置したタンタル製コイルの表面にスパッタ粒子が堆積(リデポ)するが、本発明は、スパッタリング終了後に、この使用済みのコイルに堆積したスパッタ粒子を切削して、タンタル製コイルを効率良く再生するものであり、これによって新コイル作製の無駄を排除し、生産性を向上させ、同コイルを安定して提供できる技術を提供することを課題とする。
 コイルの再生が可能となれば、電子部品の品質と生産性を向上させ、半導体素子及びデバイスを、安定して提供できる技術を提供することが可能となる。
 上記から、本願発明は、
1)基板とスパッタリングターゲットとの間に配置するスパッタリング用タンタル製コイルの再生方法であって、使用済みのタンタル製コイルをコイル全面あるいは一部を切削加工により、リデポ膜又はエロージョン部の凹凸及びナーリング加工跡がなくなり、平滑な面が得られるまでの切削を行って、スパッタリング中に形成されたリデポ膜を除去し、その後、切削した箇所に、新たにナーリングをかけることを特徴とするスパッタリング用タンタル製コイルの再生方法、を提供する。この場合の平滑な面とは、Ra≦1.6μmと定義する。
 また、本発明は、
2)切込み量0.4~0.8mm、送り0.05~0.2mm/rev、回転数20~80rpmという条件の切削加工により、リデポ膜又はエロージョン部の凹凸及びナーリング加工跡がなくなり、平滑な面が得られるまでの切削を行うことを特徴とする上記1)に記載のスパッタリング用タンタル製コイルの再生方法
3)タンタル製コイルが新たにナーリング加工した凹凸を備えることを特徴とする上記1~2のいずれか一項に記載のスパッタリング用タンタル製コイルの再生方法
4)新たなナーリング加工の粗さがRa≧15μmであることを特徴とする上記1~3のいずれか一項に記載のスパッタリング用タンタル製コイルの再生方法
5)新たにナーリング加工したナーリング加工後のコイル厚みのばらつき(最大厚みと最小厚みの差)が0.5mm以下であることを特徴とする上記1~4のいずれか一項に記載のスパッタリング用タンタル製コイルの再生方法
6)リデポ膜の厚さにより、切削量を調節することを特徴とする上記1~5のいずれか一項記載のスパッタリング用タンタル製コイルの再生方法
7)上記1~6のいずれか一項に記載のスパッタリング用タンタル製コイルの再生方法により得られたスパッタリング用タンタル製コイル、を提供する。
 スパッタリング中に、基板とスパッタリングターゲットとの間に配置したタンタル製コイルの表面にスパッタ粒子が堆積(リデポ)するが、本発明により、スパッタリング終了後に、この使用済みのコイルに堆積したスパッタ粒子を切削して、タンタル製コイルを効率良く再生することが可能であり、これによって新コイル作製の無駄を排除し、生産性を向上させ、同コイルを安定して提供できる優れた効果を有する。
 本発明により、コイルの再生を簡便に、かつ高精度に行うことができるので、電子部品の品質と生産性を向上させ、半導体素子及びデバイスを、安定して提供できる技術を提供することができる。また、この再生コイルにおいても、新品のコイル同様に、コイルの表面に堆積したスパッタ粒子が剥離し、その薄片が基板表面に飛散して付着して、パーティクル発生の原因となることを防止し、アーキングの発生を抑制することができ、該コイルの表面に堆積するスパッタ粒子の剥落を効果的に抑制することができる。
コイルの外観写真である。
 タンタル製コイルを基板とスパッタリングターゲットとの間の空間部を囲むように配置した、スパッタリング装置では、タンタルターゲットからスパッタされた粒子はウエハ以外に、ターゲットの周りにあるタンタル製のコイルの表面にもデポジットし堆積する(リデポ膜の形成)。また、このコイルはスパッタリング中に熱を受けて膨張する。
 コイルの表面の堆積厚みが増すと、応力増加により膜が剥離し、これが基板に飛来して付着し、パーティクルやアーキングの原因となる。これを防止するため、一般にコイルにナーリング加工を行い、表面を粗化する加工を行い、耐剥離性を向上させる作業を行っている。このナーリング加工はローレットをワークに強く押し当てること又はローレットでワークを切削することで凹凸を形成するものである。本願発明は、このようなナーリング加工したコイルの再生処理を行うことができる。ナーリング加工したコイルの代表例を図1に示す。
 使用済みのタンタル製コイルには、上記の通り、スパッタリングにより飛散してきた粒子が付着する。一般に、これをリデポ膜と称している。タンタル製のコイルを再生することにより、コストを低減化することが可能となる。
 再生に際しては、使用済みのタンタル製コイルの全面あるいは一部を切削加工により、一面引きして、スパッタリング中に形成されたリデポ膜を除去する。この場合の一面引きは、リデポ膜又はエロージョン部の凹凸及びナーリング加工跡がなくなるまで、すなわち平滑な面が得られるまでの切削を意味する。
 上記の通り、タンタル製コイルのナーリング加工した凹凸の部位に付着したリデポ膜を効果的に除去することができる。この場合の切削加工条件は、次の通りとする。
 切込み量0.4~0.8mm、送り0.05~0.2mm/rev、回転数20~80rpmとする。
 その後、切削した箇所に、新たにナーリングをかけてスパッタリング用タンタル製コイルを再生する。この場合、新たにナーリング加工したナーリング加工後のコイル厚みのばらつき(最大厚みと最小厚みの差)が0.5mm以下となるようにすることが望ましい。コイル厚みのばらつきが大きいと、コイルが再使用時にスパッタリングの熱影響を受けて異形に変形する可能性があり、またリデポ膜の厚さ又はコイルのエロージョン部位も変動し易くなるという問題を生ずるからである。
 リデポ膜の厚さ又はエロージョンを受けたコイル部分の厚さにより、切削量を調節することが可能である。本発明は、上記のようにして、スパッタリング用タンタル製コイルの再生方法により得られたスパッタリング用タンタル製コイルを提供することができる。本発明の条件により再生したタンタル製コイルは、新品と同様の品質を確保することができる。
 次に、実施例について説明する。なお、この実施例は理解を容易にするためのものであり、本発明を制限するものではない。すなわち、本発明の技術思想の範囲内における、他の実施例及び変形は、本発明に含まれるものである。
(実施例1)
 コイル全域がエロージョンされているTaコイルについて、内面と上下エッジ部、外面を切込み量0.6mm、送り0.1mm/rev、回転数25~63rpmという条件の切削加工により一面引きを行った。すなわち、エロージョン部及びナーリング加工跡がなくなり、平滑になるまでの切削を行った。次に、この切削した部分に、新たに再ナーリング加工を行った。
 ナーリングの表面粗さはRa=18.5μmとなり、コイル厚みのばらつき(最大厚みと最小厚みの差)は0.25mmであった。この結果、新品同様のコイルが得られた。
(実施例2)
 コイルの一部にリデポ膜が付着し、半分がエロージョンを受けているコイルについて、内面と上下エッジ部、外面を切込み量0.8mm、送り0.2mm/rev、回転数20~50rpmという条件の切削加工により一面引きを行った。すなわち、リデポ膜及びナーリング加工跡がなくなり、平滑になるまでの切削を行った。次に、この切削した部分に、新たに再ナーリング加工を行った。
 ナーリングの表面粗さはRa=17.6μmであり、コイル厚みのばらつき(最大厚みと最小厚みの差)は0.31mmであった。この結果、新品同様のコイルが得られた。
(比較例1)
 コイル全域がエロージョンされているTaコイルについて、内面と上下エッジ部、外面を切込み量1.0mm、送り0.2mm/rev、回転数65~80rpmという条件の切削加工により一面引きを行った。すなわち、リデポ膜及びナーリング加工跡がなくなるまでの切削を行った。表面粗さはRa=2.5μmであり、平滑な面は得られなかった。そして、その箇所に、新たに再ナーリング加工を行った。
 ナーリングの表面粗さはRa=17.8μmであったが、切削加工の制御が十分でなかったために、コイル厚みのばらつき(最大厚みと最小厚みの差)は、0.51mmとなり、適切なコイルを得ることができなかった。
(比較例2)
 コイル全域がエロージョンされているTaコイルについて、内面と上下エッジ部、外面を切込み量0.6mm、送り0.3mm/rev、回転数25~60rpmという条件の切削加工により一面引きを行った。すなわち、リデポ膜及びナーリング加工跡がなくなるまでの切削を行った。表面粗さはRa=2.1μmであり平滑な面は得られなかった。そして、その箇所に、新たに再ナーリング加工を行った。
 ナーリングの表面粗さはRa=18.3μmであったが、切削加工の制御が十分でなかったために、コイル厚みのばらつき(最大厚みと最小厚みの差)は、6.3mmとなり、適切なコイルを得ることができなかった。
 本発明は、スパッタリング中に、基板とスパッタリングターゲットとの間に配置したタンタル製コイルの表面にスパッタ粒子が堆積(リデポ)するが、本発明により、スパッタリング終了後に、この使用済みのコイルに堆積したスパッタ粒子を切削して、タンタル製コイルを効率良く再生することが可能であり、これによって新コイル作製の無駄を排除し、生産性を向上させ、同コイルを安定して提供できる優れた効果を有する。
 本発明により、コイルの再生を簡便に、かつ高精度に行うことができるので、電子部品の品質と生産性を向上させ、半導体素子及びデバイスを、安定して提供できる技術を提供することができる。また、この再生コイルにおいても、新品のコイル同様に、コイルの表面に堆積したスパッタ粒子が剥離し、その薄片が基板表面に飛散して付着して、パーティクル発生の原因となることを防止し、アーキングの発生を抑制するこができ、該コイルの表面に堆積するスパッタ粒子の剥落を効果的に抑制することができるので、タンタル製コイルを用いたスパッタリング装置に有用である。

Claims (7)

  1.  基板とスパッタリングターゲットとの間に配置するスパッタリング用タンタル製コイルの再生方法であって、使用済みのタンタル製コイルを、コイル全面あるいは一部を切削加工により、リデポ膜又はエロージョン部の凹凸及びナーリング加工跡がなくなり、平滑な面が得られるまでの切削を行って、スパッタリング中に形成されたリデポ膜を除去し、その後、切削した箇所に、新たにナーリングをかけることを特徴とするスパッタリング用タンタル製コイルの再生方法。
  2.  切込み量0.4~0.8mm、送り0.05~0.2mm/rev、回転数20~80rpmという条件の切削加工により、リデポ膜又はエロージョン部の凹凸及びナーリング加工跡がなくなり、平滑な面が得られるまでの切削を行うことを特徴とする請求項1に記載のスパッタリング用タンタル製コイルの再生方法
  3.  タンタル製コイルが新たにナーリング加工した凹凸を備えることを特徴とする請求項1~2のいずれか一項に記載のスパッタリング用タンタル製コイルの再生方法。
  4.  新たにナーリング加工したナーリング加工後の粗さがRa≧15μmであることを特徴とする請求項1~3のいずれか一項に記載のスパッタリング用タンタル製コイルの再生方法。
  5.  新たにナーリング加工したナーリング加工後のコイル厚みのばらつき(最大厚みと最小厚みの差)が0.5mm以下であることを特徴とする請求項1~4のいずれか一項に記載のスパッタリング用タンタル製コイルの再生方法。
  6.  リデポ膜の厚さにより、切削量を調節することを特徴とする請求項1~5のいずれか一項記載のスパッタリング用タンタル製コイルの再生方法。
  7.  請求項1~6のいずれか一項に記載のスパッタリング用タンタル製コイルの再生方法により得られたスパッタリング用タンタル製コイル。
PCT/JP2012/073586 2011-09-30 2012-09-14 スパッタリング用タンタル製コイルの再生方法及び該再生方法によって得られたタンタル製コイル WO2013047232A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020167013884A KR20160067188A (ko) 2011-09-30 2012-09-14 스퍼터링용 탄탈제 코일의 재생 방법 및 그 재생 방법에 의해서 얻어진 탄탈제 코일
KR1020137034112A KR20140071969A (ko) 2011-09-30 2012-09-14 스퍼터링용 탄탈제 코일의 재생 방법 및 그 재생 방법에 의해서 얻어진 탄탈제 코일
JP2012554904A JP5280589B1 (ja) 2011-09-30 2012-09-14 スパッタリング用タンタル製コイルの再生方法及び該再生方法によって得られたタンタル製コイル
CN201280040678.1A CN103748258A (zh) 2011-09-30 2012-09-14 溅射用钽制线圈的再生方法及通过该再生方法得到的钽制线圈
US14/234,699 US9536715B2 (en) 2011-09-30 2012-09-14 Recycling method for tantalum coil for sputtering and tantalum coil obtained by the recycling method
EP12835348.9A EP2719793B1 (en) 2011-09-30 2012-09-14 Regeneration method for tantalum coil for sputtering

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-218017 2011-09-30
JP2011218017 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013047232A1 true WO2013047232A1 (ja) 2013-04-04

Family

ID=47995265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073586 WO2013047232A1 (ja) 2011-09-30 2012-09-14 スパッタリング用タンタル製コイルの再生方法及び該再生方法によって得られたタンタル製コイル

Country Status (7)

Country Link
US (1) US9536715B2 (ja)
EP (1) EP2719793B1 (ja)
JP (1) JP5280589B1 (ja)
KR (2) KR20140071969A (ja)
CN (1) CN103748258A (ja)
TW (1) TWI602938B (ja)
WO (1) WO2013047232A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2554710B1 (en) 2010-03-29 2017-02-22 JX Nippon Mining & Metals Corporation Tantalum coil for sputtering and method for processing the coil
CN104204282B (zh) 2012-03-21 2017-05-24 吉坤日矿日石金属株式会社 钽溅射靶及其制造方法以及使用该靶形成的半导体布线用阻挡膜
CN107541706A (zh) * 2016-06-29 2018-01-05 宁波江丰电子材料股份有限公司 滚花轮和滚花方法
US10662520B2 (en) 2017-03-29 2020-05-26 Applied Materials, Inc. Method for recycling substrate process components
US11183373B2 (en) 2017-10-11 2021-11-23 Honeywell International Inc. Multi-patterned sputter traps and methods of making
CN112958997A (zh) * 2021-02-18 2021-06-15 宁波江丰电子材料股份有限公司 一种80tpi钽环件修复再利用的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001214264A (ja) 1999-10-08 2001-08-07 Applied Materials Inc スパッタ堆積用コイル
WO2005038079A1 (en) * 2003-09-25 2005-04-28 Honeywell International Inc. Pvd component and coil refurbishing methods
JP2005538257A (ja) 2002-07-16 2005-12-15 ハネウェル・インターナショナル・インコーポレーテッド Pvdターゲット構造の非スパッタ領域を処理して粒子トラップを形成する方法、及び非スパッタ領域に沿った突出部を含むpvdターゲット構造
JP2008534777A (ja) 2005-03-22 2008-08-28 ハネウエル・インターナシヨナル・インコーポレーテツド 気相堆積用途に利用されるコイルおよび生産方法
WO2009099775A2 (en) 2008-01-31 2009-08-13 Honeywell International Inc. Modified sputtering target and deposition components, methods of production and uses thereof
CN101519767A (zh) 2009-02-24 2009-09-02 宁波江丰电子材料有限公司 聚焦线圈修复再利用的方法
CN101591767A (zh) 2008-05-30 2009-12-02 中芯国际集成电路制造(上海)有限公司 增加钽圈使用寿命的处理方法
CN101956156A (zh) * 2009-07-16 2011-01-26 中芯国际集成电路制造(上海)有限公司 物理气相沉积线圈的处理方法及物理气相沉积线圈结构
JP4763101B1 (ja) * 2010-03-29 2011-08-31 Jx日鉱日石金属株式会社 スパッタリング用タンタル製コイル及び同コイルの加工方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838539B2 (en) * 1999-07-28 2010-11-23 The Board Of Trustees Of The Leland Stanford Junior University Nicotine receptor agonists in stem cell and progenitor cell recruitment
KR100333502B1 (ko) 2000-06-14 2002-04-25 박호군 스퍼터링 타겟의 제조방법
US7910218B2 (en) * 2003-10-22 2011-03-22 Applied Materials, Inc. Cleaning and refurbishing chamber components having metal coatings
KR20070113271A (ko) * 2005-03-04 2007-11-28 니폰게이긴조쿠가부시키가이샤 금속 2층 구조체 및 그 제조 방법 및 이 방법을 이용한스퍼터링 타깃의 재생 방법
US8182911B2 (en) * 2006-03-28 2012-05-22 Kyocera Corporation Cutting tool, manufacturing method thereof and cutting method
US10017847B2 (en) * 2007-03-05 2018-07-10 Gentex Corporation Method and apparatus for ion milling
MY146996A (en) * 2009-03-03 2012-10-15 Jx Nippon Mining & Metals Corp Sputtering target and process for producing same
EP2554710B1 (en) 2010-03-29 2017-02-22 JX Nippon Mining & Metals Corporation Tantalum coil for sputtering and method for processing the coil
WO2012014921A1 (ja) 2010-07-30 2012-02-02 Jx日鉱日石金属株式会社 スパッタリングターゲット及び/又はコイル並びにこれらの製造方法
KR101519767B1 (ko) 2013-12-31 2015-05-12 숙명여자대학교산학협력단 수직 자기 이방성을 가지는 비정질 강자성체 다층박막

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001214264A (ja) 1999-10-08 2001-08-07 Applied Materials Inc スパッタ堆積用コイル
JP2005538257A (ja) 2002-07-16 2005-12-15 ハネウェル・インターナショナル・インコーポレーテッド Pvdターゲット構造の非スパッタ領域を処理して粒子トラップを形成する方法、及び非スパッタ領域に沿った突出部を含むpvdターゲット構造
WO2005038079A1 (en) * 2003-09-25 2005-04-28 Honeywell International Inc. Pvd component and coil refurbishing methods
US20070012658A1 (en) 2003-09-25 2007-01-18 Mize John D Pvd component and coil refurbishing methods
JP2008534777A (ja) 2005-03-22 2008-08-28 ハネウエル・インターナシヨナル・インコーポレーテツド 気相堆積用途に利用されるコイルおよび生産方法
WO2009099775A2 (en) 2008-01-31 2009-08-13 Honeywell International Inc. Modified sputtering target and deposition components, methods of production and uses thereof
CN101591767A (zh) 2008-05-30 2009-12-02 中芯国际集成电路制造(上海)有限公司 增加钽圈使用寿命的处理方法
CN101519767A (zh) 2009-02-24 2009-09-02 宁波江丰电子材料有限公司 聚焦线圈修复再利用的方法
CN101956156A (zh) * 2009-07-16 2011-01-26 中芯国际集成电路制造(上海)有限公司 物理气相沉积线圈的处理方法及物理气相沉积线圈结构
JP4763101B1 (ja) * 2010-03-29 2011-08-31 Jx日鉱日石金属株式会社 スパッタリング用タンタル製コイル及び同コイルの加工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2719793A4

Also Published As

Publication number Publication date
JP5280589B1 (ja) 2013-09-04
TWI602938B (zh) 2017-10-21
EP2719793B1 (en) 2017-11-08
US9536715B2 (en) 2017-01-03
US20140174917A1 (en) 2014-06-26
EP2719793A4 (en) 2014-11-19
TW201315829A (zh) 2013-04-16
CN103748258A (zh) 2014-04-23
KR20140071969A (ko) 2014-06-12
JPWO2013047232A1 (ja) 2015-03-26
KR20160067188A (ko) 2016-06-13
EP2719793A1 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5280589B1 (ja) スパッタリング用タンタル製コイルの再生方法及び該再生方法によって得られたタンタル製コイル
JP4623055B2 (ja) メタル成膜装置におけるメタル膜剥離防止構造及び当該構造を用いる半導体装置の製造方法
KR101385344B1 (ko) 스퍼터링용 탄탈제 코일 및 이 코일의 가공 방법
JP6471000B2 (ja) マグネトロンスパッタリング装置用の磁石ユニット及びこの磁石ユニットを用いたスパッタリング方法
EP3026691B1 (en) Method of cleaning a plasma etching chamber and multi-processing tool for processing a workpiece
US20090194414A1 (en) Modified sputtering target and deposition components, methods of production and uses thereof
JP2010275574A (ja) スパッタリング装置および半導体装置製造方法
US20180211819A1 (en) Particle trap for sputtering coil and method of making
TWI752374B (zh) 成膜構造體的再生方法及再生成膜構造體
JP4763101B1 (ja) スパッタリング用タンタル製コイル及び同コイルの加工方法
JP6486215B2 (ja) プラズマ処理装置
JP2005298894A (ja) ターゲットのクリーニング方法及び物理的堆積装置
JP6899322B2 (ja) 改善された耐摩耗性を有する2層コーティングされた切削工具を製造するための方法
KR102332902B1 (ko) 성막 방법
JPH0681146A (ja) マグネトロン型スパッタ装置
JP6310678B2 (ja) スパッタリング方法
JP2016050349A (ja) 真空処理装置
JP2004315948A (ja) 薄膜形成装置用汚染防止装置
JP2014231633A (ja) 基板ホルダ
JP2021017609A (ja) スパッタリングターゲット及びその製造方法
JP2013199694A (ja) スパッタリングターゲット又はバッキングプレート及びこれらの洗浄方法
JPH04314858A (ja) マグネトロンスパッタリング方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012554904

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835348

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012835348

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137034112

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14234699

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE