WO2013046647A1 - ヒートポンプ - Google Patents

ヒートポンプ Download PDF

Info

Publication number
WO2013046647A1
WO2013046647A1 PCT/JP2012/006102 JP2012006102W WO2013046647A1 WO 2013046647 A1 WO2013046647 A1 WO 2013046647A1 JP 2012006102 W JP2012006102 W JP 2012006102W WO 2013046647 A1 WO2013046647 A1 WO 2013046647A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
stage
low
refrigerant
pressure
Prior art date
Application number
PCT/JP2012/006102
Other languages
English (en)
French (fr)
Inventor
岡本 昌和
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201280045771.1A priority Critical patent/CN103842743B/zh
Priority to EP12836971.7A priority patent/EP2770276B1/en
Publication of WO2013046647A1 publication Critical patent/WO2013046647A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Definitions

  • the present invention relates to a heat pump, and more particularly to a heat pump including a refrigerant circuit capable of simultaneously processing cold and hot heat.
  • a heat pump capable of simultaneously processing a heating load and a cooling load is known.
  • These heat pumps include a refrigerant circuit to which an auxiliary heat exchanger is connected in addition to the heating heat exchanger that processes the heating load and the cooling heat exchanger that processes the cooling load. (See Patent Document 1).
  • This auxiliary heat exchanger is adjusted so that the heat balance of the refrigerant circuit is not unbalanced depending on the heating load and cooling load conditions.
  • the auxiliary heat exchanger serves as an evaporator to balance the heat balance by increasing the heat absorption. That is, the refrigerant condensed in the heating heat exchanger is evaporated in both the cooling heat exchanger and the auxiliary heat exchanger.
  • the first invention is a low stage compression mechanism (11), a high stage compression mechanism (12), a high temperature heat exchanger (13), a high stage expansion mechanism (14), a low stage expansion mechanism (15), and a low temperature heat exchanger. (16) are connected in order through the refrigerant passage, and the refrigerant radiates heat to the high temperature fluid in the high temperature heat exchanger (13), and the refrigerant absorbs heat from the low temperature fluid and evaporates in the low temperature heat exchanger (16).
  • auxiliary heat exchanger (1) functions as an evaporator
  • a part of the refrigerant decompressed by the high stage expansion mechanism is supplied to the auxiliary heat exchanger (1) and evaporated, and then the Since the high-stage compression mechanism (12) may be sucked, the compression power of the refrigerant circuit (10) is reduced.
  • the operating capacity of the high stage compression mechanism (12) is adjusted according to the heating load of the high temperature heat exchanger (13), and the low temperature heat exchanger (16)
  • a compression mechanism adjustment unit (41) that adjusts the operating capacity of the low-stage compression mechanism (11) according to the cooling load is provided.
  • the low-stage compression mechanism (11 ) Is larger than the refrigerant suction amount of the high-stage compression mechanism (12).
  • the refrigerant discharged from the low stage compression mechanism (11) and not sucked into the high stage compression mechanism (12) flows to the auxiliary heat exchanger (1).
  • this auxiliary heat exchanger (1) By making this auxiliary heat exchanger (1) function as a condenser, the refrigerant is condensed in the auxiliary heat exchanger (1).
  • the heating load is larger than the cooling load, and both the auxiliary heat exchanger (1) and the low temperature heat exchanger (16) function as an evaporator. Furthermore, the pressure difference between the evaporation pressure of the auxiliary heat exchanger (1) and the evaporation pressure of the low temperature heat exchanger (16) is smaller than a predetermined value, or the evaporation pressure of the auxiliary heat exchanger (1) is less than the low temperature heat.
  • the evaporating pressure of the auxiliary heat exchanger (1) is larger than the evaporating pressure of the low-temperature heat exchanger (16)
  • the refrigerant flowing out of the auxiliary heat exchanger (1) is removed from the high stage compression mechanism (12 )
  • a switching mechanism (51, 52) that can be switched to a high-stage suction state that leads to the suction side. It is characterized by a door.
  • the pressure difference between the evaporation pressure of the auxiliary heat exchanger (1) and the evaporation pressure of the low temperature heat exchanger (16) is smaller than a predetermined value or the evaporation of the auxiliary heat exchanger (1).
  • the switching mechanism (51, 52) is in the low-stage suction state. Thereby, the refrigerant evaporated in the auxiliary heat exchanger (1) is sucked into the low-stage compression mechanism (11).
  • the low-stage compression mechanism (11) and a compression mechanism adjustment unit (41) that performs operation adjustment of the high-stage compression mechanism (12) while switching to at least a high-stage single compression operation or a two-stage compression operation.
  • the pressure difference between the evaporation pressure of the auxiliary heat exchanger (1) and the evaporation pressure of the low temperature heat exchanger (16) is smaller than a predetermined value, or the evaporation pressure of the auxiliary heat exchanger (1) is the low temperature heat exchange.
  • the operating capacity of the high-stage compression mechanism (12) is adjusted according to the heating load of the high-temperature heat exchanger (13) when the evaporation pressure is lower than the evaporator (16), and the low-stage compression mechanism (11) is stopped.
  • the pressure difference is equal to or higher than a predetermined value.
  • the pressure difference between the evaporation pressure of the auxiliary heat exchanger (1) and the evaporation pressure of the low temperature heat exchanger (16) is smaller than a predetermined value, or the evaporation pressure of the auxiliary heat exchanger (1).
  • the low-stage compression mechanism (11) is stopped and only the high-stage compression mechanism (12) is started (high-stage single compression operation).
  • the refrigerant evaporated in the low-temperature heat exchanger (16) due to the stop of the low-stage compression mechanism (11) passes through the low-stage bypass passage (18), and then evaporates in the auxiliary heat exchanger (1).
  • the refrigerant is sucked into the high-stage compression mechanism (12) together with the refrigerant.
  • the high-stage bypass passage (19) that bypasses the high-stage compression mechanism (12), and the low-stage compression mechanism when the heating load is smaller than the cooling load.
  • (11) and a compression mechanism adjustment unit (41) that performs operation adjustment of the high-stage compression mechanism (12) while switching to at least a low-stage single compression operation or a two-stage compression operation.
  • the pressure difference between the condensation pressure of the auxiliary heat exchanger (1) and the condensation pressure of the high-temperature heat exchanger (13) is smaller than a predetermined value, or the condensation pressure of the auxiliary heat exchanger (1) is the high-temperature heat exchange.
  • the pressure difference between the condensation pressure of the auxiliary heat exchanger (1) and the condensation pressure of the high temperature heat exchanger (13) becomes smaller, the suction pressure and the discharge pressure of the high stage compression mechanism (12) become smaller. As a result, the effect of improving the operation efficiency of the heat pump by the two-stage compression is reduced. Further, when the condensation pressure of the auxiliary heat exchanger (1) becomes higher than the condensation pressure of the high stage compression mechanism (12), the pressure of the suction refrigerant and the pressure of the discharge refrigerant of the high stage compression mechanism (12) are increased. It reverses and the said high stage compression mechanism (12) stops functioning.
  • the high-stage compression mechanism (12) is operated by increasing the pressure of the discharged refrigerant, but in this case, since it is higher than the optimum condensation pressure of the high-temperature heat exchanger (13), the heat pump The driving efficiency will be reduced.
  • This predetermined value is set within the range of the pressure difference that can achieve the effect of improving the operation efficiency of the heat pump by the two-stage compression.
  • the pressure difference between the condensation pressure of the auxiliary heat exchanger (1) and the condensation pressure of the high temperature heat exchanger (13) is smaller than a predetermined value, or the condensation pressure of the auxiliary heat exchanger (1).
  • the high-stage compression mechanism (12) is stopped and only the low-stage compression mechanism (11) is started (low-stage single compression operation). Due to the stop of the high stage compression mechanism (12), the refrigerant discharged from the low stage compression mechanism (11) is diverted and flows to both the auxiliary heat exchanger (1) and the high stage bypass passage (19). It becomes like this.
  • the flow rate adjusting mechanism (2) for adjusting the flow rate of the refrigerant flowing through the auxiliary heat exchanger (1), and the heating load is the cooling load.
  • the flow rate adjusting mechanism adjusting unit (43) operates to The refrigerant flowing into the auxiliary heat exchanger (1) can be reliably condensed.
  • the high-stage expansion mechanism when the heating load is larger than the cooling load, the high-stage expansion mechanism is adjusted to fully open the high-stage expansion mechanism (14). It is characterized by having a part (44).
  • the refrigerant going to the auxiliary heat exchanger (1) can be adjusted only by the flow rate adjusting mechanism (2). .
  • the refrigerant outlet temperature of the high stage expansion mechanism (14) is the auxiliary heat exchanger.
  • the auxiliary heat exchanger (1) when the auxiliary heat exchanger (1) is arranged in a high pressure line or a low pressure line by arranging the auxiliary heat exchanger (1) in an intermediate pressure line of the refrigerant circuit (10).
  • the compression power of the refrigerant circuit (10) used to supply the refrigerant to the auxiliary heat exchanger (1) can be reduced.
  • the auxiliary heat exchanger (1) functions as an evaporator when the heating load is larger than the cooling load, and the auxiliary heat exchanger (1) is a condenser when the cooling load is larger than the heating load. It becomes possible to function as. Thereby, without providing a switching valve in the refrigerant circuit (10), the auxiliary heat exchanger (1) can be an evaporator or a condenser according to the heating load and cooling load conditions.
  • the switching mechanism (51, 52) is switched between the low suction state and the high pressure based on the evaporation pressure of the auxiliary heat exchanger (1) and the low temperature heat exchanger (16). Switch to stage inhalation state.
  • the refrigerant evaporated in the auxiliary heat exchanger (1) can be sucked into the low-stage compression mechanism (11) or the high-stage compression mechanism (12) as necessary, and the heat pump is always highly efficient. You can drive.
  • the refrigerant is supercooled from the high temperature heat exchanger (13) toward the high stage expansion mechanism (14).
  • the degree can be increased. Thereby, the efficiency of the heat pump can be improved.
  • the operation of the compression mechanism adjustment unit (41) is a two-stage compression operation based on the evaporation pressure of the auxiliary heat exchanger (1) and the low temperature heat exchanger (16). Or it switches to high stage single compression operation.
  • the heat pump can be operated by two-stage compression or single-stage compression as necessary, and the heat pump can always be operated with high efficiency.
  • the operation of the compression mechanism adjustment unit (41) is a two-stage compression operation based on the condensation pressure of the auxiliary heat exchanger (1) and the high temperature heat exchanger (13). Or it switches to the low stage single compression operation.
  • the heat pump can be operated by two-stage compression or single-stage compression as necessary, and the heat pump can always be operated with high efficiency.
  • the refrigerant flowing into the auxiliary heat exchanger (1) can be reliably condensed by the flow rate adjusting mechanism adjusting portion (43), and the auxiliary heat exchanger (1 ) Is ensured.
  • the heat balance of the said refrigerant circuit (10) can be balanced reliably.
  • the pressure of the refrigerant flowing out of the high stage expansion mechanism (14) can be reliably set to the intermediate pressure of the refrigerant circuit (10), and the auxiliary heat exchanger (1 ) Can reliably exchange heat between the refrigerant and the heat source fluid.
  • FIG. 8 is a refrigerant circuit diagram of a heat pump according to the third modification of the present embodiment.
  • FIG. 9 is a diagram illustrating the refrigerant flow in the high-stage single compression operation of the third modification.
  • FIG. 10 is a diagram illustrating the refrigerant flow in the low-stage single compression operation of the third modification.
  • FIG. 11 is a diagram illustrating a configuration of the controller.
  • FIG. 12 is a refrigerant circuit diagram of a heat pump according to the fourth modification of the present embodiment.
  • FIG. 13 is a diagram schematically showing the relationship between each heat exchanger and the refrigeration cycle on the Ph diagram, and (A) is a diagram in which the auxiliary heat exchanger is arranged in the high-pressure line. (B) is a diagram in which the auxiliary heat exchanger is arranged in the intermediate pressure line.
  • the heat pump of this embodiment is used for industrial use. This heat pump can simultaneously extract cold and hot heat.
  • This heat pump is provided with a refrigerant circuit (10) and a controller (40).
  • the refrigerant circuit (10) performs a refrigeration cycle by two-stage compression and two-stage expansion.
  • This refrigerant circuit (10) consists of a low-stage compressor (low-stage compression mechanism) (11), a high-stage compressor (high-stage compression mechanism) (12), and a heat exchanger for heating (high-temperature heat exchanger) (13).
  • the low stage compressor (11) and the high stage compressor (12) are both hermetically sealed, and a low stage inverter (not shown) is connected to the low stage compressor (11) to A high-stage inverter (not shown) is connected to the stage compressor (12). By these inverters, the operation rotation speed of each compressor (11, 12) is variably configured.
  • the discharge port of the low-stage compressor (11) and the suction port of the high-stage compressor (12) are connected by a connecting pipe (4) on the compressor side.
  • a check valve (CV1) is attached to the connecting pipe (4) close to the low-stage compressor (11). The check valve (CV1) allows the flow of refrigerant from the low stage compressor (11) to the high stage compressor (12) and blocks the flow in the reverse direction.
  • the high-pressure refrigerant discharged from the high stage compressor (12) passes through the refrigerant flow path (13a), and the water flowing out from the hot water pump (31)
  • the high-pressure refrigerant and the water are configured to exchange heat when passing through the path (13b).
  • the cooling heat exchanger (16) has a refrigerant channel (16a) and a water channel (16b).
  • the inlet of the refrigerant channel (16a) and the outlet of the low stage expansion valve (15) are connected by a third refrigerant pipe (8), and the outlet of the refrigerant channel (16a) and the low stage compression are connected.
  • the suction port of the machine (11) is connected by a fourth refrigerant pipe (9).
  • the water flow path (16b) of the cooling heat exchanger (16) communicates with the cold water circuit (33).
  • a chilled water pump (34) and a chilled water tank (35) are connected to the chilled water circuit (33).
  • the low-pressure refrigerant that has flowed out of the low-stage expansion valve (15) passes through the refrigerant channel (16a), and the water that has flowed out of the cold water pump (34)
  • the low-pressure refrigerant and the water are configured to exchange heat.
  • the refrigerant circuit (10) includes a low stage compressor (11), a high stage compressor (12), a heating heat exchanger (13), a high stage expansion valve (14), and a low stage expansion valve ( 15) has a closed circuit in which a cooling heat exchanger (16) is connected in order.
  • the auxiliary heat exchanger (1) and the flow rate adjusting valve (2) are connected to the closed circuit.
  • the auxiliary heat exchanger (1) is for balancing the heat balance of the refrigeration cycle related to the refrigerant circuit (10).
  • the auxiliary heat exchanger (1) is constituted by, for example, a cross fin type fin-and-tube heat exchanger, and has a refrigerant passage (1a) and an air passage (not shown).
  • a branch pipe (3a) branched from the compressor connection pipe (4) is connected to one end of the refrigerant passage (1a) of the auxiliary heat exchanger (1), and the expansion valve side connection is connected to the other end.
  • a branch pipe (3b) branched from the pipe (7) is connected.
  • the branch pipe (3b) is provided with the flow rate adjusting valve (2). .
  • a blower fan (17) is provided in the vicinity of the auxiliary heat exchanger (1).
  • the auxiliary heat exchanger (1) is configured such that the refrigerant discharged from the low-stage compressor (11) or the refrigerant flowing out from the high-stage expansion valve (14) passes through the refrigerant passage (1a), and the blower fan When the air of (17) passes through the air passage, the refrigerant and the outside air exchange heat.
  • the plurality of temperature sensors (21 to 26) include a high stage expansion valve temperature sensor (21) for detecting a refrigerant outlet temperature of the high stage expansion valve (14), and the cooling heat exchanger (16 ) And the first and second auxiliary heat exchange temperature sensors (23, 23) for detecting the refrigerant temperature before and after passing through the auxiliary heat exchanger (1). 24), a hot water temperature sensor (25) for detecting the hot water outlet temperature of the heating heat exchanger (13), and a cold water temperature sensor (26) for detecting the cold water outlet temperature of the cooling heat exchanger (16) It is.
  • the compressor adjustment unit (41) includes detection values of the hot water temperature sensor (25) and the cold water temperature sensor (26), a hot water outlet temperature of the heating heat exchanger (13), The cold water set value of the cold water outlet temperature of the cooling heat exchanger (16) is input.
  • the compressor adjustment unit (41) generates a signal for increasing the operating rotational speed of the high stage compressor (12) when the detected value of the hot water temperature sensor (25) is lower than the hot water set value. Output to the higher stage inverter. Further, when the detected value of the hot water temperature sensor (25) is higher than the hot water set value, a signal for decreasing the operating rotational speed of the high stage compressor (12) is output to the high stage inverter. .
  • the compressor adjusting unit (41) is configured to increase the operating rotational speed of the low-stage compressor (11) when the detected value of the cold water temperature sensor (26) is higher than the cold water set value.
  • the signal is output to the low-stage inverter.
  • a signal for reducing the operating speed of the low stage compressor (11) is output to the low stage inverter.
  • the compressor adjustment unit (41) adjusts the operating capacity of the high stage compressor (12) according to the heating load, and the low stage compressor (11) according to the cooling load. Adjust the operating capacity.
  • the flow regulating valve adjustment unit (43) uses the detected value of the auxiliary heat exchange internal temperature sensor as the evaporation temperature of the auxiliary heat exchanger (1).
  • the outlet superheat degree of the auxiliary heat exchanger (1) is calculated from the detected value of the second auxiliary heat exchanger temperature sensor (24) based on the evaporation temperature.
  • an opening degree adjusting signal is appropriately output from the flow rate adjusting valve adjusting unit (43) to the flow rate adjusting valve (2), and the outlet superheat degree is set to a predetermined value (for example, 3 ° C.). The opening degree of (2) is adjusted.
  • the high stage expansion valve adjustment unit (44) includes a detection value of the high stage expansion valve temperature sensor (21), a detection value of the cooling heat exchange temperature sensor (22), and the second auxiliary heat exchange temperature sensor.
  • the detection value of (24) and the determination signal of the load determination unit (42) are input.
  • the high stage expansion valve adjustment unit (44) opens from the high stage expansion valve adjustment unit (44) to the high stage expansion valve (14). An adjustment signal is output, The opening degree of the high stage expansion valve (14) is fully opened.
  • an opening adjustment signal is appropriately output from the high stage expansion valve adjustment unit (44) to the high stage expansion valve (14), and the high level
  • the refrigerant outlet temperature of the stage expansion valve (14) (detected value of the high stage expansion valve temperature sensor (21)) is detected by the refrigerant outlet temperature (second auxiliary heat exchanger temperature sensor (24) of the auxiliary heat exchanger (1). Value) and the refrigerant outlet temperature of the low-temperature heat exchanger (16) (the detected value of the cooling heat exchange temperature sensor (22)), the opening of the high stage expansion valve (14) is Adjusted.
  • the low stage expansion valve adjustment unit (45) uses the detected value of the cooling heat exchange internal temperature sensor as the evaporation temperature of the cooling heat exchanger (16), and based on the evaporation temperature, the cooling heat exchange temperature sensor (22 ) To calculate the degree of superheat at the outlet of the cooling heat exchanger (16). Then, an opening degree adjustment signal is appropriately output from the low stage expansion valve adjustment unit (45) to the low stage expansion valve (15), and the low degree of exit superheat is set to a predetermined value (for example, 3 ° C.). The opening degree of the stage expansion valve (15) is adjusted.
  • the excessive heating operation shown in FIG. 2 is an operation when the heating load of the heat pump is larger than the cooling load.
  • the outside air temperature is 15 ° C.
  • the hot water set value set by the compressor adjustment unit (41) is 65 ° C.
  • the cold water set value is 7 ° C.
  • the required heating capacity of the heat pump is 90%
  • This excessive heating operation is performed by the compressor adjusting unit (41) of the controller (40), so that the hot water outlet temperature of the heating heat exchanger (13) becomes the hot water set value of 65 ° C.
  • the operating speed of (12) is adjusted, and the operating speed of the low-stage compressor (11) is adjusted so that the chilled water outlet temperature of the cooling heat exchanger (16) is the chilled water set value of 7 ° C.
  • the heating load is larger than the cooling load, so that the operation speed of the high-stage compressor (12) is the low-stage compressor.
  • the operating rotational speed of the compressor (11) is exceeded, and the refrigerant suction amount of the high stage compressor (12) becomes larger than the refrigerant discharge amount of the low stage compressor (11).
  • the refrigerant evaporated in the auxiliary heat exchanger (1) is sucked into the high stage compressor (12) together with the refrigerant discharged from the low stage compressor (11). That is, the refrigerant flows in the auxiliary heat exchanger (1) from the expansion valve side to the compressor side (from the left side to the right side of the auxiliary heat exchanger (1) in FIG. 2).
  • the refrigerant discharged from the high stage compressor (12) dissipates heat to the water in the hot water circuit (30) and condenses in the heating heat exchanger (13).
  • the condensation temperature of the heating heat exchanger (13) is around 70 ° C.
  • the water in the hot water circuit (30) is heated to 65 ° C. by the heat radiation of the refrigerant in the heating heat exchanger (13). Is done.
  • the refrigerant condensed in the heating heat exchanger (13) is divided into two after passing through the high stage expansion valve (14) set to be fully opened by the high stage expansion valve adjusting section (44).
  • One of the divided refrigerant is depressurized by the low stage expansion valve (15) and then evaporates by absorbing heat from the water in the cold water circuit (33) by the cooling heat exchanger (16).
  • the evaporating temperature of the cooling heat exchanger (16) at this time is around 0 ° C., and the water in the chilled water circuit (33) is cooled to 7 ° C. by the heat absorption of the refrigerant in the cooling heat exchanger (16). Is done.
  • the refrigerant evaporated in the cooling heat exchanger (16) is sucked into the low stage compressor (11) and compressed, and then discharged toward the suction side of the high stage compressor (12). .
  • the other of the divided refrigerant is depressurized by the flow rate adjusting valve (2), and then absorbs heat from the outside air by the auxiliary heat exchanger (1) and evaporates.
  • the evaporation temperature at this time is around 10 ° C.
  • the refrigerant evaporated in the auxiliary heat exchanger (1) merges with the refrigerant discharged from the low stage compressor (11), and is then sucked into the high stage compressor (12) and compressed. Later, it is discharged again to the heating heat exchanger (13).
  • the refrigerant flow direction of the auxiliary heat exchanger (1) is changed from the expansion valve side to the compressor side, and the auxiliary heat exchanger (1) functions as an evaporator. To do.
  • the refrigerant circuit (10) can perform a refrigeration cycle while maintaining a heat balance.
  • the overcooling operation shown in FIG. 3 is an operation when the heating load of the heat pump is smaller than the cooling load.
  • the outside air temperature is 15 ° C.
  • the hot water set value set by the compressor adjustment unit (41) is 65 ° C.
  • the cold water set value is 7 ° C.
  • the required heating capacity of the heat pump is 40%. Excessive cooling operation when the required cooling capacity is 80% will be described.
  • the high pressure compressor is controlled so that the hot water outlet temperature of the heating heat exchanger (13) becomes the hot water set value of 65 ° C. by the compressor adjustment section (41) of the controller (40).
  • the operating speed of (12) is adjusted, and the operating speed of the low-stage compressor (11) is adjusted so that the chilled water outlet temperature of the cooling heat exchanger (16) is the chilled water set value of 7 ° C.
  • the high stage expansion valve adjusting section (44) causes the refrigerant outlet temperature of the high stage expansion valve (14) to change between the refrigerant outlet temperature of the auxiliary heat exchanger (1) and the refrigerant of the cooling heat exchanger (16).
  • the opening degree of the high stage expansion valve (14) is adjusted so as to be a temperature between the outlet temperature.
  • the opening degree of the flow rate adjusting valve (2) is adjusted by the flow rate adjusting valve adjusting unit (43) so that the degree of subcooling at the outlet of the auxiliary heat exchanger (1) becomes 2 ° C.
  • the opening degree of the low stage expansion valve (15) is adjusted by the low stage expansion valve adjusting section (45) so that the degree of superheat at the outlet of the cooling heat exchanger (16) becomes 3 ° C.
  • the heating load is smaller than the cooling load, so that the operating speed of the high-stage compressor (12) is the low-stage compressor.
  • the operating speed of the compressor (11) is lower, and the refrigerant suction amount of the high stage compressor (12) becomes smaller than the refrigerant discharge amount of the low stage compressor (11).
  • the refrigerant branched from the low-stage compressor (11) toward the high-stage compressor (12) is compressed by the high-stage compressor (12) and then directed to the heating heat exchanger (13). Discharged.
  • the refrigerant discharged from the high stage compressor (12) dissipates heat into the water in the hot water circuit (30) and condenses in the heating heat exchanger (13).
  • the condensation temperature at this time is around 70 ° C., and the water in the hot water circuit (30) is heated to 65 ° C. by the heat radiation of the refrigerant in the heating heat exchanger (13).
  • the refrigerant condensed in the heating heat exchanger (13) is decompressed by the high stage expansion valve (14).
  • the refrigerant diverted from the low-stage compressor (11) toward the auxiliary heat exchanger (1) side is condensed in the auxiliary heat exchanger (1) and then flows into the flow rate adjusting valve (2). To do.
  • the condensation temperature of the auxiliary heat exchanger (1) at this time is around 20 ° C.
  • the refrigerant that has flowed into the flow rate adjustment valve (2) is decompressed by the flow rate adjustment valve (2), and then merges with the refrigerant that has flowed out of the high stage expansion valve (14), so that the low stage expansion valve (15) Flow into.
  • the refrigerant circuit (10) can perform a refrigeration cycle while maintaining a heat balance.
  • the heating single operation shown in FIG. 4 is an operation performed when there is no cooling load and the heating load.
  • the high stage compressor (12) is started and the low stage compressor (11) is stopped.
  • the high stage expansion valve (14) is fully opened, and the low stage expansion valve (15) is fully closed.
  • the refrigerant discharged from the high stage compressor (12) dissipates heat to the water in the hot water circuit (30) and condenses in the heating heat exchanger (13). At this time, the water in the hot water circuit (30) is heated by the heat radiation of the refrigerant in the heating heat exchanger (13).
  • the refrigerant condensed in the heating heat exchanger (13) flows into the flow rate adjusting valve (2) after passing through the fully opened high stage expansion valve (14).
  • the single cooling operation shown in FIG. 5 is an operation performed when the cooling load is present and the heating load is absent.
  • the high stage compressor (12) is stopped and the low stage compressor (11) is started.
  • the high stage expansion valve (14) is fully closed and the low stage expansion valve (15) is fully opened.
  • the refrigerant discharged from the low-stage compressor (11) dissipates heat to the outside air through the auxiliary heat exchanger (1) and condenses, and then is decompressed by the flow control valve (2) to become low-pressure refrigerant.
  • the low-pressure refrigerant passes through the fully opened low-stage expansion valve (15) and then evaporates by absorbing heat from the water in the cold water circuit (33) in the cooling heat exchanger (16). At this time, the water in the cold water circuit (33) is cooled by the heat absorption of the refrigerant in the cooling heat exchanger (16).
  • the refrigerant evaporated in the cooling heat exchanger (16) is sucked into the low stage compressor (11) and compressed, and then discharged again toward the auxiliary heat exchange (1).
  • the auxiliary heat exchanger (1) serves as a condenser and the cooling heat exchanger (16) serves as an evaporator, and the cooling heat exchanger (16) processes the cooling load.
  • auxiliary heat exchanger (1) when the auxiliary heat exchanger (1) is arranged in the high pressure line or the low pressure line by arranging the auxiliary heat exchanger (1) in the intermediate pressure line of the refrigerant circuit (10).
  • the compression power of the refrigerant circuit (10) used for supplying the refrigerant to the auxiliary heat exchanger (1) thereby, it is possible to prevent the efficiency of the heat pump from being lowered.
  • the refrigerant flowing into the auxiliary heat exchanger (1) can be completely evaporated by the flow rate adjusting valve adjusting unit (43), and the auxiliary heat exchanger (1) A heat exchange amount is secured.
  • the heat balance of the said refrigerant circuit (10) can be balanced reliably.
  • the refrigerant that flows into the auxiliary heat exchanger (1) can be reliably condensed by the flow rate adjusting valve adjusting unit (43), and the auxiliary heat exchanger (1) A heat exchange amount is secured.
  • the heat balance of the said refrigerant circuit (10) can be balanced reliably.
  • the refrigerant circuit (10) of Modification 1 is provided with an auxiliary pipe (50) for connecting the branch pipe (3a) and the fourth refrigerant pipe (9).
  • a first on-off valve (51) is provided on the auxiliary pipe (50), and a second on-off valve (52) is provided near the connecting pipe (4) on the compressor side of the branch pipe (3a). .
  • These on-off valves (51, 52) constitute the switching mechanism (51, 52) described above.
  • the first state of the switching mechanism (51, 52) is a state in which the first on-off valve (51) is closed and the second on-off valve (52) is opened.
  • the second state of the switching mechanism (51, 52) is a state in which the first on-off valve (51) is opened and the second on-off valve (52) is closed.
  • the first and second on-off valves (51, 52) Two heating excessive operation is comprised so that execution is possible.
  • the four operations described above can be performed when the switching mechanism (51, 52) is in the first state
  • the second overheating operation can be performed when the switching mechanism (51, 52) is in the second state.
  • the second overheating operation is an operation when the heating load of the heat pump is larger than the cooling load.
  • the auxiliary heat exchanger (1 ) Evaporating pressure and the cooling heat exchanger (16) evaporating pressure the closer the suction pressure and the discharging pressure of the low-stage compressor (11) approach, the heat pump operation by two-stage compression
  • the suction refrigerant pressure and the discharge refrigerant pressure of the low-stage compressor (11) are reduced. It will reverse and the said low stage compressor (11) will stop functioning.
  • the low-stage compressor (11) is operated by lowering the pressure of the refrigerant sucked, but in this case, it becomes lower than the optimum evaporation pressure of the cooling heat exchanger (16). The operating efficiency of the heat pump will decrease.
  • the pressure difference between the evaporation pressure of the auxiliary heat exchanger (1) and the evaporation pressure of the cooling heat exchanger (16) is smaller than a predetermined value, or the evaporation pressure of the auxiliary heat exchanger (1) is
  • the first on-off valve (51) is opened and the second on-off valve (52) is closed (the switching mechanism (51, 52) is low).
  • Stage inhalation state Thereby, the refrigerant flows from the auxiliary heat exchanger (1) toward the suction side of the low-stage compressor (11).
  • the refrigerant circuit (10) in the case where the first on-off valve (51) is closed and the second on-off valve (52) is opened is the above embodiment. This is substantially the same as the refrigerant circuit (10) in FIG.
  • the switching mechanism operation unit switches between the low-stage suction state and the high-stage suction state.
  • the refrigerant evaporated in the auxiliary heat exchanger (1) can be sucked into the low-stage compressor (11) or the high-stage compressor (12) as necessary, and the heat pump is always highly efficient. You can drive.
  • the refrigerant circuit (10) of Modification 2 is provided with an economizer pipe (53) that communicates the second refrigerant pipe (6) with the connecting pipe (4) on the compressor side.
  • the economizer heat exchanger (55) has a high-temperature channel and a low-temperature channel, the high-temperature channel communicates with the second refrigerant pipe (6), and the low-temperature channel communicates with the economizer pipe (53).
  • a pressure reducing valve (54) is provided between the second refrigerant pipe (6) of the economizer pipe (53) and the economizer heat exchanger (55).
  • a part of the refrigerant flowing out of the heating heat exchanger (13) is diverted and depressurized by the pressure reducing valve (54), and then flows into the low-temperature flow path of the economizer heat exchanger (55). It flows to the high-temperature channel of the economizer heat exchanger (55).
  • Modification 3 of Embodiment is configured such that the refrigerant of the refrigerant circuit (10) can bypass the low-stage compressor (11) or the high-stage compressor (12). This is different from the above embodiment.
  • description of the same parts as those in the above embodiment will be omitted, and only differences will be described.
  • the compressor adjustment unit (41) of the controller (40) performs the low-stage compression while appropriately switching between a two-stage compression operation, a high-stage single compression operation, and a low-stage single compression operation. It is comprised so that operation adjustment of a machine (11) and the said high stage compressor (12) may be performed. Note that the two-stage compression operation is the same as the operation of the excessive heating operation and excessive cooling operation of the above embodiment, and thus the description thereof is omitted.
  • the low-stage compressor (11) is operated by lowering the pressure of the refrigerant sucked, but in this case, it becomes lower than the optimum evaporation pressure of the cooling heat exchanger (16). The operating efficiency of the heat pump will decrease.
  • the pressure difference between the evaporation pressure of the auxiliary heat exchanger (1) and the evaporation pressure of the cooling heat exchanger (16) is smaller than a predetermined value, or the evaporation pressure of the auxiliary heat exchanger (1) is
  • the compressor adjustment unit (41) switches from the two-stage compression operation to the high-stage single compression operation.
  • the low stage compressor (11) is stopped and only the high stage compressor (12) is started.
  • the refrigerant evaporated in the cooling heat exchanger (16) due to the stop of the low stage compressor (11) passes through the low stage bypass pipe (18), and then passes through the auxiliary heat exchanger (1). Together with the evaporated refrigerant, the refrigerant is sucked into the high stage compressor (12).
  • the evaporation pressure of the auxiliary heat exchanger (1) is estimated from the outside air temperature
  • the evaporation pressure of the cooling heat exchanger (16) is estimated from the cold water outlet temperature. Therefore, when the temperature difference between the outside air temperature and the cold water outlet temperature is smaller than a predetermined value, or when the outside air temperature is equal to or lower than the cold water outlet temperature, the compressor adjustment unit (41) performs high-stage single compression operation. Switch.
  • the predetermined value is set within the range of the temperature difference converted from the pressure difference that can achieve the improvement effect of the operation efficiency of the heat pump by the two-stage compression.
  • the low-stage compressor (11) In this high-stage single compression operation, the low-stage compressor (11) must be stopped, so the temperature control of the cooling water outlet of the cooling heat exchanger (16) is controlled by the low-stage compressor (11). This cannot be done by adjusting the operation speed.
  • the temperature control of the cold water outlet is performed by adjusting the opening of the low stage expansion valve (15).
  • control of the hot water outlet temperature of the said heat exchanger for heating (13) is performed by adjusting the driving
  • the heat pump can be operated by two-stage compression or single-stage compression as necessary, and the heat pump can always be operated with high efficiency.
  • the pressure of the refrigerant discharged from the high-stage compressor (12) is increased to operate, but in this case, since it is higher than the optimum condensation pressure of the heating heat exchanger (13), The operating efficiency of the heat pump will decrease.
  • the pressure difference between the condensation pressure of the auxiliary heat exchanger (1) and the condensation pressure of the heating heat exchanger (13) is smaller than a predetermined value, or the condensation pressure of the auxiliary heat exchanger (1) is
  • the compressor adjustment section (41) switches from the two-stage compression operation to the low-stage single compression operation.
  • the high-stage compressor (12) is stopped and only the low-stage compressor (11) is started. Due to the stop of the high stage compressor (12), the refrigerant discharged from the low stage compressor (11) is divided and flows to both the auxiliary heat exchanger (1) and the high stage bypass pipe (19). It becomes like this.
  • the high-stage compressor (12) In the low-stage single compression operation, the high-stage compressor (12) must be stopped, so the temperature control of the hot water outlet of the heating heat exchanger (13) is controlled by the high-stage compressor (12). This cannot be done by adjusting the operation speed.
  • the temperature control of the hot water outlet is performed by adjusting the opening of the high stage expansion valve (14).
  • control of the cold-water exit temperature of the said heat exchanger for cooling (16) is performed by adjusting the rotation speed of the said low stage compressor (11) similarly to embodiment mentioned above.
  • the heat pump can be operated by two-stage compression or single-stage compression as necessary, and the heat pump can always be operated with high efficiency.
  • Modification 4 of Embodiment includes all of the above-described excessive heating operation, excessive cooling operation, single heating operation, single cooling operation, second excessive heating operation, single high compression operation, and single low compression operation. This is different from the above embodiment in that it can be switched to the above operation. Hereinafter, description of the same parts as those in the above embodiment will be omitted, and only differences will be described.
  • the refrigerant circuit (10) of Modification 4 includes a high-stage bypass pipe (high-stage bypass passage) that bypasses the high-stage compressor (12) to the refrigerant circuit (10) of Modification 1 (see FIG. 6) ( 19).
  • the high-stage bypass pipe (19) is provided with a check valve (CV3). This check valve (CV3) is provided in such a direction as to permit the flow of refrigerant from the suction side to the discharge side of the high stage compressor (12) and prohibit the flow of refrigerant in the reverse direction.
  • the low-stage compressor (11) is stopped and the first and second on-off valves (51, 52) are fully opened.
  • the refrigerant evaporated in the cooling side heat exchanger (16) passes through the auxiliary pipe (50), and then merges with the refrigerant evaporated in the auxiliary heat exchanger (1). It is sucked into the high stage compressor (12). Since the operations other than the high stage single compression operation are the same as those described above, description thereof will be omitted.
  • the heat pump can always be operated with high efficiency.
  • the superheat degree control or the supercooling degree control of the refrigerant circuit (10) is performed based on the determination signal of the load determination unit (42).
  • the present invention is not limited to this.
  • a detection unit that detects the flow direction of the refrigerant in the branch pipe (3a) branched from the compressor side connection pipe (4) or the branch pipe (3b) branched from the expansion valve side connection pipe (7)
  • the superheat degree control or the supercooling degree control of the refrigerant circuit (10) may be performed based on a detection signal from the detection unit.
  • the flow rate adjustment valve adjustment unit (43) performs superheat degree control. Do. Further, when the detection unit detects that the refrigerant is flowing from the compressor side to the expansion valve side of the auxiliary heat exchanger (1), the flow rate adjustment valve adjustment unit (43) controls the supercooling degree. I do. Thereby, control of the said flow regulating valve adjustment part (43) can be performed reliably.
  • the temperature of the refrigerant passing through these heat exchangers (1, 13, 16) may be detected by a temperature sensor, and the pressure may be estimated from the detected value. The effect of can be obtained.
  • the present invention relates to a heat pump, and is particularly useful for a heat pump that includes a refrigerant circuit capable of simultaneously processing cold and hot heat.

Abstract

 本発明は、冷媒回路の熱バランスを調整するために補助熱交換器を利用した場合であってもヒートポンプの効率が低下しないようにする。冷媒回路(10)は、冷媒回路(10)の冷媒と外気とを熱交換させる補助熱交換器(1)が設けられている。補助熱交換器(1)は、低段圧縮機(11)及び上記高段圧縮機(12)の間の連結通路(4)と、低段膨張弁(15)及び高段膨張弁(14)の間の連結通路(7)とを連通するように接続されている。

Description

ヒートポンプ
  本発明は、ヒートポンプに関し、特に冷熱及び温熱を同時に処理することが可能な冷媒回路を備えたものに関する。
  従来より、加熱負荷及び冷却負荷を同時に処理することが可能なヒートポンプが知られている。そして、これらのヒートポンプの中には、上記加熱負荷を処理する加熱用熱交換器と上記冷却負荷を処理する冷却用熱交換器との他に補助熱交換器が接続された冷媒回路を備えているものがある(特許文献1を参照。)。
  この補助熱交換器は、加熱負荷及び冷却負荷の状況によって、上記冷媒回路の熱バランスが不釣り合いとならないように調整するものである。上記加熱負荷が上記冷却負荷よりも大きくなって上記冷媒回路が放熱過多の場合には、上記補助熱交換器が蒸発器となって吸熱量を増やすことで熱バランスを釣り合わせる。つまり、加熱用熱交換器で凝縮した冷媒を冷却用熱交換器及び補助熱交換器の両方で蒸発させている。
  逆に、上記加熱負荷が上記冷却負荷よりも小さくなって上記冷媒回路が吸熱過多の場合には、補助熱交換器が凝縮器となって放熱量を増やすことで熱バランスを釣り合わせる。つまり、冷却用熱交換器で蒸発した冷媒は、加熱用熱交換器及び補助熱交換器の両方で凝縮させている。
特開2001-349639号公報
  ところで、この補助熱交換器は外気と冷媒とを熱交換させている。このため、この補助熱交換器の熱交換量は、加熱負荷及び冷却負荷を処理するのに利用されず、ヒートポンプの能力に寄与しない。それにもかかわらず、上記圧縮機の動力の一部が、この補助熱交換器へ冷媒を供給する動力として無駄に利用されるため、ヒートポンプの効率が低下するという問題があった。
  本発明は、かかる点に鑑みてなされたものであり、その目的は、冷媒回路の熱バランスを調整するために補助熱交換器を利用したヒートポンプにおいて、従来よりも高効率な運転を可能にすることにある。
  第1の発明は、低段圧縮機構(11)と高段圧縮機構(12)と高温熱交換器(13)と高段膨張機構(14)と低段膨張機構(15)と低温熱交換器(16)とが順に冷媒通路で接続されて、上記高温熱交換器(13)で冷媒が高温流体へ放熱するとともに上記低温熱交換器(16)で冷媒が低温流体から吸熱して蒸発することにより冷凍サイクルを行うことが可能な冷媒回路(10)と、上記低段圧縮機構(11)及び上記高段圧縮機構(12)の間の冷媒通路と上記低段膨張機構(15)及び上記高段膨張機構(14)の間の冷媒通路とを連通するように接続されて、上記冷媒回路(10)の冷媒と熱源流体とを熱交換する補助熱交換器(1)とを備えていることを特徴とするヒートポンプである。
  ここで、従来のヒートポンプの場合、上記冷媒回路(10)の冷媒を単段圧縮で循環させているので、上記補助熱交換器(1)を凝縮器として機能させるためには該補助熱交換器(1)を上記冷媒回路(10)の高圧ライン(高圧冷媒が流れる流路)に連通させ(図13(A)を参照)、上記補助熱交換器(1)を蒸発器として機構させるためには該補助熱交換器(1)を上記冷媒回路(10)の低圧ライン(低圧冷媒が流れる流路)に連通させるしかなかった。
  第1の発明では、上記冷媒回路(10)を二段圧縮二段膨張の回路で構成し、該冷媒回路(10)の中間圧ライン(中間圧冷媒が流れる流路)に補助熱交換器(1)を配置した(図13(B)を参照)。これにより、上記補助熱交換器(1)を凝縮器として機能させる場合には、上記低段圧縮機構(11)で圧縮した冷媒の一部を補助熱交換器(1)へ供給すればよいので、上記冷媒回路(10)の圧縮動力が減少する。
  また、上記補助熱交換器(1)を蒸発器として機能させる際には、上記高段膨張機構で減圧した冷媒の一部を補助熱交換器(1)へ供給して蒸発させた後で上記高段圧縮機構(12)へ吸入させればよいので、上記冷媒回路(10)の圧縮動力が減少する。
  第2の発明は、第1の発明において、上記高温熱交換器(13)の加熱負荷に応じて上記高段圧縮機構(12)の運転容量を調整し、上記低温熱交換器(16)の冷却負荷に応じて上記低段圧縮機構(11)の運転容量を調整する圧縮機構調整部(41)を備えていることを特徴としている。
  第2の発明では、上記加熱負荷が大きくなると上記高段圧縮機構(12)の運転容量を増加させ、上記加熱負荷が小さくなると上記高段圧縮機構(12)の運転容量を減少させる。また、上記冷却負荷が大きくなると上記低段圧縮機構(11)の運転容量を増加させ、上記冷却負荷が小さくなると上記低段圧縮機構(11)の運転容量を減少させる。
  ここで、上記加熱負荷が上記冷却負荷よりも大きくなり、上記高段圧縮機構(12)の運転容量が上記低段圧縮機構(11)の運転容量よりも大きくなると、上記補助熱交換器(1)で蒸発した冷媒が、上記低段圧縮機構(11)から吐出された冷媒とともに上記高段圧縮機構(12)へ吸入される。
  逆に、上記冷却負荷が上記加熱負荷よりも大きくなり、上記低段圧縮機構(11)の運転容量が上記高段圧縮機構(12)の運転容量よりも大きくなると、上記低段圧縮機構(11)の冷媒吐出量が上記高段圧縮機構(12)の冷媒吸入量よりも大きくなる。この結果、上記低段圧縮機構(11)から吐出されて上記高段圧縮機構(12)へ吸入されなかった冷媒が上記補助熱交換器(1)へ流れる。この補助熱交換器(1)を凝縮器として機能させることにより、該補助熱交換器(1)で冷媒が凝縮される。
  このように、上記加熱負荷が上記冷却負荷よりも大きくなると上記補助熱交換器(1)を蒸発器として機能させ、上記冷却負荷が上記加熱負荷よりも大きくなると上記補助熱交換器(1)を凝縮器として機能させることが可能となる。
  第3の発明は、第2の発明において、上記加熱負荷が上記冷却負荷よりも大きくなって上記補助熱交換器(1)及び上記低温熱交換器(16)の両方が蒸発器として機能する場合に、上記補助熱交換器(1)の蒸発圧力及び上記低温熱交換器(16)の蒸発圧力の圧力差が所定値より小さく、又は上記補助熱交換器(1)の蒸発圧力が上記低温熱交換器(16)の蒸発圧力以下のときに上記補助熱交換器(1)から流出した冷媒を上記低段圧縮機構(11)の吸入側へ導く低段吸入状態と、上記圧力差が所定値以上且つ上記補助熱交換器(1)の蒸発圧力が上記低温熱交換器(16)の蒸発圧力よりも大きいときに上記補助熱交換器(1)から流出した冷媒を上記高段圧縮機構(12)の吸入側へ導く高段吸入状態とに切換可能な切換機構(51,52)とを備えていることを特徴としている。
  ここで、上記補助熱交換器(1)の蒸発圧力及び上記低温熱交換器(16)の蒸発圧力の圧力差が小さくなればなるほど、上記低段圧縮機構(11)の吸入圧力及び吐出圧力が近づき、二段圧縮によるヒートポンプの運転効率の向上効果が小さくなる。また、上記補助熱交換器(1)の蒸発圧力が上記低温熱交換器(16)の蒸発圧力よりも低くなると、上記低段圧縮機構(11)の吸入冷媒の圧力と吐出冷媒の圧力とが逆転してしまい、上記低段圧縮機構(11)が機能しなくなってしまう。実際には、上記低段圧縮機構(11)の吸入冷媒の圧力を下げて運転することになるが、この場合、最適な上記低温熱交換器(16)の蒸発圧力よりも低くなるため、ヒートポンプの運転効率が低下してしまう。尚、この所定値は、二段圧縮によるヒートポンプの運転効率の向上効果を図ることが可能な圧力差の範囲内で設定される。
  第3の発明では、上記補助熱交換器(1)の蒸発圧力及び上記低温熱交換器(16)の蒸発圧力の圧力差が所定値よりも小さく、又は上記補助熱交換器(1)の蒸発圧力が上記低温熱交換器(16)の蒸発圧力以下のときに、上記切換機構(51,52)が低段吸入状態となる。これにより、上記補助熱交換器(1)で蒸発した冷媒が上記低段圧縮機構(11)に吸入される。
  一方、上記補助熱交換器(1)の蒸発圧力及び上記低温熱交換器(16)の蒸発圧力の圧力差が所定値以上且つ上記補助熱交換器(1)の蒸発圧力が上記低温熱交換器(16)の蒸発圧力よりも大きいときには、上記補助熱交換器(1)で蒸発した冷媒を上記高段圧縮機構(12)へ吸入させたほうが、ヒートポンプの高効率運転が可能となるため、上記切換機構(51,52)が高段吸入状態となる。
  第4の発明は、第1から第3の何れか1つの発明において、上記高温熱交換器(13)及び上記高段膨張機構(14)の間の冷媒配管から分岐して上記低段圧縮機構(11)及び上記高段圧縮機構(12)の間の冷媒配管に接続されるエコノマイザ配管(53)と、上記エコノマイザ配管(53)の冷媒を減圧する減圧機構(54)と、上記減圧機構(54)で減圧された上記エコノマイザ配管(53)の冷媒と、上記高温熱交換器(13)から上記高段膨張機構(14)へ向かう高圧冷媒とを熱交換するエコノマイザ熱交換器(55)とを備えていることを特徴としている。
  第4の発明では、上記エコノマイザ熱交換器(55)を設けない場合に比べて、上記高温熱交換器(13)から上記高段膨張機構(14)へ向かう冷媒の過冷却度を大きくとれるため、ヒートポンプの高効率運転が可能となる。
  第5の発明は、第1の発明において、上記低段圧縮機構(11)をバイパスする低段バイパス通路(18)と、上記加熱負荷が上記冷却負荷よりも大きい場合に、上記低段圧縮機構(11)及び上記高段圧縮機構(12)の運転調整を、少なくとも高段単独圧縮動作又は二段圧縮動作に切り換えながら行う圧縮機構調整部(41)とを備え、上記高段単独圧縮動作は、上記補助熱交換器(1)の蒸発圧力及び上記低温熱交換器(16)の蒸発圧力の圧力差が所定値より小さく、又は上記補助熱交換器(1)の蒸発圧力が上記低温熱交換器(16)の蒸発圧力以下のときに上記高温熱交換器(13)の加熱負荷に応じて上記高段圧縮機構(12)の運転容量を調整し、上記低段圧縮機構(11)を停止する動作であり、上記二段圧縮動作は、上記圧力差が所定値以上且つ上記補助熱交換器(1)の蒸発圧力が上記低温熱交換器(16)の蒸発圧力よりも高いときに、上記高温熱交換器(13)の加熱負荷に応じて上記高段圧縮機構(12)の運転容量を調整し、上記低温熱交換器(16)の冷却負荷に応じて上記低段圧縮機構(11)の運転容量を調整する動作であることを特徴としている。
  ここで、上記補助熱交換器(1)の蒸発圧力及び上記低温熱交換器(16)の蒸発圧力の圧力差が小さくなればなるほど、上記低段圧縮機構(11)の吸入圧力及び吐出圧力が近づき、二段圧縮によるヒートポンプの運転効率の向上効果が小さくなる。また、上記補助熱交換器(1)の蒸発圧力が上記低温熱交換器(16)の蒸発圧力よりも低くなると、上記低段圧縮機構(11)の吸入冷媒の圧力と吐出冷媒の圧力とが逆転してしまい、上記低段圧縮機構(11)が機能しなくなってしまう。実際には、上記低段圧縮機構(11)の吸入冷媒の圧力を下げて運転することになるが、この場合、最適な上記低温熱交換器(16)の蒸発圧力よりも低くなるため、ヒートポンプの運転効率が低下してしまう。尚、この所定値は、二段圧縮によるヒートポンプの運転効率の向上効果を図ることが可能な圧力差の範囲内で設定される。
  第5の発明では、上記補助熱交換器(1)の蒸発圧力及び上記低温熱交換器(16)の蒸発圧力の圧力差が所定値より小さく、又は上記補助熱交換器(1)の蒸発圧力が上記低温熱交換器(16)の蒸発圧力以下のときに、上記低段圧縮機構(11)を停止させて、上記高段圧縮機構(12)のみを起動する(高段単独圧縮動作)。上記低段圧縮機構(11)の停止により、上記低温熱交換器(16)で蒸発した冷媒は、上記低段バイパス通路(18)を通過した後で、上記補助熱交換器(1)で蒸発した冷媒とともに上記高段圧縮機構(12)へ吸入されるようになる。
  第6の発明は、第1の発明において、上記高段圧縮機構(12)をバイパスする高段バイパス通路(19)と、上記加熱負荷が上記冷却負荷よりも小さい場合に、上記低段圧縮機構(11)及び上記高段圧縮機構(12)の運転調整を、少なくとも低段単独圧縮動作又は二段圧縮動作に切り換えながら行う圧縮機構調整部(41)とを備え、上記低段単独圧縮動作は、上記補助熱交換器(1)の凝縮圧力及び上記高温熱交換器(13)の凝縮圧力の圧力差が所定値より小さく、又は上記補助熱交換器(1)の凝縮圧力が上記高温熱交換器(13)の凝縮圧力以上のときに、上記高段圧縮機構(12)を停止して、上記低温熱交換器(16)の冷却負荷に応じて上記低段圧縮機構(11)の運転容量を調整する動作であり、上記二段圧縮動作は、上記圧力差が所定値以上且つ上記補助熱交換器(1)の凝縮圧力が上記高温熱交換器(13)の凝縮圧力の凝縮圧力よりも低いときに、上記高温熱交換器(13)の加熱負荷に応じて上記高段圧縮機構(12)の運転容量を調整し、上記低温熱交換器(16)の冷却負荷に応じて上記低段圧縮機構(11)の運転容量を調整する動作であることを特徴としている。
  ここで、上記補助熱交換器(1)の凝縮圧力及び上記高温熱交換器(13)の凝縮圧力の圧力差が小さくなればなるほど、上記高段圧縮機構(12)の吸入圧力及び吐出圧力が近づき、二段圧縮によるヒートポンプの運転効率の向上効果が小さくなる。また、上記補助熱交換器(1)の凝縮圧力が上記高段圧縮機構(12)の凝縮圧力よりも高くなると、上記高段圧縮機構(12)の吸入冷媒の圧力と吐出冷媒の圧力とが逆転してしまい、上記高段圧縮機構(12)が機能しなくなってしまう。実際には、上記高段圧縮機構(12)の吐出冷媒の圧力を上げて運転することになるが、この場合、最適な上記高温熱交換器(13)の凝縮圧力よりも高くなるため、ヒートポンプの運転効率が低下してしまう。尚、この所定値は、二段圧縮によるヒートポンプの運転効率の向上効果を図ることが可能な圧力差の範囲内で設定される。
  第6の発明では、上記補助熱交換器(1)の凝縮圧力及び上記高温熱交換器(13)の凝縮圧力の圧力差が所定値より小さく、又は上記補助熱交換器(1)の凝縮圧力が上記高温熱交換器(13)の凝縮圧力以上のときに、上記高段圧縮機構(12)を停止させて、上記低段圧縮機構(11)のみを起動する(低段単独圧縮動作)。上記高段圧縮機構(12)の停止により、上記低段圧縮機構(11)から吐出された冷媒が分流して上記補助熱交換器(1)及び上記高段バイパス通路(19)の両方へ流れるようになる。
  第7の発明は、第2から第6の何れか1つの発明において、上記補助熱交換器(1)を流れる冷媒の流量を調整する流量調整機構(2)と、上記加熱負荷が上記冷却負荷よりも大きい場合に、上記補助熱交換器(1)から流出した冷媒の過熱度が所定値となるように上記流量調整機構(2)を調整する流量調整機構調整部(43)とを備えていることを特徴としている。
  第7の発明では、上記加熱負荷が上記冷却負荷よりも大きくなって上記補助熱交換器(1)が蒸発器として機能する場合には、上記流量調整機構調整部(43)の動作により、上記補助熱交換器(1)に流入する冷媒を確実に蒸発させることができるようになる。
  第8の発明は、第2から第6の何れか1つの発明において、上記補助熱交換器(1)を流れる冷媒の流量を調整する流量調整機構(2)と、上記加熱負荷が上記冷却負荷よりも小さい場合に、上記補助熱交換器(1)から流出した冷媒の過冷却度が所定値となるように上記流量調整機構(2)を調整する流量調整機構調整部(43)とを備えていることを特徴としている。
  第8の発明では、上記加熱負荷が上記冷却負荷よりも小さくなって上記補助熱交換器(1)が凝縮器として機能する場合には、上記流量調整機構調整部(43)の動作により、上記補助熱交換器(1)に流入する冷媒を確実に凝縮させることができるようになる。
  第9の発明は、第2から第4の何れか1つの発明において、上記加熱負荷が上記冷却負荷よりも大きい場合に、上記高段膨張機構(14)を全開に設定する高段膨張機構調整部(44)を備えていることを特徴としている。
  第9の発明では、上記高段膨張機構(14)を全開にすることにより、上記補助熱交換器(1)へ向かう冷媒を上記流量調整機構(2)のみで調整することができるようになる。
  第10の発明は、第2から第8の何れか1つの発明において、上記加熱負荷が上記冷却負荷よりも小さい場合に、上記高段膨張機構(14)の冷媒出口温度が上記補助熱交換器(1)の冷媒出口温度と上記低温熱交換器(16)の冷媒出口温度との間の温度となるように上記高段膨張機構(14)を調整する高段膨張機構調整部(44)を備えていることを特徴としている。
  第10の発明では、上記高段膨張機構(14)から流出する冷媒の圧力を確実に上記冷媒回路(10)の中間圧力にすることができるようになる。
  本発明によれば、上記補助熱交換器(1)を上記冷媒回路(10)の中間圧ラインに配置することにより、上記補助熱交換器(1)を高圧ラインや低圧ラインに配置する場合に比べて、上記補助熱交換器(1)へ冷媒を供給するのに用いられる上記冷媒回路(10)の圧縮動力を低減することができる。また、上記補助熱交換器(1)へは必要な冷媒量だけが制御せずに流れる。これにより、上記ヒートポンプの運転効率を従来よりも向上させることができる。
  また、上記第2の発明によれば、上記加熱負荷に応じて上記高段圧縮機構(12)を調整して、上記冷却負荷に応じて上記低段圧縮機構(11)を調整することにより、上記加熱負荷が上記冷却負荷よりも大きい場合に上記補助熱交換器(1)を蒸発器として機能させ、上記冷却負荷が上記加熱負荷よりも大きい場合に上記補助熱交換器(1)を凝縮器として機能させることが可能となる。これにより、上記冷媒回路(10)に切換弁を設けることなく、加熱負荷及び冷却負荷の状況に応じて、上記補助熱交換器(1)を蒸発器又は凝縮器にすることができる。
  また、上記第3の発明によれば、上記補助熱交換器(1)及び上記低温熱交換器(16)の蒸発圧力に基いて、上記切換機構(51,52)が低段吸入状態と高段吸入状態とに切り換わる。これにより、上記補助熱交換器(1)で蒸発した冷媒を必要に応じて上記低段圧縮機構(11)又は上記高段圧縮機構(12)へ吸入させることができ、常にヒートポンプを高効率で運転することができる。
  また、上記第4の発明によれば、上記エコノマイザ熱交換器(55)を設けない場合に比べて、上記高温熱交換器(13)から上記高段膨張機構(14)へ向かう冷媒の過冷却度を大きくすることができる。これにより、上記ヒートポンプの効率を向上させることができる。
  また、上記第5の発明によれば、上記補助熱交換器(1)及び上記低温熱交換器(16)の蒸発圧力に基いて、上記圧縮機構調整部(41)の動作が二段圧縮動作又は高段単独圧縮動作に切り換わる。これにより、上記ヒートポンプを必要に応じて二段圧縮又は単段圧縮で運転することが可能となり、常に高効率でヒートポンプを運転することができる。
  また、上記第6の発明によれば、上記補助熱交換器(1)及び上記高温熱交換器(13)の凝縮圧力に基いて、上記圧縮機構調整部(41)の動作が二段圧縮動作又は低段単独圧縮動作に切り換わる。これにより、上記ヒートポンプを必要に応じて二段圧縮又は単段圧縮で運転することが可能となり、常に高効率でヒートポンプを運転することができる。
  また、上記第7の発明によれば、上記流量調整機構調整部(43)によって、上記補助熱交換器(1)へ流入する冷媒を完全に蒸発させることができ、上記補助熱交換器(1)の熱交換量が確保される。これにより、上記加熱負荷が上記冷却負荷よりも大きい状態において、上記冷媒回路(10)の熱バランスを確実に釣り合わせることができる。
  また、上記第8の発明によれば、上記流量調整機構調整部(43)によって、上記補助熱交換器(1)に流入する冷媒を確実に凝縮させることができ、上記補助熱交換器(1)の熱交換量が確保される。これにより、上記加熱負荷が上記冷却負荷よりも小さい状態において、上記冷媒回路(10)の熱バランスを確実に釣り合わせることができる。
  また、上記第9の発明によれば、上記補助熱交換器(1)へ向かう冷媒を上記流量調整機構(2)のみで調整することができる。これにより、上記補助熱交換器(1)へ向かう冷媒の流量制御を簡素化することができる。
  また、上記第10の発明によれば、上記高段膨張機構(14)から流出する冷媒の圧力を確実に上記冷媒回路(10)の中間圧力にすることができ、上記補助熱交換器(1)で確実に冷媒と熱源流体とを熱交換することができる。
図1は、本実施形態に係るヒートポンプの冷媒回路図である。 図2は、本実施形態の加熱過多運転における冷媒の流れを示す図である。 図3は、本実施形態の冷却過多運転における冷媒の流れを示す図である。 図4は、本実施形態の加熱単独運転における冷媒の流れを示す図である。 図5は、本実施形態の冷却単独運転における冷媒の流れを示す図である。 図6は、本実施形態の変形例1に係るヒートポンプの冷媒回路図である。 図7は、本実施形態の変形例2に係るヒートポンプの冷媒回路図である。 図8は、本実施形態の変形例3に係るヒートポンプの冷媒回路図である。 図9は、変形例3の高段単独圧縮運転における冷媒の流れを示す図である。 図10は、変形例3の低段単独圧縮運転における冷媒の流れを示す図である。 図11は、コントローラの構成を示す図である。 図12は、本実施形態の変形例4に係るヒートポンプの冷媒回路図である。 図13は、各熱交換器と冷凍サイクルとの関係をP-h線図上に模式的に示した図であり、(A)は補助熱交換器が高圧ラインに配置された図であり、(B)は補助熱交換器が中間圧ラインに配置された図である。
  以下、本発明の実施形態を図面に基づいて詳細に説明する。
  本実施形態のヒートポンプは、産業用として用いられるものである。このヒートポンプは、冷熱及び温熱の同時取り出しが可能である。このヒートポンプには、冷媒回路(10)とコントローラ(40)とが設けられている。
    -冷媒回路-
  上記冷媒回路(10)は、二段圧縮二段膨張で冷凍サイクルを行うものである。この冷媒回路(10)は、低段圧縮機(低段圧縮機構)(11)と高段圧縮機(高段圧縮機構)(12)と加熱用熱交換器(高温熱交換器)(13)と高段膨張弁(高段膨張機構)(14)と低段膨張弁(低段膨張機構)(15)と冷却用熱交換器(低温熱交換器)(16)と流量調整弁(流量調整機構)(2)と補助熱交換器(1)とが設けられている。
  上記低段圧縮機(11)及び上記高段圧縮機(12)は共に全密閉型で構成され、上記低段圧縮機(11)には低段側インバータ(図示なし)が接続され、上記高段圧縮機(12)には高段側インバータ(図示なし)が接続されている。これらのインバータにより、各圧縮機(11,12)の運転回転数が可変に構成されている。また、上記低段圧縮機(11)の吐出口及び上記高段圧縮機(12)の吸入口とが圧縮機側の連結配管(4)で連結されている。この連結配管(4)には、上記低段圧縮機(11)寄りに逆止弁(CV1)が取り付けられている。この逆止弁(CV1)は、上記低段圧縮機(11)から上記高段圧縮機(12)へ向かう冷媒の流れを許容して逆方向への流れを阻止する。
  上記加熱用熱交換器(13)は、冷媒流路(13a)及び水流路(13b)を有している。この冷媒流路(13a)の流入口と上記高段圧縮機(12)の吐出口とが第1冷媒配管(5)で接続され、上記冷媒流路(13a)の流出口と上記高段膨張弁(14)の流入口とが第2冷媒配管(6)で接続されている。一方、上記加熱用熱交換器(13)の水流路(13b)は温水回路(30)に連通している。この温水回路(30)には、温水ポンプ(31)及び温水タンク(32)が接続されている。この加熱用熱交換器(13)は、上記高段圧縮機(12)から吐出された高圧冷媒が上記冷媒流路(13a)を通過し、上記温水ポンプ(31)から流出した水が上記水流路(13b)を通過する際に、上記高圧冷媒と上記水とが熱交換するように構成されている。
  上記高段膨張弁(14)及び上記低段膨張弁(15)は、共に開度が調節可能な電子膨張弁で構成されている。上記高段膨張弁(14)の流出口と上記低段膨張弁(15)の流入口とが膨張弁側の連結配管(7)で接続されている。
  上記冷却用熱交換器(16)は、冷媒流路(16a)及び水流路(16b)を有している。この冷媒流路(16a)の流入口と上記低段膨張弁(15)の流出口とが第3冷媒配管(8)で接続され、上記冷媒流路(16a)の流出口と上記低段圧縮機(11)の吸入口とが第4冷媒配管(9)で接続されている。一方、上記冷却用熱交換器(16)の水流路(16b)は冷水回路(33)に連通している。この冷水回路(33)には、冷水ポンプ(34)及び冷水タンク(35)が接続されている。この冷却用熱交換器(16)は、上記低段膨張弁(15)を流出した低圧冷媒が上記冷媒流路(16a)を通過し、上記冷水ポンプ(34)から流出した水が上記水流路(16b)を通過する際に、上記低圧冷媒と上記水とが熱交換するように構成されている。
  このように、上記冷媒回路(10)は、低段圧縮機(11)と高段圧縮機(12)と加熱用熱交換器(13)と高段膨張弁(14)と低段膨張弁(15)と冷却用熱交換器(16)とが順に接続された閉回路を有している。そして、この閉回路に、上記補助熱交換器(1)と上記流量調整弁(2)とが接続されている。
    〈補助熱交換器〉
  上記補助熱交換器(1)は、上記冷媒回路(10)に係る冷凍サイクルのヒートバランスを釣り合わせるためのものである。
  上記補助熱交換器(1)は、例えばクロスフィン式のフィン・アンド・チューブ型熱交換器で構成され、冷媒通路(1a)及び空気通路(図示なし)を有している。この補助熱交換器(1)の冷媒通路(1a)の一端には上記圧縮機側の連結配管(4)から分岐した分岐管(3a)が接続され、他端には上記膨張弁側の連結配管(7)から分岐した分岐管(3b)が接続されている。尚、この分岐管(3b)に上記流量調整弁(2)が設けられている。    
 また、上記補助熱交換器(1)の近傍には送風ファン(17)が設けられている。この補助熱交換器(1)は、上記低段圧縮機(11)から吐出された冷媒又は上記高段膨張弁(14)から流出した冷媒が上記冷媒通路(1a)を通過し、上記送風ファン(17)の空気が上記空気通路を通過する際に、上記冷媒と外気とが熱交換するように構成されている。
    -コントローラ-
  上記コントローラ(40)は、上記ヒートポンプの運転動作を制御するものである。このコントローラ(40)には、図11に示すように、圧縮機調整部(圧縮機構調整部)(41)と負荷判定部(42)と流量調整弁調整部(流量調整機構調整部)(43)と高段膨張弁調整部(高段膨張機構調整部)(44)と低段膨張弁調整部(低段膨張機構調整部)(45)とが設けられている。また、上記コントローラ(40)には、複数の温度センサ(21~26)が電気的に接続されている。
  具体的に、複数の温度センサ(21~26)とは、上記高段膨張弁(14)の冷媒出口温度を検出する高段膨張弁温度センサ(21)と、上記冷却用熱交換器(16)の冷媒出口温度を検出する冷却熱交温度センサ(22)と、上記補助熱交換器(1)を通過する前後の冷媒温度を検出する第1及び第2の補助熱交温度センサ(23,24)と、上記加熱用熱交換器(13)の温水出口温度を検出する温水温度センサ(25)と、上記冷却用熱交換器(16)の冷水出口温度を検出する冷水温度センサ(26)である。
   〈圧縮機調整部〉
  上記圧縮機調整部(41)には、上記温水温度センサ(25)及び上記冷水温度センサ(26)の検出値、上記加熱用熱交換器(13)の温水出口温度の温水設定値、及び上記冷却用熱交換器(16)の冷水出口温度の冷水設定値が入力される。
  上記圧縮機調整部(41)は、上記温水温度センサ(25)の検出値が上記温水設定値よりも低い場合には上記高段圧縮機(12)の運転回転数を増加させるための信号を該高段側インバータへ出力する。また、上記温水温度センサ(25)の検出値が上記温水設定値よりも高い場合には上記高段圧縮機(12)の運転回転数を減少させるための信号を該高段側インバータへ出力する。
  また、上記圧縮機調整部(41)は、上記冷水温度センサ(26)の検出値が上記冷水設定値よりも高い場合には上記低段圧縮機(11)の運転回転数を増加させるための信号を該低段側インバータへ出力する。また、上記冷水温度センサ(26)の検出値が上記冷水設定値よりも低い場合には上記低段圧縮機(11)の運転回転数を減少させるための信号を該低段側インバータへ出力する。
  このように、上記圧縮機調整部(41)は、上記加熱負荷に応じて上記高段圧縮機(12)の運転容量を調整し、上記冷却負荷に応じて上記低段圧縮機(11)の運転容量を調整する。
   〈負荷判定部〉
  上記負荷判定部(42)には、上記低段側及び高段側のインバータの周波数指令値が入力される。この負荷判定部(42)は、低段側インバータの周波数指令値に基いて冷却負荷を検出し、高段側インバータの周波数指令値に基いて加熱負荷を検出する。この負荷判定部(42)は、高段側インバータの周波数指令値が低段側インバータの周波数指令値よりも大きい場合には、上記加熱負荷が上記冷却負荷よりも大きいと判定して加熱過多信号を出力する。また、高段側インバータの周波数指令値が低段側インバータの周波数指令値よりも小さい場合には、上記加熱負荷が上記冷却負荷よりも小さいと判定して冷却過多信号を出力する。
   〈流量調整弁調整部〉
  上記流量調整弁調整部(43)には、第1及び第2の補助熱交温度センサ(23,24)の検出値と、上記負荷判定部(42)の判定信号とが入力される。また、上記補助熱交換器(1)内を流れる冷媒の温度を検出する補助熱交内部温度センサ(図示なし)の検出値が上記流量調整弁調整部(43)へ入力される。
  この流量調整弁調整部(43)は、上記負荷判定部(42)から加熱過多信号が入力されると、上記補助熱交内部温度センサの検出値を補助熱交換器(1)の蒸発温度とし、この蒸発温度に基いて第2補助熱交温度センサ(24)の検出値から上記補助熱交換器(1)の出口過熱度を算出する。そして、上記流量調整弁調整部(43)から上記流量調整弁(2)へ開度調整信号が適宜に出力され、上記出口過熱度が所定値(例えば3℃)となるように上記流量調整弁(2)の開度が調整される。
  一方、上記負荷判定部(42)から冷却過多信号が入力されると、上記補助熱交内部温度センサの検出値を補助熱交換器(1)の凝縮温度とし、この凝縮温度に基いて第1補助熱交温度センサ(23)の検出値から上記補助熱交換器(1)の出口過冷却度を算出する。そして、上記流量調整弁調整部(43)から上記流量調整弁(2)へ開度調整信号が適宜に出力され、上記出口過冷却度が所定値(例えば2℃)となるように上記流量調整弁(2)の開度が調整される。
   〈高段膨張弁調整部〉
  上記高段膨張弁調整部(44)には、上記高段膨張弁温度センサ(21)の検出値と、上記冷却熱交温度センサ(22)の検出値と、上記第2補助熱交温度センサ(24)の検出値と、上記負荷判定部(42)の判定信号とが入力される。
  この高段膨張弁調整部(44)は、上記負荷判定部(42)から加熱過多信号が入力されると、高段膨張弁調整部(44)から上記高段膨張弁(14)へ開度調整信号が出力され、
上記高段膨張弁(14)の開度が全開となる。
  一方、上記負荷判定部(42)から冷却過多信号が入力されると、高段膨張弁調整部(44)から上記高段膨張弁(14)へ開度調整信号が適宜に出力され、上記高段膨張弁(14)の冷媒出口温度(高段膨張弁温度センサ(21)の検出値)が上記補助熱交換器(1)の冷媒出口温度(第2補助熱交温度センサ(24)の検出値)と上記低温熱交換器(16)の冷媒出口温度(冷却熱交温度センサ(22)の検出値)との間の温度となるように、上記高段膨張弁(14)の開度が調整される。
   〈低段膨張弁調整部〉
  上記低段膨張弁調整部(45)には、上記冷却熱交温度センサ(22)の検出値が入力される。また、上記冷却用熱交換器(16)内を流れる冷媒の温度を検出する冷却熱交内部温度センサ(図示なし)の検出値が低段膨張弁調整部(45)へ入力される。
  この低段膨張弁調整部(45)は、上記冷却熱交内部温度センサの検出値を冷却用熱交換器(16)の蒸発温度とし、この蒸発温度に基いて上記冷却熱交温度センサ(22)の検出値から上記冷却用熱交換器(16)の出口過熱度を算出する。そして、上記低段膨張弁調整部(45)から上記低段膨張弁(15)へ開度調整信号が適宜に出力され、上記出口過熱度が所定値(例えば3℃)となるように上記低段膨張弁(15)の開度が調整される。
   -ヒートポンプの運転動作-
  次に、上記ヒートポンプの運転動作について説明する。このヒートポンプは、加熱負荷と冷却負荷の状況に応じて、加熱過多運転又は冷却過多運転を切換弁等を用いることなく運転を行うことが可能である。まず、加熱過多運転及び冷却過多運転について説明した後に、加熱単独運転及び冷却単独運転について説明する。
   〈加熱過多運転〉
  図2に示す加熱過多運転は、上記ヒートポンプの加熱負荷が冷却負荷よりも大きい場合の運転である。尚、本実施形態は、外気温度が15℃、上記圧縮機調整部(41)で設定される温水設定値が65℃、冷水設定値が7℃で、上記ヒートポンプの必要加熱能力が90%、必要冷却能力が60%の場合の加熱過多運転について説明する。
  この加熱過多運転は、上記コントローラ(40)の圧縮機調整部(41)により、上記加熱用熱交換器(13)の温水出口温度が温水設定値の65℃となるように上記高段圧縮機(12)の運転回転数が調整され、上記冷却用熱交換器(16)の冷水出口温度が冷水設定値の7℃となるように上記低段圧縮機(11)の運転回転数が調整される。
  また、上記高段膨張弁調整部(44)によって上記高段膨張弁(14)が全開に設定される。また、上記流量調整弁調整部(43)によって上記補助熱交換器(1)の出口過熱度が3℃となるように上記流量調整弁(2)の開度が調整される。また、上記低段膨張弁調整部(45)によって上記冷却用熱交換器(16)の出口過熱度が3℃となるように上記低段膨張弁(15)の開度が調整される。
  上記低段圧縮機(11)及び上記高段圧縮機(12)が運転を開始した後、加熱負荷が冷却負荷よりも大きいため、上記高段圧縮機(12)の運転回転数が上記低段圧縮機(11)の運転回転数を上回り、高段圧縮機(12)の冷媒吸入量が低段圧縮機(11)の冷媒吐出量よりも大きくなる。
  そのため、上記補助熱交換器(1)で蒸発した冷媒が、上記低段圧縮機(11)から吐出された冷媒とともに上記高段圧縮機(12)へ吸入される。つまり、上記補助熱交換器(1)内を膨張弁側から圧縮機側(図2の補助熱交換器(1)の左側から右側)へ向かって冷媒が流れる。
  上記高段圧縮機(12)から吐出された冷媒は、上記加熱用熱交換器(13)で上記温水回路(30)の水に放熱して凝縮する。このとき、上記加熱用熱交換器(13)の凝縮温度は70℃前後であり、上記温水回路(30)の水は、上記加熱用熱交換器(13)の冷媒の放熱によって65℃まで加熱される。上記加熱用熱交換器(13)で凝縮した冷媒は、上記高段膨張弁調整部(44)によって全開に設定された高段膨張弁(14)を通過した後で2つに分流する。
  この分流した冷媒の一方は、上記低段膨張弁(15)で減圧された後に上記冷却用熱交換器(16)で上記冷水回路(33)の水から吸熱して蒸発する。このときの上記冷却用熱交換器(16)の蒸発温度は0℃前後であり、上記冷水回路(33)の水は、上記冷却用熱交換器(16)の冷媒の吸熱によって7℃まで冷却される。そして、上記冷却用熱交換器(16)で蒸発した冷媒は、上記低段圧縮機(11)に吸入されて圧縮された後に上記高段圧縮機(12)の吸入側へ向かって吐出される。
  一方、この分流した冷媒の他方は、上記流量調整弁(2)で減圧された後に上記補助熱交換器(1)で外気から吸熱して蒸発する。このときの蒸発温度は、10℃前後である。そして、上記補助熱交換器(1)で蒸発した冷媒は、上記低段圧縮機(11)から吐出された冷媒と合流した後で、上記高段圧縮機(12)へ吸入されて圧縮された後に、再び上記加熱用熱交換器(13)へ吐出される。
  このように、加熱負荷が冷却負荷よりも大きいときには、上記補助熱交換器(1)の冷媒の流れ方向が膨張弁側から圧縮機側となり、上記補助熱交換器(1)が蒸発器として機能する。これにより、上記冷媒回路(10)が、熱バランスを保ちながら冷凍サイクルを行うことができるようになる。
   〈冷却過多運転〉
  図3に示す冷却過多運転は、上記ヒートポンプの加熱負荷が冷却負荷よりも小さい場合の運転である。尚、本実施形態は、外気温度が15℃、上記圧縮機調整部(41)で設定される温水設定値が65℃、冷水設定値が7℃で、上記ヒートポンプの必要加熱能力が40%、必要冷却能力が80%の場合の冷却過多運転について説明する。
  この冷却過多運転では、上記コントローラ(40)の圧縮機調整部(41)により、上記加熱用熱交換器(13)の温水出口温度が温水設定値の65℃となるように上記高段圧縮機(12)の運転回転数が調整され、上記冷却用熱交換器(16)の冷水出口温度が冷水設定値の7℃となるように上記低段圧縮機(11)の運転回転数が調整される。
  また、上記高段膨張弁調整部(44)によって上記高段膨張弁(14)の冷媒出口温度が上記補助熱交換器(1)の冷媒出口温度と上記冷却用熱交換器(16)の冷媒出口温度との間の温度となるように上記高段膨張弁(14)の開度が調整される。また、上記流量調整弁調整部(43)によって上記補助熱交換器(1)の出口過冷却度が2℃となるように上記流量調整弁(2)の開度が調整される。また、上記低段膨張弁調整部(45)によって上記冷却用熱交換器(16)の出口過熱度が3℃となるように上記低段膨張弁(15)の開度が調整される。
  上記低段圧縮機(11)及び上記高段圧縮機(12)が運転を開始した後、加熱負荷が冷却負荷よりも小さいため、上記高段圧縮機(12)の運転回転数が上記低段圧縮機(11)の運転回転数を下回り、高段圧縮機(12)の冷媒吸入量が低段圧縮機(11)の冷媒吐出量よりも小さくなる。
  こうなると、上記高段圧縮機(12)が上記低段圧縮機(11)から吐出された冷媒を全て吸入することができず、上記低段圧縮機(11)から吐出された冷媒の一部が上記補助熱交換器(1)へ流れる。つまり、上記補助熱交換器(1)内を圧縮機側から膨張弁側(図3の補助熱交換器(1)の右側から左側)へ向かって冷媒が流れるようになる。
  上記低段圧縮機(11)から上記高段圧縮機(12)へ向かって分流した冷媒は、該高段圧縮機(12)で圧縮された後で上記加熱用熱交換器(13)へ向けて吐出される。上記高段圧縮機(12)から吐出された冷媒は、上記加熱用熱交換器(13)で上記温水回路(30)の水に放熱して凝縮する。このときの凝縮温度は70℃前後であり、上記温水回路(30)の水は、上記加熱用熱交換器(13)の冷媒の放熱によって65℃まで加熱される。そして、上記加熱用熱交換器(13)で凝縮した冷媒は、上記高段膨張弁(14)で減圧される。
  一方、上記低段圧縮機(11)から上記補助熱交換器(1)側へ向かって分流した冷媒は、該補助熱交換器(1)で凝縮した後で上記流量調整弁(2)に流入する。このときの補助熱交換器(1)の凝縮温度は20℃前後である。上記流量調整弁(2)へ流入した冷媒は、該流量調整弁(2)で減圧された後に、上記高段膨張弁(14)から流出した冷媒と合流して上記低段膨張弁(15)に流入する。
  上記低段膨張弁(15)に流入した冷媒は減圧された後に上記冷却用熱交換器(16)で上記冷水回路(33)の水から吸熱して蒸発する。このときの上記冷却用熱交換器(16)の蒸発温度は0℃前後であり、上記冷水回路(33)の水は、上記冷却用熱交換器(16)の冷媒の吸熱によって7℃まで冷却される。そして、上記冷却用熱交換器(16)で蒸発した冷媒は、上記低段圧縮機(11)に吸入されて圧縮された後で上記補助熱交換器(1)及び高段圧縮機(12)へ向けて再び吐出される。
  このように、加熱負荷が冷却負荷よりも小さいときには、上記補助熱交換器(1)の冷媒の流れ方向が圧縮機側から膨張弁側となり上記補助熱交換器(1)が凝縮器として機能する。これにより、上記冷媒回路(10)が、熱バランスを保ちながら冷凍サイクルを行うことができるようになる。
   〈加熱単独運転〉
  図4に示す加熱単独運転は、上記冷却負荷がなく上記加熱負荷がある場合に行う運転である。この加熱単独運転では、上記高段圧縮機(12)を起動させて上記低段圧縮機(11)を停止する。また、上記高段膨張弁(14)は全開状態となって上記低段膨張弁(15)は全閉状態となる。
  上記高段圧縮機(12)から吐出された冷媒は、上記加熱用熱交換器(13)で上記温水回路(30)の水に放熱して凝縮する。このとき、上記温水回路(30)の水は、上記加熱用熱交換器(13)の冷媒の放熱によって加熱される。上記加熱用熱交換器(13)で凝縮した冷媒は、全開状態の高段膨張弁(14)を通過した後に上記流量調整弁(2)に流入する。
  上記流量調整弁(2)に流入した冷媒は、該流量調整弁(2)で減圧されて低圧冷媒となった後に上記補助熱交換器(1)で外気から吸熱して蒸発する。そして、上記補助熱交換器(1)で蒸発した冷媒は、上記高段圧縮機(12)へ吸入されて圧縮された後、再び上記加熱用熱交換器(13)へ向けて吐出される。このように、上記加熱用熱交換器(13)が凝縮器となり且つ上記補助熱交換器(1)が蒸発器となって、上記加熱用熱交換器(13)で加熱負荷が処理される。
   〈冷却単独運転〉
  図5に示す冷却単独運転は、上記冷却負荷があり上記加熱負荷がない場合に行う運転である。この冷却単独運転では、上記高段圧縮機(12)を停止させて上記低段圧縮機(11)を起動する。また、上記高段膨張弁(14)は全閉状態となって上記低段膨張弁(15)は全開状態となる。
  上記低段圧縮機(11)から吐出された冷媒は、上記補助熱交換器(1)で外気に放熱して凝縮した後に上記流量調整弁(2)で減圧されて低圧冷媒となる。この低圧冷媒は全開状態の低段膨張弁(15)を通過した後に上記冷却用熱交換器(16)で上記冷水回路(33)の水から吸熱して蒸発する。このとき、上記冷水回路(33)の水は、上記冷却用熱交換器(16)の冷媒の吸熱によって冷却される。そして、上記冷却用熱交換器(16)で蒸発した冷媒は、上記低段圧縮機(11)に吸入されて圧縮された後で上記補助熱交換(1)へ向けて再び吐出される。このように、上記補助熱交換器(1)が凝縮器となり且つ上記冷却用熱交換器(16)が蒸発器となって、上記冷却用熱交換器(16)で冷却負荷が処理される。
   -実施形態の効果-
  本実施形態によれば、上記補助熱交換器(1)を上記冷媒回路(10)の中間圧ラインに配置することにより、上記補助熱交換器(1)を高圧ラインや低圧ラインに配置する場合に比べて、上記補助熱交換器(1)へ冷媒を供給するのに用いられる上記冷媒回路(10)の圧縮動力を低減することができる。これにより、上記ヒートポンプの効率を低下させないようにすることができる。また、上記補助熱交換器(1)へは必要な冷媒量だけが制御せずに流れる。これにより、上記ヒートポンプの運転効率を従来よりも向上させることができる。
  また、本実施形態によれば、上記加熱負荷に応じて上記高段圧縮機(12)を調整して、上記冷却負荷に応じて上記低段圧縮機(11)を調整することにより、上記加熱負荷が上記冷却負荷よりも大きい場合に上記補助熱交換器(1)を蒸発器として機能させ、上記冷却負荷が上記加熱負荷よりも大きい場合に上記補助熱交換器(1)を凝縮器として機能させることが可能となる。これにより、上記冷媒回路(10)に切換弁を設けることなく、加熱負荷及び冷却負荷の状況に応じて、上記補助熱交換器(1)を蒸発器又は凝縮器にすることができる。
  また、本実施形態によれば、上記流量調整弁調整部(43)によって、上記補助熱交換器(1)へ流入する冷媒を完全に蒸発させることができ、上記補助熱交換器(1)の熱交換量が確保される。これにより、上記加熱負荷が上記冷却負荷よりも大きい状態において、上記冷媒回路(10)の熱バランスを確実に釣り合わせることができる。
  また、本実施形態によれば、上記流量調整弁調整部(43)によって、上記補助熱交換器(1)に流入する冷媒を確実に凝縮させることができ、上記補助熱交換器(1)の熱交換量が確保される。これにより、上記加熱負荷が上記冷却負荷よりも小さい状態において、上記冷媒回路(10)の熱バランスを確実に釣り合わせることができる。
   -実施形態の変形例1-
  図6に示す実施形態の変形例1は、特に上記冷媒回路(10)の冷媒の流れを切り換える切換機構(51,52)と該切換機構(51,52)を操作する切換機構操作部(図示なし)とが設けられている点が上記実施形態とは異なる。以下、上記実施形態と同じ部分については説明を省略し、相違点についてのみ説明する。
  変形例1の冷媒回路(10)には、上記分岐管(3a)と上記第4冷媒配管(9)との間を接続する補助配管(50)が設けられている。そして、この補助配管(50)に第1開閉弁(51)が設けられ、上記分岐管(3a)の圧縮機側の連結配管(4)寄りに第2開閉弁(52)が設けられている。これらの開閉弁(51,52)が上述した切換機構(51,52)を構成する。
  尚、上記切換機構(51,52)の第1状態は、第1開閉弁(51)が閉鎖され且つ第2開閉弁(52)が開放される状態である。また、上記切換機構(51,52)の第2状態は、第1開閉弁(51)が開放され且つ第2開閉弁(52)が閉鎖される状態である。
  この変形例1のヒートポンプは、第1及び第2の開閉弁(51,52)によって、上述した4つの運転(加熱過多運転、冷却過多運転、加熱単独運転、冷却単独運転)の他に、第2加熱過多運転が実行可能に構成されている。本実施形態は、上記切換機構(51,52)の第1状態のときに上述した4つの運転が実行可能となり、第2状態のときに第2加熱過多運転が実行可能となる。尚、この第2加熱過多運転は、上記ヒートポンプの加熱負荷が冷却負荷よりも大きい場合の運転である。
  ここで、上記加熱負荷が上記冷却負荷よりも大きくなって上記補助熱交換器(1)及び上記低温熱交換器(16)の両方が蒸発器として機能する場合において、上記補助熱交換器(1)の蒸発圧力及び上記冷却用熱交換器(16)の蒸発圧力の圧力差が小さくなればなるほど、上記低段圧縮機(11)の吸入圧力及び吐出圧力が近づき、二段圧縮によるヒートポンプの運転効率の向上効果が小さくなる。また、上記補助熱交換器(1)の蒸発圧力が上記低温熱交換器(16)の蒸発圧力よりも低くなると、上記低段圧縮機(11)の吸入冷媒の圧力と吐出冷媒の圧力とが逆転してしまい、上記低段圧縮機(11)が機能しなくなってしまう。実際には、上記低段圧縮機(11)の吸入冷媒の圧力を下げて運転することになるが、この場合、最適な上記冷却用熱交換器(16)の蒸発圧力よりも低くなるため、ヒートポンプの運転効率が低下してしまう。
  このことから、上記補助熱交換器(1)の蒸発圧力及び上記冷却用熱交換器(16)の蒸発圧力の圧力差が所定値より小さく、又は上記補助熱交換器(1)の蒸発圧力が上記冷却用熱交換器(16)の蒸発圧力以下のときに、上記第1開閉弁(51)を開放して、第2開閉弁(52)を閉鎖する(切換機構(51,52)の低段吸入状態)。これにより、上記補助熱交換器(1)から上記低段圧縮機(11)の吸入側へ向かって冷媒が流れる。
  尚、上記切換機構操作部は、上記補助熱交換器(1)の蒸発圧力を外気温度から推定し、上記冷却用熱交換器(16)の蒸発圧力を上記冷却用熱交換器(16)の冷水出口温度から推定する。したがって、上記外気温度と上記冷却用熱交換器(16)の冷水出口温度との温度差が所定値よりも小さく且つ上記外気温度が上記冷水出口温度以下のときに、上記切換機構操作部において低段吸入状態に切り換わる。ここで、所定値とは、二段圧縮によるヒートポンプの運転効率の向上効果を図ることが可能な圧力差から換算した温度差の範囲内で設定される。
  また、第1開閉弁(51)を閉鎖して、第2開閉弁(52)を開放した場合(切換機構(51,52)の高段吸入状態)の冷媒回路(10)は、上記実施形態の冷媒回路(10)と略同一であるので、説明は省略する。
  このように、上記外気温度及び上記冷却用熱交換器(16)の冷水出口温度に基いて、上記切換機構操作部が低段吸入状態と高段吸入状態とに切り換わる。これにより、上記補助熱交換器(1)で蒸発した冷媒を必要に応じて上記低段圧縮機(11)又は上記高段圧縮機(12)へ吸入させることができ、常にヒートポンプを高効率で運転することができる。
   -実施形態の変形例2-
  図7に示す実施形態の変形例2は、特にエコノマイザ熱交換器(55)が設けられている点が上記実施形態とは異なる。以下、上記実施形態と同じ部分については説明を省略し、相違点についてのみ説明する。
  変形例2の冷媒回路(10)には、上記第2冷媒配管(6)と上記圧縮機側の連結配管(4)とを連通するエコノマイザ配管(53)が設けられている。上記エコノマイザ熱交換器(55)は、高温流路及び低温流路を有するとともに、該高温流路が上記第2冷媒配管(6)に連通し且つ上記低温流路がエコノマイザ配管(53)に連通するように配置されている。また、上記エコノマイザ配管(53)の上記第2冷媒配管(6)と上記エコノマイザ熱交換器(55)との間には、減圧弁(54)が設けられている。
  上記加熱用熱交換器(13)を流出した冷媒は、その一部が分流して減圧弁(54)で減圧された後でエコノマイザ熱交換器(55)の低温流路へ流れて、残りがエコノマイザ熱交換器(55)の高温流路へ流れる。
  このエコノマイザ熱交換器(55)において、上記高温流路の冷媒と上記低温流路の冷媒とが熱交換して該高温流路の冷媒が冷却される。これにより、上記エコノマイザ熱交換器(55)を設けない場合に比べて、上記高温熱交換器(13)から上記高段膨張弁(14)へ向かう冷媒の過冷却度を大きくすることができ、上記ヒートポンプの効率を向上させることができる。
   -実施形態の変形例3-
  図8から図10に示す実施形態の変形例3は、上記冷媒回路(10)の冷媒が上記低段圧縮機(11)又は上記高段圧縮機(12)をバイパスすることが可能に構成されている点において上記実施形態とは異なる。以下、上記実施形態と同じ部分については説明を省略し、相違点についてのみ説明する。
  変形例3の冷媒回路(10)には、上記低段圧縮機(11)をバイパスする低段バイパス配管(低段バイパス通路)(18)と、上記高段圧縮機(12)をバイパスする高段バイパス配管(高段バイパス通路)(19)とが設けられている。また、各バイパス配管(18,19)には、逆止弁(CV3,CV4)がそれぞれ設けられている。これらの逆止弁(CV3,CV4)は、各圧縮機(11,12)の吸入側から吐出側へ向かう冷媒の流れを許容して、逆方向の冷媒の流れを禁止する向きに設けられている。
  また、上記コントローラ(40)の圧縮機調整部(41)は、上記実施形態とは違い、二段圧縮動作と高段単独圧縮運転と低段単独圧縮運転とを適宜に切り換えながら上記低段圧縮機(11)及び上記高段圧縮機(12)の運転調整を行うように構成されている。尚、二段圧縮動作は、上記実施形態の加熱過多運転及び冷却過多運転の動作と同じため、説明を省略する。
   〈高段単独圧縮運転〉
  ここで、上記加熱負荷が上記冷却負荷よりも大きくなって上記補助熱交換器(1)及び上記低温熱交換器(16)の両方が蒸発器として機能する場合において、上記補助熱交換器(1)の蒸発圧力及び上記冷却用熱交換器(16)の蒸発圧力の圧力差が小さくなればなるほど、上記低段圧縮機(11)の吸入圧力及び吐出圧力が近づき、二段圧縮によるヒートポンプの運転効率の向上効果が小さくなる。また、上記補助熱交換器(1)の蒸発圧力が上記冷却用熱交換器(16)の蒸発圧力よりも低くなると、上記低段圧縮機(11)の吸入冷媒の圧力と吐出冷媒の圧力とが逆転してしまい、上記低段圧縮機(11)が機能しなくなってしまう。
  実際には、上記低段圧縮機(11)の吸入冷媒の圧力を下げて運転することになるが、この場合、最適な上記冷却用熱交換器(16)の蒸発圧力よりも低くなるため、ヒートポンプの運転効率が低下してしまう。
  このことから、上記補助熱交換器(1)の蒸発圧力及び上記冷却用熱交換器(16)の蒸発圧力の圧力差が所定値より小さく、又は上記補助熱交換器(1)の蒸発圧力が上記冷却用熱交換器(16)の蒸発圧力以下のときに、上記圧縮機調整部(41)が二段圧縮動作から高段単独圧縮運転へ切り換わる。この高段単独圧縮運転では、上記低段圧縮機(11)が停止し、上記高段圧縮機(12)のみが起動する。上記低段圧縮機(11)の停止により、上記冷却用熱交換器(16)で蒸発した冷媒は、上記低段バイパス配管(18)を通過した後で、上記補助熱交換器(1)で蒸発した冷媒とともに上記高段圧縮機(12)へ吸入されるようになる。
  尚、本実施形態の変形例3は、上記補助熱交換器(1)の蒸発圧力を外気温度から推定し、上記冷却用熱交換器(16)の蒸発圧力を冷水出口温度から推定する。したがって、上記外気温度と上記冷水出口温度との温度差が所定値よりも小さく、又は上記外気温度が上記冷水出口温度以下のときに、上記圧縮機調整部(41)が高段単独圧縮運転に切り換わる。ここで、所定値とは、二段圧縮によるヒートポンプの運転効率の向上効果を図ることが可能な圧力差から換算した温度差の範囲内で設定される。
  また、この高段単独圧縮運転では、上記低段圧縮機(11)を停止させなければならないため、上記冷却用熱交換器(16)の冷水出口の温度制御を上記低段圧縮機(11)の運転回転数の調整で行うことができない。この高段単独圧縮運転では、この冷水出口の温度制御を上記低段膨張弁(15)の開度調整によって行う。尚、上記加熱用熱交換器(13)の温水出口温度の制御は、上述した実施形態と同様に、上記高段圧縮機(12)の運転回転数を調整することによって行われる。
  このように、上記ヒートポンプを必要に応じて二段圧縮又は単段圧縮で運転することが可能となり、常に高効率でヒートポンプを運転することができる。
   〈低段単独圧縮運転〉
  また、上記加熱負荷が上記冷却負荷よりも小さくなって上記補助熱交換器(1)及び上記加熱用熱交換器(13)の両方が凝縮器として機能する場合において、上記補助熱交換器(1)の凝縮圧力及び上記加熱用熱交換器(13)の凝縮圧力の圧力差が小さくなればなるほど、上記高段圧縮機(12)の吸入圧力及び吐出圧力が近づき、二段圧縮によるヒートポンプの運転効率の向上効果が小さくなる。また、上記補助熱交換器(1)の凝縮圧力が上記加熱用熱交換器(13)の凝縮圧力よりも高くなると、上記高段圧縮機(12)の吸入冷媒の圧力と吐出冷媒の圧力とが逆転してしまい、上記高段圧縮機(12)が機能しなくなってしまう。
  実際には、上記高段圧縮機(12)の吐出冷媒の圧力を上げて運転することになるが、この場合、最適な上記加熱用熱交換器(13)の凝縮圧力よりも高くなるため、ヒートポンプの運転効率が低下してしまう。
  このことから、上記補助熱交換器(1)の凝縮圧力及び上記加熱用熱交換器(13)の凝縮圧力の圧力差が所定値より小さく、又は上記補助熱交換器(1)の凝縮圧力が上記加熱用熱交換器(13)の凝縮圧力以上のときに、上記圧縮機調整部(41)が二段圧縮動作から低段単独圧縮運転へ切り換わる。この低段単独圧縮運転では、上記高段圧縮機(12)が停止し、上記低段圧縮機(11)のみが起動する。上記高段圧縮機(12)の停止により、上記低段圧縮機(11)から吐出された冷媒が分流して上記補助熱交換器(1)及び上記高段バイパス配管(19)の両方へ流れるようになる。
  尚、本実施形態は、上記加熱用熱交換器(13)の凝縮圧力を温水出口温度から推定する。したがって、上記外気温度と上記温水出口温度との温度差が所定値よりも小さく、又は上記外気温度が上記温水出口温度以上のときに、上記圧縮機調整部(41)が低段単独圧縮運転に切り換わる。ここで、所定値とは、二段圧縮によるヒートポンプの運転効率の向上効果を図ることが可能な圧力差から換算した温度差の範囲内で設定される。
  また、この低段単独圧縮運転では、上記高段圧縮機(12)を停止させなければならないため、上記加熱用熱交換器(13)の温水出口の温度制御を上記高段圧縮機(12)の運転回転数の調整で行うことができない。この低段単独圧縮運転では、この温水出口の温度制御を上記高段膨張弁(14)の開度調整によって行う。尚、上記冷却用熱交換器(16)の冷水出口温度の制御は、上述した実施形態と同様に、上記低段圧縮機(11)の運転回転数を調整することによって行われる。
  このように、上記ヒートポンプを必要に応じて二段圧縮又は単段圧縮で運転することが可能となり、常に高効率でヒートポンプを運転することができる。
   -実施形態の変形例4-
  図12に示す実施形態の変形例4は、上述した加熱過多運転、冷却過多運転、加熱単独運転、冷却単独運転、第2加熱過多運転、高段単独圧縮運転、及び低段単独圧縮運転の全ての運転に切り換えることが可能に構成されている点において上記実施形態とは異なる。以下、上記実施形態と同じ部分については説明を省略し、相違点についてのみ説明する。
  変形例4の冷媒回路(10)には、変形例1の冷媒回路(10)(図6を参照)に上記高段圧縮機(12)をバイパスする高段バイパス配管(高段バイパス通路)(19)とが設けられている。また、高段バイパス配管(19)には、逆止弁(CV3)が設けられている。この逆止弁(CV3)は、高段圧縮機(12)の吸入側から吐出側へ向かう冷媒の流れを許容して、逆方向の冷媒の流れを禁止する向きに設けられている。
  ここで、高段単独圧縮運転の場合には、上記低段圧縮機(11)が停止するとともに、第1及び第2の開閉弁(51,52)が全開となる。これにより、上記冷却側熱交換器(16)で蒸発した冷媒は補助配管(50)を通過した後で、上記補助熱交換器(1)で蒸発した冷媒と合流し、その合流した冷媒が上記高段圧縮機(12)へ吸入される。尚、高段単独圧縮運転以外の運転は上述したものと同じであるため、説明は省略する。
  このように、上記ヒートポンプの運転を必要に応じて切り換えることにより、常に高効率でヒートポンプを運転することができる。
  《その他の実施形態》
  上記実施形態については、以下のような構成としてもよい。
  本実施形態では、上記流量調整弁調整部(43)において、上記負荷判定部(42)の判定信号に基いて、上記冷媒回路(10)の過熱度制御又は過冷却度制御を行っていたが、これに限定されない。例えば、上記圧縮機側の連結配管(4)から分岐した分岐管(3a)又は上記膨張弁側の連結配管(7)から分岐した分岐管(3b)に、冷媒の流れ方向を検知する検知部を設け、この検知部からの検知信号に基いて上記冷媒回路(10)の過熱度制御又は過冷却度制御を行ってもよい。
  つまり、上記検知部が上記補助熱交換器(1)の膨張弁側から圧縮機側へ冷媒が流れていることを検知した場合には、上記流量調整弁調整部(43)が過熱度制御を行う。また、上記検知部が上記補助熱交換器(1)の圧縮機側から膨張弁側へ冷媒が流れていることを検知した場合には、上記流量調整弁調整部(43)が過冷却度制御を行う。これにより、上記流量調整弁調整部(43)の制御を確実に実行することができる。
  本実施形態では、上記外気温度から上記補助熱交換器(1)の蒸発圧力/凝縮圧力を推定し、上記冷水出口温度から上記冷却用熱交換器(16)の蒸発圧力を推定し、上記温水出口温度から上記加熱用熱交換器(13)の凝縮圧力を推定していたが、これに限定されず、例えば、これらの圧力を圧力センサで直接検知してもよい。
  また、これらの熱交換器(1,13,16)を通過する冷媒の温度を温度センサで検出し、この検出値から圧力を推定してもよい、この場合であっても、本発明と同様の効果を得ることができる。
  なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
  以上説明したように、本発明は、ヒートポンプに関し、特に冷熱及び温熱を同時に処理することが可能な冷媒回路を備えたものについて有用である。
      1   補助熱交換器
      2   流量調整弁(流量調整機構)
     10   冷媒回路
     11   低段圧縮機(低段圧縮機構)
     12   高段圧縮機(高段圧縮機構)
     13   加熱用熱交換器(高温熱交換器)
     14   高段膨張弁(高段膨張機構)
     15   低段膨張弁(低段膨張機構)
     16   冷却用熱交換器(低温熱交換器)
     17   送風ファン
     21   高段膨張弁温度センサ
     22   冷却熱交温度センサ
     23   第1補助熱交温度センサ
     24   第2補助熱交温度センサ
     25   温水温度センサ
     26   冷水温度センサ
     30   温水回路
     31   温水ポンプ
     32   温水タンク
     33   冷水回路
     34   冷水ポンプ
     35   冷水タンク
     40   コントローラ
     41   圧縮機調整部(圧縮機構調整部)
     42   負荷判定部
     43   流量調整弁調整部(流量調整機構調整部)
     44   高段膨張弁調整部(高段膨張機構調整部)
     45   低段膨張弁調整部(低段膨張機構調整部)

Claims (10)

  1.   低段圧縮機構(11)と高段圧縮機構(12)と高温熱交換器(13)と高段膨張機構(14)と低段膨張機構(15)と低温熱交換器(16)とが順に冷媒通路で接続されて、上記高温熱交換器(13)で冷媒が高温流体へ放熱するとともに上記低温熱交換器(16)で冷媒が低温流体から吸熱して蒸発することにより冷凍サイクルを行うことが可能な冷媒回路(10)と、
      上記低段圧縮機構(11)及び上記高段圧縮機構(12)の間の冷媒通路と上記低段膨張機構(15)及び上記高段膨張機構(14)の間の冷媒通路とを連通するように接続されて、上記冷媒回路(10)の冷媒と熱源流体とを熱交換する補助熱交換器(1)と、
    を備えていることを特徴とするヒートポンプ。
  2.   請求項1において、
      上記高温熱交換器(13)の加熱負荷に応じて上記高段圧縮機構(12)の運転容量を調整し、上記低温熱交換器(16)の冷却負荷に応じて上記低段圧縮機構(11)の運転容量を調整する圧縮機構調整部(41)を備えていることを特徴とするヒートポンプ。
  3.   請求項2において、
      上記加熱負荷が上記冷却負荷よりも大きくなって上記補助熱交換器(1)及び上記低温熱交換器(16)の両方が蒸発器として機能する場合に、上記補助熱交換器(1)の蒸発圧力及び上記低温熱交換器(16)の蒸発圧力の圧力差が所定値より小さく、又は上記補助熱交換器(1)の蒸発圧力が上記低温熱交換器(16)の蒸発圧力以下のときに上記補助熱交換器(1)から流出した冷媒を上記低段圧縮機構(11)の吸入側へ導く低段吸入状態と、上記圧力差が所定値以上且つ上記補助熱交換器(1)の蒸発圧力が上記低温熱交換器(16)の蒸発圧力よりも大きいときに上記補助熱交換器(1)から流出した冷媒を上記高段圧縮機構(12)の吸入側へ導く高段吸入状態とに切換可能な切換機構(51,52)と、
    を備えていることを特徴とするヒートポンプ。
  4.   請求項1から3の何れか1つにおいて、
      上記高温熱交換器(13)及び上記高段膨張機構(14)の間の冷媒配管から分岐して上記低段圧縮機構(11)及び上記高段圧縮機構(12)の間の冷媒配管に接続されるエコノマイザ配管(53)と、
      上記エコノマイザ配管(53)の冷媒を減圧する減圧機構(54)と、
      上記減圧機構(54)で減圧された上記エコノマイザ配管(53)の冷媒と、上記高温熱交換器(13)から上記高段膨張機構(14)へ向かう高圧冷媒とを熱交換するエコノマイザ熱交換器(55)と、
    を備えていることを特徴とするヒートポンプ。
  5.   請求項1において、
      上記低段圧縮機構(11)をバイパスする低段バイパス通路(18)と、
      上記加熱負荷が上記冷却負荷よりも大きい場合に、上記低段圧縮機構(11)及び上記高段圧縮機構(12)の運転調整を、少なくとも高段単独圧縮動作又は二段圧縮動作に切り換えながら行う圧縮機構調整部(41)とを備え、
      上記高段単独圧縮動作は、上記補助熱交換器(1)の蒸発圧力及び上記低温熱交換器(16)の蒸発圧力の圧力差が所定値より小さく、又は上記補助熱交換器(1)の蒸発圧力が上記低温熱交換器(16)の蒸発圧力以下のときに上記高温熱交換器(13)の加熱負荷に応じて上記高段圧縮機構(12)の運転容量を調整し、上記低段圧縮機構(11)を停止する動作であり、
      上記二段圧縮動作は、上記圧力差が所定値以上且つ上記補助熱交換器(1)の蒸発圧力が上記低温熱交換器(16)の蒸発圧力よりも高いときに、上記高温熱交換器(13)の加熱負荷に応じて上記高段圧縮機構(12)の運転容量を調整し、上記低温熱交換器(16)の冷却負荷に応じて上記低段圧縮機構(11)の運転容量を調整する動作であることを特徴とするヒートポンプ。
  6.   請求項1において、
      上記高段圧縮機構(12)をバイパスする高段バイパス通路(19)と、
      上記加熱負荷が上記冷却負荷よりも小さい場合に、上記低段圧縮機構(11)及び上記高段圧縮機構(12)の運転調整を、少なくとも低段単独圧縮動作又は二段圧縮動作に切り換えながら行う圧縮機構調整部(41)とを備え、
      上記低段単独圧縮動作は、上記補助熱交換器(1)の凝縮圧力及び上記高温熱交換器(13)の凝縮圧力の圧力差が所定値より小さく、又は上記補助熱交換器(1)の凝縮圧力が上記高温熱交換器(13)の凝縮圧力以上のときに、上記高段圧縮機構(12)を停止して、上記低温熱交換器(16)の冷却負荷に応じて上記低段圧縮機構(11)の運転容量を調整する動作であり、
      上記二段圧縮動作は、上記圧力差が所定値以上且つ上記補助熱交換器(1)の凝縮圧力が上記高温熱交換器(13)の凝縮圧力の凝縮圧力よりも低いときに、上記高温熱交換器(13)の加熱負荷に応じて上記高段圧縮機構(12)の運転容量を調整し、上記低温熱交換器(16)の冷却負荷に応じて上記低段圧縮機構(11)の運転容量を調整する動作であることを特徴とするヒートポンプ。
  7.   請求項2から6の何れか1つにおいて、
      上記補助熱交換器(1)を流れる冷媒の流量を調整する流量調整機構(2)と、
      上記加熱負荷が上記冷却負荷よりも大きい場合に、上記補助熱交換器(1)から流出した冷媒の過熱度が所定値となるように上記流量調整機構(2)を調整する流量調整機構調整部(43)と、
    を備えていることを特徴とするヒートポンプ。
  8.   請求項2から6の何れか1つにおいて、
      上記補助熱交換器(1)を流れる冷媒の流量を調整する流量調整機構(2)と、
      上記加熱負荷が上記冷却負荷よりも小さい場合に、上記補助熱交換器(1)から流出した冷媒の過冷却度が所定値となるように上記流量調整機構(2)を調整する流量調整機構調整部(43)と、
    を備えていることを特徴とするヒートポンプ。
  9.   請求項2から4の何れか1つにおいて、
      上記加熱負荷が上記冷却負荷よりも大きい場合に、上記高段膨張機構(14)を全開に設定する高段膨張機構調整部(44)を備えていることを特徴とするヒートポンプ。
  10.   請求項2から4の何れか1つにおいて、
      上記加熱負荷が上記冷却負荷よりも小さい場合に、上記高段膨張機構(14)の冷媒出口温度が上記補助熱交換器(1)の冷媒出口温度と上記低温熱交換器(16)の冷媒出口温度との間の温度となるように上記高段膨張機構(14)を調整する高段膨張機構調整部(44)を備えていることを特徴とするヒートポンプ。
PCT/JP2012/006102 2011-09-30 2012-09-25 ヒートポンプ WO2013046647A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280045771.1A CN103842743B (zh) 2011-09-30 2012-09-25 热泵
EP12836971.7A EP2770276B1 (en) 2011-09-30 2012-09-25 Heat pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011218154A JP5375919B2 (ja) 2011-09-30 2011-09-30 ヒートポンプ
JP2011-218154 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013046647A1 true WO2013046647A1 (ja) 2013-04-04

Family

ID=47994730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006102 WO2013046647A1 (ja) 2011-09-30 2012-09-25 ヒートポンプ

Country Status (4)

Country Link
EP (1) EP2770276B1 (ja)
JP (1) JP5375919B2 (ja)
CN (1) CN103842743B (ja)
WO (1) WO2013046647A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105530912A (zh) * 2013-08-15 2016-04-27 玫琳凯有限公司 用于处理皱纹的局部皮肤用组合物

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029237A (ja) * 2012-07-31 2014-02-13 Mitsubishi Heavy Ind Ltd 2段圧縮ヒートポンプシステム
FR3020130B1 (fr) * 2014-04-16 2019-03-22 Valeo Systemes Thermiques Circuit de fluide frigorigene
CN105004100B (zh) * 2015-07-21 2018-06-26 同济大学 单制冷剂回路、多吸气压力的蒸气压缩制冷/热泵系统
CN108662799A (zh) 2017-03-31 2018-10-16 开利公司 多级制冷系统及其控制方法
CN107388625B (zh) * 2017-08-07 2023-06-30 珠海格力电器股份有限公司 热泵系统、热泵干燥系统及其控制方法
JP6373469B1 (ja) * 2017-11-08 2018-08-15 三菱重工サーマルシステムズ株式会社 ヒートポンプ
CN111023610B (zh) * 2018-10-10 2021-11-05 南通华信中央空调有限公司 热泵系统及其运行方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848824B2 (ja) * 1976-11-26 1983-10-31 三菱電機株式会社 冷暖房給湯装置
JPS6325388A (ja) * 1986-05-15 1988-02-02 コ−プランド コ−ポレ−シヨン 冷却装置
JPS6387559A (ja) * 1986-09-30 1988-04-18 株式会社東芝 冷凍サイクル
JPH02309157A (ja) * 1989-05-24 1990-12-25 Matsushita Electric Ind Co Ltd 二段圧縮冷凍サイクル装置とその運転方法
JPH09300940A (ja) * 1996-05-21 1997-11-25 Denso Corp バス用空調装置
JP2001349639A (ja) 2000-06-09 2001-12-21 Zeneral Heat Pump Kogyo Kk 熱回収型蓄熱式冷暖房給湯給水装置
JP2005308375A (ja) * 2004-04-26 2005-11-04 Mitsubishi Electric Corp 冷凍・空調装置
JP2009180492A (ja) * 2008-02-01 2009-08-13 Daikin Ind Ltd 除湿用ユニット及び空気調和装置
JP2009229055A (ja) * 2008-02-28 2009-10-08 Daikin Ind Ltd 冷凍装置
JP2010156493A (ja) * 2008-12-26 2010-07-15 Daikin Ind Ltd 冷暖同時運転型空気調和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2709073B2 (ja) * 1987-04-28 1998-02-04 財団法人電力中央研究所 冷暖房給湯サイクル及び暖房給湯サイクル
US6405559B1 (en) * 1997-11-17 2002-06-18 Daikin Industries, Ltd. Refrigerating apparatus
US7631510B2 (en) * 2005-02-28 2009-12-15 Thermal Analysis Partners, LLC. Multi-stage refrigeration system including sub-cycle control characteristics
US8549868B2 (en) * 2007-06-22 2013-10-08 Panasonic Corporation Refrigeration cycle apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848824B2 (ja) * 1976-11-26 1983-10-31 三菱電機株式会社 冷暖房給湯装置
JPS6325388A (ja) * 1986-05-15 1988-02-02 コ−プランド コ−ポレ−シヨン 冷却装置
JPS6387559A (ja) * 1986-09-30 1988-04-18 株式会社東芝 冷凍サイクル
JPH02309157A (ja) * 1989-05-24 1990-12-25 Matsushita Electric Ind Co Ltd 二段圧縮冷凍サイクル装置とその運転方法
JPH09300940A (ja) * 1996-05-21 1997-11-25 Denso Corp バス用空調装置
JP2001349639A (ja) 2000-06-09 2001-12-21 Zeneral Heat Pump Kogyo Kk 熱回収型蓄熱式冷暖房給湯給水装置
JP2005308375A (ja) * 2004-04-26 2005-11-04 Mitsubishi Electric Corp 冷凍・空調装置
JP2009180492A (ja) * 2008-02-01 2009-08-13 Daikin Ind Ltd 除湿用ユニット及び空気調和装置
JP2009229055A (ja) * 2008-02-28 2009-10-08 Daikin Ind Ltd 冷凍装置
JP2010156493A (ja) * 2008-12-26 2010-07-15 Daikin Ind Ltd 冷暖同時運転型空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2770276A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105530912A (zh) * 2013-08-15 2016-04-27 玫琳凯有限公司 用于处理皱纹的局部皮肤用组合物

Also Published As

Publication number Publication date
JP2013076541A (ja) 2013-04-25
JP5375919B2 (ja) 2013-12-25
CN103842743B (zh) 2016-01-20
EP2770276B1 (en) 2017-01-11
CN103842743A (zh) 2014-06-04
EP2770276A4 (en) 2015-07-22
EP2770276A1 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
WO2013046647A1 (ja) ヒートポンプ
JP5120056B2 (ja) 冷凍装置
JP5181813B2 (ja) 冷凍装置
JP6019837B2 (ja) ヒートポンプシステム
WO2006013834A1 (ja) 冷凍装置
JP4375171B2 (ja) 冷凍装置
WO2006028218A1 (ja) 冷凍装置
WO2007102345A1 (ja) 冷凍装置
JP4888256B2 (ja) 冷凍装置
JP2007051841A (ja) 冷凍サイクル装置
JP2015117902A (ja) 冷凍サイクル装置
WO2020262624A1 (ja) 冷凍装置
WO2020203708A1 (ja) 冷凍サイクル装置
WO2006019074A1 (ja) 冷凍装置
JP5790675B2 (ja) ヒートポンプ
JP2010060181A (ja) 冷凍装置
JP2013092369A5 (ja)
JP6926460B2 (ja) 冷凍装置
AU2020360865B2 (en) A heat pump
WO2021065156A1 (ja) 熱源ユニット及び冷凍装置
JP2010236833A (ja) 空気熱源ターボヒートポンプおよびその制御方法
JP2010014386A (ja) 冷凍装置
JP5176897B2 (ja) 冷凍装置
JP2006161659A (ja) 冷凍サイクル装置
JP2010151392A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012836971

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012836971

Country of ref document: EP