WO2013046621A1 - 光ピックアップ装置、光情報装置及び情報処理装置 - Google Patents

光ピックアップ装置、光情報装置及び情報処理装置 Download PDF

Info

Publication number
WO2013046621A1
WO2013046621A1 PCT/JP2012/006046 JP2012006046W WO2013046621A1 WO 2013046621 A1 WO2013046621 A1 WO 2013046621A1 JP 2012006046 W JP2012006046 W JP 2012006046W WO 2013046621 A1 WO2013046621 A1 WO 2013046621A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
axis
quadrant
lens
optical
Prior art date
Application number
PCT/JP2012/006046
Other languages
English (en)
French (fr)
Inventor
若林 寛爾
家木 浩二
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012555623A priority Critical patent/JP6103291B2/ja
Priority to CN201280002599.1A priority patent/CN103140891B/zh
Priority to US13/816,577 priority patent/US9047883B2/en
Publication of WO2013046621A1 publication Critical patent/WO2013046621A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0925Electromechanical actuators for lens positioning
    • G11B7/0935Details of the moving parts
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive

Definitions

  • the present invention relates to an optical pickup device that records and / or reproduces information on a disc-shaped recording medium, an optical information device that uses the optical pickup device, and an information processing device that uses the optical information device.
  • optical discs In recent years, in addition to CDs (Compact Discs) and DVDs (Digital Versatile Discs), various types of optical discs for reproducing and recording information on BDs (Blu-ray Discs) have been used as optical discs as conventional disc-shaped recording media.
  • the optical pickup device has been developed and manufactured, and is widely used.
  • BD is a high-density and high-capacity optical disk using a so-called blue-violet laser light source having a wavelength of about 405 nm as the light source.
  • the NA of the objective lens it is necessary to make the NA of the objective lens larger than the NA of the objective lens for DVD in order to perform recording and reproduction with higher density. For this reason, there is a demand for a high-performance objective lens with less wavefront aberration, and the required specifications for the optical pickup device are becoming increasingly severe.
  • the high-density and high-capacity type optical pickup device as described above requires high-precision focusing servo and tracking servo, and a larger servo gain is required, so the heat generation amount of the objective lens drive system also increases. I think that. From this point of view, improvement in temperature characteristics of the optical pickup device is demanded.
  • a compatible optical pickup device that allows multiple standards to be used in combination with high-density and high-capacity BDs and conventional optical discs such as DVDs makes temperature compensation of spherical aberration and astigmatism of the objective lens easy.
  • an optical pickup device that has little change in spherical aberration, astigmatism, and the like due to temperature change, that is, good temperature characteristics.
  • the cost reduction of the optical pickup device is always demanded, and there is an increasing demand for a multi-wavelength compatible objective lens that realizes a DVD and CD compatible pickup device including a BD with a single objective lens.
  • an objective lens in which a fine diffraction grating is formed on the lens surface has been proposed, and in order to realize such a compatible objective lens, it is indispensable to use a lens material as a resin. Therefore, from the viewpoint of adapting the objective lens to resin, an optical pickup device that realizes good temperature characteristics is increasingly required.
  • FIG. 18 is a perspective view showing a configuration of an objective lens actuator of a conventional optical pickup device described in Patent Document 1.
  • FIG. 18 is a perspective view showing a configuration of an objective lens actuator of a conventional optical pickup device described in Patent Document 1.
  • the objective lens 101 is held at one end of the lens holder 102, and the focusing coils 104 ⁇ / b> R and 104 ⁇ / b> L and the tracking coils 105 ⁇ / b> R and 105 ⁇ / b> L are inside the through hole formed on the other end side of the lens holder 102.
  • the movable part 115 is composed of these members.
  • One end of the six elastically deformable linear support members 103a to 103e is fixed to the outer end portion of the lens holder 102, and the other end is fixed to the fixing portion 113.
  • the fixing portion 113 is fixed to the base 114.
  • the movable portion 115 is elastically supported by the fixed portion 113 so as to be able to translate in the focusing direction Fo and the tracking direction Tr and to be rotatable in the radial tilting direction Ti.
  • the arrow S is the circumferential direction of an optical disk (not shown).
  • the yoke 109 is disposed at a position indicated by a broken line in the figure, and the magnet 110 is attached to the yoke 106, the magnet 111 is attached to the yoke 107, and the magnet 112 is attached to the yoke 108.
  • the magnet 110 and the magnet 112, and the magnet 111 and the magnet 112 are arranged to face each other.
  • Focusing coil 104R and tracking coil 105R are arranged in the magnetic gap between magnet 110 and magnet 112, and focusing coil 104L and tracking coil 105L are arranged in the magnetic gap between magnet 111 and magnet 112.
  • the objective lens 101 is driven in the focusing direction Fo by energizing the focusing coils 104R and 104L, and driven in the tracking direction Tr by energizing the tracking coils 105R and 105L.
  • the magnet 112 and the yoke 108 are disposed between the focusing coils 104R and 104L and the tracking coils 105R and 105L, which are heat sources, and the objective lens 101.
  • the heat generation source and the objective lens 101 are arranged at spatially separated positions, the heat generated in the focusing coils 104R and 104L and the tracking coils 105R and 105L is caused by heat conduction through the lens holder 102. Although it flows into the objective lens 101, the amount of heat is very small. Therefore, the temperature rise of the objective lens 101 is small and the temperature change is suppressed to be small.
  • FIG. 19 is a top view showing the configuration of the objective lens actuator of the conventional optical pickup device described in Patent Document 2.
  • the lens holder 121 is supported so as to be displaceable within a predetermined range with respect to the suspension holder 122, and the BD objective lens 133 and the DVD / CD objective lens 134 are tangent lines that are perpendicular to the tracking direction Tr.
  • the lens holder 121 is disposed along the direction S.
  • the BD objective lens 133 is supported by the objective lens support surfaces 130a, 130b, and 130c of the lens holder 121, and is fixed by an adhesive injected into the adhesive portions 131a, 131b, and 131c.
  • the DVD / CD objective lens 134 is supported by the objective lens support surface 135 of the lens holder 121 and is fixed by an adhesive injected into the adhesive portions 132a, 132b, and 132c.
  • the adhesion between the adhesive portions 131a, 131b, 131c of the lens holder 121 and the BD objective lens 133 is high, and the amount of heat is most likely to flow from the lens holder 121 to the BD objective lens 133.
  • the focusing coils 123 and 124, the tracking coils 125 and 126, and the tilting coils 127 and 128 are respectively fixed to both side surfaces facing along the tangential direction S of the lens holder 121.
  • the bonding portions 131a, 131b, and 131c are arranged as follows.
  • the adhesive portion 131a is disposed at a position that avoids the vicinity of the pair of the focusing coil 123 and the tilting coil 127 and does not approach the tracking coil 125 too much. That is, the adhesive portion 131a is disposed at a position closer to the tracking coil 125 than the set of the focusing coil 123 and the tilting coil.
  • the adhesive portion 131a can be disposed at a low temperature position.
  • the adhesive portions 131b and 131c are arranged at positions where the temperature of the adhesive portion 131a on the lens holder 121 is substantially equal.
  • the amount of heat flowing into the objective lens 133 from the bonding portions 131a, 131b, and 131c provided at positions where the temperatures are substantially equal is also substantially constant, and the deformation of the objective lens 133 is less likely to be biased and transmitted through the objective lens 133. The generation of astigmatism in the light to be transmitted can be suppressed.
  • the distance from the objective lens 101 to the focusing coils 104R and 104L and the tracking coils 105R and 105L is long. This means that the distance from 101 to the driving point is long. Therefore, the natural frequency of the drive transmission system of the objective lens 101 is lowered.
  • the NA is increased for higher density, and the allowable focusing residual is reduced. Servo gain increases. As a result, the objective lens actuator is required to have a higher bandwidth of the high-order resonance frequency during driving.
  • the lens holder 121 becomes large and the light There is a problem that the pickup device is increased in size. Furthermore, since it is necessary to use two objective lenses, the BD objective lens 133 and the DVD / CD objective lens 134, there is a problem that the cost of the apparatus increases.
  • An object of the present invention is to achieve a stable high-density recording / reproduction by obtaining a good condensing characteristic by using one objective lens having a compatibility function for a plurality of types of disc-shaped recording media, and an apparatus It is possible to provide an optical pickup apparatus, an optical information apparatus, and an information processing apparatus that can reduce the cost of the apparatus and that can achieve a reduction in size and thickness of the apparatus.
  • An optical pickup device includes a light source that emits a light beam having a predetermined wavelength, one objective lens that condenses the light beam from the light source and irradiates a disc-shaped recording medium, and the objective lens.
  • An objective lens actuator that drives the optical disc, a photodetector that receives the light beam reflected by the recording surface of the disc-shaped recording medium through the objective lens and converts it into an electrical signal, the light source, the objective lens actuator, and
  • An optical base that holds the photodetector, and the objective lens actuator includes a lens holder that holds the objective lens, a focusing direction that is perpendicular to the disk-shaped recording medium, and the disk-shaped recording.
  • a support mechanism that supports the lens holder so as to be movable in a tracking direction that is a radial direction of the medium, and fixed to the lens holder
  • a focusing coil that drives the lens holder in the focusing direction
  • a tracking coil that is fixed to the lens holder and that drives the lens holder in the tracking direction
  • an actuator base that holds one end of the support mechanism
  • the lens holder and the objective lens A first air gap and a second air gap are formed between them, the disk-shaped recording medium rotates clockwise, the center of the objective lens is the origin, the tracking direction is the y-axis, and the disk-shaped recording medium
  • the tangent direction of the track is the x axis In the xy plane, the y-axis is a positive direction in the center side of the disc-shaped recording medium, the x
  • the first gap is at least in the first quadrant.
  • the second gap is located at least in the third quadrant.
  • the above optical pickup device using a single objective lens having a compatibility function with a plurality of types of disc-shaped recording media, it is possible to obtain a good light-collecting characteristic and realize stable high-density recording and reproduction, The cost of the apparatus can be reduced, and the apparatus can be reduced in size and thickness.
  • FIG. 1 It is a schematic diagram which shows schematic structure of the optical pick-up apparatus in Embodiment 1 of this invention. It is a top view which shows the specific structure of the optical pick-up apparatus shown in FIG. It is a perspective view which shows the structure of the objective lens actuator shown in FIG. It is a top view which shows the structure of the objective lens actuator shown in FIG. It is a top view which shows the structure of the objective lens actuator shown in FIG. It is a perspective view which shows the structure of the movable body of the objective lens actuator shown in FIG. It is a perspective view which shows the structure of the magnet and coil of the objective lens actuator shown in FIG. It is a perspective view which shows the structure of the objective lens actuator of the optical pick-up apparatus in Embodiment 2 of this invention. It is a top view which shows the structure of the objective lens actuator shown in FIG.
  • FIG. 8 is a top view for explaining the position and size of a gap provided in the movable body of the objective lens actuator shown in FIG. 7.
  • FIG. 12 is a cross-sectional view of the movable body taken along line XIII-XIII in FIG.
  • FIG. 12 is a cross-sectional view of the movable body taken along line XIII-XIII in FIG.
  • FIG. 12 is a cross-sectional view of the movable body taken along line XIII-XIII in FIG.
  • FIG. 3 shows schematic structure of the optical disk apparatus in Embodiment 3 of this invention.
  • the problem of the objective lens actuator of the conventional optical pickup device newly found by the present inventors will be described.
  • the two objective lenses of the BD objective lens 133 and the DVD / CD objective lens 134 are mounted on the lens holder 121 as in the conventional configuration shown in FIG.
  • the distance between the coil group consisting of the focusing coil 123, the tilting coil 127, and the tracking coil 125 and the objective lens 133 for BD and the focusing coil 124, the tilting coil 128, and the tracking coil 126 arranged on the other side surface Comparing the distance between the coil group consisting of the BD objective lens 133 and the BD objective lens 133, the coil group disposed on the other side surface is far away from the BD objective lens 133.
  • the positions of the bonding portions 131a, 131b, and 131c are closer to each other in the coil group disposed on one side surface than the coil group disposed on the other side surface. Therefore, the contribution of the amount of heat generated by the coil group disposed on the other side surface to the temperature increase of the BD objective lens 133 is very small.
  • the inflow of heat from the coil group arranged on one side surface can be leveled, and the temperature increase value of the BD objective lens 133 itself can be kept small.
  • the objective lens and one of the side surfaces are arranged.
  • the distance between the formed coil group and the distance between the objective lens and the coil group disposed on the other side surface is equal, and the objective lens and the coil group are close to each other.
  • the amount of heat flowing into one objective lens is twice that of the configuration in which two objective lenses are mounted.
  • the volume of the lens holder is about half that of the configuration in which the two objective lenses are mounted, the heat capacity of the lens holder is also about half, and the value of the temperature rise of the lens holder itself is about twice. End up.
  • FIG. 1 is a schematic diagram showing a schematic configuration of the optical pickup device according to Embodiment 1 of the present invention
  • FIG. 2 is a top view showing a specific configuration of the optical pickup device shown in FIG.
  • FIG. 2 includes an objective lens 1, a blue semiconductor laser unit 21, a red and infrared semiconductor laser unit 22, a beam splitter 26, a collimator lens 27, a mirror 28, an objective lens actuator 29, and a plate beam splitter. 30, a detection lens 31, a photodetector 32, and an optical base 33.
  • the optical pickup device further includes a CL (collimator lens) actuator 44, and the CL actuator 44 includes a CL holder 41, a CL actuator main shaft 42, and a stepping motor 43.
  • the blue semiconductor laser unit 21 is held by the optical base 33.
  • the light beam emitted from the blue semiconductor laser unit 21 has a wavelength of 400 nm to 415 nm.
  • the blue semiconductor laser unit 21 is configured to emit a light beam having a wavelength of about 405 nm, for example. Has been. In general, light having the above-described wavelength has a blue to purple color.
  • the red and infrared semiconductor laser units 22 are held by the optical base 33.
  • the light beam emitted from the red and infrared semiconductor laser unit 22 has a wavelength of 640 nm to 800 nm, and the red and infrared semiconductor laser unit 22 emits a single light beam of one type of wavelength, or a plurality of types. It is configured to emit a plurality of light beams having a wavelength of.
  • the red and infrared semiconductor laser unit 22 is configured to emit, for example, a light beam having a wavelength of approximately 660 nm corresponding to DVD and a light beam having a wavelength of approximately 780 nm corresponding to CD. .
  • the objective lens 1 is a multiple wavelength compatible objective lens corresponding to a plurality of wavelengths including at least a wavelength of about 405 nm, and has a fine diffraction structure having a wavelength selection function on the lens surface.
  • This diffractive structure can arbitrarily set the focal position according to the wavelength of the light beam transmitted through the lens.
  • the objective lens 1 for example, a three-wavelength compatible objective lens corresponding to three types of wavelengths of about 660 nm and about 780 nm in addition to the wavelength of about 405 nm is used.
  • the objective lens 1 has a diffractive structure so that the working distance increases in the order of infrared light, red light, and blue light. For example, the working distance for each wavelength is approximately 0. 3 mm, red light is set to about 0.44 mm, and blue light is set to about 0.5 mm.
  • the objective lens 1 is a resin lens formed by resin molding.
  • the objective lens 1 is molded using a cycloolefin polymer that is a resin obtained by polymerizing cycloolefin.
  • BD23, DVD24, and CD25 shown in FIG. 1 are optical disks that are examples of disc-shaped recording media, and only one optical disk among BD23, DVD24, and CD25 is used in the usage state. In order to show the difference in working distance, BD23, DVD24, and CD25 are shown simultaneously.
  • a single objective lens 1 collects light beams of three types of wavelengths, a light beam for BD having a wavelength of about 405 nm, a light beam for DVD having a wavelength of about 660 nm, and a light beam having a wavelength of about 780 nm.
  • This is an optical pickup device using a three-wavelength compatible objective lens for recording / reproducing information on / from an optical disc (BD23, DVD24, or CD25) corresponding to each wavelength.
  • the blue light beam emitted from the blue semiconductor laser unit 21 is reflected by the beam splitter 26 and travels toward the collimating lens 27.
  • the collimating lens 27 is set to convert the light beam into a predetermined divergence.
  • the collimating lens 27 is fixed to the CL holder 41, and the CL holder 41 is movably held on the rotation axis of the CL actuator main shaft 42 and the stepping motor 43. Yes.
  • the collimating lens 27 is mounted on the CL actuator 44 and is driven in the optical axis direction by the stepping motor 43.
  • the divergence of the light beam can be selected to an arbitrary value. Therefore, it is possible to generate a condensing spot corresponding to the difference in substrate thickness for each layer of the optical disc (BD23) having a plurality of layers of information recording surfaces.
  • the light beam passes through the collimating lens 27, is bent by the mirror 28, and travels toward the objective lens 1 mounted on the objective lens actuator 29.
  • the blue light beam focused by the objective lens 1 is condensed and irradiated on the information recording surface of the BD 23 at a working distance of about 0.5 mm.
  • the reflected light from the information recording surface of the BD 23 passes through the objective lens 1 after being transmitted through the objective lens 1, and is then reflected by the mirror 28, and further passes through the collimator lens 27 and reaches the beam splitter 26.
  • the light beam passes through the beam splitter 26, further passes through the plate beam splitter 30 and the detection lens 31, and then enters the photodetector 32.
  • the photodetector 32 photoelectrically converts the incident light beam and outputs it to an optical pickup control circuit (not shown).
  • the optical pickup control circuit generates a focusing error signal, a tracking error signal, and an optical disc reproduction signal.
  • the red light beam emitted from the red and infrared semiconductor laser unit 22 is reflected by the plate beam splitter 30, passes through the beam splitter 26, and then travels toward the collimating lens 27. After passing through the collimating lens 27, the light beam is bent by the mirror 28 and travels toward the objective lens 1 mounted on the objective lens actuator 29.
  • the red light beam focused by the objective lens 1 is condensed and irradiated onto the information recording surface of the DVD 24 at a working distance of about 0.44 mm.
  • the reflected light from the information recording surface of the DVD 24 is transmitted through the objective lens 1 after being transmitted through the objective lens 1, and is then reflected by the mirror 28, and further transmitted through the collimator lens 27 and the beam splitter 26, to the plate beam splitter 30. It reaches.
  • the light beam passes through the plate beam splitter 30, further passes through the detection lens 31, and then enters the photodetector 32.
  • the photodetector 32 photoelectrically converts the incident light beam and outputs it to an optical pickup control circuit (not shown).
  • the optical pickup control circuit generates a focusing error signal, a tracking error signal, and an optical disc reproduction signal.
  • the operation when the infrared light beam is emitted from the red and infrared semiconductor laser units 22 is the same as that of the red light beam described above, and the infrared light beam passes through the same path as described above.
  • the objective lens 1 The infrared light beam focused by the objective lens 1 is condensed and irradiated onto the information recording surface of the CD 25 at a working distance of about 0.3 mm.
  • the reflected light from the information recording surface of the CD 25 also enters the photodetector 32 through the same path as that of the red light beam.
  • the photodetector 32 photoelectrically converts the incident light beam and outputs it to an optical pickup control circuit (not shown).
  • the optical pickup control circuit generates a focusing error signal, a tracking error signal, and an optical disc reproduction signal.
  • the blue semiconductor laser unit 21, the red and infrared semiconductor laser units 22, the beam splitter 26, the mirror 28, the plate beam splitter 30, the detection lens 31 and the photodetector 32 are mounted on the optical base 33.
  • the collimating lens 27 is mounted on the CL actuator 44, and the CL actuator 44 is mounted on the optical base 33.
  • the objective lens actuator 29 is bonded and fixed to the optical base 33 in a state where the position adjustment of the objective lens 1 is completed.
  • the x axis passes through the center of the objective lens 1 and is parallel to the tangential direction of the outer edge of the turntable 47 a of the spindle motor 47, and the y axis passes through the center of the objective lens 1.
  • This is an axis parallel to the radial direction of the turntable 47a.
  • the rotation center of the spindle motor 47 is located on the y-axis, and the turntable 47a is rotationally driven in the clockwise rotation direction Rm.
  • the optical base 33 is supported by a main shaft 45 and a sub shaft 46 arranged in parallel to the y axis.
  • the optical base 33 slides on the cylindrical surfaces of the main shaft 45 and the sub shaft 46, so that the objective lens 1 becomes y. It moves on the axis and is configured to be movable to an arbitrary radial position of BD23, DVD24 or CD25.
  • the BD 23 (or DVD 24 or CD 25) rotates clockwise, the center of the objective lens 1 is the origin, the tracking direction that is the radial direction of the BD 23 is the y-axis, and the BD 23 In the xy plane (xy coordinate system) where the tangential direction of the track is the x axis, the y axis is the positive direction on the center side of the BD 23, and the x axis is the direction rotated 90 ° clockwise from the positive direction of the y axis.
  • the four regions obtained by dividing the xy plane by the x axis and the y axis can be defined as the first quadrant, the second quadrant, the third quadrant, and the fourth quadrant counterclockwise.
  • the collimating lens 27 is mounted on a CL holder 41, and the CL holder 41 is supported by a CL actuator main shaft 42 disposed in parallel to the x-axis.
  • the collimating lens 27 moves on the x axis and moves to an arbitrary position between the mirror 28 (see FIG. 1) and the beam splitter 26. It is configured to be possible.
  • the stepping motor 43 is arranged so that the rotation axis is substantially parallel to the x-axis, and a lead screw is provided coaxially with the rotation axis.
  • the end of the CL holder 41 is provided with a protrusion that meshes with the groove of the lead screw of the stepping motor 43.
  • the lead screw rotates.
  • the CL holder 41 It moves along the actuator main shaft 42. Further, by adjusting the number of pulses of the drive signal input to the stepping motor 43, the amount of rotation of the lead screw is determined, and the amount of movement of the collimating lens 27 can be set.
  • FIG. 3 is a perspective view showing the configuration of the objective lens actuator shown in FIG. 2
  • FIG. 4 is a top view showing the configuration of the objective lens actuator shown in FIG. 2
  • FIG. 5 is the objective lens shown in FIG.
  • FIG. 6 is a perspective view showing a configuration of a movable body of the actuator
  • FIG. 6 is a perspective view showing a configuration of a magnet and a coil of the objective lens actuator shown in FIG.
  • the z-axis shown in FIGS. 3, 5 and 6 is the central axis of the objective lens 1 and is mutually orthogonal to the x-axis and the y-axis to form a three-dimensional orthogonal coordinate system.
  • the r direction shown in FIGS. 3 and 6 is a radial tilt direction that is a rotation direction around the x axis.
  • the objective lens actuator 29 shown in FIGS. 3 and 4 includes a lens holder 2, two focusing coils 4a and 4b, two tracking coils 5a and 5b, two terminal plates 6, two magnets 8a and 8b, and six suspensions.
  • a wire 9, a fixing member 10, a fixing substrate 11, and a yoke base 12 are provided.
  • the fixing member 10, the fixed substrate 11, and the yoke base 12 are an example of an actuator base that holds one end of the suspension wire 9.
  • the lens holder 2 is made of molded resin and has a substantially rectangular parallelepiped shape.
  • the objective lens 1 is mounted on the upper surface of the lens holder 2. Focusing coils 4a and 4b and tracking coils 5a and 5b are attached to two side surfaces perpendicular to the x-axis of the lens holder 2, and terminal plates 6 are attached to the two side surfaces perpendicular to the y-axis. It has been.
  • the movable body 7 includes an objective lens 1, a lens holder 2, two focusing coils 4 a and 4 b, two tracking coils 5 a and 5 b, and two terminal plates 6.
  • the lens holder 2 has a circular opening A1 centered on the z-axis, and a light beam enters the objective lens 1 from the opening A1. Therefore, the effective light beam diameter incident on the objective lens 1 is determined by the diameter of the opening A1.
  • the objective lens mounting portion 2a protrudes from the region located in the second quadrant of the xy plane composed of the x-axis and the y-axis in the top view, and is provided in the fourth quadrant.
  • the objective lens mounting portion 2b is provided so as to protrude from the region located at the center.
  • the objective lens 1 is fixed to an objective lens mounting portion 2a that is an example of a first fixing portion and an objective lens mounting portion 2b that is an example of a second fixing portion.
  • the objective lens mounting portion 2a is a flat surface of the lens holder 2. Of the plane P1, it is located at least in the second quadrant, and the objective lens mounting portion 2b is located at least in the fourth quadrant.
  • most of the objective lens mounting portion 2a (for example, 75% or more of the entire objective lens mounting portion 2a) is located in the second quadrant, and the remaining part (for example, the objective lens mounting portion 2a). (Less than 25% of the whole) is located in the first quadrant, and most of the objective lens mounting portion 2b (for example, 75% or more of the entire objective lens mounting portion 2b) is located in the fourth quadrant, and the rest A part (for example, less than 25% of the entire objective lens mounting portion 2b) is located in the third quadrant.
  • the objective lens mounting portion 2a is formed with an objective lens mounting surface Pa at a position having a separation distance of about 0.4 mm upward from the flat surface P1, and the objective lens mounting portion 2b is approximately upward from the flat surface P1.
  • the objective lens placement surface Pb is formed at a position having a separation distance of 0.4 mm.
  • Four cylindrical surfaces Ca and Cb with the z-axis as the central axis rise at the edges of the objective lens placement surfaces Pa and Pb.
  • the objective lens 1 When the edge lower surface 1a of the objective lens 1 is placed on the objective lens placement surfaces Pa and Pb, the objective lens 1 is positioned in the z-axis direction, and the objective lens 1 is placed on the four cylindrical surfaces Ca and Cb. By aligning the diameter, the objective lens 1 is positioned in the x-axis direction and the y-axis direction.
  • the number and position of a cylindrical surface are not specifically limited to said example, A various change is possible.
  • the objective lens placement surface Pa is provided with an adhesive application portion 3a having a partial area opened
  • the objective lens placement surface Pb is provided with an adhesive application portion 3b having a partial area open.
  • the adhesive application portions 3a and 3b are made to be in contact with the lens holder 2 by injecting the adhesive into the adhesive application portions 3a and 3b and curing the adhesive.
  • the objective lens 1, and the objective lens 1 is fixed to the lens holder 2.
  • the number and position of an adhesive application part are not specifically limited to said example, A various change is possible.
  • the objective lens 1 is fixed to the lens holder 2 between the objective lens mounting portion 2a and the objective lens mounting portion 2a.
  • the edge lower surface 1a of the objective lens 1 and the upper flat surface of the lens holder 2 are flat.
  • Two gaps Ga and Gb hatchched regions surrounded by broken lines in FIG. 5 are formed between the surface P1.
  • the gap Ga is formed around a region located in the first quadrant of the xy plane composed of the x-axis and the y-axis, and the gap Gb is located in the third quadrant. It is formed around the area to be. That is, the gap Ga is at least in the first quadrant, and the gap Gb is at least in the third quadrant.
  • the first quadrant side gap Ga and the third quadrant side gap Gb are connected by a space below the objective lens 1, and the first quadrant side gap Ga reaches the third quadrant side gap Gb.
  • a ventilation path is formed below the objective lens 1.
  • the air flow F that has entered from the gap Ga on the first quadrant side is once diffused to the lens periphery along the lower convex surface 1b of the objective lens 1 inside the ventilation path (path indicated by a broken line in FIG. 4). , It converges toward the gap Gb on the third quadrant side and is finally discharged outside the ventilation path.
  • the focusing coils 4a and 4b are flat coils wound in a rectangular shape.
  • the focusing coil 4 a is in the first quadrant of the xy plane composed of the x-axis and the y-axis among the one side surfaces perpendicular to the x-axis of the lens holder 2 in the top view.
  • the focusing coil 4b is bonded and fixed to a region located in the third quadrant of the other side surface perpendicular to the x-axis of the lens holder 2.
  • the focusing coil 4a is fixed to the side surface of the lens holder 2 in the first quadrant
  • the focusing coil 4b is fixed to the side surface of the lens holder 2 in the third quadrant
  • the focusing coil 4a and the focusing coil 4b are: The positions are axisymmetric with respect to the z axis.
  • the tracking coils 5a and 5b are flat coils wound in a rectangular shape. In top view, the tracking coil 5a is bonded to the center of one side surface perpendicular to the x-axis of the lens holder 2, and the center of the bonding position of the tracking coil 5a is positioned on the x-axis. .
  • the tracking coil 5b is bonded to the center of the other side surface perpendicular to the x-axis of the lens holder 2, and is arranged so that the center of the bonding position of the tracking coil 5b is located on the x-axis.
  • the focusing coil 4 a and the focusing coil 4 b are supplied with drive signals independently via the terminal plate 6, the suspension wire 9, and the fixed substrate 11.
  • the tracking coil 5a and the tracking coil 5b are supplied with a drive signal through the terminal plate 6, the suspension wire 9, and the fixed substrate 11 while being connected in series through the terminal plate 6.
  • the center of gravity of the movable body 7 configured as described above is located substantially on the z axis when viewed from above.
  • the suspension wire 9 is an example of a support mechanism that supports the lens holder 2 so as to be movable in a focusing direction that is a direction perpendicular to the information recording surface of the optical disc and a tracking direction that is a radial direction of the optical disc.
  • the suspension wire 9 is composed of, for example, six elastic metal wires, and the base end side is fixed to the fixed substrate 11 and the distal end side is fixed to the terminal plate 6 by soldering.
  • the movable body 7 has a z-axis direction and a tracking direction that are in a focusing direction (a direction perpendicular to the information recording surface of the optical disk) with respect to the yoke base 12 to which the fixed substrate 11 is fixed by the suspension wire 9. It is supported so as to be movable in the x-axis direction and the radial tilt direction r (radial direction of the optical disk).
  • the fixing member 10 is provided with an opening through which the suspension wire 9 is inserted. After the fluid damping agent is injected into the opening, the fixing member 10 is cured in a gel shape to thereby resonate the suspension wire 9. Can be attenuated.
  • the objective lens actuator 29 is fixed to the fixing portions 12a and 12b of the yoke base 12 in a state in which the positions and inclination angles of the objective lens 1 in the x direction, the y direction, and the z direction with respect to the optical system configured in the optical base 33 are adjusted. , 12c, 12d are bonded and fixed to the optical base 33.
  • the two magnets 8 a and 8 b are magnetized in two regions having a boundary line at a position substantially coincident with the x axis in a direction parallel to the x axis and in the opposite direction.
  • the two magnets 8a and 8b are fixed to the yoke base 12, and are disposed at positions that are axially symmetric with respect to the z axis.
  • the magnet 8a has a magnetization boundary surface Ma on the x-axis in a top view, and is opposite to two sides S5a and S5a ′ substantially parallel to the optical axis of the objective lens 1 of the tracking coil 5a. And a magnetic field is applied to the upper side S4a close to the optical disc among the two sides substantially parallel to the y-axis of the focusing coil 4a.
  • the magnet 8b has a magnetization boundary surface Mb on the x-axis when viewed from above, and applies a reverse magnetic field to two sides S5b and S5b ′ substantially parallel to the optical axis of the objective lens 1 of the tracking coil 5b.
  • a magnetic field is applied to the upper side S4b close to the optical disc among the two sides substantially parallel to the y-axis of the focusing coil 4b.
  • the focusing coils 4a and 4b can be attached to the objective lens 1 below the lens holder 2, the focusing coils 4a and 4b serving as heat generation sources can be separated from the objective lens 1 and the objective The temperature rise of the lens 1 can be suppressed.
  • the sides S4a and S4b parallel to the y-axis on the upper side of the focusing coils 4a and 4b are arranged at positions facing the magnetic pole surfaces of the magnets 8a and 8b, respectively. Accordingly, when the driving signals are independently supplied to the focusing coils 4a and 4b and currents of the same magnitude flow in the directions of the arrows Aa and Ab, respectively, the focusing coils 4a and 4b have the same magnitude and the z-axis. Driving force in the positive direction (upper side in the figure) is generated, and the objective lens 1 is driven in the positive direction of the z-axis.
  • the objective lens 1 is driven in the negative direction of the z axis (upper side in the figure). Further, by adjusting the magnitude of the current flowing through each of the focusing coils 4a and 4b, a moment force in the radial tilt direction r is generated and the objective lens 1 is tilted, so that driving in the tilt direction can also be performed. .
  • the two sides S5a, S5a ′, S5b, S5b ′ parallel to the z-axis of the tracking coils 5a, 5b are arranged at positions facing the different magnetic pole surfaces with the magnetization boundary surfaces Ma, Mb of the magnets 8a, 8b as boundaries.
  • the tracking coils 5a and 5b have a positive y-axis direction (left side in the figure). ) Is generated, and the objective lens 1 is driven in the positive direction of the y-axis.
  • currents in directions opposite to the arrows Ac and Ad are passed, the objective lens 1 is driven in the negative direction of the y-axis (right side in the figure).
  • the first quadrant of the xy plane consisting of the x axis and the y axis on the upper flat surface P1 of the lens holder 2 and
  • two gaps Ga and Gb are formed between the edge lower surface 1a of the objective lens 1 and the flat surface P1 of the lens holder 2.
  • the air gap Ga on the first quadrant side and the air gap Gb on the third quadrant side are connected by a space below the objective lens 1, and the ventilation from the air gap Ga on the first quadrant side to the air gap Gb on the third quadrant side.
  • a path is formed below the objective lens 1.
  • the spiral shape of the air stream F passes through the ventilation path so as to penetrate from the gap Ga formed in the substantially first quadrant region to the gap Gb formed in the substantially third quadrant region, and the lower surface of the objective lens 1. Can be efficiently dissipated.
  • the air flow F that has entered from the gap Ga on the first quadrant side diffuses to the peripheral edge of the lens along the convex surface 1b on the lower side of the objective lens 1 inside the ventilation path, and then toward the gap Gb on the third quadrant side. It converges and is discharged outside the ventilation path. Therefore, in particular, a flow of an air flow F suitable for heat dissipation at the peripheral portion of the objective lens 1 where the temperature rise is large is generated, and the amount of heat of the objective lens 1 is efficiently radiated as a whole. It becomes possible to make the whole temperature uniform.
  • the temperature rise of the objective lens 1 is efficiently suppressed, and It becomes possible to make uniform.
  • the objective lens 1 is a resin objective lens having a compatibility function with a DVD or a CD including a BD, it is possible to obtain a good condensing characteristic and realize stable high-density recording / reproduction and cost reduction.
  • An optical pickup device and an optical disc device can be realized.
  • the focusing coils 4a and 4b are located at both end surfaces perpendicular to the x-axis of the lens holder 2 and in the regions corresponding to the substantially first and third quadrants of the xy plane composed of the x-axis and the y-axis with respect to the z-axis. Are arranged and bonded in an axially symmetrical positional relationship. Therefore, by arranging the focusing coils 4a and 4b that are likely to generate a large amount of heat along the flow of the air flow F, the focusing coils 4a and 4b serving as heat generation sources can be directly cooled. In addition, since the heat conduction path from the focusing coils 4a and 4b of the lens holder 2 to the objective lens 1 can be cooled, the inflow of heat into the objective lens 1 can be efficiently suppressed.
  • the tracking coils 5a and 5b are arranged and bonded to regions corresponding to the x-axis on the xy plane composed of the x-axis and the y-axis on both end surfaces perpendicular to the x-axis of the lens holder 2.
  • the set of focusing coil 4a and tracking coil 5a and the set of focusing coil 4b and tracking coil 5b are arranged close to each other. Therefore, the focusing coils 4a and 4b and the tracking coils 5a and 5b, which are the heat generation sources, can be directly cooled by arranging each set along the flow of the air flow F in a state where the heat generation sources are concentrated. .
  • the heat conduction path from the centralized heat generation source of the lens holder 2 to the objective lens 1 can be cooled, it is possible to efficiently suppress the inflow of heat into the objective lens 1.
  • the drive source is concentrated and the magnets 8a and 8b are arranged in the y-axis direction. As a result, the volume of the magnets 8a and 8b can be reduced to reduce the cost of the optical pickup device.
  • the lens holder 2 having a smaller heat capacity can be obtained by applying the configuration of the present embodiment to a thin optical pickup device whose dimension from the lower surface of the optical base 33 to the lower surface of the optical disk is 11 mm or less.
  • a thin optical pickup device whose dimension from the lower surface of the optical base 33 to the lower surface of the optical disk is 11 mm or less.
  • the objective lens 1 that is a condensing lens is a three-wavelength compatible objective lens that enables compatibility of three types of wavelengths corresponding to the BD23, DVD24, and CD25.
  • a similar effect can be realized as a multi-wavelength compatible objective lens that enables compatibility between two types of wavelengths corresponding to BD and CD.
  • the same effect can be realized even if the objective lens 1 is not a three-wavelength compatible objective lens but a resin lens that collects light having a wavelength corresponding to only BD.
  • the present embodiment By applying the same configuration as the above, it is possible to obtain the same heat dissipation effect.
  • the allowable current that can be applied to the focusing coil or the tracking coil can be increased, the rotational speed of the optical disk can be further increased, and an optical pickup device and an optical disk device corresponding to a high transfer rate can be provided.
  • the point regarding said objective lens is the same also in other embodiment mentioned later.
  • FIG. 7 is a perspective view showing the configuration of the objective lens actuator of the optical pickup device according to Embodiment 2 of the present invention
  • FIG. 8 is a top view showing the configuration of the objective lens actuator shown in FIG.
  • FIG. 10 is a perspective view showing a configuration of a movable body of the objective lens actuator shown in FIG. 7, and
  • FIG. 10 is a perspective view showing a configuration of magnets and coils of the objective lens actuator shown in FIG.
  • the optical pickup device of the present embodiment is shown in FIGS. 1 and 2 except that the objective lens actuator 29 shown in FIGS. 1 and 2 is changed to an objective lens actuator 29 ′ shown in FIG. Since it is configured in the same manner as the optical pickup device, the entire configuration will be omitted and will be described with reference to FIGS. 1 and 2 as appropriate.
  • the optical pickup device of the present embodiment includes an objective lens 1, a blue semiconductor laser unit 21, a red and infrared semiconductor laser unit 22, a beam splitter 26, a collimator lens 27, a mirror 28, an objective lens actuator 29 ′ shown in FIG.
  • a plate beam splitter 30, a detection lens 31, a photodetector 32, and an optical base 33 are provided (see FIGS. 1 and 2).
  • the optical pickup device further includes a CL actuator 44, and the CL actuator 44 includes a CL holder 41, a CL actuator main shaft 42, and a stepping motor 43 (see FIG. 2).
  • the objective lens actuator 29 ′ shown in FIGS. 7 and 8 includes a lens holder 2 ′, four focusing coils 4a ′ to 4d ′, two tracking coils 5a and 5b, two terminal plates 6, and two magnets 8a ′ and 8b.
  • the objective lens actuator 29 ' is adhesively fixed to the optical base 33 (see FIGS. 1 and 2) in a state where the position adjustment of the objective lens 1 is completed.
  • the x-axis is an axis that passes through the center of the objective lens 1 and is parallel to the tangential direction of the outer edge of the turntable 47 a of the spindle motor 47, and the y-axis is the center of the objective lens 1.
  • the shaft is parallel to the radial direction of the turntable 47a of the spindle motor 47.
  • the rotation center of the spindle motor 47 is located on the y-axis, and the turntable 47a is rotationally driven in the clockwise rotation direction Rm.
  • the BD 23 (or DVD 24 or CD 25) rotates clockwise, the center of the objective lens 1 is the origin, and the tracking direction that is the radial direction of the BD 23 In the xy plane (xy coordinate system) in which the tangential direction of the track of the BD 23 is the x axis, the y axis is the center side of the BD 23 as the positive direction, and the x axis is 90 degrees clockwise from the positive direction of the y axis.
  • the four regions obtained by dividing the rotated direction as the positive direction and dividing the xy plane by the x-axis and the y-axis can be defined counterclockwise as the first quadrant, the second quadrant, the third quadrant, and the fourth quadrant.
  • the z-axis shown in FIGS. 7, 9 and 10 is the central axis of the objective lens 1 and is mutually orthogonal to the x-axis and the y-axis to form a three-dimensional orthogonal coordinate system.
  • the r direction shown in FIGS. 7 and 10 is a radial tilt direction which is a rotation direction around the x axis.
  • the lens holder 2 ' is made of molded resin and has a substantially rectangular parallelepiped shape.
  • the objective lens 1 is mounted on the upper surface of the lens holder 2 '.
  • Focusing coils 4a ′ to 4d ′ and tracking coils 5a and 5b are attached to two side surfaces perpendicular to the x-axis of the lens holder 2 ′, and terminal plates are respectively attached to the two side surfaces perpendicular to the y-axis. 6 is attached.
  • the movable body 7 ' includes an objective lens 1, a lens holder 2', four focusing coils 4a 'to 4d', two tracking coils 5a and 5b, and two terminal plates 6.
  • the lens holder 2 ′ has a circular opening A ⁇ b> 1 centered on the z-axis, and a light beam enters the objective lens 1 from the opening A ⁇ b> 1. Therefore, the effective light beam diameter incident on the objective lens 1 is determined by the diameter of the opening A1.
  • the objective lens mounting portion 2a is provided so as to protrude from the region located in the second quadrant of the xy plane composed of the x axis and the y axis in the top view.
  • An objective lens mounting portion 2b is provided so as to protrude from an area located in the quadrant.
  • the objective lens 1 is fixed to an objective lens mounting portion 2a that is an example of a first fixing portion and an objective lens mounting portion 2b that is an example of a second fixing portion.
  • the objective lens mounting portion 2a is a flat surface of the lens holder 2. Of the plane P1, it is located at least in the second quadrant, and the objective lens mounting portion 2b is located at least in the fourth quadrant.
  • most of the objective lens mounting portion 2a (for example, 75% or more of the entire objective lens mounting portion 2a) is located in the second quadrant, and the remaining part (for example, the objective lens mounting portion 2a). (Less than 25% of the whole) is located in the first quadrant, and most of the objective lens mounting portion 2b (for example, 75% or more of the entire objective lens mounting portion 2b) is located in the fourth quadrant, and the rest A part (for example, less than 25% of the entire objective lens mounting portion 2b) is located in the third quadrant.
  • the objective lens mounting portion 2a is formed with an objective lens mounting surface Pa at a position having a separation distance of about 0.4 mm upward from the flat surface P1, and the objective lens mounting portion 2b is approximately upward from the flat surface P1.
  • the objective lens placement surface Pb is formed at a position having a separation distance of 0.4 mm.
  • Four cylindrical surfaces Ca and Cb with the z-axis as the central axis rise at the edges of the objective lens placement surfaces Pa and Pb.
  • the objective lens 1 When the edge lower surface 1a of the objective lens 1 is placed on the objective lens placement surfaces Pa and Pb, the objective lens 1 is positioned in the z-axis direction, and the objective lens 1 is placed on the four cylindrical surfaces Ca and Cb. By aligning the diameter, the objective lens 1 is positioned in the x-axis direction and the y-axis direction.
  • the number and position of a cylindrical surface are not specifically limited to said example, A various change is possible.
  • the objective lens placement surface Pa is provided with an adhesive application portion 3a having a partial area opened
  • the objective lens placement surface Pb is provided with an adhesive application portion 3b having a partial area open.
  • the objective lens 1 is fixed to the lens holder 2 ′ by injecting the adhesive into the adhesive application portions 3a and 3b and curing it. Is done.
  • the number and position of an adhesive application part are not specifically limited to said example, A various change is possible.
  • two gaps Ga and Gb are formed between the edge lower surface 1a of the objective lens 1 and the upper flat surface P1 of the lens holder 2 ′.
  • the gap Ga is formed around a region located in the first quadrant of the xy plane composed of the x axis and the y axis, and the gap Gb is located in the third quadrant. It is formed around the area to be. That is, the gap Ga is at least in the first quadrant, and the gap Gb is at least in the third quadrant.
  • the lens protector 13a protrudes in a region located in the first quadrant of the xy plane composed of the x-axis and the y-axis in the top view, and is provided in the third quadrant.
  • a lens protector 13b protrudes from the positioned region.
  • the lens protectors 13a and 13b are convex portions having a cylindrical shape and prevent contact between the objective lens 1 and the optical disc. For this reason, the height of the lens protectors 13a and 13b is set to a height at which the objective lens 1 does not contact the optical disk when the end of the upper surface contacts the optical disk.
  • the shape of the lens protector is not particularly limited to the above example, and other shapes may be used as long as the contact between the objective lens 1 and the optical disk can be prevented.
  • the objective lens mounting portion 2a and 2b are arranged in the second quadrant and the fourth quadrant in the lens holder 2 ', the objective lens mounting portion is applied to the moment of inertia of the movable body 7'. 2a and 2b are unbalanced.
  • the moment of inertia of the movable body 7 ′ is balanced by arranging the lens protectors 13 a and 13 b in the regions located in the first quadrant and the third quadrant.
  • the moment of inertia of the movable body 7 ' can be balanced by the lens protectors 13a and 13b. 7 'unnecessary rolling can be prevented.
  • the first quadrant side gap Ga and the third quadrant side gap Gb are connected by a space below the objective lens 1, and the first quadrant side gap Ga reaches the third quadrant side gap Gb.
  • a ventilation path is formed below the objective lens 1.
  • the lens protector 13a is located on the upstream side of the air flow F. However, since the width of the lens protector 13a is sufficiently small with respect to the width of the gap Ga, the spiral air flow F is centered on the region in the first quadrant. It passes through the ventilation path from the configured gap Ga toward the gap Gb configured around the third quadrant region.
  • the air flow F that has entered from the gap Ga on the first quadrant side is once diffused to the peripheral edge of the lens along the convex surface 1b on the lower side of the objective lens 1 inside the ventilation path (path indicated by a broken line in FIG. 8). , It converges toward the gap Gb on the third quadrant side and is finally discharged outside the ventilation path.
  • the focusing coils 4a 'to 4d' are flat coils wound in a rectangular shape.
  • the focusing coil 4a ′ is the first of the xy plane composed of the x-axis and the y-axis among the one side surfaces perpendicular to the x-axis of the lens holder 2 ′.
  • the focusing coil 4b ′ is adhered and fixed to the region located in the second quadrant of the other side surface perpendicular to the x-axis of the lens holder 2 ′.
  • the focusing coil 4c ′ is bonded and fixed to a region located in the third quadrant of the other side surface perpendicular to the x-axis of the lens holder 2, and the focusing coil 4d ′ Of one side surface perpendicular to the x-axis, it is bonded and fixed to a region located in the fourth quadrant.
  • the focusing coil 4a ′ and the focusing coil 4c ′ are in an axially symmetric positional relationship with respect to the z axis
  • the focusing coil 4b ′ and the focusing coil 4d ′ are in an axially symmetric positional relationship with respect to the z axis.
  • the focusing coils 4a ′ to 4d ′ are arranged in a balanced manner so that the origin, which is the center of the objective lens 1, is the center of gravity.
  • the tracking coils 5a and 5b are flat coils wound in a rectangular shape. In top view, the tracking coil 5a is bonded to the center of one side surface perpendicular to the x-axis of the lens holder 2, and the center of the bonding position of the tracking coil 5a is positioned on the x-axis. .
  • the tracking coil 5b is bonded to the center of the other side surface perpendicular to the x-axis of the lens holder 2, and is arranged so that the center of the bonding position of the tracking coil 5b is located on the x-axis.
  • the focusing coils 4 a ′ and 4 b ′ and the focusing coils 4 c ′ and 4 d ′ are independently supplied with drive signals via the terminal plate 6, the suspension wire 9 and the fixed substrate 11.
  • the tracking coil 5a and the tracking coil 5b are supplied with a drive signal through the terminal plate 6, the suspension wire 9, and the fixed substrate 11 while being connected in series through the terminal plate 6.
  • the center of gravity of the movable body 7 ′ configured as described above is located substantially on the z axis when viewed from above.
  • the suspension wire 9 is an example of a support mechanism that supports the lens holder 2 so as to be movable in a focusing direction that is a direction perpendicular to the information recording surface of the optical disc and a tracking direction that is a radial direction of the optical disc.
  • the suspension wire 9 is composed of, for example, six elastic metal wires, and the base end side is fixed to the fixed substrate 11 and the distal end side is fixed to the terminal plate 6 by soldering.
  • the movable body 7 ′ has a tracking direction in the z-axis direction (tracking direction perpendicular to the information recording surface of the optical disk) with respect to the yoke base 12 to which the fixed substrate 11 is fixed by the suspension wire 9, tracking. It is supported so as to be movable in the x-axis direction and the radial tilt direction r, which are directions (radial direction of the optical disk).
  • the fixing member 10 is provided with an opening through which the suspension wire 9 is inserted. After the fluid damping agent is injected into the opening, the fixing member 10 is cured in a gel shape to thereby resonate the suspension wire 9. Can be attenuated.
  • the objective lens actuator 29 ′ is a state in which the positions and inclination angles of the objective lens 1 with respect to the optical system configured in the optical base 33 are adjusted in the x-direction, y-direction, and z-direction, and the tilt angle.
  • Each part of 12b, 12c, 12d is bonded and fixed to the optical base 33.
  • the two magnets 8a 'and 8b' are magnetized in two regions having a boundary line that is substantially coincident with the x axis in a direction parallel to the x axis and in the opposite direction. ing.
  • the two magnets 8 a ′ and 8 b ′ are fixed to the yoke base 12 and are arranged at positions that are line symmetric with respect to the y axis as a symmetry axis.
  • the magnet 8a ′ has a magnetization boundary surface Ma on the x axis in the top view and is opposite to two sides S5a and S5a ′ substantially parallel to the optical axis of the objective lens 1 of the tracking coil 5a.
  • the magnetic field is applied to the upper side S4a ′ close to the optical disc among the two sides substantially parallel to the y-axis of the focusing coil 4a ′, and substantially parallel to the y-axis of the focusing coil 4d ′. Of the two sides, a magnetic field is applied to the upper side S4d ′ close to the optical disc.
  • the magnet 8b ′ has a magnetization boundary surface Mb on the x-axis when viewed from above, and applies opposite magnetic fields to two sides S5b and S5b ′ substantially parallel to the optical axis of the objective lens 1 of the tracking coil 5b.
  • a magnetic field is applied to the upper side S4b ′ close to the optical disc among the two sides substantially parallel to the y-axis of the focusing coil 4b ′, and among the two sides substantially parallel to the y-axis of the focusing coil 4c ′
  • a magnetic field is applied to the upper side S4c ′ close to the optical disk.
  • the focusing coils 4a ′ to 4d ′ can be attached to the objective lens 1 below the lens holder 2, the focusing coils 4a ′ to 4d ′ serving as heat generation sources are separated from the objective lens 1. The temperature rise of the objective lens 1 can be suppressed.
  • the objective lens 1 is driven in the negative direction of the z axis (upper side in the drawing). Further, by adjusting the magnitudes of the currents flowing through the focusing coils 4a ′ and 4b ′ and the focusing coils 4c ′ and 4d ′, a moment force in the radial tilt direction r is generated, and the objective lens 1 is tilted. Therefore, driving in the tilt direction can also be performed.
  • the two sides S5a, S5a ′, S5b, S5b ′ parallel to the z-axis of the tracking coils 5a, 5b are opposed to different magnetic pole surfaces with the boundary surfaces Ma, Mb of the magnets 8a ′, 8b ′ as boundaries. Is arranged. Therefore, when the tracking coils 5a and 5b are connected in series and the currents in the directions of the arrows Ac and Ad are passed through the tracking coils 5a and 5b, the tracking coils 5a and 5b have a positive y-axis direction (left side in the figure). ) Is generated, and the objective lens 1 is driven in the positive direction of the y-axis. On the other hand, when currents in directions opposite to the arrows Ac and Ad are passed, the objective lens 1 is driven in the negative direction of the y-axis (right side in the figure).
  • FIG. 11 is a top view for explaining the position and size of the air gap provided in the movable body of the objective lens actuator shown in FIG. 7, and FIG. 12 simulates the flow of airflow in the movable body shown in FIG.
  • FIG. 13 is a cross-sectional view of the movable body taken along line XIII-XIII in FIG.
  • the center of the gap Ga formed between the objective lens 1 and the lens holder 2 ′ is a straight line obtained by rotating the positive portion of the x axis by 30 ° counterclockwise.
  • the center of the gap Gb is preferably located on a straight line Lb obtained by rotating the positive portion of the x axis by 210 ° counterclockwise.
  • the direction in which the air flow F flows with respect to the lens holder 2 ' varies to some extent depending on the rotational speed of the optical disc and the position of the objective lens 1 in the radial direction of the optical disc.
  • the air flow F flows in from the first quadrant to the third quadrant, and flows smoothly from the gap Ga to the gap Gb, since F flows around the straight line obtained by rotating the positive portion of the x axis by 30 ° counterclockwise.
  • the objective lens 1 can be efficiently cooled.
  • the width Ga of the gap Ga is preferably ⁇ 30 ° or more and ⁇ 60 ° or less, more preferably ⁇ 40 ° or more and ⁇ 50 ° or less, and the gap Gb width ⁇ ⁇
  • the angle is preferably ⁇ 30 ° or more and ⁇ 60 ° or less, and more preferably ⁇ 40 ° or more and ⁇ 50 ° or less. If the range is less than ⁇ 30 °, the objective lens 1 cannot be sufficiently cooled. If the range exceeds ⁇ 60 °, it is difficult to fix the objective lens 1 to the lens holder 2 ′ with high accuracy. On the other hand, in the range of ⁇ 30 ° to ⁇ 60 °, the objective lens 1 can be sufficiently cooled and the objective lens 1 can be fixed to the lens holder 2 ′ with high accuracy.
  • the widths ⁇ ⁇ ° of the gaps Ga and Gb are set to ⁇ 45 °.
  • the result of simulating the flow of the airflow F in this case is shown in FIG. In FIG. 12, the flow of the airflow F is indicated by a plurality of arrows, and the airflow F flows on the upper surface of the lens holder 2 'according to the direction of the arrow.
  • the airflow F flows from the upper right of the lens holder 2 ′, flows between the objective lens mounting portion 2a and the lens protector 13a, and between the lens protector 13a and the objective lens mounting portion 2b, and is broken.
  • the air flow F includes a flow path Fa (see FIG. 13) between the objective lens mounting portion 2a and the lower convex surface 1b of the objective lens 1, and the lower convex surface 1b and the objective lens mounting portion of the objective lens 1. It flows through the flow path Fb (see FIG. 13) between 2b and once joins in the gap Gb indicated by a broken line.
  • the airflow F flows between the objective lens mounting portion 2a and the lens protector 13b, and between the lens protector 13b and the objective lens mounting portion 2b, and is finally discharged to the outside of the lens holder 2 '.
  • the objective lens 1 can be efficiently cooled by such a flow of the airflow F.
  • the air flow F flows on the side of the focusing coil 4a ′, the tracking coil 5a, and the focusing coil 4d ′ fixed to one side surface of the lens holder 2 ′, and is fixed to the other side surface of the lens holder 2 ′.
  • the focusing coil 4b ', the tracking coil 5b, and the focusing coil 4c' are flowing laterally. With such a flow of the air flow F, the focusing coils 4a 'to 4d' and the tracking coils 5a and 5b serving as heat generation sources can be efficiently cooled.
  • the spiral shape of the air stream F passes through the ventilation path so as to penetrate from the gap Ga formed in the substantially first quadrant region to the gap Gb formed in the substantially third quadrant region, and the lower surface of the objective lens 1. Can be efficiently dissipated.
  • the air flow F that has entered from the gap Ga on the first quadrant side diffuses to the peripheral edge of the lens along the convex surface 1b on the lower side of the objective lens 1 inside the ventilation path, and then toward the gap Gb on the third quadrant side. It converges and is discharged outside the ventilation path. Therefore, in particular, a flow of an air flow F suitable for heat dissipation at the peripheral portion of the objective lens 1 where the temperature rise is large is generated, and the amount of heat of the objective lens 1 is efficiently radiated as a whole. It becomes possible to make the whole temperature uniform.
  • the temperature rise of the objective lens 1 is efficiently suppressed. And can be made uniform.
  • the objective lens 1 is a resin objective lens having a compatibility function with a DVD or a CD including a BD, it is possible to obtain a good condensing characteristic and realize stable high-density recording / reproduction and cost reduction.
  • An optical pickup device and an optical disc device can be realized.
  • the focusing coils 4a ′ to 4d ′ are arranged on both end surfaces perpendicular to the x-axis of the lens holder 2 ′ and in a region corresponding to substantially the first to fourth quadrants of the xy plane composed of the x-axis and the y-axis. They are arranged and bonded respectively in a positional relationship that is line-symmetric with respect to the axis. Therefore, by arranging the two focusing coils 4a ′ and 4c ′ among the focusing coils 4a ′ to 4d ′ that tend to generate a large amount of heat along the flow of the air flow F, the two focusing coils 4a ′ serving as heat generation sources are arranged. 4c ′ can be cooled directly. In addition, since the heat conduction path from the focusing coils 4a ′ and 4c ′ of the lens holder 2 ′ to the objective lens 1 can be cooled, the inflow of heat into the objective lens 1 can be efficiently suppressed. Become.
  • the tracking coils 5a and 5b are disposed and bonded to regions corresponding to the x-axis on the xy plane composed of the x-axis and the y-axis on both end surfaces perpendicular to the x-axis of the lens holder 2 '.
  • the set of focusing coils 4a 'and 4d' and the tracking coil 5a and the set of focusing coils 4b 'and 4c' and the tracking coil 5b are arranged close to each other. Therefore, the tracking coils 5a and 5b and the focusing coils 4a ′ to 4d ′ serving as the heat sources can be directly cooled by arranging the respective sets along the flow of the air flow F in a state where the heat sources are concentrated. Can do. Furthermore, since the heat conduction path from the concentrated heat source of the lens holder 2 ′ to the objective lens 1 can be cooled, the inflow of heat into the objective lens 1 can be efficiently suppressed.
  • the lens holder 2 ′ having a smaller heat capacity can be obtained by applying the configuration of the present embodiment to a thin optical pickup device in which the dimension from the lower surface of the optical base 33 to the lower surface of the optical disk is 11 mm or less.
  • FIG. 14 shows an embodiment of an optical disk device which is an example of an optical information device using the optical pickup device of the first embodiment or the second embodiment.
  • FIG. 14 is a schematic diagram showing a schematic configuration of the optical disc device according to Embodiment 3 of the present invention.
  • an optical disk device 607 includes a drive device 601, an optical pickup device 602, an electric circuit 603, a motor 604, a turntable 605, and a clamper 606.
  • the optical disc 200 is mounted on a turntable 605 and rotated by a motor 604 while being held by a clamper 606.
  • the optical pickup device 602 shown in the first or second embodiment is transferred by the driving device 601 to the track position where desired information exists on the optical disc 200.
  • the electric circuit 603 is an example of a control unit, and controls the optical pickup device 602 and the motor 604 based on a signal obtained from the optical pickup device 602.
  • the optical pickup device 602 sends a focusing signal, a tracking signal, and an RF signal to the electric circuit 603 corresponding to the positional relationship with the optical disc 200.
  • the electric circuit 603 sends a signal for driving the objective lens actuator to the optical pickup device 602.
  • the optical pickup device 602 performs focusing control, tracking control, and tilt control on the optical disc 200 to read, write, or erase information.
  • the optical disk 200 to be mounted is the BD23 or DVD24 or CD25 optical disk described in the first or second embodiment
  • the optical pickup device 602 includes the three types of wavelengths described in the first or second embodiment.
  • the optical pickup apparatus uses a three-wavelength compatible objective lens that collects the light beam by one objective lens 1 and records and reproduces information on and from an optical disk corresponding to each wavelength.
  • the optical disk device 607 of the present embodiment is capable of maintaining the temperature of the objective lens 1 even if the heat generated by the focusing coils 4a, 4b or 4a 'to 4d' and the tracking coils 5a, 5b flows from the adhesive application portions 3a, 3b. It is possible to suppress the rise efficiently and make it uniform. As a result, even if the objective lens 1 is a resin objective lens, it is possible to achieve an optical disc apparatus that obtains good light condensing characteristics and enables stable high-density recording / reproduction and cost reduction.
  • the present embodiment is a computer that is an example of an information processing apparatus including the optical disk device 607 according to the third embodiment.
  • FIG. 15 is a schematic perspective view showing the overall configuration of the computer according to Embodiment 4 of the present invention.
  • a computer 609 illustrated in FIG. 15 includes an optical disc device 607 according to the third embodiment, input devices such as a keyboard 611 and a mouse 612 for inputting information, information input from the input device, and an optical disc device 607.
  • An arithmetic unit 608 composed of a central processing unit (CPU) that performs computation based on information read out from the computer, and a cathode ray tube or a liquid crystal display unit that displays information on the results computed by the arithmetic unit 608 And an output device 610.
  • the arithmetic device 608 is an example of an information processing unit that processes information recorded on the optical disc device 607 and / or information reproduced from the optical disc device 607. Note that a printer that prints information such as a result calculated by the arithmetic device 608 may be used as the output device 610.
  • the computer 609 according to the present embodiment includes the optical disk device 607 according to the third embodiment, and even if it is a resin objective lens, the temperature increase of the objective lens 1 can be efficiently suppressed and uniformized. Is possible. As a result, the present embodiment can obtain a good light condensing characteristic and can realize stable high-density recording / reproduction and cost reduction, and can be used for a wide range of applications.
  • the computer 609 may be equipped with a wired or wireless input / output terminal that takes in information to be recorded on the optical disk device 607 and outputs information read out by the optical disk device 607 to the outside.
  • information can be transmitted / received to / from a network, that is, a plurality of devices such as a computer, a telephone set, and a TV tuner, and can be used as a shared information server (optical disk server) from the plurality of devices.
  • a network that is, a plurality of devices such as a computer, a telephone set, and a TV tuner
  • a shared information server optical disk server
  • the present embodiment is an embodiment of an optical disc player which is an example of an information processing apparatus including the optical disc device 607 according to the third embodiment.
  • FIG. 16 is a schematic perspective view showing the overall configuration of the optical disc player according to Embodiment 5 of the present invention.
  • the optical disc player 180 includes an optical disc device 607 according to the third embodiment and a decoder 181 that converts an information signal obtained from the optical disc device 607 into an image signal.
  • the decoder 181 is an example of an information processing unit that processes information recorded on the optical disc device 607 and / or information reproduced from the optical disc device 607.
  • This configuration can also be used as a car navigation system by adding a position sensor such as GPS and a central processing unit (CPU).
  • a display device 182 such as a liquid crystal monitor may be added.
  • the display device 182 includes a liquid crystal display device or the like, and displays the image signal converted by the decoder 181.
  • the optical disc player 180 includes the optical disc device 607 according to the third embodiment, and even with a resin objective lens, the temperature increase of the objective lens 1 can be efficiently suppressed and uniformized. Is possible.
  • the present embodiment can obtain a good light condensing characteristic and can realize stable high-density recording / reproduction and cost reduction, and can be used for a wide range of applications.
  • the present embodiment is an embodiment of an optical disc recorder which is an example of an information processing apparatus including the optical disc apparatus 607 according to the third embodiment.
  • FIG. 17 is a schematic perspective view showing the overall configuration of the optical disc recorder according to Embodiment 6 of the present invention.
  • An optical disk recorder 615 shown in FIG. 17 includes an optical disk device 607 according to the third embodiment, a recording signal processing circuit 613 that converts image information into an information signal for recording on an optical disk by the optical disk device 607, and an image signal. It has.
  • the recording signal processing circuit 613 is an example of an information processing unit that processes information to be recorded on the optical disc device 607.
  • the optical disk recorder 615 also includes a reproduction signal processing circuit 614 that converts an information signal obtained from the optical disk device 607 into an image signal.
  • the reproduction signal processing circuit 614 is an example of an information processing unit that processes information reproduced from the optical disk device 607. According to this configuration, it is possible to reproduce the already recorded portion.
  • the optical disk recorder 615 may include an output device 610 such as a cathode ray tube or a liquid crystal display device for displaying information.
  • the optical disc recorder 615 includes the optical disc device 607 according to the third embodiment, and even if it is a resin objective lens, the temperature increase of the objective lens 1 can be efficiently suppressed and uniformized. Is possible.
  • the present embodiment can obtain a good light condensing characteristic and can realize stable high-density recording / reproduction and cost reduction, and can be used for a wide range of applications.
  • an optical pickup device includes a light source that emits a light beam having a predetermined wavelength, one objective lens that condenses the light beam from the light source and irradiates a disc-shaped recording medium, and the objective lens.
  • An objective lens actuator that drives the optical disc, a photodetector that receives the light beam reflected by the recording surface of the disc-shaped recording medium through the objective lens and converts it into an electrical signal, the light source, the objective lens actuator, and An optical base that holds the photodetector, and the objective lens actuator includes a lens holder that holds the objective lens, a focusing direction that is perpendicular to the disk-shaped recording medium, and the disk-shaped recording.
  • a support mechanism that supports the lens holder so as to be movable in a tracking direction that is a radial direction of the medium, and is fixed to the lens holder.
  • the disc-shaped recording medium rotates clockwise, the center of the objective lens is the origin, the tracking direction is the y-axis, and the track of the disc-shaped recording medium is formed.
  • the y axis is a positive direction centered on the disc-shaped recording medium
  • the x axis is a positive direction obtained by rotating the positive direction of the y axis 90 ° clockwise
  • the xy plane is the x direction.
  • the first gap formed between the lens holder and the objective lens has the center of the objective lens as the origin, the tracking direction as the y axis, and the tangential direction of the track of the disc-shaped recording medium.
  • the second gap is located in the third quadrant.
  • the amount of heat generated in the focusing coil and / or tracking coil flows from the adhesion portion between the lens holder and the objective lens, in addition to uniformizing the temperature distribution of the objective lens, the amount of temperature rise can be suppressed.
  • an objective lens having a function compatible with a plurality of types of disc-shaped recording media for example, BD and DVD (and / or CD)
  • the cost of the apparatus can be reduced, and the apparatus can be reduced in size and thickness.
  • the first gap is located within a range of ⁇ 30 ° or more and ⁇ 60 ° or less around a straight line obtained by rotating the positive portion of the x axis by 30 ° counterclockwise
  • the second gap is
  • the positive portion of the x-axis is located within a range of ⁇ 30 ° to ⁇ 60 ° around a straight line obtained by rotating counterclockwise by 210 °.
  • the airflow caused by the rotation of the disk-shaped recording medium flows in from the first quadrant to the third quadrant, flowing in from the first quadrant about the straight line obtained by rotating the positive portion of the x axis by 30 ° counterclockwise.
  • the air flow is 210 in the positive direction of the x axis counterclockwise from the first gap arranged so that the straight line obtained by rotating the positive direction of the x axis by 30 ° counterclockwise is the center.
  • the objective lens can be efficiently cooled, and the range of the first gap and the second gap is Since it is ⁇ 30 ° or more and ⁇ 60 ° or less, the objective lens can be sufficiently cooled, and the objective lens can be fixed to the lens holder with high accuracy.
  • the objective lens is fixed to a first fixing part and a second fixing part of the lens holder, the first fixing part is located at least in the second quadrant, and the second fixing part is It is preferable to be located at least in the fourth quadrant.
  • the objective lens can be fixed to the lens holder with high accuracy while the objective lens is efficiently and sufficiently cooled.
  • the lens holder includes a first lens protector and a second lens protector that prevent contact between the objective lens and the disc-shaped recording medium, and the first lens protector is located in the first quadrant.
  • the second lens protector is preferably located in the third quadrant.
  • the tracking coil is fixed to the center of one side surface perpendicular to the x-axis of the lens holder and the center of the other side surface perpendicular to the x-axis of the lens holder. And a second tracking coil.
  • the heat generated from the first and second tracking coils can be efficiently released to the outside by the airflow generated by the rotation of the disk-shaped recording medium.
  • the focusing coil includes a first focusing coil fixed to a portion of the one side surface perpendicular to the x-axis of the lens holder that is located in the first quadrant, and a perpendicular to the x-axis of the lens holder. It is preferable to include a second focusing coil fixed to a portion located in the third quadrant of the other side surface.
  • the set of the first focusing coil and the first tracking coil and the set of the second focusing coil and the second tracking coil are arranged close to each other, so that the heat source is concentrated.
  • the first and second focusing coils and the first and second tracking coils, which serve as heat generation sources, can be directly cooled by arranging each group along the flow of the airflow.
  • the heat conduction path from the centralized heat source of the lens holder to the objective lens can be cooled, it is possible to efficiently suppress the inflow of heat into the objective lens.
  • the magnet has a magnetization boundary surface on the x-axis, applies reverse magnetic fields to two sides substantially parallel to the optical axis of the objective lens of the first tracking coil, and the first
  • a magnetic field having a reverse direction is applied to two sides substantially parallel to the optical axis of the objective lens of the second tracking coil, and the disk-like one of the two sides substantially parallel to the y-axis of the second focusing coil.
  • the first and second focusing coils and the first and second tracking coils are arranged close to each other and the driving sources are concentrated, the y-axis direction of the first and second magnets The size can be reduced, and the volume of the first and second magnets can be reduced to reduce the cost of the optical pickup device.
  • the first and second focusing coils are disposed below the objective lens, the first and second focusing coils serving as heat generation sources can be separated from the objective lens, and the temperature of the objective lens increases. Can be suppressed.
  • the focusing coil includes a first focusing coil fixed to a portion of the one side surface perpendicular to the x-axis of the lens holder that is located in the first quadrant, and a perpendicular to the x-axis of the lens holder.
  • a second focusing coil fixed to a portion located in the second quadrant of the other side surface, and a third fixed to a portion located in the third quadrant of the other side surface of the lens holder.
  • a fourth focusing coil fixed to a portion located in the fourth quadrant of the one side surface of the lens holder.
  • the first to fourth focusing coils can be arranged in a well-balanced manner so that the center of the objective lens becomes the center of gravity, and a set of the first and fourth focusing coils and the first tracking coil, Since the sets of the second and third focusing coils and the second tracking coil are arranged close to each other, by arranging the respective sets along the flow of the air flow in a state where the heat sources are concentrated, The first to fourth focusing coils and the first and second tracking coils that are heat sources can be directly cooled. In addition, since the heat conduction path from the centralized heat source of the lens holder to the objective lens can be cooled, it is possible to efficiently suppress the inflow of heat into the objective lens.
  • the magnet has a magnetization boundary line on the x-axis, imparts opposite magnetic fields to two sides substantially parallel to the optical axis of the objective lens of the first tracking coil, and the first Of the two sides of the focusing coil that are substantially parallel to the y-axis, the side that is close to the disc-shaped recording medium and of the two sides that are substantially parallel to the y-axis of the fourth focusing coil are applied to the disc-shaped recording medium.
  • a magnetic field is applied, and two of the two sides substantially parallel to the y-axis of the second focusing coil, the side close to the disc-shaped recording medium, and the two substantially parallel to the y-axis of the third focusing coil
  • the disc-shaped recording medium of the side Preferably includes a second magnet for imparting a magnetic field to the side close to.
  • the first to fourth focusing coils are disposed below the objective lens, the first to fourth focusing coils serving as heat generation sources can be separated from the objective lens, and the temperature of the objective lens The rise can be suppressed.
  • a large driving force can be generated by the first to fourth focusing coils, a highly accurate focusing servo can be realized.
  • the objective lens preferably includes a resin lens formed by resin molding.
  • the objective lens is preferably a multiple wavelength compatible objective lens corresponding to a plurality of wavelengths including at least a wavelength of about 405 nm.
  • the objective lens even if a multi-wavelength compatible objective lens having a function of compatibility between BD and other disc-shaped recording media is used as the objective lens, it is possible to obtain a good condensing characteristic and realize stable high-density recording / reproduction.
  • the cost of the apparatus can be reduced, and the apparatus can be reduced in size and thickness.
  • the multi-wavelength compatible objective lens is preferably a three-wavelength compatible objective lens corresponding to three types of wavelengths of about 660 nm and about 780 nm in addition to the wavelength of about 405 nm.
  • the dimension from the lower surface of the optical base to the disc-shaped recording medium is preferably 11 mm or less.
  • An optical information device includes the optical pickup device described above, a motor that rotates the disk-shaped recording medium, and a control that controls the motor and the optical pickup device based on a signal obtained from the optical pickup device. A part.
  • the objective lens is a resin objective lens.
  • An information processing apparatus includes the above-described optical information device and an information processing unit that processes information recorded in the optical information device and / or information reproduced from the optical information device.
  • This information processing apparatus includes the above-described optical information apparatus, and even with a resin objective lens, the temperature rise of the objective lens can be efficiently suppressed and uniformized, so that a good light collection By obtaining the characteristics, it is possible to realize stable high-density recording / reproduction and cost reduction.
  • the optical pickup device, the optical information device, and the information processing device according to the present invention can record and / or reproduce information at high density and stably on a plurality of types of optical discs having different compatible wavelengths.
  • the present invention can be used for a large-capacity computer memory device, server, optical disc player, optical disc recorder, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

 光ピックアップ装置は、光ビームを集光して光ディスクに照射する一つの対物レンズ(1)と、対物レンズ(1)を駆動する対物レンズアクチュエータ(29)とを備え、対物レンズアクチュエータ(29)は、対物レンズ(1)を保持するレンズホルダ(2)を備え、レンズホルダ(2)と対物レンズ(1)との間に二つの空隙(Ga、Gb)が形成され、対物レンズ(1)の中心を原点、トラッキング方向をy軸、及び光ディスクのトラックの接線方向をx軸とするxy平面において、空隙(Ga)は、少なくともxy平面の第1象限内に位置し、空隙(Gb)は、少なくともxy平面の第3象限内に位置する。

Description

光ピックアップ装置、光情報装置及び情報処理装置
 本発明は、円盤状記録媒体に対して情報を記録及び/又は再生する光ピックアップ装置、該光ピックアップ装置を用いた光情報装置、並びに該光情報装置を用いた情報処理装置に関するものである。
 従来の円盤状記録媒体である光ディスクとして、CD(Compact Disc)及びDVD(Digital Versatile Disc)に加えて、近年では、BD(Blu-ray Disc)に対して情報の再生及び記録を行うための各種の光ピックアップ装置が、開発及び製造され、一般に普及している。
 CDやDVDに用いられる光源の波長が略780nm、略660nmであるのに対して、BDは、光源として波長405nm前後のいわゆる青紫光のレーザ光源を用いた高密度及び高容量タイプの光ディスクである。このような光ディスクの場合、より高密度の記録再生を行うために、対物レンズのNAをDVD用の対物レンズのNAよりもさらに大きくする必要がある。このため、より波面収差の少ない高性能の対物レンズが求められており、光ピックアップ装置に対する要求スペックは、益々厳しいものとなっている。
 また、上述のような高密度及び高容量タイプの光ピックアップ装置では、高精度のフォーカシングサーボ及びトラッキングサーボが必要となり、より大きなサーボゲインが要求されることから、対物レンズ駆動系の発熱量も増大すると考えられる。この観点から、光ピックアップ装置の温度特性の向上が求められている。
 特に、高密度及び高容量のBDと、DVD等の旧来型光ディスクとの複数規格の併用を可能にする互換型の光ピックアップ装置では、対物レンズの球面収差及び非点収差等の温度補償も容易でなく、温度変化に伴う球面収差及び非点収差等の変化が少ない、すなわち良好な温度特性の光ピックアップ装置に対する要求が高まっている。
 また、一方で光ピックアップ装置のコストダウンは常に求められており、BDを含めたDVD及びCDの互換ピックアップ装置を1つの対物レンズによって実現する複数波長互換対物レンズへの要望も高まっている。このような要望を実現するために、レンズ表面に微細な回折格子を形成した対物レンズの提案がなされており、このような互換対物レンズの実現には、レンズ材料の樹脂化は必須となる。したがって、対物レンズの樹脂化への対応という観点においても、良好な温度特性を実現する光ピックアップ装置は益々必要とされている。
 ここで、従来の光ピックアップ装置としては、レンズホルダの端部に搭載した対物レンズから発熱源である駆動用コイルまでの距離を長くとった構成となる対物レンズアクチュエータを用いたものがある(例えば、特許文献1参照)。図18は、特許文献1に記載された従来の光ピックアップ装置の対物レンズアクチュエータの構成を示す斜視図である。
 図18において、対物レンズ101は、レンズホルダ102の一端に保持されており、フォーカシングコイル104R、104L及びトラッキングコイル105R、105Lは、レンズホルダ102の他端部側に構成された貫通孔の内側に固着され、これらの部材から可動部115が構成される。弾性変形可能な直線状の6本の支持部材103a~103eの一端がレンズホルダ102の外端部に固定され、かつ他端が固定部113に固定され、固定部113は基台114に固定される。可動部115は、フォーカシング方向Fo及びトラッキング方向Trへ並進可能に、かつラジアルチルティング方向Tiへ回転可能に固定部113に弾性支持される。なお、矢印Sは、図示しない光ディスクの円周方向である。
 ヨーク109は、図中の破線で示した位置に配置され、磁石110がヨーク106に、磁石111がヨーク107に、磁石112がヨーク108にそれぞれ取り付けられ、磁石110と磁石112、磁石111と磁石112がそれぞれ対向して配置されている。磁石110と磁石112との間の磁気ギャップ中にフォーカシングコイル104R及びトラッキングコイル105Rが配置され、磁石111と磁石112との間の磁気ギャップ中にフォーカシングコイル104L及びトラッキングコイル105Lが配置される。対物レンズ101は、フォーカシングコイル104R、104Lに通電することによりフォーカシング方向Foに、トラッキングコイル105R、105Lに通電することによりトラッキング方向Trにそれぞれ駆動される。
 したがって、発熱源であるフォーカシングコイル104R、104L及びトラッキングコイル105R、105Lと、対物レンズ101との間には、磁石112及びヨーク108が配置される。このように、発熱源と対物レンズ101とが空間的に互いに離れた位置に配置されるので、フォーカシングコイル104R、104L及びトラッキングコイル105R、105Lで発生した熱量がレンズホルダ102を介した熱伝導によって対物レンズ101に流入するが、その熱量は、非常に小さい。よって、対物レンズ101の温度上昇は、小さくかつ温度変化も小さく抑えられている。
 また、レンズホルダの互いに対向する二つの側面に配置された駆動コイルの間に二つの対物レンズを配置して、対物レンズから駆動点までの距離を短くすることにより、対物レンズアクチュエータの必要な高次共振周波数を満足させ、加えてレンズホルダのレンズ接着部の位置を最適化することにより、熱伝導による熱量の流入を平準化するという光ピックアップ装置がある(特許文献2参照)。図19は、特許文献2に記載された従来の光ピックアップ装置の対物レンズアクチュエータの構成を示す上面図である。
 図19において、レンズホルダ121は、サスペンションホルダ122に対して所定の範囲で変位可能に支持され、BD用対物レンズ133及びDVD/CD用対物レンズ134は、トラッキング方向Trに垂直な方向である接線方向Sに沿ってレンズホルダ121に配置されている。BD用対物レンズ133は、レンズホルダ121の対物レンズ支持面130a、130b、130cによって支持され、接着部131a、131b、131cに注入された接着剤によって固定されている。また、DVD/CD用対物レンズ134は、レンズホルダ121の対物レンズ支持面135に支持され、接着部132a、132b、132cに注入された接着剤によって固定されている。接着剤によって固定された箇所では、レンズホルダ121の接着部131a、131b、131cと、BD用対物レンズ133との密着度が高く、レンズホルダ121からBD用対物レンズ133へ熱量が最も流入し易くなる。
 フォーカシングコイル123、124、トラッキングコイル125、126、及びチルティングコイル127、128は、レンズホルダ121の接線方向Sに沿って対向する両側面に各々1個ずつ固着されている。
ここで、接着部131a、131b、131cは、以下のように配置されている。接着部131aは、フォーカシングコイル123とチルティングコイル127との組の近傍を避け、トラッキングコイル125にも近付きすぎない位置に配置される。すなわち、接着部131aは、フォーカシングコイル123とチルティングコイルとの組よりもトラッキングコイル125に近い位置に配置されている。
 このような構成により、フォーカシングコイル123、124、トラッキングコイル125、126、及びチルティングコイル127、128に電流を流し、レンズホルダ121を駆動させる際に、温度が上昇しやすいフォーカシングコイル123とチルティングコイル127との組と、それに比べて温度上昇の小さいトラッキングコイル125との間で、温度の低い位置に接着部131aを配置することができる。
 また、接着部131b、131cは、レンズホルダ121上の接着部131aの位置と温度がほぼ等しい位置に配置される。これにより、温度がほぼ等しい位置に設けられた接着部131a、131b、131cから対物レンズ133に流入する熱量もそれぞれ略一定となり、対物レンズ133の変形に偏りが生じにくくなり、対物レンズ133を透過する光の非点収差の発生を抑制することができる。
 しかしながら、図18に示す従来の対物レンズアクチュエータでは、対物レンズ101からフォーカシングコイル104R、104L及びトラッキングコイル105R、105Lまでの距離が長いため、対物レンズ101と発熱源との距離が長いと同時に対物レンズ101から駆動点までの距離が長いということになる。したがって、対物レンズ101の駆動伝達系の固有振動数が低くなってしまう。特に、BD用対物レンズ又はBDを含めたDVD/CDとの複数波長互換対物レンズを用いた場合、高密度化のために高NA化されており、許容フォーカシング残差が小さくなるので、必要なサーボゲインが大きくなる。その結果、対物レンズアクチュエータには、駆動時の高次共振周波数のより高帯域化が要求されることとなる。
 以上の観点から、対物レンズ101から駆動点までの距離が長い従来構成では、対物レンズアクチュエータの必要な高次共振周波数が得られない。その結果、デフォーカスによって十分な光スポットの集光性能が得られず、高密度の記録再生に対応できないという課題がある。
 また、図19に示す従来の対物レンズアクチュエータでは、BD用対物レンズ133及びDVD/CD用対物レンズ134の二つの対物レンズがレンズホルダ121に搭載されているため、レンズホルダ121が大きくなり、光ピックアップ装置が大型化するという課題がある。さらに、BD用対物レンズ133及びDVD/CD用対物レンズ134の二つの対物レンズを用いる必要があるため、装置のコストが上昇するという課題もある。
特開2004-146034号公報 特開2006-164416号公報
 本発明の目的は、複数種類の円盤状記録媒体に対する互換機能を有する一つの対物レンズを用いて、良好な集光特性を得て安定的な高密度記録再生を実現することができるとともに、装置のコストダウンを可能とし、さらに、装置の小型化及び薄型化を達成することができる光ピックアップ装置、光情報装置及び情報処理装置を提供することである。
 本発明の一局面に従う光ピックアップ装置は、所定の波長の光ビームを出射する光源と、前記光源からの光ビームを集光して円盤状記録媒体に照射する一つの対物レンズと、前記対物レンズを駆動する対物レンズアクチュエータと、前記円盤状記録媒体の記録面により反射された光ビームを前記対物レンズを介して受光して電気信号に変換する光検出器と、前記光源、前記対物レンズアクチュエータ及び前記光検出器を保持する光学ベースとを備え、前記対物レンズアクチュエータは、前記対物レンズを保持するレンズホルダと、前記円盤状記録媒体に対して垂直な方向であるフォーカシング方向と、前記円盤状記録媒体の半径方向であるトラッキング方向とに移動可能に前記レンズホルダを支持する支持機構と、前記レンズホルダに固定され、前記レンズホルダを前記フォーカシング方向に駆動するフォーカシングコイルと、前記レンズホルダに固定され、前記レンズホルダを前記トラッキング方向に駆動するトラッキングコイルと、前記支持機構の一端を保持するアクチュエータベースと、前記アクチュエータベースに保持され、前記フォーカシングコイル及び/又は前記トラッキングコイルに対向する位置に配置されて前記フォーカシングコイル及び/又は前記トラッキングコイルに磁界を付与するマグネットとを備え、前記レンズホルダと前記対物レンズとの間に第1の空隙及び第2の空隙が形成され、前記円盤状記録媒体は時計周りに回転し、前記対物レンズの中心を原点とし、前記トラッキング方向をy軸とし、前記円盤状記録媒体のトラックの接線方向をx軸とするxy平面において、前記y軸は前記円盤状記録媒体の中心側を正方向とし、前記x軸は前記y軸の正方向を時計回りに90°回転した方向を正方向とし、前記xy平面を前記x軸及び前記y軸によって分割した4つの領域を反時計回りに第1象限、第2象限、第3象限及び第4象限としたとき、前記第1の空隙は、少なくとも前記第1象限内に位置し、前記第2の空隙は、少なくとも前記第3象限内に位置する。
 上記の光ピックアップ装置では、複数種類の円盤状記録媒体に対する互換機能を有する一つの対物レンズを用いて、良好な集光特性を得て安定的な高密度記録再生を実現することができるとともに、装置のコストダウンを可能とし、さらに、装置の小型化及び薄型化を達成することができる。
本発明の実施の形態1における光ピックアップ装置の概略構成を示す模式図である。 図1に示す光ピックアップ装置の具体的な構成を示す上面図である。 図2に示す対物レンズアクチュエータの構成を示す斜視図である。 図2に示す対物レンズアクチュエータの構成を示す上面図である。 図2に示す対物レンズアクチュエータの可動体の構成を示す斜視図である。 図2に示す対物レンズアクチュエータのマグネット及びコイルの構成を示す斜視図である。 本発明の実施の形態2における光ピックアップ装置の対物レンズアクチュエータの構成を示す斜視図である。 図7に示す対物レンズアクチュエータの構成を示す上面図である。 図7に示す対物レンズアクチュエータの可動体の構成を示す斜視図である。 図7に示す対物レンズアクチュエータのマグネット及びコイルの構成を示す斜視図である。 図7に示す対物レンズアクチュエータの可動体に設けられた空隙の位置及び大きさを説明するための上面図である。 図11に示す可動体における気流の流れをシミュレーションした結果を示す模式図である。 図11のXIII-XIII線による可動体の断面図である。 本発明の実施の形態3における光ディスク装置の概略構成を示す模式図である。 本発明の実施の形態4におけるコンピュータの全体構成を示す概略斜視図である。 本発明の実施の形態5における光ディスクプレーヤの全体構成を示す概略斜視図である。 本発明の実施の形態6における光ディスクレコーダの全体構成を示す概略斜視図である。 従来の光ピックアップ装置の対物レンズアクチュエータの構成を示す斜視図である。 従来の他の光ピックアップ装置の対物レンズアクチュエータの構成を示す上面図である。
 ここで、本願発明者らが新たに見出した従来の光ピックアップ装置の対物レンズアクチュエータの課題について説明する。図19に示す従来の構成のように、BD用対物レンズ133及びDVD/CD用対物レンズ134の二つの対物レンズがレンズホルダ121に搭載されている場合は、レンズホルダ121の一方の側面に配置されたフォーカシングコイル123、チルティングコイル127、及びトラッキングコイル125からなるコイル群とBD用対物レンズ133との距離と、他方の側面に配置されたフォーカシングコイル124、チルティングコイル128、及びトラッキングコイル126からなるコイル群とBD用対物レンズ133との距離とを比較すると、他方の側面に配置されたコイル群はBD用対物レンズ133から大きく離間している。
 このような構成の場合、接着部131a、131b、131cの位置は、他方の側面に配置されたコイル群に比べて一方の側面に配置されたコイル群の方が近い位置関係となる。よって、他方の側面に配置されたコイル群によって発生する熱量の、BD用対物レンズ133の温度上昇への寄与は非常に小さい。
 また、二つの対物レンズ133、134が搭載されている構成の場合は、レンズホルダ121の容積が大きくなるため、レンズホルダ121の熱容量が大きくなり、BD用対物レンズ133への熱量の流入は小さいものとなる。
 したがって、接着部131aの位置の最適化により、一方の側面に配置されたコイル群からの熱の流入を平準化でき、BD用対物レンズ133の温度上昇の値そのものも小さく抑えることができる。
 しかしながら、二つの対物レンズ133、134に代えて、BDと、DVD(及び/又はCD)との互換機能を有する1つの対物レンズのみをレンズホルダに搭載する場合、対物レンズと一方の側面に配置されたコイル群との距離と、対物レンズと他方の側面に配置されたコイル群との距離とは、等距離になり、対物レンズとコイル群とがそれぞれ近接する。
 このような構成の場合、1つの対物レンズへの熱量の流入は、二つの対物レンズが搭載された構成に対して2倍の熱量が流入する。
 また、レンズホルダの容積は、二つの対物レンズが搭載された構成に対して半分程度となるため、レンズホルダの熱容量も半分程度となり、レンズホルダの温度上昇の値そのものが2倍程度となってしまう。
 したがって、接着部の位置を最適化して対物レンズへの熱量の流入を平準化することにより、対物レンズの温度分布のばらつきを小さく抑えることができても、対物レンズに流入する熱量が大きいために、対物レンズの温度上昇の値そのものは大きくなってしまう。
 特に、対物レンズの下側には空気が滞留するために、放熱量が小さくなり、温度上昇がより大きくなる。
 このように、対物レンズの温度分布のばらつきが抑えられた状態でも、温度上昇の値そのものが大きいと、光スポット上で球面収差が発生し、十分な集光特性が得られなくなってしまい、高密度の記録再生に対応できないという課題があった。
 特に、BDと、DVD(及び/又はCD)との互換機能を有する1つの樹脂対物レンズでは、温度変化による球面収差の変化が大きく、1℃あたり5mλ以上の球面収差が発生してしまう。
 ここで、対物レンズの温度変化に応じてコリメートレンズを光軸方向に移動させることにより、温度変化に伴って生じる球面収差を補正することが可能であるが、上記のように対物レンズの温度上昇が大きい場合、特に樹脂対物レンズを搭載している場合には、温度変化に伴って生じる球面収差の変化が大きくなり、コリメートレンズの可動範囲が非常に長くなる。この結果、温度変化に相当するコリメートレンズの可動範囲を確保することが困難となり、あるいは光ピックアップ装置の大型化が必要となり、装置としての商品性が著しく低下してしまい、光ピックアップ装置として致命的な課題となる。
 さらに、対物レンズの温度上昇が大きくなると、表面のコーティングにヒビ割れや白濁等の損傷が発生し、最終的にはレンズ破壊に至るという重大な課題を有していた。
 上記の新たな課題をも含めて、本発明の各実施の形態は、従来の光ピックアップ装置の課題を解決する。以下、本発明の各実施の形態について、図面を参照しながら説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1における光ピックアップ装置の概略構成を示す模式図であり、図2は、図1に示す光ピックアップ装置の具体的な構成を示す上面図である。
 図1及び図2に示す光ピックアップ装置は、対物レンズ1、青色半導体レーザユニット21、赤色及び赤外半導体レーザユニット22、ビームスプリッタ26、コリメートレンズ27、ミラー28、対物レンズアクチュエータ29、プレートビームスプリッタ30、検出レンズ31、光検出器32、及び光学ベース33を備える。また、図2に示すように、光ピックアップ装置は、CL(コリメータレンズ)アクチュエータ44をさらに備え、CLアクチュエータ44は、CLホルダ41、CLアクチュエータ主軸42、及びステッピングモータ43を備える。
 図1及び図2において、青色半導体レーザユニット21は、光学ベース33に保持されている。青色半導体レーザユニット21から出射される光ビームは、400nm~415nmの波長を有し、本実施の形態では、青色半導体レーザユニット21は、例えば、略405nmの波長の光ビームを出射するように構成されている。なお、一般に、上述の波長を有する光は、青色~紫色を有している。
 赤色及び赤外半導体レーザユニット22は、光学ベース33に保持されている。赤色及び赤外半導体レーザユニット22から出射される光ビームは、640nm~800nmの波長を有し、赤色及び赤外半導体レーザユニット22は、一種の波長の光ビームを単数出射したり、あるいは複数種の波長の光ビームを複数出射するように構成されている。本実施の形態では、赤色及び赤外半導体レーザユニット22は、例えば、DVDに対応する略660nmの波長の光ビームと、CDに対応する略780nmの光ビームとを出射するように構成されている。
 対物レンズ1は、少なくとも略405nmの波長を含む複数の波長に対応した複数波長互換対物レンズであり、レンズ表面に波長選択機能を持つ微細な回折構造を有する。この回折構造は、レンズを透過する光ビームの波長によって焦点位置を任意に設定することができる。本実施の形態では、対物レンズ1として、例えば、略405nmの波長に加えて、略660nmの波長及び略780nmの波長の3種類の波長に対応した3波長互換対物レンズが用いられる。対物レンズ1には、作動距離が赤外光、赤色光、青色光の順に大きくなるように、回折構造が構成されており、例えば、各波長ごとの作動距離は、赤外光が略0.3mm、赤色光が略0.44mm、青色光が略0.5mmと設定している。
 また、対物レンズ1は、樹脂成形によって形成される樹脂レンズであり、本実施の形態では、例えば、シクロオレフィンを重合して得られる樹脂であるシクロオレフィンポリマーを用いて成形されている。
 図1に示すBD23、DVD24、及びCD25は、それぞれ円盤状記録媒体の一例である光ディスクであり、使用状態では、BD23、DVD24、及びCD25のうち一枚の光ディスクのみが使用されるが、図1では、作動距離の差を示すために、BD23、DVD24、及びCD25を同時に表記している。
 本実施の形態は、波長略405nmのBD用の光ビーム、波長略660nmのDVD用の光ビーム及び波長略780nmの光ビームの3種類の波長の光ビームを1つの対物レンズ1によって集光し、各波長に対応した光ディスク(BD23、DVD24、又はCD25)に対して情報の記録再生を行う3波長互換対物レンズを用いた光ピックアップ装置である。
 青色半導体レーザユニット21から出射された青色の光ビームは、ビームスプリッタ26で反射され、コリメートレンズ27に向かう。ここで、コリメートレンズ27は、光ビームを所定の発散度に変換するように設定されている。また、詳細は後述するが、図2に示すように、コリメートレンズ27は、CLホルダ41に固定され、CLホルダ41は、CLアクチュエータ主軸42及びステッピングモータ43の回転軸に移動可能に保持されている。コリメートレンズ27は、CLアクチュエータ44に搭載され、ステッピングモータ43によって光軸方向に駆動される。このように、コリメートレンズ27の位置を変位させることができるので、光ビームの発散度を任意の値に選択することができる。したがって、複数層の情報記録面を有する光ディスク(BD23)の各層ごとの基材厚の違いに対応した集光スポットの生成が可能である。
 光ビームは、コリメートレンズ27を透過した後、ミラー28によって折り曲げられて対物レンズアクチュエータ29に搭載された対物レンズ1に向かう。対物レンズ1で絞られた青色の光ビームは、略0.5mmの作動距離にあるBD23の情報記録面上に集光されて照射される。
 そして、BD23の情報記録面からの反射光は、往路と同様に、対物レンズ1を透過した後、ミラー28で反射され、さらに、コリメートレンズ27を透過してビームスプリッタ26に至る。復路では、光ビームは、ビームスプリッタ26を透過し、さらにプレートビームスプリッタ30及び検出レンズ31を透過した後、光検出器32に入射される。光検出器32は、入射した光ビームを光電変換して光ピックアップ制御回路(図示省略)へ出力し、光ピックアップ制御回路は、フォーカシングエラー信号、トラッキングエラー信号及び光ディスク再生信号を生成する。
 赤色及び赤外半導体レーザユニット22から出射された赤色の光ビームは、プレートビームスプリッタ30で反射され、ビームスプリッタ26を透過した後、コリメートレンズ27に向かう。光ビームは、コリメートレンズ27を透過した後、ミラー28によって折り曲げられて対物レンズアクチュエータ29に搭載された対物レンズ1に向かう。対物レンズ1で絞られた赤色の光ビームは、略0.44mmの作動距離にあるDVD24の情報記録面上に集光されて照射される。
 そして、DVD24の情報記録面からの反射光は、往路と同様に、対物レンズ1を透過した後、ミラー28で反射され、さらに、コリメートレンズ27及びビームスプリッタ26を透過し、プレートビームスプリッタ30に至る。復路では、光ビームは、プレートビームスプリッタ30を透過し、さらに検出レンズ31を透過した後、光検出器32に入射される。光検出器32は、入射した光ビームを光電変換して光ピックアップ制御回路(図示省略)へ出力し、光ピックアップ制御回路は、フォーカシングエラー信号、トラッキングエラー信号及び光ディスク再生信号を生成する。
 赤色及び赤外半導体レーザユニット22から赤外の光ビームが出射された場合の動作は、上記した赤色の光ビームの場合と同様であり、赤外の光ビームは、上記と同様の経路を通って対物レンズ1に至る。対物レンズ1で絞られた赤外の光ビームは、略0.3mmの作動距離にあるCD25の情報記録面上に集光されて照射される。
 そして、CD25の情報記録面からの反射光も、赤色の光ビームの場合と同様の経路を通って光検出器32に入射される。光検出器32は、入射した光ビームを光電変換して光ピックアップ制御回路(図示省略)へ出力し、光ピックアップ制御回路は、フォーカシングエラー信号、トラッキングエラー信号及び光ディスク再生信号を生成する。
 以上説明した構成部品として、青色半導体レーザユニット21、赤色及び赤外半導体レーザユニット22、ビームスプリッタ26、ミラー28、プレートビームスプリッタ30、検出レンズ31及び光検出器32は、光学ベース33に搭載されている。また、コリメートレンズ27は、CLアクチュエータ44に搭載され、CLアクチュエータ44は、光学ベース33に搭載される。対物レンズアクチュエータ29は、対物レンズ1の位置調整が完了した状態で光学ベース33に接着固定されている。
 図2において、x軸は、対物レンズ1の中心を通り、スピンドルモータ47のターンテーブル47aの外縁の接線方向に平行な軸であり、y軸は、対物レンズ1の中心を通り、スピンドルモータ47のターンテーブル47aの半径方向に平行な軸である。また、スピンドルモータ47の回転中心は、y軸上に位置しており、ターンテーブル47aは、時計回りである回転方向Rmに回転駆動される。光学ベース33は、y軸に平行に配置された主軸45及び副軸46によって支持されており、光学ベース33が主軸45及び副軸46の円筒面を摺動することにより、対物レンズ1がy軸上を移動し、BD23又はDVD24又はCD25の任意の半径位置に移動可能に構成されている。
 したがって、図2に示すように、上面視において、BD23(又はDVD24又はCD25)は時計周りに回転し、対物レンズ1の中心を原点とし、BD23の半径方向であるトラッキング方向をy軸とし、BD23のトラックの接線方向をx軸とするxy平面(xy座標系)において、y軸はBD23の中心側を正方向とし、x軸はy軸の正方向を時計回りに90°回転した方向を正方向とし、xy平面をx軸及びy軸によって分割した4つの領域を反時計回りに第1象限、第2象限、第3象限及び第4象限として規定することができる。
 次に、図2を用いてCLアクチュエータ44の構成について説明する。
 図2において、コリメートレンズ27は、CLホルダ41に搭載されており、CLホルダ41は、x軸に対して平行に配置されたCLアクチュエータ主軸42に支持されている。CLホルダ41がCLアクチュエータ主軸42の円筒面を摺動することにより、コリメートレンズ27は、x軸上を移動し、ミラー28(図1参照)とビームスプリッタ26との間の任意の位置に移動可能に構成されている。
 ステッピングモータ43は、回転軸がx軸と略平行になるように配置されていて、回転軸と同軸にリードスクリューが設けられている。
 CLホルダ41の端部には、ステッピングモータ43のリードスクリューの溝にかみ合う突起が設けられており、ステッピングモータ43が回転することにより、リードスクリューが回転し、その結果、CLホルダ41は、CLアクチュエータ主軸42に沿って移動する。また、ステッピングモータ43に入力する駆動信号のパルス数を調整することにより、リードスクリューの回転量が決定され、コリメートレンズ27の移動量を設定することができる。
 次に、図3、図4、図5及び図6を用いて、対物レンズアクチュエータ29の構成について説明する。
 図3は、図2に示す対物レンズアクチュエータの構成を示す斜視図であり、図4は、図2に示す対物レンズアクチュエータの構成を示す上面図であり、図5は、図2に示す対物レンズアクチュエータの可動体の構成を示す斜視図であり、図6は、図2に示す対物レンズアクチュエータのマグネット及びコイルの構成を示す斜視図である。
 ここで、図3、図5及び図6に示すz軸は、対物レンズ1の中心軸であり、x軸、y軸と相互に直交し、それぞれ3次元直交座標系を構成している。また、図3及び図6に示すr方向は、x軸周りの回転方向であるラジアルチルト方向である。
 図3及び図4に示す対物レンズアクチュエータ29は、レンズホルダ2、二つのフォーカシングコイル4a、4b、二つのトラッキングコイル5a、5b、二つの端子板6、二つのマグネット8a、8b、6本のサスペンションワイヤー9、固定部材10、固定基板11、及びヨークベース12を備える。また、固定部材10、固定基板11及びヨークベース12は、サスペンションワイヤー9の一端を保持するアクチュエータベースの一例である。
 レンズホルダ2は、成形された樹脂から構成され、略直方体形状を有している。レンズホルダ2の上面には、対物レンズ1が搭載されている。レンズホルダ2におけるx軸に垂直な二つの側面には、フォーカシングコイル4a、4bと、トラッキングコイル5a、5bとが取り付けられており、y軸に垂直な二つの側面にはそれぞれ端子板6が取り付けられている。
 次に、図5等を用いて、可動体7の詳細構成を説明する。可動体7は、対物レンズ1、レンズホルダ2、二つのフォーカシングコイル4a、4b、二つのトラッキングコイル5a、5b、及び二つの端子板6から構成されている。
 レンズホルダ2は、z軸を中心とする円形の開口A1を有しており、この開口A1から対物レンズ1に光ビームが入射する。したがって、対物レンズ1に入射する有効光ビーム径は、この開口A1の径によって決定される。
 レンズホルダ2の上側の平坦面P1のうち、上面視において、x軸及びy軸からなるxy平面の第2象限に位置する領域を中心に対物レンズ搭載部2aが突出して設けられ、第4象限に位置する領域を中心に対物レンズ搭載部2bが突出して設けられている。対物レンズ1は、第1の固定部の一例である対物レンズ搭載部2a及び第2の固定部の一例である対物レンズ搭載部2bに固定され、対物レンズ搭載部2aは、レンズホルダ2の平坦面P1のうち、少なくとも第2象限内に位置し、対物レンズ搭載部2bは、少なくとも第4象限内に位置している。
 本実施の形態では、対物レンズ搭載部2aの大部分(例えば、対物レンズ搭載部2a全体の75%以上の部分)が第2象限に位置し、残りの一部(例えば、対物レンズ搭載部2a全体の25%未満の部分)が第1象限に位置し、対物レンズ搭載部2bの大部分(例えば、対物レンズ搭載部2b全体の75%以上の部分)が第4象限に位置し、残りの一部(例えば、対物レンズ搭載部2b全体の25%未満の部分)が第3象限に位置している。
 対物レンズ搭載部2aには、平坦面P1から上方へ約0.4mmの離間距離を有する位置に対物レンズ載置面Paが形成され、対物レンズ搭載部2bには、平坦面P1から上方へ約0.4mmの離間距離を有する位置に対物レンズ載置面Pbが形成されている。対物レンズ載置面Pa、Pbの縁には、z軸を中心軸とする四つの円筒面Ca、Cbが立ち上がっている。
 対物レンズ1のコバ下面1aが対物レンズ載置面Pa、Pbに載置されることにより、対物レンズ1のz軸方向の位置決めが行われ、四つの円筒面Ca、Cbに対物レンズ1の外径を沿わせることにより、対物レンズ1のx軸方向及びy軸方向の位置決めが行われる。なお、円筒面の数及び位置は、上記の例に特に限定されず、種々の変更が可能である。
 また、対物レンズ載置面Paには、一部領域が開放された接着剤塗布部3aが設けられ、対物レンズ載置面Pbには、一部領域が開放された接着剤塗布部3bが設けられており、レンズホルダ2に対して対物レンズ1が位置決めされた状態で、接着剤塗布部3a、3bに接着剤を注入して硬化させることにより、接着剤塗布部3a、3bがレンズホルダ2と対物レンズ1との接着部となり、対物レンズ1がレンズホルダ2に固着される。なお、接着剤塗布部の数及び位置は、上記の例に特に限定されず、種々の変更が可能である。
 上記のように、対物レンズ搭載部2aと対物レンズ搭載部2aとの間には、レンズホルダ2に対物レンズ1が固定された結果、対物レンズ1のコバ下面1aとレンズホルダ2の上側の平坦面P1との間に二つの空隙Ga、Gb(図5の破線で囲まれたハッチング領域)が形成される。ここで、図4に示すように、上面視において、空隙Gaは、x軸及びy軸からなるxy平面の第1象限に位置する領域を中心に形成され、空隙Gbは、第3象限に位置する領域を中心に形成されている。すなわち、空隙Gaは、少なくとも第1象限内に位置し、空隙Gbは、少なくとも第3象限内に位置している。
 また、第1象限側の空隙Gaと第3象限側の空隙Gbとは、対物レンズ1の下側の空間によって繋がっており、第1象限側の空隙Gaから第3象限側の空隙Gbに至る通風路が、対物レンズ1の下側に形成されることとなる。このとき、図4に示すように、BD23、DVD24及びCD25のうちのいずれかの光ディスクの時計回りの回転(回転方向Rmの回転)によって、光ディスクの表面近傍に発生する渦巻き状の気流Fの流れが矢印方向に沿って構築されている。したがって、渦巻き状の気流Fは、第1象限の領域を中心に構成された空隙Gaから第3象限の領域を中心に構成された空隙Gbに向けて通風路を貫通するように通り抜ける。
 また、第1象限側の空隙Gaから進入した気流Fは、通風路内部では対物レンズ1の下側の凸面1bに沿ってレンズ周縁部に一端拡散した後(図4中の破線で示す経路)、第3象限側の空隙Gbに向けて収束し、最終的に通風路の外部に排出される。
 フォーカシングコイル4a、4bは、矩形形状に巻回された扁平コイルである。ここで、図4に示すように、上面視において、フォーカシングコイル4aは、レンズホルダ2のx軸に対して垂直な一方の側面のうち、x軸及びy軸からなるxy平面の第1象限内に位置する領域に接着されて固定され、フォーカシングコイル4bは、レンズホルダ2のx軸に対して垂直な他方の側面のうち、第3象限内に位置する領域に接着されて固定されている。したがって、フォーカシングコイル4aは、第1象限内のレンズホルダ2の側面に固定され、フォーカシングコイル4bは、第3象限内のレンズホルダ2の側面に固定され、フォーカシングコイル4aとフォーカシングコイル4bとは、z軸に対して互いに軸対称な位置関係となっている。
 トラッキングコイル5a、5bは、矩形形状に巻回された扁平コイルである。上面視において、トラッキングコイル5aは、レンズホルダ2のx軸に垂直な一方の側面の中心に接着されており、トラッキングコイル5aの接着位置の中心がx軸上に位置するように配置されている。トラッキングコイル5bは、レンズホルダ2のx軸に垂直な他方の側面の中心に接着されており、トラッキングコイル5bの接着位置の中心がx軸上に位置するように配置されている。
 フォーカシングコイル4a及びフォーカシングコイル4bは、端子板6、サスペンションワイヤー9、及び固定基板11を介して、それぞれ独立に駆動信号を供給される。
 トラッキングコイル5a及びトラッキングコイル5bは、端子板6を介して直列に結線された状態で、端子板6、サスペンションワイヤー9、及び固定基板11を介して駆動信号を供給される。
 以上のように構成された可動体7の重心は、上面視において、略z軸上に位置している。
 図3及び図4において、固定部材10及び固定基板11は、それぞれヨークベース12に固定されている。サスペンションワイヤー9は、光ディスクの情報記録面に対して垂直な方向であるフォーカシング方向と、光ディスクの半径方向であるトラッキング方向とに移動可能にレンズホルダ2を支持する支持機構の一例である。本実施の形態では、サスペンションワイヤー9は、例えば、6本の弾性金属線によって構成されており、基端側を固定基板11に、先端側を端子板6にそれぞれ半田固定されている。結果として、可動体7は、サスペンションワイヤー9によって、固定基板11が固定されているヨークベース12に対してフォーカシング方向(光ディスクの情報記録面に対して垂直な方向)であるz軸方向、トラッキング方向(光ディスクの半径方向)であるx軸方向及びラジアルチルト方向rに移動可能に支持されている。
 また、固定部材10には、サスペンションワイヤー9を挿通するための開口が設けられており、この開口に流動性の制振剤を注入後、ゲル状に硬化することにより、サスペンションワイヤー9の共振を減衰することができる。
 対物レンズアクチュエータ29は、光学ベース33に構成された光学系に対する対物レンズ1のx方向、y方向、及びz方向の位置並びに傾斜角を調整された状態で、ヨークベース12の固定部12a、12b、12c、12dの各部を光学ベース33に接着固定されている。
 図3、図4、及び図6において、二つのマグネット8a、8bは、x軸と略一致する位置を境界線とする二つの領域にx軸に平行な方向でかつ逆向きに磁化されている。二つのマグネット8a、8bは、ヨークベース12に固定されていて、z軸に対して互いに軸対称となる位置に配置されている。
 具体的には、マグネット8aは、上面視において、x軸上に着磁境界面Maを有し、トラッキングコイル5aの対物レンズ1の光軸と略平行な二つの辺S5a、S5a’に逆向きの磁界を付与し、かつフォーカシングコイル4aのy軸と略平行な二つの辺のうち光ディスクに近い上側の辺S4aに磁界を付与する。マグネット8bは、上面視において、x軸上に着磁境界面Mbを有し、トラッキングコイル5bの対物レンズ1の光軸と略平行な二つの辺S5b、S5b’に逆向きの磁界を付与し、かつフォーカシングコイル4bのy軸と略平行な二つの辺のうち光ディスクに近い上側の辺S4bに磁界を付与する。
 上記の構成により、フォーカシングコイル4a、4bを対物レンズ1に対してレンズホルダ2の下方に取り付けることができるので、発熱源となるフォーカシングコイル4a、4bを対物レンズ1から離間することができ、対物レンズ1の温度上昇を抑制することができる。
 次に、図6を用いて、マグネット8a、8bと、フォーカシングコイル4a、4b及びトラッキングコイル5a、5bとの関係についてさらに詳細に説明する。
 フォーカシングコイル4a、4bの上側のy軸に平行な辺S4a、S4bは、マグネット8a、8bの磁極面にそれぞれ対向する位置に配置されている。したがって、フォーカシングコイル4a、4bにそれぞれ独立に駆動信号が供給され、同じ大きさの電流がそれぞれ矢印Aa、Abの向きに流されたとき、フォーカシングコイル4a、4bには、同じ大きさでz軸の正方向(図中の上側)の駆動力が発生し、対物レンズ1は、z軸の正方向に駆動される。一方、それぞれ矢印Aa、Abと逆向きの電流が流されたときは、対物レンズ1は、z軸の負方向(図中の上側)に駆動される。また、フォーカシングコイル4a、4bのそれぞれに流される電流の大きさを調整することにより、ラジアルチルト方向rのモーメント力が発生し、対物レンズ1が傾斜するので、チルト方向の駆動も行うことができる。
 トラッキングコイル5a、5bのz軸に平行な二つの辺S5a、S5a’、S5b、S5b’は、マグネット8a、8bの着磁境界面Ma、Mbを境界としてそれぞれ異なる磁極面に対向する位置に配置されている。したがって、トラッキングコイル5a、5bが直列に結線され、トラッキングコイル5a、5bに矢印Ac、Adの向きの電流が流されたとき、トラッキングコイル5a、5bにはy軸の正方向(図中の左側)の駆動力が発生し、対物レンズ1は、y軸の正方向に駆動される。一方、それぞれ矢印Ac、Adと逆向きの電流が流されたときは、対物レンズ1は、y軸の負方向(図中の右側)に駆動される。
 上記の構成により、本実施の形態では、レンズホルダ2に対物レンズ1が固定された結果、レンズホルダ2の上側の平坦面P1上のx軸及びy軸からなるxy平面の略第1象限及び略第3象限に相当する領域において、対物レンズ1のコバ下面1aとレンズホルダ2の平坦面P1との間に、二つの空隙Ga、Gbが構成される。第1象限側の空隙Gaと、第3象限側の空隙Gbとは、対物レンズ1の下側の空間によって繋がっており、第1象限側の空隙Gaから第3象限側の空隙Gbに至る通風路が、対物レンズ1の下側に形成されることとなる。
 ここで、BD23、DVD24及びCD25のうちのいずれかの光ディスクの時計回りの回転によって、光ディスクの表面近傍に発生する渦巻き状の気流Fの流れが矢印方向に沿って構築されているため、渦巻き状の気流Fは、略第1象限の領域に構成された空隙Gaから略第3象限の領域に構成された空隙Gbに向けて貫通するように通風路を通り抜け、対物レンズ1の下側の表面を効率良く放熱することが可能となる。
 また、第1象限側の空隙Gaから進入した気流Fは、通風路内部では対物レンズ1の下側の凸面1bに沿ってレンズ周縁部に一端拡散した後、第3象限側の空隙Gbに向けて収束し、通風路外部に排出される。したがって、特に、温度上昇が大きくなる対物レンズ1の周縁部の放熱に適した気流Fの流れが発生し、対物レンズ1の熱量を全体的に効率良く放熱し、この放熱の結果、対物レンズ1全体の温度を均一化することが可能となる。
 したがって、フォーカシングコイル4a、4b及びトラッキングコイル5a、5bで発生する熱量が、接着剤塗布部3a、3bの接着剤を介して流入しても、対物レンズ1の温度上昇を効率よく抑制し、かつ均一化することが可能となる。この結果、対物レンズ1がBDを含むDVD又はCDとの互換機能を有する樹脂対物レンズであっても、良好な集光特性を得て、安定な高密度記録再生の実現とコストダウンを可能とする光ピックアップ装置及び光ディスク装置を実現することができる。
 さらに、フォーカシングコイル4a、4bは、レンズホルダ2のx軸に垂直な両端面で、x軸及びy軸からなるxy平面の略第1象限及び略第3象限に相当する領域にz軸に対して互いに軸対称な位置関係でそれぞれ配置接着されている。したがって、発熱量が大きくなり易いフォーカシングコイル4a、4bを気流Fの流れに沿った配置とすることにより、発熱源となるフォーカシングコイル4a、4bを直接冷却することができる。加えて、レンズホルダ2のフォーカシングコイル4a、4bから対物レンズ1に至る熱伝導経路をも冷却することができるので、対物レンズ1への熱量の流入を効率良く抑制することが可能となる。
 また、トラッキングコイル5a、5bは、レンズホルダ2のx軸に垂直な両端面で、x軸及びy軸からなるxy平面においてx軸上に相当する領域にそれぞれ配置接着されている。その結果、フォーカシングコイル4aとトラッキングコイル5aとの組と、フォーカシングコイル4bとトラッキングコイル5bとの組とがそれぞれ近接して配置される。したがって、発熱源を集中化した状態で、それぞれの組を気流Fの流れに沿った配置とすることにより、発熱源となるフォーカシングコイル4a、4b及びトラッキングコイル5a、5bを直接冷却することができる。さらに、レンズホルダ2の集中化された発熱源から対物レンズ1に至る熱伝導経路をも冷却することができるので、対物レンズ1への熱量の流入を効率良く抑制することが可能となる。
 また、フォーカシングコイル4aとトラッキングコイル5aとの組と、フォーカシングコイル4bとトラッキングコイル5bとの組とをそれぞれ近接して配置したので、駆動源が集中化されてマグネット8a、8bのy軸方向の寸法を小さくすることができ、結果として、マグネット8a、8bの容積を縮小して光ピックアップ装置のコストを低減することが可能となる。
 なお、光学ベース33の下面から光ディスクの下面までの寸法が11mm以下である薄型の光ピックアップ装置に対して、本実施の形態の構成を適用することにより、より熱容量が小さいレンズホルダ2であっても、対物レンズ1への熱量の流入を効率良く抑制することが可能となり、良好な集光特性を得て、安定した高密度記録再生を実現する薄型のピックアップ装置を実現することが可能となる。
 また、本実施の形態では、集光レンズである対物レンズ1をBD23、DVD24及びCD25に対応する3種類の波長の互換を可能とする3波長互換対物レンズとしたが、BDとDVDとに、又は、BDとCDとに対応する2種類の波長の互換を可能とする複数波長互換対物レンズとしても、同様の効果を実現することができる。
 さらに、対物レンズ1を3波長互換対物レンズではなく、BDのみに対応した波長の光を集光する樹脂レンズとしても、同様の効果を実現することができる。
 また、対物レンズ1が、DVDとCDとに対応する互換対物レンズ、DVDのみ又はCDのみに対応する対物レンズであっても、あるいはこれらの対物レンズがガラスレンズであっても、本実施の形態と同様の構成を適用することにより、同様の放熱効果を得ることが可能である。この場合、フォーカシングコイル又はトラッキングコイルに通電することのできる許容電流を大きくすることができ、光ディスクの回転数をより高速化することが可能となり、高転送レートに対応した光ピックアップ装置及び光ディスク装置を実現することができる。なお、上記の対物レンズに関する点は、後述する他の実施の形態においても、同様である。
 (実施の形態2)
 次に、本発明の実施の形態2における光ピックアップ装置について説明する。図7は、本発明の実施の形態2における光ピックアップ装置の対物レンズアクチュエータの構成を示す斜視図であり、図8は、図7に示す対物レンズアクチュエータの構成を示す上面図であり、図9は、図7に示す対物レンズアクチュエータの可動体の構成を示す斜視図であり、図10は、図7に示す対物レンズアクチュエータのマグネット及びコイルの構成を示す斜視図である。
 ここで、本実施の形態の光ピックアップ装置は、図1及び図2に示す対物レンズアクチュエータ29が図7等に示す対物レンズアクチュエータ29’に変更された点を除き、図1及び図2に示す光ピックアップ装置と同様に構成されているので、全体構成の図示を省略して適時図1及び図2をも参照して説明する。
 本実施の形態の光ピックアップ装置は、対物レンズ1、青色半導体レーザユニット21、赤色及び赤外半導体レーザユニット22、ビームスプリッタ26、コリメートレンズ27、ミラー28、図7に示す対物レンズアクチュエータ29’、プレートビームスプリッタ30、検出レンズ31、光検出器32、及び光学ベース33を備える(図1及び図2参照)。また、光ピックアップ装置は、CLアクチュエータ44をさらに備え、CLアクチュエータ44は、CLホルダ41、CLアクチュエータ主軸42、及びステッピングモータ43を備える(図2参照)。
 上記の各構成部材は、対物レンズアクチュエータ29’を除き、図1及び図2に示す光ピックアップ装置と同様に構成されているので、詳細な説明を省略し、図7乃至図10を用いて、本実施の形態の主要な特徴部分である対物レンズアクチュエータ29’の構成について、以下詳細に説明する。
 図7及び図8に示す対物レンズアクチュエータ29’は、レンズホルダ2’、四つのフォーカシングコイル4a’~4d’、二つのトラッキングコイル5a、5b、二つの端子板6、二つのマグネット8a’、8b’、6本のサスペンションワイヤー9、固定部材10、固定基板11、及びヨークベース12を備える。対物レンズアクチュエータ29’は、対物レンズ1の位置調整が完了した状態で光学ベース33(図1及び図2参照)に接着固定されている。
 ここで、図7乃至図10において、x軸は、対物レンズ1の中心を通り、スピンドルモータ47のターンテーブル47aの外縁の接線方向に平行な軸であり、y軸は、対物レンズ1の中心を通り、スピンドルモータ47のターンテーブル47aの半径方向に平行な軸である。また、スピンドルモータ47の回転中心は、y軸上に位置しており、ターンテーブル47aは、時計回りである回転方向Rmに回転駆動される。
 したがって、本実施の形態でも、図8に示すように、上面視において、BD23(又はDVD24又はCD25)は時計周りに回転し、対物レンズ1の中心を原点とし、BD23の半径方向であるトラッキング方向をy軸とし、BD23のトラックの接線方向をx軸とするxy平面(xy座標系)において、y軸はBD23の中心側を正方向とし、x軸はy軸の正方向を時計回りに90°回転した方向を正方向とし、xy平面をx軸及びy軸によって分割した4つの領域を反時計回りに第1象限、第2象限、第3象限及び第4象限として規定することができる。
 また、図7、図9及び図10に示すz軸は、対物レンズ1の中心軸であり、x軸、y軸と相互に直交し、それぞれ3次元直交座標系を構成している。また、図7及び図10に示すr方向は、x軸周りの回転方向であるラジアルチルト方向である。
 レンズホルダ2’は、成形された樹脂から構成され、略直方体形状を有している。レンズホルダ2’の上面には、対物レンズ1が搭載されている。レンズホルダ2’におけるx軸に垂直な二つの側面には、フォーカシングコイル4a’~4d’と、トラッキングコイル5a、5bとが取り付けられており、y軸に垂直な二つの側面にはそれぞれ端子板6が取り付けられている。
 次に、図9等を用いて、可動体7’の詳細構成を説明する。可動体7’は、対物レンズ1、レンズホルダ2’、四つのフォーカシングコイル4a’~4d’、二つのトラッキングコイル5a、5b、及び二つの端子板6から構成されている。
 レンズホルダ2’は、z軸を中心とする円形の開口A1を有しており、この開口A1から対物レンズ1に光ビームが入射する。したがって、対物レンズ1に入射する有効光ビーム径は、この開口A1の径によって決定される。
 レンズホルダ2’の上側の平坦面P1のうち、上面視において、x軸及びy軸からなるxy平面の第2象限に位置する領域を中心に対物レンズ搭載部2aが突出して設けられ、第4象限に位置する領域を中心に対物レンズ搭載部2bが突出して設けられている。対物レンズ1は、第1の固定部の一例である対物レンズ搭載部2a及び第2の固定部の一例である対物レンズ搭載部2bに固定され、対物レンズ搭載部2aは、レンズホルダ2の平坦面P1のうち、少なくとも第2象限内に位置し、対物レンズ搭載部2bは、少なくとも第4象限内に位置している。
 本実施の形態でも、対物レンズ搭載部2aの大部分(例えば、対物レンズ搭載部2a全体の75%以上の部分)が第2象限に位置し、残りの一部(例えば、対物レンズ搭載部2a全体の25%未満の部分)が第1象限に位置し、対物レンズ搭載部2bの大部分(例えば、対物レンズ搭載部2b全体の75%以上の部分)が第4象限に位置し、残りの一部(例えば、対物レンズ搭載部2b全体の25%未満の部分)が第3象限に位置している。
 対物レンズ搭載部2aには、平坦面P1から上方へ約0.4mmの離間距離を有する位置に対物レンズ載置面Paが形成され、対物レンズ搭載部2bには、平坦面P1から上方へ約0.4mmの離間距離を有する位置に対物レンズ載置面Pbが形成されている。対物レンズ載置面Pa、Pbの縁には、z軸を中心軸とする四つの円筒面Ca、Cbが立ち上がっている。
 対物レンズ1のコバ下面1aが対物レンズ載置面Pa、Pbに載置されることにより、対物レンズ1のz軸方向の位置決めが行われ、四つの円筒面Ca、Cbに対物レンズ1の外径を沿わせることにより、対物レンズ1のx軸方向及びy軸方向の位置決めが行われる。なお、円筒面の数及び位置は、上記の例に特に限定されず、種々の変更が可能である。
 また、対物レンズ載置面Paには、一部領域が開放された接着剤塗布部3aが設けられ、対物レンズ載置面Pbには、一部領域が開放された接着剤塗布部3bが設けられており、レンズホルダ2’に対して対物レンズ1が位置決めされた状態で、接着剤塗布部3a、3bに接着剤を注入して硬化させることにより、対物レンズ1がレンズホルダ2’に固着される。なお、接着剤塗布部の数及び位置は、上記の例に特に限定されず、種々の変更が可能である。
 上記のように、レンズホルダ2’に対物レンズ1が固定された結果、対物レンズ1のコバ下面1aとレンズホルダ2’の上側の平坦面P1との間に二つの空隙Ga、Gb(図9の破線で囲まれたハッチング領域)が形成される。ここで、図8に示すように、上面視において、空隙Gaは、x軸及びy軸からなるxy平面の第1象限に位置する領域を中心に形成され、空隙Gbは、第3象限に位置する領域を中心に形成されている。すなわち、空隙Gaは、少なくとも第1象限内に位置し、空隙Gbは、少なくとも第3象限内に位置している。
 さらに、レンズホルダ2’の上側の平坦面P1のうち、上面視において、x軸及びy軸からなるxy平面の第1象限に位置する領域にレンズプロテクタ13aが突出して設けられ、第3象限に位置する領域にレンズプロテクタ13bが突出して設けられている。レンズプロテクタ13a、13bは、円柱形状を有する凸部であり、対物レンズ1と光ディスクとの接触を防止する。このため、レンズプロテクタ13a、13bの高さは、上面の端部が光ディスクに接触したとき、対物レンズ1が光ディスクに接触しない高さに設定されている。なお、レンズプロテクタの形状は、上記の例に特に限定されず、対物レンズ1と光ディスクとの接触を防止することができれば、他の形状を用いてもよい。
 ここで、レンズホルダ2’には、対物レンズ搭載部2a、2bが第2象限及び第4象限に位置する領域に配置されているので、可動体7’の慣性モーメントに対して対物レンズ搭載部2a、2bがアンバランスな配置となる。しかしながら、本実施の形態では、レンズプロテクタ13a、13bを第1象限及び第3象限に位置する領域に配置することにより、可動体7’の慣性モーメントのバランスを取っている。この結果、熱対策のために対物レンズ搭載部2a、2bをアンバランスな位置に配置しても、レンズプロテクタ13a、13bにより可動体7’の慣性モーメントのバランスを取ることができるので、可動体7’の不要なローリングを防止することができる。
 また、第1象限側の空隙Gaと第3象限側の空隙Gbとは、対物レンズ1の下側の空間によって繋がっており、第1象限側の空隙Gaから第3象限側の空隙Gbに至る通風路が、対物レンズ1の下側に形成されることとなる。このとき、図8に示すように、BD23、DVD24及びCD25のうちのいずれかの光ディスクの時計回りの回転(回転方向Rmの回転)によって、光ディスクの表面近傍に発生する渦巻き状の気流Fの流れが矢印方向に沿って構築されている。
 ここで、レンズプロテクタ13aが気流Fの上流側に位置するが、レンズプロテクタ13aの幅が空隙Gaの幅に対して十分に小さいため、渦巻き状の気流Fは、第1象限の領域を中心に構成された空隙Gaから第3象限の領域を中心に構成された空隙Gbに向けて通風路を貫通するように通り抜ける。
 また、第1象限側の空隙Gaから進入した気流Fは、通風路内部では対物レンズ1の下側の凸面1bに沿ってレンズ周縁部に一端拡散した後(図8中の破線で示す経路)、第3象限側の空隙Gbに向けて収束し、最終的に通風路の外部に排出される。
 フォーカシングコイル4a’~4d’は、矩形形状に巻回された扁平コイルである。ここで、図8に示すように、上面視において、フォーカシングコイル4a’は、レンズホルダ2’のx軸に対して垂直な一方の側面のうち、x軸及びy軸からなるxy平面の第1象限内に位置する領域に接着されて固定され、フォーカシングコイル4b’は、レンズホルダ2’のx軸に対して垂直な他方の側面のうち、第2象限内に位置する領域に接着されて固定され、フォーカシングコイル4c’は、レンズホルダ2のx軸に対して垂直な他方の側面のうち、第3象限内に位置する領域に接着されて固定され、フォーカシングコイル4d’は、レンズホルダ2のx軸に対して垂直な一方の側面のうち、第4象限内に位置する領域に接着されて固定されている。
 したがって、フォーカシングコイル4a’とフォーカシングコイル4c’とは、z軸に対して互いに軸対称な位置関係となり、フォーカシングコイル4b’とフォーカシングコイル4d’とは、z軸に対して互いに軸対称な位置関係となり、フォーカシングコイル4a’~4d’は、対物レンズ1の中心である原点が重心となるようにバランス良く配置されている。
 トラッキングコイル5a、5bは、矩形形状に巻回された扁平コイルである。上面視において、トラッキングコイル5aは、レンズホルダ2のx軸に垂直な一方の側面の中心に接着されており、トラッキングコイル5aの接着位置の中心がx軸上に位置するように配置されている。トラッキングコイル5bは、レンズホルダ2のx軸に垂直な他方の側面の中心に接着されており、トラッキングコイル5bの接着位置の中心がx軸上に位置するように配置されている。
 フォーカシングコイル4a’、4b’と、フォーカシングコイル4c’、4d’とは、端子板6、サスペンションワイヤー9、及び固定基板11を介して、それぞれ独立に駆動信号を供給される。
 トラッキングコイル5a及びトラッキングコイル5bは、端子板6を介して直列に結線された状態で、端子板6、サスペンションワイヤー9、及び固定基板11を介して駆動信号を供給される。
 以上のように構成された可動体7’の重心は、上面視において、略z軸上に位置している。
 図7及び図8において、固定部材10及び固定基板11は、それぞれヨークベース12に固定されている。サスペンションワイヤー9は、光ディスクの情報記録面に対して垂直な方向であるフォーカシング方向と、光ディスクの半径方向であるトラッキング方向とに移動可能にレンズホルダ2を支持する支持機構の一例である。本実施の形態では、サスペンションワイヤー9は、例えば、6本の弾性金属線によって構成されており、基端側を固定基板11に、先端側を端子板6にそれぞれ半田固定されている。結果として、可動体7’は、サスペンションワイヤー9によって、固定基板11が固定されているヨークベース12に対してフォーカシング方向(光ディスクの情報記録面に対して垂直な方向)であるz軸方向、トラッキング方向(光ディスクの半径方向)であるx軸方向及びラジアルチルト方向rに移動可能に支持されている。
 また、固定部材10には、サスペンションワイヤー9を挿通するための開口が設けられており、この開口に流動性の制振剤を注入後、ゲル状に硬化することにより、サスペンションワイヤー9の共振を減衰することができる。
 対物レンズアクチュエータ29’は、光学ベース33に構成された光学系に対する対物レンズ1のx方向、y方向、及びz方向の位置並びに傾斜角を調整された状態で、ヨークベース12の固定部12a、12b、12c、12dの各部を光学ベース33に接着固定されている。
 図7、図8、及び図10において、二つのマグネット8a’、8b’は、x軸と略一致する位置を境界線とする二つの領域にx軸に平行な方向でかつ逆向きに磁化されている。二つのマグネット8a’、8b’は、ヨークベース12に固定されていて、y軸を対称軸として線対称となる位置に配置されている。
 具体的には、マグネット8a’は、上面視において、x軸上に着磁境界面Maを有し、トラッキングコイル5aの対物レンズ1の光軸と略平行な二つの辺S5a、S5a’に逆向きの磁界を付与し、かつフォーカシングコイル4a’のy軸と略平行な二つの辺のうち光ディスクに近い上側の辺S4a’に磁界を付与するとともに、フォーカシングコイル4d’のy軸と略平行な二つの辺のうち光ディスクに近い上側の辺S4d’に磁界を付与する。マグネット8b’は、上面視において、x軸上に着磁境界面Mbを有し、トラッキングコイル5bの対物レンズ1の光軸と略平行な二つの辺S5b、S5b’に逆向きの磁界を付与し、かつフォーカシングコイル4b’のy軸と略平行な二つの辺のうち光ディスクに近い上側の辺S4b’に磁界を付与するとともに、フォーカシングコイル4c’のy軸と略平行な二つの辺のうち光ディスクに近い上側の辺S4c’に磁界を付与する。
 上記の構成により、フォーカシングコイル4a’~4d’を対物レンズ1に対してレンズホルダ2の下方に取り付けることができるので、発熱源となるフォーカシングコイル4a’~4d’を対物レンズ1から離間することができ、対物レンズ1の温度上昇を抑制することができる。
 次に、図10を用いて、マグネット8a、8bと、フォーカシングコイル4a’~4d’及びトラッキングコイル5a、5bとの関係について説明する。
 フォーカシングコイル4a’~4d’の上側のy軸に平行な辺S4a’~S4d’は、マグネット8a’、8b’の磁極面にそれぞれ対向する位置に配置されている。したがって、フォーカシングコイル4a’、4b’と、フォーカシングコイル4c’、4d’とにそれぞれ独立に駆動信号が供給され、同じ大きさの電流がそれぞれ矢印Aa’~Ad’の向きに流されたとき、フォーカシングコイル4a’~4d’には、同じ大きさでz軸の正方向(図中の上側)の駆動力が発生し、対物レンズ1は、z軸の正方向に駆動される。一方、それぞれ矢印Aa’~Ad’と逆向きの電流が流されたときは、対物レンズ1は、z軸の負方向(図中の上側)に駆動される。また、フォーカシングコイル4a’、4b’と、フォーカシングコイル4c’、4d’とのそれぞれに流される電流の大きさを調整することにより、ラジアルチルト方向rのモーメント力が発生し、対物レンズ1が傾斜するので、チルト方向の駆動も行うことができる。
 トラッキングコイル5a、5bのz軸に平行な二つの辺S5a、S5a’、S5b、S5b’は、マグネット8a’、8b’の着磁境界面Ma、Mbを境界としてそれぞれ異なる磁極面に対向する位置に配置されている。したがって、トラッキングコイル5a、5bが直列に結線され、トラッキングコイル5a、5bに矢印Ac、Adの向きの電流が流されたとき、トラッキングコイル5a、5bにはy軸の正方向(図中の左側)の駆動力が発生し、対物レンズ1は、y軸の正方向に駆動される。一方、それぞれ矢印Ac、Adと逆向きの電流が流されたときは、対物レンズ1は、y軸の負方向(図中の右側)に駆動される。
 次に、空隙Ga、Gbの位置及び大きさについて検討を行った結果について説明する。図11は、図7に示す対物レンズアクチュエータの可動体に設けられた空隙の位置及び大きさを説明するための上面図であり、図12は、図11に示す可動体における気流の流れをシミュレーションした結果を示す模式図であり、図13は、図11のXIII-XIII線による可動体の断面図である。
 図11に示すように、上面視において、対物レンズ1とレンズホルダ2’との間に形成される空隙Gaの中心は、x軸の正方向の部分を反時計回りに30°回転させた直線La上に位置することが好ましく、空隙Gbの中心は、x軸の正方向の部分を反時計回りに210°回転させた直線Lb上に位置することが好ましい。光ディスクの回転数及び光ディスクの半径方向の対物レンズ1の位置等によりレンズホルダ2’に対する気流Fが流れる方向はある程度変化するが、上記の位置に空隙Ga、Gbの中心を配置することにより、気流Fが、x軸の正方向の部分を反時計回りに30°回転させた直線を中心として流入し、第1象限から第3象限へ流れていくので、空隙Gaから空隙Gbへスムーズに流れ、対物レンズ1を効率的に冷却することができる。
 また、上面視において、空隙Gaの幅±θ°は、±30°以上±60°以下であることが好ましく、±40°以上±50°以下であることがより好ましく、空隙Gbの幅±θ°は、±30°以上±60°以下であることが好ましく、±40°以上±50°以下であることがより好ましい。±30°未満の範囲では、対物レンズ1を十分に冷却することができず、±60°を超える範囲では、対物レンズ1をレンズホルダ2’に高精度に固定することが困難となる。一方、±30°以上±60°以下の範囲では、対物レンズ1を十分に冷却することができるとともに、対物レンズ1をレンズホルダ2’に高精度に固定することができる。
 例えば、本実施の形態では、空隙Ga、Gbの幅±θ°を±45°に設定している。この場合の気流Fの流れをシミュレーションした結果を図12に示す。図12では、気流Fの流れを複数の矢印で示しており、気流Fは、矢印の方向に従い、レンズホルダ2’の上面を流れる。
 具体的には、気流Fは、レンズホルダ2’の右上方から流入し、対物レンズ搭載部2aとレンズプロテクタ13aとの間と、レンズプロテクタ13aと対物レンズ搭載部2bとの間を流れ、破線で示す空隙Gaへ流入する。次に、気流Fは、対物レンズ搭載部2aと対物レンズ1の下側の凸面1bとの間の流路Fa(図13参照)と、対物レンズ1の下側の凸面1bと対物レンズ搭載部2bとの間の流路Fb(図13参照)とを流れ、破線で示す空隙Gbで一旦合流する。その後、気流Fは、対物レンズ搭載部2aとレンズプロテクタ13bとの間と、レンズプロテクタ13bと対物レンズ搭載部2bとの間を流れ、最終的に、レンズホルダ2’の外部へ排出される。このような気流Fの流れにより、対物レンズ1を効率よく冷却することができる。
 また、気流Fは、レンズホルダの2’の一方の側面に固定されたフォーカシングコイル4a’、トラッキングコイル5a及びフォーカシングコイル4d’の側方を流れるとともに、レンズホルダの2’の他方の側面に固定されたフォーカシングコイル4b’、トラッキングコイル5b及びフォーカシングコイル4c’の側方を流れている。このような気流Fの流れにより、発熱源となるフォーカシングコイル4a’~4d’及びトラッキングコイル5a、5bを効率よく冷却することができる。
 上記の構成により、本実施の形態でも、レンズホルダ2’に対物レンズ1が固定された結果、レンズホルダ2’の上側の平坦面P1上のx軸及びy軸からなるxy平面の略第1象限及び略第3象限に相当する領域において、対物レンズ1のコバ下面1aとレンズホルダ2の平坦面P1との間に、二つの空隙Ga、Gbが構成される。第1象限側の空隙Gaと、第3象限側の空隙Gbとは、対物レンズ1の下側の空間によって繋がっており、第1象限側の空隙Gaから第3象限側の空隙Gbに至る通風路が、対物レンズ1の下側に形成されることとなる。
 ここで、BD23、DVD24及びCD25のうちのいずれかの光ディスクの時計回りの回転によって、光ディスクの表面近傍に発生する渦巻き状の気流Fの流れが矢印方向に沿って構築されているため、渦巻き状の気流Fは、略第1象限の領域に構成された空隙Gaから略第3象限の領域に構成された空隙Gbに向けて貫通するように通風路を通り抜け、対物レンズ1の下側の表面を効率良く放熱することが可能となる。
 また、第1象限側の空隙Gaから進入した気流Fは、通風路内部では対物レンズ1の下側の凸面1bに沿ってレンズ周縁部に一端拡散した後、第3象限側の空隙Gbに向けて収束し、通風路外部に排出される。したがって、特に、温度上昇が大きくなる対物レンズ1の周縁部の放熱に適した気流Fの流れが発生し、対物レンズ1の熱量を全体的に効率良く放熱し、この放熱の結果、対物レンズ1全体の温度を均一化することが可能となる。
 したがって、フォーカシングコイル4a’~4d’及びトラッキングコイル5a、5bで発生する熱量が、接着剤塗布部3a、3bの接着剤を介して流入しても、対物レンズ1の温度上昇を効率よく抑制し、かつ均一化することが可能となる。この結果、対物レンズ1がBDを含むDVD又はCDとの互換機能を有する樹脂対物レンズであっても、良好な集光特性を得て、安定な高密度記録再生の実現とコストダウンを可能とする光ピックアップ装置及び光ディスク装置を実現することができる。
 さらに、フォーカシングコイル4a’~4d’は、レンズホルダ2’のx軸に垂直な両端面で、x軸及びy軸からなるxy平面の略第1象限乃至略第4象限に相当する領域にy軸に対して互いに線対称な位置関係でそれぞれ配置接着されている。したがって、発熱量が大きくなり易いフォーカシングコイル4a’~4d’のうち二つのフォーカシングコイル4a’、4c’を気流Fの流れに沿った配置とすることにより、発熱源となる二つのフォーカシングコイル4a’、4c’を直接冷却することができる。加えて、レンズホルダ2’のフォーカシングコイル4a’、4c’から対物レンズ1に至る熱伝導経路をも冷却することができるので、対物レンズ1への熱量の流入を効率良く抑制することが可能となる。
 また、トラッキングコイル5a、5bは、レンズホルダ2’のx軸に垂直な両端面で、x軸及びy軸からなるxy平面においてx軸上に相当する領域にそれぞれ配置接着されている。その結果、フォーカシングコイル4a’、4d’とトラッキングコイル5aとの組と、フォーカシングコイル4b’、4c’とトラッキングコイル5bとの組とがそれぞれ近接して配置される。したがって、発熱源を集中化した状態で、それぞれの組を気流Fの流れに沿った配置とすることにより、発熱源となるトラッキングコイル5a、5b及びフォーカシングコイル4a’~4d’を直接冷却することができる。さらに、レンズホルダ2’の集中化された発熱源から対物レンズ1に至る熱伝導経路をも冷却することができるので、対物レンズ1への熱量の流入を効率良く抑制することが可能となる。
 なお、光学ベース33の下面から光ディスクの下面までの寸法が11mm以下である薄型の光ピックアップ装置に対して、本実施の形態の構成を適用することにより、より熱容量が小さいレンズホルダ2’であっても、対物レンズ1への熱量の流入を効率良く抑制することが可能となり、良好な集光特性を得て、安定した高密度記録再生を実現する薄型のピックアップ装置を実現することが可能となる。
 (実施の形態3)
 上記の実施の形態1又は実施の形態2の光ピックアップ装置を用いた光情報装置の一例である光ディスク装置の実施の形態を図14に示す。図14は、本発明の実施の形態3における光ディスク装置の概略構成を示す模式図である。図14において、光ディスク装置607は、駆動装置601、光ピックアップ装置602、電気回路603、モータ604、ターンテーブル605及びクランパー606を備える。
 図14において、光ディスク200は、ターンテーブル605に搭載されて、クランパー606により保持された状態で、モータ604によって回転される。実施の形態1又は2に示した光ピックアップ装置602は、光ディスク200の所望の情報の存在するトラック位置まで、駆動装置601によって移送される。
 電気回路603は、制御部の一例であり、光ピックアップ装置602から得られる信号に基づいて、光ピックアップ装置602とモータ604とを制御する。光ピックアップ装置602は、光ディスク200との位置関係に対応して、フォーカシング信号、トラッキング信号、及びRF信号を電気回路603へ送る。電気回路603は、これらの信号に対応して、光ピックアップ装置602へ対物レンズアクチュエータを駆動させるための信号を送る。この信号によって、光ピックアップ装置602は、光ディスク200に対してフォーカシング制御、トラッキング制御、及びチルト制御を行い、情報の読み出し、書き込み又は消去を行う。
 以上の説明において、搭載する光ディスク200は、実施の形態1又は2で述べたBD23又はDVD24又はCD25の光ディスクであって、光ピックアップ装置602は、実施の形態1又は2で述べた3種類の波長の光ビームを1つの対物レンズ1によって集光し、各波長に対応した光ディスクに対して情報の記録再生を行う3波長互換対物レンズを用いた光ピックアップ装置である。
 本実施の形態の光ディスク装置607は、フォーカシングコイル4a、4b又は4a’~4d’及びトラッキングコイル5a、5bで発生する熱量が接着剤塗布部3a、3bから流入しても、対物レンズ1の温度上昇を効率よく抑制し、かつ均一化することが可能である。この結果、対物レンズ1が樹脂対物レンズであっても、良好な集光特性を得て、安定な高密度記録再生の実現とコストダウンを可能とする光ディスク装置を実現することができる。
 (実施の形態4)
 本実施の形態は、上記の実施の形態3に係る光ディスク装置607を具備した情報処理装置の一例であるコンピュータである。図15は、本発明の実施の形態4におけるコンピュータの全体構成を示す概略斜視図である。
 図15に示したコンピュータ609は、実施の形態3に係る光ディスク装置607と、情報の入力を行うためのキーボード611及びマウス612などの入力装置と、入力装置から入力された情報や、光ディスク装置607から読み出した情報などに基づいて演算を行う中央演算装置(CPU)などから構成される演算装置608と、演算装置608によって演算された結果の情報を表示するブラウン管や液晶表示装置などから構成される出力装置610とを備えている。演算装置608は、光ディスク装置607に記録する情報及び/又は光ディスク装置607から再生された情報を処理する情報処理部の一例である。なお、出力装置610として、演算装置608によって演算された結果などの情報を印刷するプリンタを用いてもよい。
 本実施の形態に係るコンピュータ609は、実施の形態3に係る光ディスク装置607を具備しており、樹脂対物レンズであっても、対物レンズ1の温度上昇を効率よく抑制し、かつ均一化することが可能である。この結果、本実施の形態は、良好な集光特性を得て、安定な高密度記録再生の実現とコストダウンとを可能とするので、広い用途に使用できる。
 また、コンピュータ609は、光ディスク装置607に記録する情報を取り込んだり、光ディスク装置607によって読み出した情報を外部に出力する有線又は無線の入出力端子を搭載してもよい。これによって、ネットワーク、すなわち、複数の機器、例えば、コンピュータ、電話器、テレビチューナ等と情報を送受信し、これら複数の機器から共有の情報サーバ(光ディスクサーバ)として利用することが可能となる。この場合、異なる種類の光ディスクを安定に記録又は再生できるので、広い用途に使用できる効果を有するものとなる。
 さらに、複数の光ディスクを光ディスク装置607に出し入れするチェンジャーを具備することにより、多くの情報を記録及び蓄積できる効果を得ることができる。
 (実施の形態5)
 本実施の形態は、上記の実施の形態3に係る光ディスク装置607を具備した情報処理装置の一例である光ディスクプレーヤの実施の形態である。図16は、本発明の実施の形態5における光ディスクプレーヤの全体構成を示す概略斜視図である。
 図16において、光ディスクプレーヤ180は、実施の形態3に係る光ディスク装置607と、光ディスク装置607から得られる情報信号を画像信号に変換するデコーダ181とを備える。デコーダ181は、光ディスク装置607に記録する情報及び/又は光ディスク装置607から再生された情報を処理する情報処理部の一例である。
 また、本構成は、GPS等の位置センサ及び中央演算装置(CPU)を加えることにより、カーナビゲーションシステムとしても利用できる。また、液晶モニターなどの表示装置182を加えた構成としてもよい。この場合、表示装置182は、液晶表示装置などから構成され、デコーダ181によって変換された画像信号を表示する。
 上記の構成により、光ディスクプレーヤ180は、実施の形態3に係る光ディスク装置607を具備しており、樹脂対物レンズであっても、対物レンズ1の温度上昇を効率よく抑制し、かつ均一化することが可能である。この結果、本実施の形態は、良好な集光特性を得て、安定な高密度記録再生の実現とコストダウンとを可能とするので、広い用途に使用できる。
 (実施の形態6)
 本実施の形態は、上記の実施の形態3に係る光ディスク装置607を具備した情報処理装置の一例である光ディスクレコーダの実施の形態である。図17は、本発明の実施の形態6における光ディスクレコーダの全体構成を示す概略斜視図である。
 図17に示した光ディスクレコーダ615は、実施の形態3に係る光ディスク装置607と、画像信号を光ディスク装置607によって、画像情報を、光ディスクに記録するための情報信号に変換する記録信号処理回路613とを備えている。記録信号処理回路613は、光ディスク装置607に記録する情報を処理する情報処理部の一例である。
 また、光ディスクレコーダ615は、光ディスク装置607から得られる情報信号を、画像信号に変換する再生信号処理回路614も有することが望ましい。再生信号処理回路614は、光ディスク装置607から再生された情報を処理する情報処理部の一例である。この構成によれば、既に記録した部分を再生することも可能となる。さらに、光ディスクレコーダ615は、情報を表示するブラウン管や液晶表示装置などの出力装置610を備えてもよい。
 上記の構成により、光ディスクレコーダ615は、実施の形態3に係る光ディスク装置607を具備しており、樹脂対物レンズであっても、対物レンズ1の温度上昇を効率よく抑制し、かつ均一化することが可能である。この結果、本実施の形態は、良好な集光特性を得て、安定な高密度記録再生の実現とコストダウンとを可能とするので、広い用途に使用できる。
 上記の各実施の形態から本発明について要約すると、以下のようになる。即ち、本発明に係る光ピックアップ装置は、所定の波長の光ビームを出射する光源と、前記光源からの光ビームを集光して円盤状記録媒体に照射する一つの対物レンズと、前記対物レンズを駆動する対物レンズアクチュエータと、前記円盤状記録媒体の記録面により反射された光ビームを前記対物レンズを介して受光して電気信号に変換する光検出器と、前記光源、前記対物レンズアクチュエータ及び前記光検出器を保持する光学ベースとを備え、前記対物レンズアクチュエータは、前記対物レンズを保持するレンズホルダと、前記円盤状記録媒体に対して垂直な方向であるフォーカシング方向と、前記円盤状記録媒体の半径方向であるトラッキング方向とに移動可能に前記レンズホルダを支持する支持機構と、前記レンズホルダに固定され、前記レンズホルダを前記フォーカシング方向に駆動するフォーカシングコイルと、前記レンズホルダに固定され、前記レンズホルダを前記トラッキング方向に駆動するトラッキングコイルと、前記支持機構の一端を保持するアクチュエータベースと、前記アクチュエータベースに保持され、前記フォーカシングコイル及び/又は前記トラッキングコイルに対向する位置に配置されて前記フォーカシングコイル及び/又は前記トラッキングコイルに磁界を付与するマグネットとを備え、前記レンズホルダと前記対物レンズとの間に第1の空隙及び第2の空隙が形成され、前記円盤状記録媒体は時計周りに回転し、前記対物レンズの中心を原点とし、前記トラッキング方向をy軸とし、前記円盤状記録媒体のトラックの接線方向をx軸とするxy平面において、前記y軸は前記円盤状記録媒体の中心側を正方向とし、前記x軸は前記y軸の正方向を時計回りに90°回転した方向を正方向とし、前記xy平面を前記x軸及び前記y軸によって分割した4つの領域を反時計回りに第1象限、第2象限、第3象限及び第4象限としたとき、前記第1の空隙は、少なくとも前記第1象限内に位置し、前記第2の空隙は、少なくとも前記第3象限内に位置する。
 この光ピックアップ装置においては、レンズホルダと対物レンズとの間に形成された第1の空隙が、対物レンズの中心を原点とし、トラッキング方向をy軸とし、円盤状記録媒体のトラックの接線方向をx軸とするxy平面の第1象限に位置し、第2の空隙が、第3象限に位置している。ここで、上面から見て、円盤状記録媒体が時計周りに回転しているので、この回転によって円盤状記録媒体の表面近傍には渦巻き状の気流が発生し、対物レンズの周辺では、第1象限から第3象限へ向かう気流が発生する。したがって、この気流が第1象限に設けられた第1の空隙から第3象限に設けられた第2の空隙に向けて貫通するように通り抜け、対物レンズの下側の表面全体から効率良く放熱することが可能となる。
 この結果、フォーカシングコイル及び/又はトラッキングコイルで発生する熱量がレンズホルダと対物レンズとの接着部から流入しても、対物レンズの温度分布の均一化に加えて温度上昇の量を抑制することが可能となり、複数種類の円盤状記録媒体、例えば、BDと、DVD(及び/又はCD)との互換機能を有する対物レンズであっても、良好な集光特性を得て安定な高密度記録再生を実現することができるとともに、装置のコストダウンを可能とし、さらに、装置の小型化及び薄型化を達成することができる。
 前記第1の空隙は、前記x軸の正方向の部分を反時計回りに30°回転させた直線を中心として±30°以上±60°以下の範囲内に位置し、前記第2の空隙は、前記x軸の正方向の部分を反時計回りに210°回転させた直線を中心として±30°以上±60°以下の範囲内に位置することが好ましい。
 この場合、円盤状記録媒体の回転による気流が、x軸の正方向の部分を反時計回りに30°回転させた直線を略中心として流入し、第1象限から第3象限へ流れていくので、この気流が、x軸の正方向の部分を反時計回りに30°回転させた直線が中心となるように配置された第1の空隙からx軸の正方向の部分を反時計回りに210°回転させた直線が中心となるように配置された第2の空隙に向けてスムーズに通り抜け、対物レンズを効率的に冷却することができるとともに、第1の空隙及び第2の空隙の範囲が±30°以上±60°以下であるので、対物レンズを十分に冷却することができるとともに、対物レンズをレンズホルダに高精度に固定することができる。
 前記対物レンズは、前記レンズホルダの第1の固定部及び第2の固定部に固定され、前記第1の固定部は、少なくとも前記第2象限内に位置し、前記第2の固定部は、少なくとも前記第4象限内に位置することが好ましい。
 この場合、対物レンズを効率よく十分に冷却しながら、対物レンズをレンズホルダに高精度に固定することができる。
 前記レンズホルダは、前記対物レンズと前記円盤状記録媒体との接触を防止する第1のレンズプロテクタ及び第2のレンズプロテクタを有し、前記第1のレンズプロテクタは、前記第1象限内に位置し、前記第2のレンズプロテクタは、前記第3象限内に位置することが好ましい。
 この場合、第1の固定部を第2象限に配置し、第2の固定部を第4象限に配置しても、第1及び第2のレンズプロテクタにより可動体の慣性モーメントのバランスを取ることができるので、可動体の不要なローリングを防止することができる。
 前記トラッキングコイルは、前記レンズホルダの前記x軸に垂直な一方の側面の中心に固定される第1のトラッキングコイルと、前記レンズホルダの前記x軸に垂直な他方の側面の中心に固定される第2のトラッキングコイルとを含むことが好ましい。
 この場合、円盤状記録媒体の回転による気流によって、第1及び第2のトラッキングコイルから発生する熱を効率よく外部へ放出することができる。
 前記フォーカシングコイルは、前記レンズホルダの前記x軸に垂直な一方の側面のうち前記第1象限内に位置する部分に固定される第1のフォーカシングコイルと、前記レンズホルダの前記x軸に垂直な他方の側面のうち前記第3象限内に位置する部分に固定される第2のフォーカシングコイルとを含むことが好ましい。
 この場合、第1のフォーカシングコイルと第1のトラッキングコイルとの組、第2のフォーカシングコイルと第2のトラッキングコイルとの組がそれぞれ近接して配置されるので、発熱源を集中化した状態で、それぞれの組を気流の流れに沿った配置とすることにより、発熱源となる第1及び第2のフォーカシングコイル及び第1及び第2のトラッキングコイルを直接冷却することができる。また、レンズホルダの集中化された発熱源から対物レンズに至る熱伝導経路をも冷却することができるので、対物レンズへの熱量の流入を効率良く抑制することが可能となる。
 前記マグネットは、前記x軸上に着磁境界面を有し、前記第1のトラッキングコイルの前記対物レンズの光軸と略平行な二つの辺に逆向きの磁界を付与し、かつ前記第1のフォーカシングコイルの前記y軸と略平行な二つの辺のうち前記円盤状記録媒体に近い辺に磁界を付与する第1のマグネットと、前記x軸上に着磁境界面を有し、前記第2のトラッキングコイルの前記対物レンズの光軸と略平行な二つの辺に逆向きの磁界を付与し、かつ前記第2のフォーカシングコイルの前記y軸と略平行な二つの辺のうち前記円盤状記録媒体に近い辺に磁界を付与する第2のマグネットとを含むことが好ましい。
 この場合、第1及び第2のフォーカシングコイルと第1及び第2のトラッキングコイルとが近接して配置され、駆動源が集中化されているので、第1及び第2のマグネットのy軸方向の寸法を小さくすることができ、第1及び第2のマグネットの容積を縮小して光ピックアップ装置のコストを低減することが可能となる。また、第1及び第2のフォーカシングコイルが対物レンズに対して下方に配置されるので、発熱源となる第1及び第2のフォーカシングコイルを対物レンズから離間することができ、対物レンズの温度上昇を抑制することができる。
 前記フォーカシングコイルは、前記レンズホルダの前記x軸に垂直な一方の側面のうち前記第1象限内に位置する部分に固定される第1のフォーカシングコイルと、前記レンズホルダの前記x軸に垂直な他方の側面のうち前記第2象限内に位置する部分に固定される第2のフォーカシングコイルと、前記レンズホルダの前記他方の側面のうち前記第3象限内に位置する部分に固定される第3のフォーカシングコイルと、前記レンズホルダの前記一方の側面のうち前記第4象限に位置する部分に固定される第4のフォーカシングコイルとを含むことが好ましい。
 この場合、第1乃至第4のフォーカシングコイルを対物レンズの中心が重心となるようにバランス良く配置することができるとともに、第1及び第4のフォーカシングコイルと第1のトラッキングコイルとの組、第2及び第3のフォーカシングコイルと第2のトラッキングコイルとの組がそれぞれ近接して配置されるので、発熱源を集中化した状態で、それぞれの組を気流の流れに沿った配置とすることにより、発熱源となる第1乃至第4のフォーカシングコイル及び第1及び第2のトラッキングコイルを直接冷却することができる。また、レンズホルダの集中化された発熱源から対物レンズに至る熱伝導経路をも冷却することができるので、対物レンズへの熱量の流入を効率良く抑制することが可能となる。
 前記マグネットは、前記x軸上に着磁境界線を有し、前記第1のトラッキングコイルの前記対物レンズの光軸と略平行な二つの辺に逆向きの磁界を付与し、かつ前記第1のフォーカシングコイルの前記y軸と略平行な二つの辺のうち前記円盤状記録媒体に近い辺及び前記第4のフォーカシングコイルの前記y軸と略平行な二つの辺のうち前記円盤状記録媒体に近い辺に磁界を付与する第1のマグネットと、前記x軸上に着磁境界線を有し、前記第2のトラッキングコイルの前記対物レンズの光軸と略平行な二つの辺に逆向きの磁界を付与し、かつ前記第2のフォーカシングコイルの前記y軸と略平行な二つの辺のうち前記円盤状記録媒体に近い辺及び前記第3のフォーカシングコイルの前記y軸と略平行な二つの辺のうち前記円盤状記録媒体に近い辺に磁界を付与する第2のマグネットとを含むことが好ましい。
 この場合、第1乃至第4のフォーカシングコイルが対物レンズに対して下方に配置されるので、発熱源となる第1乃至第4のフォーカシングコイルを対物レンズから離間することができ、対物レンズの温度上昇を抑制することができる。また、第1乃至第4のフォーカシングコイルにより大きな駆動力を発生することができるので、高精度のフォーカシングサーボを実現することができる。
 前記対物レンズは、樹脂成形によって形成される樹脂レンズを含むことが好ましい。
 この場合、対物レンズとして、複数種類の円盤状記録媒体、例えば、BDと、DVD(及び/又はCD)との互換機能を有する樹脂レンズを用いても、良好な集光特性を得て安定な高密度記録再生を実現することができるとともに、装置のコストダウンを可能とし、さらに、装置の小型化及び薄型化を達成することができる。
 前記対物レンズは、少なくとも略405nmの波長を含む複数の波長に対応した複数波長互換対物レンズであることが好ましい。
 この場合、対物レンズとして、BDと、他の円盤状記録媒体との互換機能を有する複数波長互換対物レンズを用いても、良好な集光特性を得て安定な高密度記録再生を実現することができるとともに、装置のコストダウンを可能とし、さらに、装置の小型化及び薄型化を達成することができる。
 前記複数波長互換対物レンズは、略405nmの波長に加えて、略660nmの波長及び略780nmの波長の3種類の波長に対応した3波長互換対物レンズであることが好ましい。
 この場合、対物レンズとして、BDと、DVDと、CDとの互換機能を有する複数波長互換対物レンズを用いても、良好な集光特性を得て安定な高密度記録再生を実現することができるとともに、装置のコストダウンを可能とし、さらに、装置の小型化及び薄型化を達成することができる。
 前記光学ベースの下面から前記円盤状記録媒体までの寸法は、11mm以下であることが好ましい。
 この場合、熱容量が小さいレンズホルダであっても、対物レンズへの熱量の流入を効率良く抑制することが可能となり、良好な集光特性を得て、安定した高密度記録再生を実現する薄型のピックアップ装置を実現することが可能となる。
 本発明に係る光情報装置は、上記の光ピックアップ装置と、前記円盤状記録媒体を回転するモータと、前記光ピックアップ装置から得られる信号に基づいて、前記モータ及び前記光ピックアップ装置を制御する制御部とを備える。
 この光情報装置においては、フォーカシングコイル及びトラッキングコイルで発生する熱が流入しても、対物レンズの温度上昇を効率よく抑制し、かつ均一化することができるので、対物レンズが樹脂対物レンズであっても、良好な集光特性を得て、安定な高密度記録再生の実現とコストダウンを可能とする光情報装置を実現することができる。
 本発明に係る情報処理装置は、上記の光情報装置と、前記光情報装置に記録する情報及び/又は前記光情報装置から再生された情報を処理する情報処理部とを備える。
 この情報処理装置においては、上記の光情報装置を具備しており、樹脂対物レンズであっても、対物レンズの温度上昇を効率よく抑制し、かつ均一化することができるので、良好な集光特性を得て、安定な高密度記録再生の実現とコストダウンとが可能となる。
 本発明に係る光ピックアップ装置、光情報装置及び情報処理装置は、対応波長が異なる複数種類の光ディスクに高密度で安定した情報の記録及び/又は再生が可能になるので、この応用機器である大容量のコンピュータ用メモリ装置、サーバ、光ディスクプレーヤ及び光ディスクレコーダ等に利用することができる。

Claims (15)

  1.  所定の波長の光ビームを出射する光源と、
     前記光源からの光ビームを集光して円盤状記録媒体に照射する一つの対物レンズと、
     前記対物レンズを駆動する対物レンズアクチュエータと、
     前記円盤状記録媒体の記録面により反射された光ビームを前記対物レンズを介して受光して電気信号に変換する光検出器と、
     前記光源、前記対物レンズアクチュエータ及び前記光検出器を保持する光学ベースとを備え、
     前記対物レンズアクチュエータは、
     前記対物レンズを保持するレンズホルダと、
     前記円盤状記録媒体に対して垂直な方向であるフォーカシング方向と、前記円盤状記録媒体の半径方向であるトラッキング方向とに移動可能に前記レンズホルダを支持する支持機構と、
     前記レンズホルダに固定され、前記レンズホルダを前記フォーカシング方向に駆動するフォーカシングコイルと、
     前記レンズホルダに固定され、前記レンズホルダを前記トラッキング方向に駆動するトラッキングコイルと、
     前記支持機構の一端を保持するアクチュエータベースと、
     前記アクチュエータベースに保持され、前記フォーカシングコイル及び/又は前記トラッキングコイルに対向する位置に配置されて前記フォーカシングコイル及び/又は前記トラッキングコイルに磁界を付与するマグネットとを備え、
     前記レンズホルダと前記対物レンズとの間に第1の空隙及び第2の空隙が形成され、
     前記円盤状記録媒体は時計周りに回転し、前記対物レンズの中心を原点とし、前記トラッキング方向をy軸とし、前記円盤状記録媒体のトラックの接線方向をx軸とするxy平面において、前記y軸は前記円盤状記録媒体の中心側を正方向とし、前記x軸は前記y軸の正方向を時計回りに90°回転した方向を正方向とし、前記xy平面を前記x軸及び前記y軸によって分割した4つの領域を反時計回りに第1象限、第2象限、第3象限及び第4象限としたとき、前記第1の空隙は、少なくとも前記第1象限内に位置し、前記第2の空隙は、少なくとも前記第3象限内に位置することを特徴とする光ピックアップ装置。
  2.  前記第1の空隙は、前記x軸の正方向の部分を反時計回りに30°回転させた直線を中心として±30°以上±60°以下の範囲内に位置し、前記第2の空隙は、前記x軸の正方向の部分を反時計回りに210°回転させた直線を中心として±30°以上±60°以下の範囲内に位置することを特徴とする請求項1に記載の光ピックアップ装置。
  3.  前記対物レンズは、前記レンズホルダの第1の固定部及び第2の固定部に固定され、
     前記第1の固定部は、少なくとも前記第2象限内に位置し、前記第2の固定部は、少なくとも前記第4象限内に位置することを特徴とする請求項1又は2に記載の光ピックアップ装置。
  4.  前記レンズホルダは、前記対物レンズと前記円盤状記録媒体との接触を防止する第1のレンズプロテクタ及び第2のレンズプロテクタを有し、
     前記第1のレンズプロテクタは、前記第1象限内に位置し、前記第2のレンズプロテクタは、前記第3象限内に位置することを特徴とする請求項3に記載の光ピックアップ装置。
  5.  前記トラッキングコイルは、
     前記レンズホルダの前記x軸に垂直な一方の側面の中心に固定される第1のトラッキングコイルと、
     前記レンズホルダの前記x軸に垂直な他方の側面の中心に固定される第2のトラッキングコイルとを含むことを特徴とする請求項1~4のいずれかに記載の光ピックアップ装置。
  6.  前記フォーカシングコイルは、
     前記レンズホルダの前記x軸に垂直な一方の側面のうち前記第1象限内に位置する部分に固定される第1のフォーカシングコイルと、
     前記レンズホルダの前記x軸に垂直な他方の側面のうち前記第3象限内に位置する部分に固定される第2のフォーカシングコイルとを含むことを特徴とする請求項1~5のいずれかに記載の光ピックアップ装置。
  7.  前記マグネットは、
     前記x軸上に着磁境界面を有し、前記第1のトラッキングコイルの前記対物レンズの光軸と略平行な二つの辺に逆向きの磁界を付与し、かつ前記第1のフォーカシングコイルの前記y軸と略平行な二つの辺のうち前記円盤状記録媒体に近い辺に磁界を付与する第1のマグネットと、
     前記x軸上に着磁境界面を有し、前記第2のトラッキングコイルの前記対物レンズの光軸と略平行な二つの辺に逆向きの磁界を付与し、かつ前記第2のフォーカシングコイルの前記y軸と略平行な二つの辺のうち前記円盤状記録媒体に近い辺に磁界を付与する第2のマグネットとを含む請求項6に記載の光ピックアップ装置。
  8.  前記フォーカシングコイルは、
     前記レンズホルダの前記x軸に垂直な一方の側面のうち前記第1象限内に位置する部分に固定される第1のフォーカシングコイルと、
     前記レンズホルダの前記x軸に垂直な他方の側面のうち前記第2象限内に位置する部分に固定される第2のフォーカシングコイルと、
     前記レンズホルダの前記他方の側面のうち前記第3象限内に位置する部分に固定される第3のフォーカシングコイルと、
     前記レンズホルダの前記一方の側面のうち前記第4象限に位置する部分に固定される第4のフォーカシングコイルとを含むことを特徴とする請求項1~5のいずれかに記載の光ピックアップ装置。
  9.  前記マグネットは、
     前記x軸上に着磁境界線を有し、前記第1のトラッキングコイルの前記対物レンズの光軸と略平行な二つの辺に逆向きの磁界を付与し、かつ前記第1のフォーカシングコイルの前記y軸と略平行な二つの辺のうち前記円盤状記録媒体に近い辺及び前記第4のフォーカシングコイルの前記y軸と略平行な二つの辺のうち前記円盤状記録媒体に近い辺に磁界を付与する第1のマグネットと、
     前記x軸上に着磁境界線を有し、前記第2のトラッキングコイルの前記対物レンズの光軸と略平行な二つの辺に逆向きの磁界を付与し、かつ前記第2のフォーカシングコイルの前記y軸と略平行な二つの辺のうち前記円盤状記録媒体に近い辺及び前記第3のフォーカシングコイルの前記y軸と略平行な二つの辺のうち前記円盤状記録媒体に近い辺に磁界を付与する第2のマグネットとを含む請求項8に記載の光ピックアップ装置。
  10.  前記対物レンズは、樹脂成形によって形成される樹脂レンズを含むことを特徴とする請求項1~9のいずれかに記載の光ピックアップ装置。
  11.  前記対物レンズは、少なくとも略405nmの波長を含む複数の波長に対応した複数波長互換対物レンズであることを特徴とする請求項1~10のいずれかに記載の光ピックアップ装置。
  12.  前記複数波長互換対物レンズは、略405nmの波長に加えて、略660nmの波長及び略780nmの波長の3種類の波長に対応した3波長互換対物レンズであることを特徴とする請求項11に記載の光ピックアップ装置。
  13.  前記光学ベースの下面から前記円盤状記録媒体までの寸法は、11mm以下であることを特徴とする請求項1~12のいずれかに記載の光ピックアップ装置。
  14.  請求項1~13のいずれかに記載の光ピックアップ装置と、
     前記円盤状記録媒体を回転するモータと、
     前記光ピックアップ装置から得られる信号に基づいて、前記モータ及び前記光ピックアップ装置を制御する制御部とを備えることを特徴とする光情報装置。
  15.  請求項14に記載の光情報装置と、
     前記光情報装置に記録する情報及び/又は前記光情報装置から再生された情報を処理する情報処理部とを備えることを特徴とする情報処理装置。
PCT/JP2012/006046 2011-09-30 2012-09-24 光ピックアップ装置、光情報装置及び情報処理装置 WO2013046621A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012555623A JP6103291B2 (ja) 2011-09-30 2012-09-24 光ピックアップ装置、光情報装置及び情報処理装置
CN201280002599.1A CN103140891B (zh) 2011-09-30 2012-09-24 拾光装置、光信息装置及信息处理装置
US13/816,577 US9047883B2 (en) 2011-09-30 2012-09-24 Optical pickup device, optical information device, and information processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-216346 2011-09-30
JP2011216346 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013046621A1 true WO2013046621A1 (ja) 2013-04-04

Family

ID=47994705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006046 WO2013046621A1 (ja) 2011-09-30 2012-09-24 光ピックアップ装置、光情報装置及び情報処理装置

Country Status (4)

Country Link
US (1) US9047883B2 (ja)
JP (1) JP6103291B2 (ja)
CN (1) CN103140891B (ja)
WO (1) WO2013046621A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10928629B2 (en) * 2016-03-23 2021-02-23 Hitachi Automotive Systems, Ltd. Vehicle-mounted image processing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177740A (ja) * 1996-12-16 1998-06-30 Matsushita Electric Ind Co Ltd 光ピックアップ装置
JP2005259308A (ja) * 2004-03-15 2005-09-22 Ricoh Co Ltd 対物レンズ駆動装置,光ピックアップ装置および光ディスク装置
JP2008226326A (ja) * 2007-03-12 2008-09-25 Matsushita Electric Ind Co Ltd 対物レンズ駆動装置
JP2009277318A (ja) * 2008-05-16 2009-11-26 Kenwood Corp 光ピックアップ

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569800B2 (ja) * 2000-11-22 2010-10-27 ソニー株式会社 光学ピックアップ装置及びディスクドライブ装置
JP2003066300A (ja) * 2001-08-29 2003-03-05 Sony Corp 対物レンズ製造装置及び対物レンズ製造方法
JP2004146034A (ja) 2002-10-04 2004-05-20 Matsushita Electric Ind Co Ltd 対物レンズ駆動装置及び光ディスク装置
US7193937B2 (en) 2002-10-04 2007-03-20 Matsushita Electric Industrial Co., Ltd. Objective lens driving device and optical disk apparatus
JP4106289B2 (ja) * 2003-02-21 2008-06-25 シャープ株式会社 光ピックアップレンズ及びそれを有する光学ピックアップ装置
JP4539315B2 (ja) 2004-12-08 2010-09-08 パナソニック株式会社 光ピックアップ装置及び光ディスク装置
KR20060071251A (ko) * 2004-12-21 2006-06-26 엘지전자 주식회사 광 픽업 액츄에이터의 렌즈홀더 방열 구조
US7535663B2 (en) * 2004-12-21 2009-05-19 Ionosep X L.L.C. Optical pickup actuator
JP4148221B2 (ja) * 2005-01-17 2008-09-10 ソニー株式会社 対物レンズ駆動装置、光ピックアップ並びに光ディスク装置
TW200805347A (en) * 2005-11-29 2008-01-16 Konica Minolta Opto Inc Objective lens for optical pickup apparatus, objective lens unit for optical pickup apparatus and optical pickup apparatus using the same
JP4850256B2 (ja) * 2006-11-29 2012-01-11 三菱電機株式会社 対物レンズ駆動装置及びその製造方法
JPWO2008075573A1 (ja) * 2006-12-20 2010-04-08 コニカミノルタオプト株式会社 光ピックアップ装置用の光学素子、光ピックアップ装置及び光ピックアップ装置の組み立て方法
JP2009163841A (ja) * 2008-01-09 2009-07-23 Canon Inc 光ディスク装置
JP5169981B2 (ja) * 2009-04-27 2013-03-27 ソニー株式会社 光ピックアップ、光ディスク装置、光ピックアップ製造方法及び光ピックアップ制御方法
US20110267935A1 (en) * 2009-12-24 2011-11-03 Panasonic Corporation Optical pickup device
JP2011258254A (ja) * 2010-06-07 2011-12-22 Hoya Corp レンズ及びピックアップ装置
JP2012119017A (ja) * 2010-11-30 2012-06-21 Sanyo Electric Co Ltd 対物レンズおよびそれを用いた光ピックアップ装置
JP2013131270A (ja) * 2011-12-21 2013-07-04 Hitachi Media Electoronics Co Ltd 光ピックアップ装置及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177740A (ja) * 1996-12-16 1998-06-30 Matsushita Electric Ind Co Ltd 光ピックアップ装置
JP2005259308A (ja) * 2004-03-15 2005-09-22 Ricoh Co Ltd 対物レンズ駆動装置,光ピックアップ装置および光ディスク装置
JP2008226326A (ja) * 2007-03-12 2008-09-25 Matsushita Electric Ind Co Ltd 対物レンズ駆動装置
JP2009277318A (ja) * 2008-05-16 2009-11-26 Kenwood Corp 光ピックアップ

Also Published As

Publication number Publication date
JP6103291B2 (ja) 2017-03-29
US20140119169A1 (en) 2014-05-01
JPWO2013046621A1 (ja) 2015-03-26
CN103140891A (zh) 2013-06-05
US9047883B2 (en) 2015-06-02
CN103140891B (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
US8614938B2 (en) Objective lens unit, optical pickup, and optical information apparatus
US7054078B2 (en) Objective lens driving device
US7830759B2 (en) Objective lens drive, optical pickup, and optical disc apparatus
US8154980B2 (en) Object lens driving apparatus and manufacturing method thereof
EP1760703B1 (en) Optical pickup device
JP6103291B2 (ja) 光ピックアップ装置、光情報装置及び情報処理装置
JPWO2007040235A1 (ja) 対物レンズユニット及び光ピックアップ装置
US20080068939A1 (en) Objective lens actuator, diffractive optical element, and optical pickup device
JP2008130119A (ja) 対物レンズユニット、光ピックアップ装置及び対物レンズユニットの製造方法
WO2007069612A1 (ja) 光ヘッドおよび光情報装置
JP2002334475A (ja) 光ヘッドの球面収差補正装置
US20050281145A1 (en) Optical pickup and optical disk apparatus
JP2008176887A (ja) 対物レンズアクチュエータ及びそれを備えた光ピックアップ装置
JP2009015934A (ja) 光ピックアップ用レンズホルダ及びそれを備えた光ピックアップ
JP2008243251A (ja) 光ヘッド及び光ディスク装置
WO2007111034A1 (ja) 光学手段駆動装置
JP2005071457A (ja) 光ピックアップの対物レンズ駆動アクチュエータ及び光ディスク装置
JP3919171B2 (ja) 対物レンズ駆動装置およびそれを備える光ピックアップ装置
JP2005353134A (ja) 光ピックアップおよび光ディスク装置
JP2008152874A (ja) 光ピックアップ装置用の光学素子及び光ピックアップ装置
JP2018152150A (ja) 光ピックアップ
JPWO2008075560A1 (ja) 光ピックアップ装置用のボビン及び光ピックアップ装置
JP2008226417A (ja) 光ピックアップ装置用の対物光学素子及び光ピックアップ装置
JP2007122824A (ja) レンズ保持装置、その製造方法、及びその利用
JP2009087492A (ja) 光ピックアップ装置用の対物光学素子及び光ピックアップ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002599.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012555623

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13816577

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835739

Country of ref document: EP

Kind code of ref document: A1