WO2013045905A1 - Électrode à base de polyanion condensé - Google Patents

Électrode à base de polyanion condensé Download PDF

Info

Publication number
WO2013045905A1
WO2013045905A1 PCT/GB2012/052363 GB2012052363W WO2013045905A1 WO 2013045905 A1 WO2013045905 A1 WO 2013045905A1 GB 2012052363 W GB2012052363 W GB 2012052363W WO 2013045905 A1 WO2013045905 A1 WO 2013045905A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode according
oxidation state
condensed
metals
electrode
Prior art date
Application number
PCT/GB2012/052363
Other languages
English (en)
Other versions
WO2013045905A4 (fr
Inventor
Jeremy Barker
Original Assignee
Faradion Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Faradion Ltd filed Critical Faradion Ltd
Priority to US14/348,485 priority Critical patent/US9608269B2/en
Priority to EP12769157.4A priority patent/EP2761687B1/fr
Priority to KR1020147008636A priority patent/KR101961781B1/ko
Priority to CN201280047816.9A priority patent/CN103843178B/zh
Priority to PL12769157T priority patent/PL2761687T3/pl
Priority to JP2014532471A priority patent/JP6063468B2/ja
Priority to DK12769157.4T priority patent/DK2761687T3/en
Priority to ES12769157.4T priority patent/ES2565501T3/es
Publication of WO2013045905A1 publication Critical patent/WO2013045905A1/fr
Publication of WO2013045905A4 publication Critical patent/WO2013045905A4/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D13/00Compounds of sodium or potassium not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/38Condensed phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/38Condensed phosphates
    • C01B25/42Pyrophosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to electrodes that contain an active material comprising condensed polyanion materials, and to the use of such electrodes, for example in sodium ion battery applications.
  • the invention also relates to certain novel materials and to the use of these materials, for example as an electrode material.
  • Sodium-ion batteries are analogous in many ways to the lithium-ion batteries that are in common use today; they are both reusable secondary batteries that comprise an anode (negative electrode), a cathode (positive electrode) and an electrolyte material, both are capable of storing energy, and they both charge and discharge via a similar reaction mechanism.
  • Na + (or Li + ) ions de- intercalate and migrate towards the anode.
  • charge balancing electrons pass from the cathode through the external circuit containing the charger and into the anode of the battery. During discharge the same process occurs but in the opposite direction. Once a circuit is completed electrons pass back from the anode to the cathode and the Na + (or Li + ) ions travel back to the cathode.
  • Lithium-ion battery technology has enjoyed a lot of attention in recent years and provides the preferred portable battery for most electronic devices in use today; however lithium is not a cheap metal to source and is too expensive for use in large scale applications.
  • sodium-ion battery technology is still in its relative infancy but is seen as advantageous; sodium is much more abundant than lithium and researchers predict this will provide a cheaper and more durable way to store energy into the future, particularly for large scale applications such as storing energy on the electrical grid. Nevertheless a lot of work has yet to be done before sodium-ion batteries are a commercial reality.
  • the present invention aims to provide a cost effective electrode that contains an active material that is straightforward to manufacture and easy to handle and store.
  • a further object of the present invention is to provide an electrode that has a high initial charge capacity and which is capable of being recharged multiple times without significant loss in charge capacity.
  • an electrode that contains an active material comprising:
  • X is one or more of Na + , Li + and K + ;
  • M is one or more transition metals;
  • M' is one or more non-transition metals; and where a>b; c > 0; d > 0; e > 1 and f > 0.
  • the present invention provides an electrode as described above in which the active material comprises a transition metal selected from one or more of titanium, vanadium, niobium, tantalum, hafnium, chromium, molybdenum, tungsten, manganese, iron, osmium, cobalt, nickel, palladium, platinum, copper, silver, gold, zinc and cadmium; an optional non-transition metal selected from one or more of magnesium, calcium, beryllium, strontium, barium aluminium and boron; a condensed polyanion that comprises one or more of titanium, vanadium, chromium, molybdenum, tungsten, manganese, aluminium, boron, carbon, silicon, phosphorus, oxygen, sulfur, fluorine, chlorine, bromine and iodine; and an optional anion that may comprise one or more of halide, hydroxide, borate, nitrate, silicate, arsenate, sulfate, vanadate,
  • the condensed polyanion comprises one or more of phosphorus, boron, titanium, vanadium, molybdenum, and sulfur.
  • mono- (or sometimes call ortho-) phosphate (P0 4 ) 3" is especially preferred.
  • Mono-phosphates are derived from H 3 P0 4 acid and the (P0 4 ) 3" group is characterised by the presence of a central phosphorus atom surrounded by four oxygen atoms each located at the corners of a regular tetrahedron.
  • Particularly advantageous electrodes of the present invention employ a mixed phase material comprising Na + and one or more of Li + and K + .
  • a condensed polyanion is a negatively charged species formed by the condensation of two or more simple anions.
  • the species have structures that are mainly octahedral or tetrahedral or, sometimes, a mixture of both octahedral and tetrahedral.
  • Condensed polyanions are characterised by containing two or more central atoms which may either be the same or different from one another to give homopolyanions (iso-condensed polyanions) or hetero-condensed polyanions (mixed polyanions), respectively.
  • the central atoms may comprise one or more of titanium, vanadium, chromium, molybdenum, tungsten, manganese, aluminium, boron, carbon, silicon, nitrogen and phosphorus.
  • hetero-condensed polyanions include: V2W4O19 4" , NiMo 2 0 8 2" , CoMo 2 0 8 2" and MnMo 2 0 8 2" .
  • One or more dependent ligands are bound the central atoms, and these ligands may be selected from one or more of oxygen, hydroxide, sulfur, fluorine, chlorine, bromine and iodine. Not all of the dependent ligands attached to the central atom need to be the same, thus iso-ligand condensed polyanions (in which the ligands are all the same) and hetero- ligand condensed polyanions (in which the ligands are not all the same) are possible.
  • one or more of the ligands comprise one or more halide atoms; fluorine, bromine, iodine and chlorine, and in a further preferred hetero- ligand condensed polyanion, one or more of the ligands comprise oxygen and one or more of the other ligands comprise a halogen, for example: Mn 2 F 6 (P 2 0 7 ) 4 ⁇
  • a particularly preferred electrode according to the invention employs one or more condensed polyanions that comprise at least one of phosphorous, boron, titanium, vanadium, molybdenum, and sulfur.
  • electrodes containing an active material comprising a condensed polyanion based on phosphorous are particularly advantageous, especially those which comprise one or more phosphorus moieties selected from P 2 0 7 4" , P 3 O 9 5" and P 4 0n 6" .
  • Such condensed phosphate polyanions are anionic entities built from corner sharing P0 4 tetrahedra; the O/P ratio in the anion is 5/2 ⁇ O/P ⁇ 4.
  • oxyphosphate moieties are not to be confused with oxyphosphates which include in their atomic structure some oxygen atoms that do not belong in the anionic entity.
  • the oxyphosphate anion is characterised by the ratio 0/P>4.
  • M and M' are transition metals and non-transition metals respectively, as described above.
  • Electrodes according to the present invention are suitable for use in many different applications, for example energy storage devices, rechargeable batteries, electrochemical devices and electrochromic devices.
  • the electrodes according to the invention are used in conjunction with a counter electrode and one or more electrolyte materials.
  • the electrolyte materials may be any conventional or known materials and may comprise either aqueous electrolyte(s) or non-aqueous electrolyte(s) or mixtures thereof.
  • the active materials of the present invention may be prepared using any known and/or convenient method.
  • the precursor materials may be heated in a furnace so as to facilitate a solid state reaction process.
  • the conversion of a sodium-ion rich material to a lithium-ion rich material may be effected using an ion exchange process.
  • Typical ways to achieve Na to Li ion exchange include:
  • Figure I is an XRD pattern for Na 4 Mn 3 (P2O 7 ) (P0 4 ) 2 prepared according to Example 4c;
  • Figure 2 is an XRD pattern for Na 4 Co 3 (P0 4 ) 2 (P 2 0 7 ) prepared according to Example 5c;
  • Figure 3 is an XRD pattern for Na 4 Ni 3 (P0 4 ) 2 (P 2 0 7 ) prepared according to Example 6c;
  • Figure 4 shows the first cycle constant current data for an electrode according to the present invention comprising Na 4 Mn 3 (P0 4 ) 2 P 2 0 7 prepared according to Example 4c;
  • Figure 5 is an XRD pattern for Na 4 Fe 3 P 2 0 7 (P0 4 ) 2 prepared according to Example 7;
  • Figure 6 is an XRD pattern for Na 7 V 4 (P 2 0 7 ) 4 P0 4 prepared according to Example 8;
  • Figure 7 shows the first cycle constant current data for the Na 4 Fe 3 P 2 0 7 (P0 4 ) 2 active material
  • Figure 8 shows the first cycle constant current data for the Na 7 V 4 (P 2 0 7 ) 4 P0 4 active material.
  • Figure 9 is an XRD pattern for Na 7 V 3 (P 2 0 7 ) 4 prepared according to Example 9;
  • Figure 10 shows the first cycle constant current data for the Na 7 V 3 (P 2 0 7 ) 4 active material.
  • Active materials used in the present invention are prepared on a laboratory scale using the following generic method:
  • the required amounts of the precursor materials are intimately mixed together and then the resulting precursor mixture is pelletized using a hydraulic press.
  • the pelletized material is then heated in a tube furnace or a chamber furnace using either a flowing inert atmosphere (e.g. argon or nitrogen) or an ambient air atmosphere, at a furnace temperature of between about 500°C to about 1000°C until reaction product forms, as determined by X-ray diffraction spectroscopy. When cool, the reaction product is removed from the furnace and ground into a powder.
  • a flowing inert atmosphere e.g. argon or nitrogen
  • ambient air atmosphere ambient air atmosphere
  • Furnace Parameters Muffle furnace, Gas type (Ambient air)
  • Furnace Parameters Muffle furnace, Gas type (Ambient air)
  • Furnace Parameters Muffle furnace, Gas type (Ambient air)
  • Furnace Parameters Muffle furnace, Gas type (Ambient air)
  • Ramp rate 3°C/min; temperature: 300°C; dwell time: 6 hours
  • EXAMPLE 4b TARGET MATERIAL: Na 4 Mn 3 (P04)2(P207) Starting materials: Na 4 P 2 0 7 (1 .29g)
  • Furnace Parameters Muffle furnace, Gas type (Ambient air)
  • Example 4a Conditions of Example 4a, followed by a ramp rate: 3°C/min; temperature: 500°C; dwell time: 6 hours
  • Furnace Parameters Muffle furnace, Gas type (Ambient air)
  • Example 4b Conditions of Example 4b, followed by a ramp rate: 3°C/min; temperature: 700°C; dwell time: 6 hours
  • Furnace Parameters Muffle furnace, Gas type (Ambient air)
  • Ramp rate 3°C/min; temperature: 300°C; dwell time: 6 hours
  • Furnace Parameters Muffle furnace, Gas type (Ambient air)
  • Furnace Parameters Muffle furnace, Gas type (Ambient air)
  • Example 5b Conditions of Example 5b followed by a ramp rate: 3°C/min; temperature: 700°C; dwell time: 6 hours
  • Furnace Parameters Muffle furnace, Gas type (Ambient air)
  • Ramp rate 3°C/min; temperature: 300°C; dwell time: 6 hours
  • Example 6a Conditions of Example 6a followed by a ramp rate: 3°C/min; temperature: 500°C; dwell time: 6 hours
  • Furnace Parameters Muffle furnace, Gas type (Ambient air) Conditions of Example 6b followed by a ramp rate: 3°C/min;
  • Furnace Parameters Tube furnace, Gas type (argon)
  • Furnace Parameters Tube furnace, Gas type (nitrogen)
  • Furnace Parameters Tube furnace, Gas type (nitrogen)
  • the resulting product materials were analysed by X-ray diffraction techniques using a Siemens D5000 XRD machine to confirm that the desired target materials had been prepared and to establish the phase purity of the product material and to determine the types of impurities present. From this information it is possible to determine the unit cell lattice parameters.
  • a lithium metal anode test electrochemical cell containing the active material is constructed as follows:
  • the positive electrode is prepared by solvent-casting a slurry of the active material, conductive carbon, binder and solvent.
  • the conductive carbon used is Super P (Timcal).
  • PVdF co-polymer e.g. Kynar Flex 2801 , Elf Atochem Inc.
  • acetone is employed as the solvent.
  • the slurry is then cast onto glass and a free-standing electrode film is formed as the solvent evaporates.
  • the electrode film contains the following components, expressed in percent by weight: 80% active material, 8% Super P carbon, and 12% Kynar 2801 binder.
  • an aluminium current collector may be used to contact the positive electrode, or alternatively, metallic lithium on a copper current collector may be employed as the negative electrode.
  • the electrolyte comprises one of the following: (i) a 1 M solution of LiPF 6 in ethylene carbonate (EC) and dimethyl carbonate (DMC) in a weight ratio of 2:1 ; (ii) a 1 M solution of LiPF 6 in ethylene carbonate (EC) and diethyl carbonate (DEC) in a weight ratio of 1 :1 ; or (iii) a 1 M solution of LiPF 6 in propylene carbonate (PC).
  • a glass fibre separator (Whatman, GF/A) or a porous polypropylene separator (e.g. Celgard 2400) wetted by the electrolyte is interposed between the positive and negative electrodes.
  • Figure 4 shows the first cycle constant current data for the Na 4 Mn 3 (P0 4 ) 2 P 2 0 7 active material (prepared in Example 4c).
  • the Open Circuit Voltage (OCV) of the as-made cell was 3.22 V vs. Li.
  • the constant current data were collected using a lithium metal counter electrode at a current density of 0.1 mA/cm 2 , between voltage limits of 1.00 and 4.60 V.
  • the testing was carried out at room temperature. It is assumed that sodium is extracted from the active material during the initial charging of the cell. A charge equivalent to a material specific capacity of 57 mAh/g is extracted from the cell.
  • Figure 7 shows the first cycle constant current data for the Na 4 Fe 3 (P0 4 ) 2 P 2 0 7 active material (prepared as in Example 7).
  • the Open Circuit Voltage (OCV) of the as-made cell was 2.93 V vs. Li.
  • the constant current data were collected using a lithium metal counter electrode at a current density of 0.04 mA cm 2 , between voltage limits of 2.0 and 4.0 V vs. Li.
  • the testing was carried out at room temperature. It is assumed that sodium is extracted from the active material during the initial charging of the cell. A charge equivalent to a material specific capacity of 130 mAh/g is extracted from the material.
  • V vs. Li The constant current data were collected using a lithium metal counter electrode at a current density of 0.04 mA/cm 2 , between voltage limits of 3.0 and 4.4 V vs. Li. The testing was carried out at room temperature. It is assumed that sodium is extracted from the active material during the initial charging of the cell. A charge equivalent to a material specific capacity of 76 mAh/g is extracted from the material.
  • Figure 10 shows the first cycle constant current data for the Na 7 V 3 (P 2 0 7 ) 4 active material (prepared as in Example 9).
  • the Open Circuit Voltage (OCV) of the as-made cell was 3.15
  • V vs. Li The constant current data were collected using a lithium metal counter electrode at a current density of 0.02 mA/cm 2 , between voltage limits of 3.0 and 4.7 V vs. Li. The testing was carried out at room temperature. It is assumed that sodium is extracted from the active material during the initial charging of the cell. A charge equivalent to a material specific capacity of 163 mAh/g is extracted from the material.
  • Na 7 V 3 (P 2 0 7 ) 4 material during the initial charging process, enters the electrolyte, and is displaced by being 'plated' onto the lithium metal anode (i.e. releasing more lithium into the electrolyte). Therefore, during the subsequent discharging of the cell, it is assumed that a mix of lithium and sodium is re-inserted into the material. The re-insertion process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

L'invention concerne des électrodes qui contiennent des matériaux actifs de formule : Naa XbMcM'd(polyanion condensé)e(anion)f ; où X représente un ou plusieurs des ions Na+, Li+ et K+ ; M représente un ou plusieurs métaux de transition ; M' représente un ou plusieurs métaux n'étant pas de transition ; et où a > b ; c > 0 ; d ≥ 0 ; e ≥ 1 et f ≥ 0. De telles électrodes sont utiles, par exemple, dans les applications de batteries sodium-ion.
PCT/GB2012/052363 2011-09-30 2012-09-25 Électrode à base de polyanion condensé WO2013045905A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US14/348,485 US9608269B2 (en) 2011-09-30 2012-09-25 Condensed polyanion electrode
EP12769157.4A EP2761687B1 (fr) 2011-09-30 2012-09-25 Électrode à base de polyanion condensé
KR1020147008636A KR101961781B1 (ko) 2011-09-30 2012-09-25 축합된 다중음이온 전극
CN201280047816.9A CN103843178B (zh) 2011-09-30 2012-09-25 缩聚阴离子电极
PL12769157T PL2761687T3 (pl) 2011-09-30 2012-09-25 Elektroda ze skondensowanego polianionu
JP2014532471A JP6063468B2 (ja) 2011-09-30 2012-09-25 凝縮ポリアニオン電極
DK12769157.4T DK2761687T3 (en) 2011-09-30 2012-09-25 condensed polyanionelektrode
ES12769157.4T ES2565501T3 (es) 2011-09-30 2012-09-25 Electrodo polianiónico condensado

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1116877.0 2011-09-30
GB1116877.0A GB2495279A (en) 2011-09-30 2011-09-30 A condensed polyanion electrode material

Publications (2)

Publication Number Publication Date
WO2013045905A1 true WO2013045905A1 (fr) 2013-04-04
WO2013045905A4 WO2013045905A4 (fr) 2013-05-23

Family

ID=45034942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2012/052363 WO2013045905A1 (fr) 2011-09-30 2012-09-25 Électrode à base de polyanion condensé

Country Status (10)

Country Link
US (1) US9608269B2 (fr)
EP (1) EP2761687B1 (fr)
JP (1) JP6063468B2 (fr)
KR (1) KR101961781B1 (fr)
CN (1) CN103843178B (fr)
DK (1) DK2761687T3 (fr)
ES (1) ES2565501T3 (fr)
GB (1) GB2495279A (fr)
PL (1) PL2761687T3 (fr)
WO (1) WO2013045905A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026483A (ja) * 2013-07-25 2015-02-05 トヨタ自動車株式会社 ナトリウム電池用正極及びナトリウム電池
US20150180024A1 (en) * 2012-06-12 2015-06-25 Toyota Jidosha Kabushiki Kaisha Positive electrode material for sodium batteries and method for producing same
US20160164095A1 (en) * 2013-08-16 2016-06-09 Sk Innovation Co., Ltd. Positive Electrode Active Material for Secondary Battery
CN105684198A (zh) * 2013-10-24 2016-06-15 丰田自动车株式会社 钠电池用正极活性物质和钠电池
US9660253B2 (en) 2011-08-29 2017-05-23 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for sodium battery, and method of producing the same
CN115650196A (zh) * 2022-09-09 2023-01-31 株洲冶炼集团股份有限公司 一种偏磷酸锌的合成方法及其在硫酸锌溶液除铊中的应用
CN115924990A (zh) * 2022-11-30 2023-04-07 湖南中伟新能源科技有限公司 钠离子电池材料多核前驱体及其制备方法、钠离子电池正极材料、钠离子电池和涉电设备

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105789617B (zh) * 2016-05-17 2018-07-24 西南大学 一种钠离子电池正极材料的制备方法及其产品和应用
US11289700B2 (en) 2016-06-28 2022-03-29 The Research Foundation For The State University Of New York KVOPO4 cathode for sodium ion batteries
CN106629648B (zh) * 2016-10-13 2019-01-04 西南大学 Na3.64Fe2.18(P2O7)2正极材料及制备方法和应用
CN106673065A (zh) * 2016-12-14 2017-05-17 西北大学 一种无机非金属材料钼酸锰钠及制备方法和应用
CN108046231B (zh) * 2017-11-13 2021-03-12 中南大学 一种钠离子电池正极材料及其制备方法
US11251430B2 (en) 2018-03-05 2022-02-15 The Research Foundation For The State University Of New York ϵ-VOPO4 cathode for lithium ion batteries
CN108539157A (zh) * 2018-04-03 2018-09-14 武汉大学 一类高功率钠离子电池正极材料及其制备方法
CN113054184B (zh) * 2019-12-27 2023-03-10 深圳新宙邦科技股份有限公司 一种对称钠离子电池及其制备方法
CN111883766B (zh) * 2020-07-30 2023-05-23 西南大学 一种聚阴离子电极材料及其制备方法和应用
WO2022102961A1 (fr) * 2020-11-11 2022-05-19 삼성전자주식회사 Matériau actif de cathode, cathode et batterie secondaire au lithium le comprenant, et son procédé de préparation
US11848360B2 (en) * 2021-06-17 2023-12-19 Micron Technology, Inc. Integrated assemblies and methods of forming integrated assemblies
CN115611259B (zh) * 2022-12-20 2023-04-07 江苏正力新能电池技术有限公司 一种聚阴离子电极材料、其制备方法及钠离子电池
CN117558905B (zh) * 2024-01-11 2024-04-16 深圳华钠新材有限责任公司 一种钠铁双位掺杂的聚阴离子正极材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040206938A1 (en) * 2003-04-08 2004-10-21 Jeremy Barker Oligo phosphate-based electrode active materials and methods of making same
US6872492B2 (en) 2001-04-06 2005-03-29 Valence Technology, Inc. Sodium ion batteries
EP1544930A2 (fr) * 2003-12-18 2005-06-22 Commissariat A L'energie Atomique Accumulateur au lithium présentant à la fois un potentiel électrique et une capacité d'insertion du lithium élevés
EP2239805A1 (fr) 2008-02-04 2010-10-13 Sumitomo Chemical Company, Limited Oxyde métallique composite et batterie rechargeable au sodium
WO2011078197A1 (fr) 2009-12-24 2011-06-30 住友化学株式会社 Matériau actif d'électrode, électrode et batterie rechargeable au sodium
WO2012024001A1 (fr) * 2010-08-16 2012-02-23 Massachusetts Institute Of Technology Matériaux d'électrode mixtes de phosphate-diphosphate et leurs procédés de fabrication

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524584B2 (en) * 2000-04-27 2009-04-28 Valence Technology, Inc. Electrode active material for a secondary electrochemical cell
KR101209358B1 (ko) * 2001-12-21 2012-12-07 메사추세츠 인스티튜트 오브 테크놀로지 전도성 리튬 저장 전극
US8593714B2 (en) * 2008-05-19 2013-11-26 Ajjer, Llc Composite electrode and electrolytes comprising nanoparticles and resulting devices
EP2307481A1 (fr) * 2008-07-30 2011-04-13 E. I. du Pont de Nemours and Company Articles thermoplastiques thermorésistants moulés ou extrudés
CN101997109B (zh) * 2009-08-20 2013-06-12 华南理工大学 锂离子电池正极材料Li9V3(P2O7)3(PO4)2的制备方法
FR2951714B1 (fr) * 2009-10-27 2013-05-24 Electricite De France Dispositif electrochimique a electrolyte solide conducteur d'ions alcalins et a electrolyte aqueux
WO2013031331A1 (fr) 2011-08-29 2013-03-07 トヨタ自動車株式会社 Matériau actif d'électrode positive pour batteries au sodium et son procédé de production
US8995729B2 (en) 2011-08-30 2015-03-31 The Mitre Corporation Accelerated comparison using scores from coarse and fine matching processes
WO2013035222A1 (fr) * 2011-09-09 2013-03-14 株式会社日立製作所 Matériau d'électrode positive de batterie secondaire et batterie secondaire l'utilisant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872492B2 (en) 2001-04-06 2005-03-29 Valence Technology, Inc. Sodium ion batteries
US20040206938A1 (en) * 2003-04-08 2004-10-21 Jeremy Barker Oligo phosphate-based electrode active materials and methods of making same
EP1544930A2 (fr) * 2003-12-18 2005-06-22 Commissariat A L'energie Atomique Accumulateur au lithium présentant à la fois un potentiel électrique et une capacité d'insertion du lithium élevés
EP2239805A1 (fr) 2008-02-04 2010-10-13 Sumitomo Chemical Company, Limited Oxyde métallique composite et batterie rechargeable au sodium
WO2011078197A1 (fr) 2009-12-24 2011-06-30 住友化学株式会社 Matériau actif d'électrode, électrode et batterie rechargeable au sodium
WO2012024001A1 (fr) * 2010-08-16 2012-02-23 Massachusetts Institute Of Technology Matériaux d'électrode mixtes de phosphate-diphosphate et leurs procédés de fabrication

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ESSEHLI R ET AL: "Synthesis, crystal structure and infrared spectroscopy of a new non-centrosymmetric mixed-anion phosphate Na4Mg3(PO4)2(P2O7)", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 493, no. 1-2, 18 March 2010 (2010-03-18), pages 654 - 660, XP026928421, ISSN: 0925-8388, [retrieved on 20100104], DOI: 10.1016/J.JALLCOM.2009.12.181 *
FRANCISCA SANZ ET AL: "Crystal Structure, Magnetic Properties, and Ionic Conductivity of a New Mixed-Anion Phosphate Na 4 Ni 5 (PO 4 ) 2 (P 2 O 7 ) 2", CHEMISTRY OF MATERIALS, vol. 11, no. 10, 1 October 1999 (1999-10-01), pages 2673 - 2679, XP055049856, ISSN: 0897-4756, DOI: 10.1021/cm981105s *
HYUNGSUB KIM ET AL: "New Iron-Based Mixed-Polyanion Cathodes for Lithium and Sodium Rechargeable Batteries: Combined First Principles Calculations and Experimental Study", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 134, no. 25, 27 June 2012 (2012-06-27), pages 10369 - 10372, XP055049459, ISSN: 0002-7863, DOI: 10.1021/ja3038646 *
KHIEM TRAD ET AL: "A Layered Iron(III) Phosphate Phase, Na 3 Fe 3 (PO 4 ) 4 : Synthesis, Structure, and Electrochemical Properties as Positive Electrode in Sodium Batteries", JOURNAL OF PHYSICAL CHEMISTRY C, vol. 114, no. 21, 3 June 2010 (2010-06-03), pages 10034 - 10044, XP055049271, ISSN: 1932-7447, DOI: 10.1021/jp100751b *
P. BARPANDA AND AL: "High-voltage pyrophospahte cathodes", ADVANCED ENERGY MATERIALS, vol. 2, no. 7, 14 May 2012 (2012-05-14), pages 841 - 859, XP002690357, DOI: 10.1002/aenm.201100772 *
UEBOU Y ET AL: "Electrochemical insertion of lithium and sodium into (MoO2)2P2O7", JOURNAL OF POWER SOURCES, ELSEVIER SA, CH, vol. 115, no. 1, 27 March 2003 (2003-03-27), pages 119 - 124, XP004414858, ISSN: 0378-7753, DOI: 10.1016/S0378-7753(02)00648-1 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9660253B2 (en) 2011-08-29 2017-05-23 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for sodium battery, and method of producing the same
US9537146B2 (en) 2012-06-12 2017-01-03 Toyota Jidosha Kabushiki Kaisha Positive electrode material for sodium batteries and method for producing same
US20150180024A1 (en) * 2012-06-12 2015-06-25 Toyota Jidosha Kabushiki Kaisha Positive electrode material for sodium batteries and method for producing same
EP2860800A4 (fr) * 2012-06-12 2015-09-09 Toyota Motor Co Ltd Matériau d'électrode positive pour des batteries au sodium et procédé de fabrication de ce dernier
JP2015026483A (ja) * 2013-07-25 2015-02-05 トヨタ自動車株式会社 ナトリウム電池用正極及びナトリウム電池
US10026520B2 (en) * 2013-08-16 2018-07-17 Sk Innovation Co., Ltd. Positive electrode active material for secondary battery
US20160164095A1 (en) * 2013-08-16 2016-06-09 Sk Innovation Co., Ltd. Positive Electrode Active Material for Secondary Battery
JPWO2015059998A1 (ja) * 2013-10-24 2017-03-09 トヨタ自動車株式会社 ナトリウム電池用正極活物質及びナトリウム電池
CN105684198A (zh) * 2013-10-24 2016-06-15 丰田自动车株式会社 钠电池用正极活性物质和钠电池
US9716274B2 (en) 2013-10-24 2017-07-25 Toyota Jidosha Kabushiki Kaisha Cathode active material for sodium batteries, and sodium battery
CN105684198B (zh) * 2013-10-24 2018-08-03 丰田自动车株式会社 钠电池用正极活性物质和钠电池
CN115650196A (zh) * 2022-09-09 2023-01-31 株洲冶炼集团股份有限公司 一种偏磷酸锌的合成方法及其在硫酸锌溶液除铊中的应用
CN115924990A (zh) * 2022-11-30 2023-04-07 湖南中伟新能源科技有限公司 钠离子电池材料多核前驱体及其制备方法、钠离子电池正极材料、钠离子电池和涉电设备
CN115924990B (zh) * 2022-11-30 2024-04-26 湖南中伟新能源科技有限公司 钠离子电池材料多核前驱体及其制备方法、钠离子电池正极材料、钠离子电池和涉电设备

Also Published As

Publication number Publication date
WO2013045905A4 (fr) 2013-05-23
JP2014535126A (ja) 2014-12-25
US20150030929A1 (en) 2015-01-29
GB201116877D0 (en) 2011-11-16
PL2761687T3 (pl) 2016-07-29
CN103843178B (zh) 2017-03-01
US9608269B2 (en) 2017-03-28
EP2761687A1 (fr) 2014-08-06
CN103843178A (zh) 2014-06-04
JP6063468B2 (ja) 2017-01-18
KR101961781B1 (ko) 2019-03-25
EP2761687B1 (fr) 2016-02-03
KR20140072881A (ko) 2014-06-13
ES2565501T3 (es) 2016-04-05
GB2495279A (en) 2013-04-10
DK2761687T3 (en) 2016-04-18

Similar Documents

Publication Publication Date Title
US9608269B2 (en) Condensed polyanion electrode
US10756341B2 (en) Metallate electrodes
US20150137031A1 (en) Doped nickelate compounds
CN104428253B (zh) 掺杂的镍酸盐化合物
JP6407860B2 (ja) ドープされたニッケル酸塩化合物
EP2938571A2 (fr) Composés métalliques
US10205168B2 (en) Sodium transition metal silicates
US20150024269A1 (en) Sulfate electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12769157

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012769157

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014532471

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14348485

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147008636

Country of ref document: KR

Kind code of ref document: A