WO2013042300A1 - 触媒付パティキュレートフィルタ - Google Patents

触媒付パティキュレートフィルタ Download PDF

Info

Publication number
WO2013042300A1
WO2013042300A1 PCT/JP2012/004877 JP2012004877W WO2013042300A1 WO 2013042300 A1 WO2013042300 A1 WO 2013042300A1 JP 2012004877 W JP2012004877 W JP 2012004877W WO 2013042300 A1 WO2013042300 A1 WO 2013042300A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite oxide
particles
catalyst
doped
containing composite
Prior art date
Application number
PCT/JP2012/004877
Other languages
English (en)
French (fr)
Inventor
誉士 馬場
原田 浩一郎
山田 啓司
重津 雅彦
明秀 ▲高▼見
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to CN201280046190.XA priority Critical patent/CN103813854B/zh
Priority to US14/346,936 priority patent/US9381497B2/en
Priority to DE112012003969.6T priority patent/DE112012003969B4/de
Publication of WO2013042300A1 publication Critical patent/WO2013042300A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2066Praseodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2068Neodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters

Definitions

  • the present invention relates to a particulate filter with catalyst, which collects particulates discharged from a lean combustion engine and carries a catalyst for burning and removing the collected particulates on an exhaust gas passage wall.
  • a filter for collecting particulates (particulate matter: Particulate matter) in the exhaust gas is provided, and a catalyst may be provided in this filter. This catalyst promotes the combustion when the particulates are burned and removed to regenerate the filter when the amount of particulates accumulated in the filter increases.
  • Patent Document 1 employs a catalyst obtained by mixing an active alumina particle material supporting Pt, a CeZr-based composite oxide particle material, and a ZrNd-based composite oxide particle material.
  • a catalyst metal is supported on a support material in which primary particles of activated alumina, primary particles of a Ce-based composite oxide, and primary particles of a Zr-based composite oxide are mixed with each other to form secondary particles.
  • the Rh and Pt are provided between the crystal lattices or atoms of the complex oxide particles containing Ce and Zr, and a part of the Pt is exposed to the particle surface, thereby lowering the combustion temperature of the particulates.
  • the combustion start temperature is lowered and the sintering of the catalyst noble metal is prevented.
  • the graph of FIG. 1 schematically shows the temporal change of the soot remaining ratio when soot (particulates) deposited on the catalyst layer burns.
  • soot combustion proceeds rapidly, but after the rapid combustion zone (for example, the first stage of combustion until the soot remaining ratio becomes 100% to 50%), the soot combustion slows down (soot remaining) It shifts to the combustion late stage until the ratio becomes 50% to 0%. This point will be described in detail below.
  • soot is in contact with the catalyst layer thinly supported on the surface of the filter substrate.
  • the catalyst layer includes Ce-based composite oxide particles
  • the Ce-based composite oxide particles cause an oxygen exchange reaction in which surrounding oxygen is taken into the particles and active oxygen is released from the inside.
  • internal oxygen is supplied in a highly active state to the soot that is in contact with the particle surface. As a result, soot on the particle surface burns rapidly.
  • the soot on the surface of the catalyst particles is burned and removed, resulting in a gap between the catalyst layer and the soot deposit layer as shown in the photograph of FIG. Therefore, as schematically shown in FIG. 5, the active oxygen released from the inside of the particle by the oxygen exchange reaction maintains the activity for a very short time, but the activity decreases while passing through the gap, for example, It becomes the same normal oxygen as oxygen in the gas phase. As a result, the burning of soot is slow.
  • the oxygen in the exhaust gas also contributes to the combustion of soot, but the combustion is slow compared with the combustion by the active oxygen described above.
  • the present invention allows the combustion to proceed efficiently in both the rapid combustion region and the slow combustion region of the particulates deposited on the catalyst layer.
  • the present invention provides a Pt-supported composite particle material in which Pt is supported on a composite particle of a Zr-containing composite oxide and activated alumina, and an Rh-doped Ce-containing composite oxide particle supporting Pt. Depending on the material, the combustion of the particulates was promoted.
  • the particulate filter with a catalyst presented here has a Ce-containing composite oxide, a Zr-containing composite oxide not containing Ce, activated alumina, and a catalytic metal on the exhaust gas passage wall of the filter that collects particulates in the exhaust gas. And a catalyst layer containing Containing Rh and Pt as the catalyst metal,
  • the Ce-containing composite oxide is present in the catalyst layer as Rh-doped Ce-containing composite oxide particles doped with Rh, and the Pt is supported on the Rh-doped Ce-containing composite oxide particles,
  • the Zr-containing composite oxide and the active alumina are present in the catalyst layer as composite particles in which Zr-containing composite oxide particles and active alumina particles are mixed and aggregated, and the composite particles carry the Pt.
  • the Rh-doped Ce-containing composite oxide particle material and the composite particle material include the Zr-containing composite oxide, the activated alumina, and the Rh-doped Ce-containing composite oxide (Zr-containing composite oxide, activated alumina, Rh).
  • the points A (18 + 3/4, 6 + 1/4, 75), B (6 + 1/4, 18 + 3/4, 75), C (22 + 2/9, 66 + 6 / 9, 11 + 1/9) point and D (66 + 6/9, 22 + 2/9, 11 + 1/9) point.
  • the Ce-containing composite oxide has an oxygen storage / release capability of storing oxygen in an oxygen-excess atmosphere and releasing the stored oxygen when the oxygen concentration in the atmosphere decreases, and performs the oxygen exchange reaction described above. It has the property of causing and releases active oxygen that works effectively for burning particulates.
  • the Ce-containing composite oxide is doped with Rh, thereby promoting the oxygen storage / release and the oxygen exchange reaction.
  • the Zr-containing composite oxide has high oxygen ion conductivity, and similarly causes an oxygen exchange reaction to release highly active oxygen.
  • Pt is mainly supported on the composite particles of Zr-containing composite oxide and activated alumina under the condition that the particulate is in contact with the catalyst layer. It is considered that the Pt-supported composite particle material thus produced acts on the combustion of the particulates, and the Rh-doped Ce-containing composite oxide helps the combustion. In the non-contact condition after the combustion of the particulate in contact with the catalyst layer proceeds and a gap is formed between the catalyst layer and the particulate deposition layer, the Rh-doped Ce-containing composite oxide supporting Pt is formed. It is thought to promote the burning of particulates.
  • the composite particles are mixed with the Zr-containing particles regardless of which part of the composite particles contacts the composite particles.
  • the oxidation effect of the composite oxide promotes its combustion, which is advantageous for early removal of particulates from the filter.
  • it can be said that it is better not to have activated alumina particles with low combustion activity, but CO generated by incomplete combustion at the time of combustion is oxidized to CO2, or HC that could not be oxidized by an oxidation catalyst,
  • activated alumina particles are essential as a function of oxidizing the gas component of CO.
  • the Zr-containing composite oxide and the activated alumina particles are uniformly mixed. It is also preferable that the average particle diameter of each of the Zr-containing composite oxide particles and the active alumina particles constituting the composite particles is 20 to 100 nm. As a result, the Zr-containing composite oxide particles and the activated alumina particles in the composite particles can be highly dispersed, and the contact probability between the particulates and both the Zr-containing composite oxide particles and the activated alumina particles is increased. This is advantageous for early combustion removal.
  • the particulate matter may contact any part of the catalyst layer.
  • the Pt-supported composite particle material can promote the combustion of particulates, and the Pt-supported Rh-doped Ce-containing composite oxide particle material helps the combustion. Further, when the catalyst layer and the particulate deposition layer are in a non-contact state, the Pt-supported Rh-doped Ce-containing composite oxide efficiently contributes to the combustion of the particulates at the non-contact portion.
  • the Zr-containing composite oxide, activated alumina, and Rh-doped Ce-containing composite oxide are represented by A (18 + 3) in the three-component phase diagram of (Zr-containing composite oxide, activated alumina, Rh-doped Ce-containing composite oxide). / 4, 6 + 1/4, 75) point, B (6 + 1/4, 18 + 3/4, 75) point, C (22 + 2/9, 66 + 6/9, 11 + 1/9) point and D (66 + 6/9, 22 + 2/9) , 11 + 1/9)
  • the Rh-doped Ce-containing composite oxide particle material and the composite particle material are mixed so that the mass ratio is within the range surrounded by the points, through the contact condition and the non-contact condition. In addition, the burning speed of the particulates increases.
  • the Zr-containing composite oxide, the activated alumina and the Rh-doped Ce-containing composite oxide are represented by points A (18 + 3/4, 6 + 1/4, 75), B (6 + 1/4, 18 + 3 /) in the ternary phase diagram. 4, 75) point, E (16 + 2/3, 50, 33 + 1/3) point, and F (50, 16 + 2/3, 33 + 1/3) point.
  • the burning rate of the particulate increases.
  • the mass ratio Rh / Pt between Rh and Pt is 1/1000 or more and 1/4 or less. This facilitates the combustion of the particulates under non-contact conditions.
  • the mass ratio Rh / Pt is more preferably 1/500 or more and 1/10 or less.
  • the mass ratio of Rh doped in the Ce-containing composite oxide and Pt supported on the Ce-containing composite oxide When Rh / Pt is 1/150 or more and 1/2 or less, the combustion of the particulates under the non-contact condition is particularly easy to proceed.
  • the amount of Pt supported in the entire filter is preferably 1 g or less per 1 L of filter.
  • the Rh-doped Ce-containing composite oxide particle material supporting Pt and the composite particle material supporting Pt are mixed in the catalyst layer on the exhaust gas passage wall of the filter, and the composite particles do not contain Ce.
  • Zr-containing composite oxide particles and activated alumina particles are mixed and aggregated, and the mass ratio of the Zr-containing composite oxide, active alumina, and Rh-doped Ce-containing composite oxide is (Zr-containing composite oxide, In the ternary phase diagram of activated alumina, Rh-doped Ce-containing composite oxide), points A (18 + 3/4, 6 + 1/4, 75), B (6 + 1/4, 18 + 3/4, 75), C (22 + 2 / 9 and 66 + 6/9, 11 + 1/9) and D (66 + 6/9, 22 + 2/9, 11 + 1/9) are within the range surrounded by the point, so that the contact condition where the particulate is in contact with the catalyst layer And burning of particulates in a non-contact condition after a gap between the catalyst layer and the particulate
  • FIG. 5 is a graph showing the amount of carbon burned by test materials A to F.
  • FIG. 6 shows a particulate filter (hereinafter simply referred to as “filter”) 1 arranged in the exhaust gas passage 11 of the diesel engine.
  • filter a particulate filter
  • an oxidation catalyst (not shown) in which a catalytic metal typified by Pt, Pd or the like is supported on a support material such as activated alumina can be disposed.
  • a catalytic metal typified by Pt, Pd or the like
  • a support material such as activated alumina
  • the filter 1 has a honeycomb structure and includes a large number of exhaust gas passages 2 and 3 extending in parallel with each other. That is, in the filter 1, the exhaust gas inflow passage 2 whose downstream end is closed by the plug 4 and the exhaust gas outflow passage 3 whose upstream end is closed by the plug 4 are alternately provided. Is separated by a thin partition wall 5. In FIG. 7, hatched portions indicate the plugs 4 at the upstream end of the exhaust gas outflow passage 3.
  • the filter body including the partition wall 5 is formed of an inorganic porous material such as cordierite, SiC, Si 3 N 4 , sialon, and the exhaust gas flowing into the exhaust gas inflow passage 2 is indicated by an arrow in FIG.
  • the gas flows out through the surrounding partition wall 5 into the adjacent exhaust gas outflow passage 3.
  • the partition wall 5 has minute pores (exhaust gas passages) 6 that connect the exhaust gas inflow passage 2 and the exhaust gas outflow passage 3, and the exhaust gas passes through the pores 6.
  • the particulates are trapped and deposited mainly on the exhaust gas inflow path 2 and the walls of the pores 6.
  • a catalyst layer 7 is formed on the wall surface forming the exhaust gas passage (exhaust gas inflow passage 2, exhaust gas outflow passage 3 and pores 6) of the filter body as a carrier substrate. It is not always necessary to form a catalyst layer on the wall surface on the exhaust gas outflow passage 3 side.
  • the catalyst layer 7 contains a Ph-supported Rh-doped Ce-containing composite oxide particle material and a Pt-supported composite particle material as a catalyst material for burning and removing particulates deposited on the filter 1.
  • the composite particles are composite particles of a Zr-containing composite oxide not containing Ce and activated alumina.
  • Rh-doped Ce-containing composite oxide particles As the Rh-doped Ce-containing composite oxide particle material in which Rh is doped into the Ce-containing composite oxide, composite oxidation of Ce, Zr, and a rare earth metal other than Ce (for example, Nd, Pr, etc.) is preferable. This is an Rh-doped CeZr-based composite oxide particle material obtained by doping a product with Rh.
  • the Rh-doped CeZrNd composite oxide particle material can be prepared by the following method. Hereinafter, this Rh-doped CeZrNd composite oxide particle material is appropriately represented by the symbol “Rh-doped CZN”.
  • Rh-doped CeZrNd composite oxide particles cerium nitrate hexahydrate, zirconyl oxynitrate solution, neodymium nitrate hexahydrate, and rhodium nitrate solution are dissolved in ion-exchanged water.
  • a coprecipitate is obtained by mixing and neutralizing this nitrate solution with an 8-fold diluted solution of 28% by mass ammonia water.
  • the solution containing this coprecipitate is centrifuged to remove the supernatant (dehydration), and ion-exchanged water is further added and stirred (water washing). Remove basic solution.
  • the co-precipitate after the final dehydration is dried in the air at a temperature of 150 ° C. for a whole day and night, pulverized, and then fired in the air at a temperature of 500 ° C. for 2 hours. Thereby, a Rh-doped CeZrNd composite oxide particle material can be obtained.
  • the average particle diameter of the Rh-doped CeZrNd composite oxide particle material (“number average particle diameter”, hereinafter the same) is about 10 nm, secondary.
  • the average particle size of particles was 50 to 100 nm, and the average particle size of tertiary particles (particles pulverized by a ball mill in a slurry state to form a catalyst layer on a filter) was 300 to 400 nm.
  • the composite particle material is preferably composed of composite particles in which Zr-containing composite oxide particles having an average particle size of 20 to 100 nm and active alumina particles having an average particle size of 20 to 100 nm are mixed and aggregated.
  • a Zr-containing composite oxide in this case is preferably a composite oxide of Zr and a rare earth metal other than Ce (for example, at least one selected from La, Nd, Y, and Pr), such as a ZrNdPr composite oxide. It is a thing.
  • ZrNdPrOx ⁇ Al 2 O 3 ZrNdPrOx
  • active alumina Al 2 O 3 .
  • FIG. 10 shows a TEM image of a ZrNdPr composite oxide / active alumina composite particle material and a physical mixture (mechanical mixture) of ZrNdPr composite oxide powder and active alumina powder using a transmission electron microscope, and Al, The relative concentration distribution of each atom of Zr, Nd, and Pr is shown.
  • Each of the composite particle material and the physical mixed material was made into a slurry state and pulverized by a ball mill, and then the slurry was vacuum-dried and further subjected to atmospheric aging that was maintained at a temperature of 800 ° C. for 24 hours as a test material. .
  • the ZrNdPr composite oxide and activated alumina constituting the composite particle material both have an average primary particle diameter of about 10 nm and an average secondary particle diameter of 20 nm.
  • the average particle diameter of tertiary particles was 300 to 400 nm.
  • the composite particle material can be prepared by the following method.
  • neodymium nitrate hexahydrate and praseodymium nitrate are dissolved in ion exchange water.
  • the nitrate solution is mixed with an 8-fold diluted solution of 28% by mass ammonia water to neutralize, thereby obtaining a precursor (coprecipitate) of the ZrNdPr composite oxide.
  • a precursor (precipitate) of activated alumina is obtained from a solution obtained by dissolving aluminum nitrate in ion-exchanged water by the same neutralization treatment.
  • the precursor of the ZrNdPr composite oxide and the precursor of activated alumina are sufficiently mixed, dried at 150 ° C. in the air, pulverized, and then fired at a temperature of 500 ° C. for 2 hours in the air. Thereby, the said composite particle material can be obtained.
  • the ZrNdPr composite oxide precursor and activated alumina precursor obtained by the same neutralization treatment as in Method 1 were each washed with water, dried at 150 ° C. in the atmosphere, and then pulverized to a mean particle size of about 100 nm by a ball mill. Thereafter, both are mixed and calcined in the atmosphere at a temperature of 500 ° C. for 2 hours. Thereby, the said composite particle material can be obtained.
  • the precursor of the ZrNdPr composite oxide obtained by the same neutralization treatment as in Method 1 is washed with water, dried at 150 ° C. in the atmosphere, and calcined at a temperature of 500 ° C. for 2 hours. Grind to about 100 nm. Then, the activated alumina precursor obtained by the same neutralization treatment as in method 1 is washed with water, mixed with the pulverized product, dried in the atmosphere at 150 ° C., and further maintained at a temperature of 500 ° C. for 2 hours. Firing is performed. Thereby, the said composite particle material can be obtained.
  • -Sample A- Specimen A was a CeZrNd composite oxide particle material (no noble metal support), and was prepared in the same procedure as the above-described “Rh-doped CeZrNd composite oxide preparation method” without adding rhodium nitrate. .
  • Test material B is an Rh-supported CeZrNd composite oxide particle material (Rh support amount 0.1 mass%). After preparing the CeZrNd composite oxide particle material by the same method as test material A, a rhodium nitrate solution was added. Rh was supported on the CeZrNd composite oxide particle material by evaporation to dryness. The composition of the CeZrNd composite oxide is the same as that of the specimen A.
  • test material C is a Pt-supported CeZrNd composite oxide particle material (Pt support amount 3.2 mass%).
  • Pt support amount 3.2 mass% After preparing the CeZrNd composite oxide particle material in the same manner as the test material A, dinitrodiamine platinum nitrate Using the solution, Pt was supported on the CeZrNd composite oxide particle material by the evaporation to dryness method.
  • the specimen D was a Rh-doped CeZrNd composite oxide particle material (Rh-doped amount 0.1 mass%), and was prepared by the “Rh-doped CeZrNd composite oxide preparation method” described above.
  • the composition of the CeZrNd composite oxide is the same as that of the specimen A.
  • Example E- Specimen E is Rh-supported Rh-doped CeZrNd composite oxide particle material (Rh-supported amount 0.1% by mass, Rh-doped amount 0.1% by mass). Is supported.
  • test material F is a Pt-supported Rh-doped CeZrNd composite oxide particle material (Pt-supported amount of 3.1% by mass, Rh-doped amount of 0.1% by mass). Is supported. Dinitrodiamine platinum nitric acid solution was used for evaporation to dryness.
  • FIG. 21 denotes a quartz tube through which a model gas is circulated, and a specimen set is provided therein.
  • the specimen set includes glass wool 22, specimen pellets 23, glass wool spacer (thickness 1 mm) 24, carbon black 25, and glass wool 26, which are sequentially stacked from the upstream side toward the downstream side.
  • the sample material pellet 23 and the carbon black 25 are brought into a non-contact state by the glass wool spacer 24.
  • Specimens A to F were aged at a temperature of 800 ° C. for 24 hours in the atmosphere, then compacted with a pressure of 25 tons, then pulverized and adjusted to a particle size of 100 to 300 ⁇ m by sieving. 11 at the position of reference numeral 23.
  • the amount of the test material in the pellet 23 is 20 mg, and the carbon amount of the carbon black 25 is 5 mg.
  • the sample material set was heated to 580 ° C. while flowing He gas through the quartz tube 21 and then helium gas containing 3.5% 18 O 2 at the same temperature (flow rate: 100 cc / min) Switched to.
  • Quadrupole mass spectrometry of CO and CO 2 concentration (C 16 O, C 18 O, C 16 O 2 , C 16 O 18 O, C 18 O 2 ) on the downstream side of the specimen set over 600 seconds after this switching
  • the amount of carbon combustion was calculated from these concentrations.
  • the oxygen constituting the CeZrNd composite oxide of each test material is 16 O.
  • C 16 O and C 16 O 2 are those 16 O released from the inside CeZrNd mixed oxide occurs reacts with carbon from the interior 16 O also CeZrNd mixed oxide of C 16 O 18 O It has been released. This indicates that an oxygen exchange reaction occurs in the CeZrNd composite oxide.
  • the CeZrNd composite oxide doped with Rh and carrying Pt is released from the inside of the oxide with respect to carbon 1 mm downstream with the glass wool spacer 24 in between. It can be seen that more of 16 O was supplied while maintaining the activity and promoted combustion.
  • Rh / Pt mass ratio of specimen F and carbon combustion performance under non-contact conditions It was investigated how the Rh / Pt mass ratio in the Pt-supported Rh-doped CeZrNd composite oxide particle material of the test material F affects the carbon combustion under non-contact conditions. That is, various Pt-supported Rh-doped CeZrNd composite oxide particle materials in which the total amount of noble metal combined with Pt and Rh is fixed at 3.2% by mass and the Rh-doped amount and the Pt-supported amount are changed are prepared. Each carbon combustion amount was measured by the “carbon combustion performance evaluation method” described above. The results are shown in Table 1 and FIG.
  • the particulate combustion removal catalyst material is configured by combining Ce-containing composite oxide, Zr-containing composite oxide, activated alumina, and Rh and Pt as catalytic metals.
  • Ce-containing composite oxide Zr-containing composite oxide
  • activated alumina activated alumina
  • Rh and Pt as catalytic metals.
  • One specific example is a catalyst system in which Pt is supported on an Rh-doped CeZrNd composite oxide particle material and a ZrNdPr composite oxide / active alumina composite particle material. Therefore, the influence of the Rh / total Pt mass ratio on the carbon combustion performance under non-contact conditions in this catalyst system was investigated.
  • total Pt means the total amount of Pt supported on the Rh-doped CeZrNd composite oxide and Pt supported on the composite particle material.
  • Rh / Total Pt Mass Ratio of Specimen In order to variously change the Rh / total Pt mass ratio, the Rh doping amount of the Rh-doped CeZrNd composite oxide particle material and the mixture of the Rh-doped CeZrNd composite oxide particle material and the ZrNdPr composite oxide / active alumina composite particle material The amount of Pt supported (total amount of Pt) was varied. However, the total amount of the Rh-doped amount and the total Pt amount is the test material amount (the total amount of the Pt-supported ZrNdPr composite oxide / active alumina composite particle material and the Pt-supported Rh-doped CeZrNd composite oxide particle material). It was made to become 2 mass%.
  • the carbon combustion amount is 6.5 mmol / g-cat or more.
  • the carbon combustion amount is the largest.
  • any composition except Rh Rh-doped CeZrNd mixed oxide, CeO 2: ZrO 2: Nd 2 O 3 24: 72: 4 ( molar ratio), the Rh-doped amount 0.1 wt%,
  • the catalyst materials according to Examples 1 to 12 were mixed with the Rh-doped CeZrNd composite oxide and the ZrNdPr composite oxide / active alumina composite particle material, and the composition of the composite particle material ( The mass ratio between the ZrNdPr composite oxide and the activated alumina is different. Each catalyst material has a different Rh content as a result of the difference in the mixing ratio.
  • the catalyst material according to Comparative Example 1 is obtained by supporting 3.0% by mass of Pt on the ZrNdPr composite oxide particle material.
  • the catalyst material according to Comparative Example 2 is obtained by supporting 3.0% by mass of Pt on the Rh-doped CeZrNd composite oxide particle material.
  • the catalyst material according to Comparative Example 3 is obtained by supporting 3.0% by mass of Pt on the activated alumina particle material.
  • FIG. 15 shows masses of ZrNdPr composite oxide (ZrNdPrOx), activated alumina (Al 2 O 3 ), and Rh-doped CeZrNd composite oxide (Rh-doped CZN) of the catalyst materials according to Examples 1 to 12 and Comparative Examples 1 to 6. It is a ternary phase diagram (triangular chart) showing the ratio.
  • the catalyst materials of Examples 1 to 12 and Comparative Examples 1 to 6 were supported on the filter.
  • a SiC honeycomb filter (capacity 2.44 L) having a cell wall thickness of 16 mil (4.064 ⁇ 10 ⁇ 1 mm) and 178 cells per square inch (645.16 mm 2 ) was employed.
  • the amount of catalyst material supported per liter of filter was 20 g / L.
  • the filter carrying the catalyst material was attached to the exhaust pipe of the engine, and the engine was operated to deposit soot in the actual exhaust gas on the filter.
  • a sample filter of 11.3 cc (diameter 17 mm, length 50 mm) was cut out from the filter on which soot was deposited, and the exhaust gas passage was sealed as shown in FIGS.
  • Each of the obtained sample filters was attached to a simulated gas flow reactor, and the gas temperature was raised while flowing N 2 gas. After the filter inlet temperature was stabilized at 580 ° C., the simulated exhaust gas was switched from N 2 gas to simulated exhaust gas (O 2 ; 7.5%, remaining N 2 ), and flowed at a space velocity of 40000 / h. And the concentration in the gas of CO and CO 2 generated by burning soot is measured in real time, and the amount of carbon combustion per unit time is calculated from each concentration using the following formula. did.
  • Carbon burning rate (g / h) ⁇ Gas flow rate (L / h) x [(CO + CO 2 ) concentration (ppm) / (1 x 10 6 )] ⁇ x 12 (g / mol) /22.4 (L / mol)
  • the integrated value of the amount of carbon combustion with respect to time is obtained, and the soot burning rate (the soot burning amount per minute (1 g / min-L in the filter 1L) is calculated from the time required until the soot burning rate reaches 90%. )).
  • Results are shown in FIG. Examples 1-12 all have a higher soot burning rate than Comparative Examples 1-6.
  • the soot burning rate of Example 7 is the highest (0.046 g / min-L), and Examples 3 and 8 (0.045 g / min-L) are the same. (0.044 g / min-L), Examples 4, 6, 11 (0.043 g / min-L), Examples 2, 12 (0.040 g / min-L), Examples 1, 5, 9 ( 0.038 g / min-L) continues.
  • the mass ratio of ZrNdPr composite oxide (ZrNdPrOx), activated alumina (Al 2 O 3 ), and Rh-doped CeZrNd composite oxide is A (corresponding to Example 4 in the ternary phase diagram shown in FIG. 15).
  • the mass ratio is A (18 + 3/4, 6 + 1/4, 75) point, B (6 + 1/4, 18 + 3/4, 75) point, and E (16 + 2/3, 50, 33 + 1) corresponding to Example 10. / 3) point, and within the range surrounded by F (50, 16 + 2/3, 33 + 1/3) point corresponding to Example 2.
  • the mass ratio is a point corresponding to Example 4 (18 + 3/4, 6 + 1/4, 75) and a point corresponding to Example 3 (37.5, 12 .5, 50), points corresponding to Example 6 (33 + 1/3, 33 + 1/3, 33 + 1/3), points corresponding to Example 10 (16 + 2/3, 50, 33 + 1/3), and Example 11 It is preferable to make it within the range surrounded by the corresponding point (12.5, 37.5, 50) and the point (12.5, 12.5, 75) corresponding to Example 8. it can.
  • the catalyst material according to Comparative Example 7 is a mixture of ZrNdPr composite oxide (ZrNdPrOx) powder, activated alumina (Al 2 O 3 ) powder and Rh-doped CeZrNd composite oxide powder in a mass ratio of 6: 2: 1.
  • the mixture is obtained by supporting 3.0% by mass of Pt, and the mass ratio is the same as the mass ratio of the three components in Example 1.
  • the compositions of the ZrNdPr composite oxide and the Rh-doped CeZrNd composite oxide are also the same as in Example 1 and Comparative Example 7.
  • Example 1 has a higher soot burning rate than Comparative Example 7 both in the first stage of combustion (corresponding to a rapid combustion region under contact conditions) and in the second half of combustion (corresponding to a slow combustion region under non-contact conditions).
  • the combination of the composite particle material of Zr-containing composite oxide and activated alumina and the Rh-doped Ce-containing composite oxide particle material has a great effect in rapidly burning soot in both contact and non-contact conditions. I understand that.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

 触媒層7に堆積したパティキュレートの急速燃焼域及び緩慢燃焼域双方において、その燃焼が効率良く進むようにする。フィルタ1の排ガス通路壁の触媒層7に、Ptを担持したRhドープCe含有複合酸化物粒子材とPtを担持した複合粒子材とが混在する。その複合粒子はCeを含有しないZr含有複合酸化物粒子と活性アルミナ粒子とが混じり合って凝集してなる。

Description

触媒付パティキュレートフィルタ
 本発明は、希薄燃焼式エンジンより排出されるパティキュレートを捕集するとともに、捕集したパティキュレートを燃焼除去する触媒を排ガス通路壁に担持した触媒付パティキュレートフィルタに関する。
 ディーゼルエンジン車の排ガス通路には、排ガス中のパティキュレート(粒子状物質: Particulate matter)を捕集するフィルタ(DPF: Diesel Particulate Filter)が設けられ、このフィルタに触媒が設けられる場合がある。この触媒は、フィルタのパティキュレート堆積量が多くなったときに、フィルタを再生すべくパティキュレートを燃焼除去するときの当該燃焼を促進するものである。
 このような触媒付パティキュレートフィルタに関し、特許文献1には、Ptを担持した活性アルミナ粒子材とCeZr系複合酸化物粒子材とZrNd系複合酸化物粒子材とを混合してなる触媒を採用することにより、パティキュレート燃焼性の向上を図ることが記載されている。特許文献2には、活性アルミナの一次粒子とCe系複合酸化物の一次粒子とZr系複合酸化物の一次粒子とが互いに混ざり合って二次粒子を形成しているサポート材に触媒金属を担持することにより、パティキュレートの燃焼促進を図ることが記載されている。特許文献3には、Ce及びZrを有する複合酸化物粒子の結晶格子又は原子間にRh及びPtを設けるとともに、そのPtの一部を粒子表面に露出させることにより、パティキュレートの燃焼温度の低下及び燃焼開始温度の低下を図るとともに、触媒貴金属のシンタリングを防止することが記載されている。
特開2009-39632号公報 特開2009-90238号公報 特開2005-329318号公報
 従来のパティキュレート燃焼触媒の場合、フィルタの触媒層表面に堆積しているパティキュレートの堆積量が少ないときは、そのパティキュレートが比較的効率良く燃焼除去される。しかし、その堆積量が多くなると、パティキュレートの燃焼除去に時間がかかる傾向がみられる。その理由は、本発明者の実験・研究に基づく知見によれば、次のとおりである。
 すなわち、図1のグラフは触媒層に堆積した煤(パティキュレート)が燃焼していくときの煤残存割合の経時変化を模式的に示す。当初は煤の燃焼が急速に進むが、その急速燃焼域(例えば、煤残存割合が100%から50%なるまでの燃焼前期)を経た後、煤の燃焼が緩慢になる緩慢燃焼域(煤残存割合が50%から0%なるまでの燃焼後期)に移る。この点を以下詳述する。
 図2の写真に示すように、燃焼当初は煤がフィルタ基材の表面に薄く担持された触媒層に接触している。このため、例えば触媒層がCe系複合酸化物粒子を含んでいる場合、このCe系複合酸化物粒子は周囲の酸素を粒子内に取り込んで内部から活性な酸素を放出する酸素交換反応を起こすから、図3に模式的に示すように、内部酸素が粒子表面に接触している煤に高活性状態で供給される。その結果、粒子表面の煤が急速に燃焼していく。
 しかし、上述の如く、触媒粒子表面の煤が燃焼除去される結果、図4の写真に示すように、触媒層と煤堆積層との間に隙間を生ずる。そのため、図5に模式的に示すように、酸素交換反応によって粒子内部から放出される活性酸素は、ごく短時間であれば活性を維持するが、隙間を通る間に活性が低下し、例えば、気相中の酸素と同じ通常の酸素となる。その結果、煤の燃焼が緩慢になる。もちろん、図5左上及び左下に示すように排ガス中の酸素も煤の燃焼に寄与するが、上述の活性酸素による燃焼に比べると、その燃焼は緩慢である。
 そこで、本発明は、触媒層に堆積したパティキュレートの急速燃焼域及び緩慢燃焼域双方において、その燃焼が効率良く進むようにする。
 本発明は、上記課題を解決するために、Zr含有複合酸化物と活性アルミナとの複合粒子にPtを担持させてなるPt担持複合粒子材と、Ptを担持したRhドープCe含有複合酸化物粒子材とによってパティキュレートの燃焼を促進するようにした。
 すなわち、ここに提示する触媒付パティキュレートフィルタは、排ガス中のパティキュレートを捕集するフィルタの排ガス通路壁に、Ce含有複合酸化物とCeを含有しないZr含有複合酸化物と活性アルミナと触媒金属とを含む触媒層が設けられていて、
 上記触媒金属としてRhとPtとを含み、
 上記Ce含有複合酸化物は、上記RhがドープされたRhドープCe含有複合酸化物粒子として上記触媒層に存在し、且つ該RhドープCe含有複合酸化物粒子に上記Ptが担持されており、
 上記Zr含有複合酸化物と上記活性アルミナとは、Zr含有複合酸化物粒子と活性アルミナ粒子とが混じり合って凝集した複合粒子として上記触媒層に存在し、且つ該複合粒子に上記Ptが担持されており、
 上記RhドープCe含有複合酸化物粒子材と上記複合粒子材とは、上記Zr含有複合酸化物、上記活性アルミナ及び上記RhドープCe含有複合酸化物が、(Zr含有複合酸化物,活性アルミナ,RhドープCe含有複合酸化物)の三成分相図において、A(18+3/4,6+1/4,75)点、B(6+1/4,18+3/4,75)点、C(22+2/9,66+6/9,11+1/9)点及びD(66+6/9,22+2/9,11+1/9)点で囲まれる範囲内の質量比となるように混合されていることを特徴とする。
 上記Ce含有複合酸化物は、酸素過剰雰囲気では酸素を吸蔵し、雰囲気の酸素濃度が下がったときに吸蔵していた酸素を放出する酸素吸蔵放出能を有するとともに、先に述べた酸素交換反応を起こす性質があり、パティキュレートの燃焼に有効に働く活性酸素を放出する。そして、このCe含有複合酸化物にRhがドープされていることにより、上記酸素吸蔵放出及び酸素交換反応が促進される。一方、上記Zr含有複合酸化物は、高い酸素イオン伝導性を有し、同様に酸素交換反応を起こして活性が高い酸素を放出する。
 具体的なメカニズムは定かでないが、上記触媒付パティキュレートフィルタにおいては、パティキュレートが触媒層に接触している条件下では、主として、Zr含有複合酸化物と活性アルミナとの複合粒子にPtを担持させてなるPt担持複合粒子材がパティキュレートの燃焼に働き、その燃焼を上記RhドープCe含有複合酸化物が助けると考えられる。そして、触媒層に接触しているパティキュレートの燃焼が進み、触媒層とパティキュレート堆積層との間に隙間ができた後の非接触条件では、Ptを担持したRhドープCe含有複合酸化物がパティキュレートの燃焼を促進すると考えられる。
 この場合、上記複合粒子は、Zr含有複合酸化物粒子と活性アルミナ粒子とが均一に混じり合って凝集してなるから、パティキュレートが当該複合粒子のいずれの部位に接触しても、上記Zr含有複合酸化物の酸化効果によって、その燃焼が促進されることになり、フィルタからのパティキュレートの早期燃焼除去に有利になる。パティキュレートの燃焼には、燃焼活性が低い活性アルミナ粒子がない方が良いとも言えるが、燃焼時に不完全燃焼により生じるCOをCO2まで酸化したり、また、酸化触媒で酸化しきれなかった、HCやCOのガス成分を酸化する機能として、活性アルミナ粒子が必須である。その前提においては、Zr含有複合酸化物と活性アルミナ粒子とが均一に混じり合った状態が良い。また、好ましいのは、上記複合粒子を構成する上記Zr含有複合酸化物粒子及び上記活性アルミナ粒子各々の平均粒子径を20~100nmとすることである。これにより、上記複合粒子におけるZr含有複合酸化物粒子と活性アルミナ粒子との高分散化が図れ、パティキュレートとZr含有複合酸化物粒子及び活性アルミナ粒子両者との接触確率が高くなり、パティキュレートの早期燃焼除去に有利になる。
 また、上記Ptを担持したRhドープCe含有複合酸化物粒子材と上記Ptを担持した複合粒子材とが触媒層に混在するから、パティキュレートが触媒層のいずれの部位に接触しても、上記Pt担持複合粒子材によるパティキュレートの燃焼促進が図れ、また、その燃焼を上記Pt担持RhドープCe含有複合酸化物粒子材が助けることになる。また、触媒層とパティキュレート堆積層とが非接触状態になったときには、その非接触部位において上記Pt担持RhドープCe含有複合酸化物がパティキュレートの燃焼に効率良く寄与することになる。
 この場合、上記Zr含有複合酸化物、活性アルミナ及びRhドープCe含有複合酸化物が、(Zr含有複合酸化物,活性アルミナ,RhドープCe含有複合酸化物)の三成分相図において、A(18+3/4,6+1/4,75)点、B(6+1/4,18+3/4,75)点、C(22+2/9,66+6/9,11+1/9)点及びD(66+6/9,22+2/9,11+1/9)点で囲まれる範囲内の質量比となるように、上記RhドープCe含有複合酸化物粒子材と上記複合粒子材とが混合されているときに、接触条件及び非接触条件を通じたトータルでのパティキュレートの燃焼速度が大きくなる。
 特に、上記Zr含有複合酸化物、活性アルミナ及びRhドープCe含有複合酸化物が、上記三成分相図において、A(18+3/4,6+1/4,75)点、B(6+1/4,18+3/4,75)点、E(16+2/3,50,33+1/3)点及びF(50,16+2/3,33+1/3)点で囲まれる範囲内の質量比となるときに、上記トータルでのパティキュレートの燃焼速度が大きくなる。
 好ましいのは、上記RhとPtとの質量比Rh/Ptを1/1000以上1/4以下とすることである。これにより、非接触条件でのパティキュレートの燃焼が進み易くなる。上記質量比Rh/Ptは1/500以上1/10以下とすることがさらに好ましい。
 また、上記Ptを担持したRhドープCe含有複合酸化物粒子材に着目すると、このCe含有複合酸化物にドープされているRhと、該Ce含有複合酸化物に担持されているPtとの質量比Rh/Ptが1/150以上1/2以下であるときに、上記非接触条件でのパティキュレートの燃焼が特に進み易い。
 また、フィルタ全体でのPt担持量に関しては、該Pt担持量をフィルタ1L当たりで1g以下とすることが好ましい。
 本発明によれば、フィルタの排ガス通路壁の触媒層に、Ptを担持したRhドープCe含有複合酸化物粒子材とPtを担持した複合粒子材とが混在し、その複合粒子はCeを含有しないZr含有複合酸化物粒子と活性アルミナ粒子とが混じり合って凝集したものであり、上記Zr含有複合酸化物、活性アルミナ及びRhドープCe含有複合酸化物の質量比が、(Zr含有複合酸化物,活性アルミナ,RhドープCe含有複合酸化物)の三成分相図において、A(18+3/4,6+1/4,75)点、B(6+1/4,18+3/4,75)点、C(22+2/9,66+6/9,11+1/9)点及びD(66+6/9,22+2/9,11+1/9)点で囲まれる範囲内にあるから、パティキュレートが触媒層に接触している接触条件下、並びに触媒層とパティキュレート堆積層との間に隙間ができた後の非接触条件下でのパティキュレートの燃焼が共に効率良く促進され、フィルタの早期再生に有利になる。
触媒層に堆積した煤が燃焼していくときの煤残存割合の経時変化を模式的に示すグラフ図である。 触媒層に煤の堆積層が接触している状態(図1の急速燃焼域における状態)を示す顕微鏡写真である。 急速燃焼域における煤の燃焼メカニズムを示す模式図である。 触媒層と煤の堆積層との間に隙間ができた状態(図1の緩慢燃焼域における状態)を示す顕微鏡写真である。 緩慢燃焼域における煤の燃焼メカニズムを示す模式図である。 パティキュレートフィルタをエンジンの排気ガス通路に配置した状態を示す図である。 パティキュレートフィルタを模式的に示す正面図である。 パティキュレートフィルタを模式的に示す縦断面図である。 パティキュレートフィルタの排気ガス流入路と排気ガス流出路とを隔てる壁を模式的に示す拡大断面図である。 ZrNdPr複合酸化物・活性アルミナ複合粒子材及びZrNdPr複合酸化物粉末・活性アルミナ粉末物理混合材のTEM像、並びにAl、Zr、Nd及びPr各原子の相対濃度分布のマッピング図である。 カーボン燃焼性能試験装置を示す図である。 供試材A~Fのカーボン燃焼量を示すグラフ図である。 Pt担持RhドープCeZrNd複合酸化物のRh/Pt質量比と非接触条件でのカーボン燃焼性能との関係を示すグラフ図である。 触媒材のRh/全Pt質量比と非接触条件でのカーボン燃焼性能との関係を示すグラフ図である。 実施例1~12及び比較例1~6の三成分相図である。 実施例1~12及び比較例1~6の煤燃焼速度を示すグラフ図である。
 以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。
 <パティキュレートフィルタの構造>
 図6はディーゼルエンジンの排ガス通路11に配置されたパティキュレートフィルタ(以下、単に「フィルタ」という。)1を示す。フィルタ1よりも排ガス流の上流側の排ガス通路11には、活性アルミナ等のサポート材にPt、Pd等に代表される触媒金属を担持した酸化触媒(図示省略)を配置することができる。このような酸化触媒をフィルタ1の上流側に配置するときは、該酸化触媒によって排ガス中のHC、COを酸化させ、その酸化燃焼熱でフィルタ1に流入する排ガス温度を高めてフィルタ1を加熱することによって、パティキュレートを燃焼除去することができる。また、NOが酸化触媒でNOに酸化され、該NOがフィルタ1にパティキュレートを燃焼させる酸化剤として供給されることになる。
 図7及び図8に模式的に示すように、フィルタ1は、ハニカム構造をなしており、互いに平行に延びる多数の排ガス通路2,3を備えている。すなわち、フィルタ1は、下流端が栓4により閉塞された排ガス流入路2と、上流端が栓4により閉塞された排ガス流出路3とが交互に設けられ、排ガス流入路2と排ガス流出路3とは薄肉の隔壁5を介して隔てられている。なお、図7においてハッチングを付した部分は排ガス流出路3の上流端の栓4を示している。
 フィルタ1は、上記隔壁5を含むフィルタ本体がコージェライト、SiC、Si、サイアロンのような無機多孔質材料から形成されており、排ガス流入路2内に流入した排ガスは図8において矢印で示したように周囲の隔壁5を通って隣接する排ガス流出路3内に流出する。すなわち、図9に示すように、隔壁5は排ガス流入路2と排ガス流出路3とを連通する微小な細孔(排ガス通路)6を有し、この細孔6を排ガスが通る。パティキュレートは主に排ガス流入路2と細孔6の壁部に捕捉され堆積する。
 担体基材としての上記フィルタ本体の排ガス通路(排ガス流入路2、排ガス流出路3及び細孔6)を形成する壁面には触媒層7が形成されている。なお、排ガス流出路3側の壁面に触媒層を形成することは必ずしも要しない。
 上記触媒層7は、フィルタ1に堆積したパティキュレートを燃焼除去するための触媒材として、Ptを担持したRhドープCe含有複合酸化物粒子材と、Ptを担持した複合粒子材とを含有する。その複合粒子は、Ceを含有しないZr含有複合酸化物と活性アルミナとの複合粒子である。
 <触媒材について>
 [RhドープCe含有複合酸化物粒子材]
 上記Ce含有複合酸化物にRhがドープされてなるRhドープCe含有複合酸化物粒子材として好ましいのは、Ceと、Zrと、Ce以外の希土類金属(例えば、Nd、Pr等)との複合酸化物にRhがドープされてなるRhドープCeZr系複合酸化物粒子材である。例えば、RhドープCeZrNd複合酸化物粒子材は次の方法によって調製することができる。このRhドープCeZrNd複合酸化物粒子材を以下では適宜「RhドープCZN」の記号で表す。
 -RhドープCeZrNd複合酸化物粒子材の調製法-
 すなわち、硝酸セリウム6水和物とオキシ硝酸ジルコニル溶液と硝酸ネオジム6水和物と硝酸ロジウム溶液とをイオン交換水に溶かす。この硝酸塩溶液に28質量%アンモニア水の8倍希釈液を混合して中和させることにより、共沈物を得る。この共沈物を含む溶液を遠心分離器にかけて上澄み液を除去する(脱水)、そこにさらにイオン交換水を加えて撹拌する(水洗)、という脱水・水洗の操作を必要回数繰り返すことで、余剰な塩基性溶液を除去する。最終的に脱水を行なった後の共沈物について、大気中において150℃の温度で一昼夜乾燥させ、粉砕した後、大気中において500℃の温度に2時間保持する焼成を行なう。これにより、RhドープCeZrNd複合酸化物粒子材を得ることができる。
 -RhドープCeZrNd複合酸化物粒子材の粒子径-
 上記調製法により、CeO:ZrO:Nd=24:72:4(モル比)、Rhドープ量0.1質量%のRhドープCeZrNd複合酸化物粒子材を調製した。透過電子顕微鏡を用いたTEM像観察によれば、そのRhドープCeZrNd複合酸化物粒子材の一次粒子の平均粒子径(「個数平均粒子径」のこと。以下、同じ。)は約10nm、二次粒子の平均粒子径は50~100nm、三次粒子(フィルタに触媒層を形成すべく、スラリー状態にしてボールミルで粉砕した粒子)の平均粒子径は300~400nmであった。
 [Zr含有複合酸化物と活性アルミナとの複合粒子材]
 上記複合粒子材は、平均粒子径20~100nmのZr含有複合酸化物粒子と平均粒子径20~100nmの活性アルミナ粒子とが混じり合って凝集した複合粒子よりなることが好ましい。この場合のZr含有複合酸化物として好ましいのは、Zrと、Ce以外の希土類金属(例えば、La,Nd,Y,Prから選ばれる少なくとも一種)との複合酸化物であり、例えば、ZrNdPr複合酸化物である。このZrNdPr複合酸化物・活性アルミナ複合粒子材を以下では適宜「ZrNdPrOx・Al」の記号で表す(ZrNdPr複合酸化物を「ZrNdPrOx」で表し、活性アルミナを「Al」で表す。)。
 図10は、ZrNdPr複合酸化物・活性アルミナ複合粒子材、並びにZrNdPr複合酸化物粉末と活性アルミナ粉末との物理混合材(機械的混合材)の、透過電子顕微鏡を用いたTEM像、並びにAl、Zr、Nd及びPr各原子の相対濃度分布を示す。
 複合粒子材及び物理混合材のいずれも、スラリー状態にしてボールミルにより粉砕した後、そのスラリーを真空乾燥し、さらに800℃の温度に24時間保持する大気エージングを実施したものを供試材とした。また、いずれの供試材も、ZrNdPrOx:Al=3:1(質量比)であり、ZrNdPrOxの組成は、ZrO:Nd:Pr=70:12:18(モル比)である。
 物理混合材の場合(図10左側)、Alが偏在している場所とZr、Nd及びPrが偏在している場所とが見られる。これに対して、複合粒子材の場合(図10右側)は、Al、Zr、Nd及びPrの各原子が全体に均一に分散しており、当該複合粒子材のいずれの部位にパティキュレートが接触しても、その燃焼が進み易いことがわかる。
 透過電子顕微鏡を用いたTEM像観察によれば、上記複合粒子材を構成するZrNdPr複合酸化物及び活性アルミナはいずれも、一次粒子の平均粒子径は約10nm、二次粒子の平均粒子径は20~100nm、三次粒子(フィルタに触媒層を形成すべく、スラリー状態にしてボールミルで粉砕した粒子)の平均粒子径は300~400nmであった。
 上記複合粒子材は次の方法によって調製することができる。
 -方法1-
 オキシ硝酸ジルコニル溶液と硝酸ネオジム6水和物と硝酸プラセオジウムをイオン交換水に溶かす。この硝酸塩溶液に28質量%アンモニア水の8倍希釈液を混合して中和させることにより、ZrNdPr複合酸化物の前駆体(共沈物)を得る。一方、硝酸アルミニウムをイオン交換水に溶かした溶液から同じく中和処理によって活性アルミナの前駆体(沈殿物)を得る。ZrNdPr複合酸化物の前駆体と活性アルミナの前駆体とを充分に混合し、大気中において150℃で乾燥させ、粉砕した後、大気中において500℃の温度に2時間保持する焼成を行なう。これにより、上記複合粒子材を得ることができる。
 -方法2-
 方法1と同じ中和処理によって得られるZrNdPr複合酸化物の前駆体と活性アルミナの前駆体をそれぞれ水洗し、大気中において150℃で乾燥させた後、ボールミルによって平均粒子径100nm程度まで粉砕し、しかる後に両者を混合して大気中において500℃の温度に2時間保持する焼成を行なう。これにより、上記複合粒子材を得ることができる。
 -方法3-
 方法1と同じ中和処理によって得られるZrNdPr複合酸化物の前駆体を水洗し、大気中において150℃で乾燥させ、さらに500℃の温度に2時間保持する焼成を行ない、次いでボールミルによって平均粒子径100nm程度まで粉砕する。そうして、方法1と同じ中和処理によって得られる活性アルミナの前駆体を水洗し、上記粉砕物と混合した後、大気中において150℃で乾燥させ、さらに500℃の温度に2時間保持する焼成を行なう。これにより、上記複合粒子材を得ることができる。
 <各種Ce含有複合酸化物の非接触条件でのカーボン燃焼性能評価>
 [供試材の調製]
 供試材として次の6種類のCe含有複合酸化物粒子材を調製した。
 -供試材A-
 供試材Aは、CeZrNd複合酸化物粒子材(貴金属担持なし)であり、硝酸ロジウムを添加せずに、他は先に説明した「RhドープCeZrNd複合酸化物調製法」と同じ手順で調製した。CeZrNd複合酸化物の組成は、CeO:ZrO:Nd=24:72:4(モル比)である。
 -供試材B-
 供試材Bは、Rh担持CeZrNd複合酸化物粒子材(Rh担持量0.1質量%)であり、供試材Aと同じ方法でCeZrNd複合酸化物粒子材を調製した後、硝酸ロジウム溶液を用い、蒸発乾固法にてRhをCeZrNd複合酸化物粒子材に担持させた。CeZrNd複合酸化物の組成は供試材Aと同じである。
 -供試材C-
 供試材Cは、Pt担持CeZrNd複合酸化物粒子材(Pt担持量3.2質量%)であり、供試材Aと同じ方法でCeZrNd複合酸化物粒子材を調製した後、ジニトロジアミン白金硝酸溶液を用い、蒸発乾固法にてPtをCeZrNd複合酸化物粒子材に担持させた。
 -供試材D-
 供試材Dは、RhドープCeZrNd複合酸化物粒子材(Rhドープ量0.1質量%)であり、先に説明した「RhドープCeZrNd複合酸化物調製法」で調製した。CeZrNd複合酸化物の組成は供試材Aと同じである。
 -供試材E-
 供試材Eは、Rh担持RhドープCeZrNd複合酸化物粒子材(Rh担持量0.1質量%,Rhドープ量0.1質量%)であり、供試材DにRhを蒸発乾固法にて担持させたものである。
 -供試材F-
 供試材Fは、Pt担持RhドープCeZrNd複合酸化物粒子材(Pt担持量3.1質量%,Rhドープ量0.1質量%)であり、供試材DにPtを蒸発乾固法にて担持させたものである。蒸発乾固にはジニトロジアミン白金硝酸溶液を用いた。
 [カーボン燃焼性能評価方法]
 図11に示す試験装置にて各供試材の非接触条件でのカーボン燃焼性能を評価した。同図において、21はモデルガスを流通させる石英管であり、その内部に供試材セットが設けられている。供試材セットは、上流側から下流側に向かって、グラスウール22、供試材のペレット23、グラスウールスペーサ(厚さ1mm)24、カーボンブラック25、及びグラスウール26が順に重ねられたものである。グラスウールスペーサ24によって供試材ペレット23とカーボンブラック25とを非接触状態にしている。
 供試材A~Fは、大気中で800℃の温度に24時間保持するエージングを行なった後に25tonの圧力で圧粉し、次いで粉砕し、篩い分けにより粒度100~300μmに調整した後、図11の符号23の位置に挿入した。ペレット23における供試材量は20mg、カーボンブラック25のカーボン量は5mgである。
 そうして、石英管21にHeガスを流しながら供試材セットを580℃まで昇温させた後、同温度でHeガスから3.5%18含有Heガス(流量;100cc/分)に切り換えた。この切り換えから600秒間にわたって、供試材セット下流側のCO及びCO濃度(C16O,C18O,C16,C1618O,C18)を四重極質量分析計によって測定し、それら濃度からカーボン燃焼量を求めた。各供試材のCeZrNd複合酸化物を構成する酸素は16Oである。
 [結果]
 結果を図12に示す。供試材A~E間ではカーボン燃焼量に殆ど差が出ていない。つまり、CeZrNd複合酸化物にRhをドープしても、Rhを担持しても、或いはPtを担持しても、カーボン燃焼性能は、そのような貴金属をドープないしは担持しない場合と殆ど変わらない。これに対して、供試材FのPt担持RhドープCeZrNd複合酸化物では、他の供試材に比べてカーボン燃焼量が2倍程度多くなっている。CeZrNd複合酸化物にRhをドープし且つPtを担持することが、上記非接触条件(先に説明した緩慢燃焼域(燃焼後期))でのカーボンの燃焼に特異な効果を示すことがわかる。
 ここに、C16O及びC16はCeZrNd複合酸化物内部から放出された16Oがカーボンと反応して生じたものであり、C1618Oの16OもCeZrNd複合酸化物内部から放出されたものである。このことから、CeZrNd複合酸化物において酸素交換反応を生じていることがわかる。そして、他の供試材と比べて、CeZrNd複合酸化物にRhをドープし且つPtを担持したものについては、グラスウールスペーサ24を挟んで1mm下流にあるカーボンに対して、酸化物内部から放出された16Oのより多くが、活性を保ったまま供給され、燃焼を促進していることがわかる。
 <供試材FのRh/Pt質量比と非接触条件でのカーボン燃焼性能との関係>
 供試材FのPt担持RhドープCeZrNd複合酸化物粒子材におけるRh/Pt質量比が非接触条件でのカーボンの燃焼にどのように影響しているかを調べた。すなわち、PtとRhとを合わせたトータル貴金属量は3.2質量%に固定し、Rhドープ量とPt担持量とを変化させた各種のPt担持RhドープCeZrNd複合酸化物粒子材を調製し、各々のカーボン燃焼量を先に説明した[カーボン燃焼性能評価方法]によって測定した。結果を表1及び図13に示す。
Figure JPOXMLDOC01-appb-T000001
 図12の結果と図13の結果を比較すると、供試材Fの場合、Rh/Pt質量比が1/150以上1/2以下であるときに、供試材A~Eよりもカーボン燃焼量が多くなることがわかる。特にRh/Pt質量が1/30であるときにカーボン燃焼量が最も多くなっている。
 <触媒材のRh/全Pt質量比と非接触条件でのカーボン燃焼性能との関係>
 本発明は、パティキュレート燃焼除去用触媒材を、Ce含有複合酸化物とZr含有複合酸化物と活性アルミナと触媒金属としてのRh及びPtとを組み合わせて構成している。その具体例の一つは、RhドープCeZrNd複合酸化物粒子材とZrNdPr複合酸化物・活性アルミナ複合粒子材とにPtを担持させてなる触媒系である。そこで、この触媒系においてRh/全Pt質量比が非接触条件でのカーボン燃焼性能に及ぼす影響を調べた。ここに、「全Pt」は、RhドープCeZrNd複合酸化物に担持されたPtと、上記複合粒子材に担持されたPtとを合わせた量を意味する。
 [供試材の基本構成]
 混合比 ZrNdPrOx・Al:RhドープCZN=8:1(質量比)
 複合粒子材の組成 ZrNdPrOx:Al=3:1(質量比)
 RhドープCZNのRhを除く組成 CeO:ZrO:Nd=24:72:4(モル比)
 ZrNdPrOxの組成 ZrO:Nd:Pr=70:12:18(モル比)
 [供試材のRh/全Pt質量比の調製]
 Rh/全Pt質量比を種々に変えるために、RhドープCeZrNd複合酸化物粒子材のRhドープ量と、RhドープCeZrNd複合酸化物粒子材とZrNdPr複合酸化物・活性アルミナ複合粒子材との混合物に対するPt担持量(全Pt量)とを種々に変えた。但し、Rhドープ量と全Pt量との合計量は供試材量(Pt担持ZrNdPr複合酸化物・活性アルミナ複合粒子材とPt担持RhドープCeZrNd複合酸化物粒子材との合計量)の3.2質量%となるようにした。
 [カーボン燃焼量の測定・評価]
 Rh/全Pt質量比が相違する各供試材のカーボン燃焼量を先に説明した[カーボン燃焼性能評価方法]によって測定した。結果を表2及び図14に示す。
Figure JPOXMLDOC01-appb-T000002
 Rh/全Pt質量比が1/1000以上1/4以下であるときに、カーボン燃焼量が6.5mmol/g-cat以上になっている。特にRh/全Pt質量が1/50であるときにカーボン燃焼量が最も多くなっている。
 <実施例1~12及び比較例1~6に係る触媒材のカーボン燃焼性能>
 [触媒材の構成]
 -実施例1~12-
 実施例1~12に係る触媒材はいずれも、RhドープCeZrNd複合酸化物粒子材とZrNdPr複合酸化物・活性アルミナ複合粒子材とにPtを担持させてなる。また、いずれも、RhドープCeZrNd複合酸化物のRhを除く組成は、CeO:ZrO:Nd=24:72:4(モル比)、そのRhドープ量は0.1質量%、ZrNdPr複合酸化物の組成はZrO:Nd:Pr=70:12:18(モル比)、RhドープCeZrNd複合酸化物粒子材とZrNdPr複合酸化物・活性アルミナ複合粒子材との混合物に対するPt担持量は3.0質量%である。
 そして、実施例1~12に係る触媒材は、表3に示すように、RhドープCeZrNd複合酸化物とZrNdPr複合酸化物・活性アルミナ複合粒子材との混合比、並びに上記複合粒子材の組成(ZrNdPr複合酸化物と活性アルミナとの質量比)が相違する。各触媒材は、上記混合比が相違する結果、Rh含有量が相違する。
Figure JPOXMLDOC01-appb-T000003
 -比較例1~6-
 比較例1~6の触媒材構成を表4に示す。
 比較例1に係る触媒材は、上記ZrNdPr複合酸化物粒子材にPtを3.0質量%担持させてなる。
 比較例2に係る触媒材は、上記RhドープCeZrNd複合酸化物粒子材にPtを3.0質量%担持させてなる。
 比較例3に係る触媒材は、上記活性アルミナ粒子材にPtを3.0質量%担持させてなる。
 比較例4に係る触媒材は、上記ZrNdPr複合酸化物粒子材と上記RhドープCeZrNd複合酸化物粒子材との混合物(質量比=1:1)にPtを3.0質量%担持させてなる。
 比較例5に係る触媒材は、上記RhドープCeZrNd複合酸化物粒子材と上記活性アルミナ粒子材との混合物(質量比=1:1)にPtを3.0質量%担持させてなる。
 比較例6に係る触媒材は、上記ZrNdPr複合酸化物粒子材と上記活性アルミナ粒子材との混合物(質量比=1:1)にPtを3.0質量%担持させてなる。
Figure JPOXMLDOC01-appb-T000004
 図15は、実施例1~12及び比較例1~6に係る触媒材のZrNdPr複合酸化物(ZrNdPrOx)、活性アルミナ(Al)及びRhドープCeZrNd複合酸化物(RhドープCZN)の質量比を示す三成分相図(三角図表)である。
 [煤燃焼性能の評価]
 実施例1~12及び比較例1~6に係る触媒材による煤の燃焼速度を次の方法によって求めた。
 すなわち、実施例1~12及び比較例1~6の各触媒材をフィルタに担持させた。フィルタとしては、セル壁厚さ16mil(4.064×10-1mm)、1平方インチ(645.16mm)当たりのセル数178のSiC製ハニカム状フィルタ(容量2.44L)を採用した。フィルタ1L当たりの触媒材担持量は20g/Lとした。この触媒材を担持したフィルタをエンジンの排気管に装着し、該エンジンを運転することによって実排ガス中の煤をフィルタに堆積させた。煤が堆積したフィルタから11.3cc(直径17mm、長さ50mm)のサンプルフィルタを切り取り、図7及び図8に示すように排ガス通路の目封じを施した。
 得られた各サンプルフィルタを模擬ガス流通反応装置に取り付け、Nガスを流通させながらそのガス温度を上昇させた。フィルタ入口温度が580℃で安定した後、Nガスから模擬排ガス(O;7.5%,残N)に切り換え、該模擬排ガスを空間速度40000/hで流した。そして、煤が燃焼することにより生じるCO及びCOのガス中濃度をリアルタイムで測定し、それらの濃度から、下記の計算式を用いて、各時間ごとに、単位時間当たりのカーボン燃焼量を計算した。
 カーボン燃焼速度(g/h)
  ={ガス流速(L/h)×[(CO+CO)濃度(ppm)/(1×10)]}×12(g/mol)/22.4(L/mol)
 その上で、時間に対するカーボン燃焼量の積算値を求め、煤燃焼率が90%に達するまでに要した時間から煤燃焼速度(フィルタ1Lでの1分間当たりの煤燃焼量(g/min-L))を求めた。
 結果を図16に示す。実施例1~12はいずれも比較例1~6より煤燃焼速度が大である。実施例1~12のなかでは、実施例7の煤燃焼速度が最も大きく(0.046g/min-L)、これに、実施例3,8(0.045g/min-L)、実施例10(0.044g/min-L)、実施例4,6,11(0.043g/min-L)、実施例2,12(0.040g/min-L)、実施例1,5,9(0.038g/min-L)が続いている。
 このことから、ZrNdPr複合酸化物(ZrNdPrOx)、活性アルミナ(Al)及びRhドープCeZrNd複合酸化物の質量比は、図15に示す三成分相図において、実施例4に相当するA(18+3/4,6+1/4,75)点、実施例12に相当するB(6+1/4,18+3/4,75)点、実施例9に相当するC(22+2/9,66+6/9,11+1/9)点、並びに実施例1に相当するD(66+6/9,22+2/9,11+1/9)点で囲まれる範囲内にあることが好ましいということができる。また、上記質量比は、A(18+3/4,6+1/4,75)点、B(6+1/4,18+3/4,75)点、実施例10に相当するE(16+2/3,50,33+1/3)点、並びに実施例2に相当するF(50,16+2/3,33+1/3)点で囲まれる範囲内にあることが好ましいということができる。
 さらには、図15に示す三成分相図において、上記質量比は、実施例4に相当する点(18+3/4,6+1/4,75)、実施例3に相当する点(37.5,12.5,50),実施例6に相当する点(33+1/3,33+1/3,33+1/3)、実施例10に相当する点(16+2/3,50,33+1/3)、実施例11に相当する点(12.5,37.5,50)、並びに実施例8に相当する点(12.5,12.5,75)で囲まれる範囲内になるようにすることが好ましいということができる。
 次に、上記実施例1に対応する比較例7の触媒材をさらに調製し、この実施例1と比較例7の燃焼前期(煤燃焼率が50%に達するまで)及び燃焼後期(煤燃焼率から50%から90%に達するまで)の煤燃焼速度を、先に説明した[煤燃焼性能の評価]方法により測定した。
 ここに、比較例7に係る触媒材は、ZrNdPr複合酸化物(ZrNdPrOx)粉末、活性アルミナ(Al)粉末とRhドープCeZrNd複合酸化物粉末とを6:2:1の質量比で混合し、この混合物にPtを3.0質量%担持してなるものであり、その質量比は実施例1の三成分の質量比と同じである。また、ZrNdPr複合酸化物及びRhドープCeZrNd複合酸化物の組成も実施例1と比較例7は同じである。
 結果を表5に示す。燃焼前期(接触条件での急速燃焼域に相当)及び燃焼後期(非接触条件での緩慢燃焼域に相当)のいずれにおいても、実施例1は比較例7よりも煤燃焼速度が大である。Zr含有複合酸化物と活性アルミナとの複合粒子材と、RhドープCe含有複合酸化物粒子材との組み合わせが接触条件及び非接触条件のいずれにおいても煤を速やかに燃焼する上で大きな効果があることがわかる。
Figure JPOXMLDOC01-appb-T000005
  1  フィルタ
  2  排ガス流入路(排ガス通路)
  3  排ガス流出路(排ガス通路)
  6  細孔(排ガス通路)
  7  触媒層

Claims (8)

  1.  排ガス中のパティキュレートを捕集するフィルタの排ガス通路壁に、Ce含有複合酸化物とCeを含有しないZr含有複合酸化物と活性アルミナと触媒金属とを含む触媒層が設けられている触媒付パティキュレートフィルタであって、
     上記触媒金属としてRhとPtとを含み、
     上記Ce含有複合酸化物は、上記RhがドープされたRhドープCe含有複合酸化物粒子として上記触媒層に存在し、且つ該RhドープCe含有複合酸化物粒子に上記Ptが担持されており、
     上記Zr含有複合酸化物と上記活性アルミナとは、Zr含有複合酸化物粒子と活性アルミナ粒子とが混じり合って凝集した複合粒子として上記触媒層に存在し、且つ該複合粒子に上記Ptが担持されており、
     上記RhドープCe含有複合酸化物粒子材と上記複合粒子材とは、上記Zr含有複合酸化物、上記活性アルミナ及び上記RhドープCe含有複合酸化物が、(Zr含有複合酸化物,活性アルミナ,RhドープCe含有複合酸化物)の三成分相図において、A(18+3/4,6+1/4,75)点、B(6+1/4,18+3/4,75)点、C(22+2/9,66+6/9,11+1/9)点及びD(66+6/9,22+2/9,11+1/9)点で囲まれる範囲内の質量比となるように混合されていることを特徴とする触媒付パティキュレートフィルタ。
  2.  請求項1において、
     上記RhドープCe含有複合酸化物粒子材と上記複合粒子材とは、上記Zr含有複合酸化物、上記活性アルミナ及び上記RhドープCe含有複合酸化物が、上記三成分相図において、A(18+3/4,6+1/4,75)点、B(6+1/4,18+3/4,75)点、E(16+2/3,50,33+1/3)点及びF(50,16+2/3,33+1/3)点で囲まれる範囲内の質量比となるように混合されていることを特徴とする触媒付パティキュレートフィルタ。
  3.  請求項1において、
     上記RhとPtとの質量比Rh/Ptが1/1000以上1/4以下であることを特徴とする触媒付パティキュレートフィルタ。
  4.  請求項2において、
     上記RhとPtとの質量比Rh/Ptが1/1000以上1/4以下であることを特徴とする触媒付パティキュレートフィルタ。
  5.  請求項1において、
     上記複合粒子を構成する上記Zr含有複合酸化物粒子及び上記活性アルミナ粒子各々の平均粒子径は20~100nmであることを特徴とする触媒付パティキュレートフィルタ。
  6.  請求項2において、
     上記複合粒子を構成する上記Zr含有複合酸化物粒子及び上記活性アルミナ粒子各々の平均粒子径は20~100nmであることを特徴とする触媒付パティキュレートフィルタ。
  7.  請求項3において、
     上記複合粒子を構成する上記Zr含有複合酸化物粒子及び上記活性アルミナ粒子各々の平均粒子径は20~100nmであることを特徴とする触媒付パティキュレートフィルタ。
  8.  請求項4において、
     上記複合粒子を構成する上記Zr含有複合酸化物粒子及び上記活性アルミナ粒子各々の平均粒子径は20~100nmであることを特徴とする触媒付パティキュレートフィルタ。
PCT/JP2012/004877 2011-09-22 2012-08-01 触媒付パティキュレートフィルタ WO2013042300A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280046190.XA CN103813854B (zh) 2011-09-22 2012-08-01 带催化剂的粒子过滤器
US14/346,936 US9381497B2 (en) 2011-09-22 2012-08-01 Catalyzed particulate filter
DE112012003969.6T DE112012003969B4 (de) 2011-09-22 2012-08-01 Katalysierter Feststoff-Filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011207774A JP5742625B2 (ja) 2011-09-22 2011-09-22 触媒付パティキュレートフィルタ
JP2011-207774 2011-09-22

Publications (1)

Publication Number Publication Date
WO2013042300A1 true WO2013042300A1 (ja) 2013-03-28

Family

ID=47914094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004877 WO2013042300A1 (ja) 2011-09-22 2012-08-01 触媒付パティキュレートフィルタ

Country Status (5)

Country Link
US (1) US9381497B2 (ja)
JP (1) JP5742625B2 (ja)
CN (1) CN103813854B (ja)
DE (1) DE112012003969B4 (ja)
WO (1) WO2013042300A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147408A1 (ja) * 2017-02-13 2018-08-16 エヌ・イーケムキャット株式会社 排ガス用浄化触媒組成物及びその製造方法、並びに自動車用排ガス浄化触媒

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2834001B1 (de) * 2012-04-05 2017-11-01 Umicore AG & Co. KG Verfahren zur entfernung von kohlenmonoxid und kohlenwasserstoff aus dem abgas mager betriebener verbrennungsmotoren
CN109641196B (zh) * 2016-06-17 2022-04-05 巴斯夫公司 钯柴油机氧化催化剂
JP6443501B1 (ja) * 2017-06-23 2018-12-26 マツダ株式会社 排気ガス浄化システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043442A1 (ja) * 2005-10-06 2007-04-19 Mitsui Mining & Smelting Co., Ltd. パティキュレート燃焼触媒、パティキュレートフィルター及び排ガス浄化装置
JP2008221204A (ja) * 2007-02-15 2008-09-25 Mazda Motor Corp 排ガス成分浄化用触媒材及び排ガス成分浄化用触媒
JP2009299521A (ja) * 2008-06-11 2009-12-24 Toyota Central R&D Labs Inc 排ガス浄化方法及び排ガス浄化装置
JP2010223076A (ja) * 2009-03-23 2010-10-07 Honda Motor Co Ltd 排気浄化装置
JP2010270695A (ja) * 2009-05-22 2010-12-02 Mazda Motor Corp 排気浄化装置及び排気浄化方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1213874A (en) * 1983-05-12 1986-11-12 Tomohisa Ohata Process for producing honeycomb catalyst for exhaust gas conversion
JP2005329318A (ja) 2004-05-19 2005-12-02 Mazda Motor Corp ディーゼルパティキュレートフィルタ
US8067330B2 (en) 2007-02-15 2011-11-29 Mazda Motor Corporation Catalytic material and catalyst for purifying exhaust gas component
JP4849034B2 (ja) 2007-08-08 2011-12-28 マツダ株式会社 触媒付パティキュレートフィルタ
JP5023950B2 (ja) 2007-10-10 2012-09-12 マツダ株式会社 排ガス成分浄化用触媒材及び同触媒材付パティキュレートフィルタ
EP2055365B1 (en) 2007-10-10 2018-02-28 Mazda Motor Corporation Catalyst-supported particulate filter
JP5488215B2 (ja) * 2010-06-07 2014-05-14 マツダ株式会社 排気ガス浄化用触媒

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043442A1 (ja) * 2005-10-06 2007-04-19 Mitsui Mining & Smelting Co., Ltd. パティキュレート燃焼触媒、パティキュレートフィルター及び排ガス浄化装置
JP2008221204A (ja) * 2007-02-15 2008-09-25 Mazda Motor Corp 排ガス成分浄化用触媒材及び排ガス成分浄化用触媒
JP2009299521A (ja) * 2008-06-11 2009-12-24 Toyota Central R&D Labs Inc 排ガス浄化方法及び排ガス浄化装置
JP2010223076A (ja) * 2009-03-23 2010-10-07 Honda Motor Co Ltd 排気浄化装置
JP2010270695A (ja) * 2009-05-22 2010-12-02 Mazda Motor Corp 排気浄化装置及び排気浄化方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147408A1 (ja) * 2017-02-13 2018-08-16 エヌ・イーケムキャット株式会社 排ガス用浄化触媒組成物及びその製造方法、並びに自動車用排ガス浄化触媒
JPWO2018147408A1 (ja) * 2017-02-13 2019-12-19 エヌ・イーケムキャット株式会社 排ガス用浄化触媒組成物及びその製造方法、並びに自動車用排ガス浄化触媒
JP7002812B2 (ja) 2017-02-13 2022-01-20 エヌ・イーケムキャット株式会社 排ガス用浄化触媒組成物の製造方法
JP2022061979A (ja) * 2017-02-13 2022-04-19 エヌ・イーケムキャット株式会社 排ガス用浄化触媒組成物、及び自動車用排ガス浄化触媒
JP7187654B2 (ja) 2017-02-13 2022-12-12 エヌ・イーケムキャット株式会社 排ガス用浄化触媒組成物、及び自動車用排ガス浄化触媒

Also Published As

Publication number Publication date
DE112012003969B4 (de) 2022-03-17
US9381497B2 (en) 2016-07-05
CN103813854B (zh) 2015-11-25
JP5742625B2 (ja) 2015-07-01
DE112012003969T5 (de) 2014-07-10
US20140205508A1 (en) 2014-07-24
JP2013066856A (ja) 2013-04-18
CN103813854A (zh) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5381008B2 (ja) パティキュレートフィルタ及びその製造方法
JP5023969B2 (ja) 排ガス成分浄化用触媒材及び同触媒材付パティキュレートフィルタ
JP5742625B2 (ja) 触媒付パティキュレートフィルタ
JP2013117190A (ja) 触媒付きパティキュレートフィルタ
JP5991162B2 (ja) 触媒付パティキュレートフィルタ
JP5954159B2 (ja) 触媒付パティキュレートフィルタ
JP5023968B2 (ja) 排ガス成分浄化用触媒材及び同触媒材付パティキュレートフィルタ
JP4985299B2 (ja) 排ガス成分浄化用触媒材及び同触媒材付パティキュレートフィルタ
JP5974850B2 (ja) 触媒付パティキュレートフィルタ
JP5979013B2 (ja) 触媒付パティキュレートフィルタの製造方法
JP5834925B2 (ja) 触媒付パティキュレートフィルタ
JP6627813B2 (ja) 触媒付きパティキュレートフィルタの製造方法
JP5942550B2 (ja) 粒子状物質燃焼触媒及びその製造方法
JP5023950B2 (ja) 排ガス成分浄化用触媒材及び同触媒材付パティキュレートフィルタ
JP4858394B2 (ja) 排ガス成分浄化用触媒材及び同触媒材付パティキュレートフィルタ
JP6194699B2 (ja) 触媒付パティキュレートフィルタの製造方法
JP7087557B2 (ja) パティキュレート浄化用触媒材及びその製造方法
JP5939140B2 (ja) 触媒付パティキュレートフィルタ
JP5942812B2 (ja) 触媒付パティキュレートフィルタ
JP6149757B2 (ja) エンジン排ガス浄化用触媒材及びパティキュレートフィルタ
JP5949520B2 (ja) 触媒付パティキュレートフィルタ
JP2010094627A (ja) 排気ガス浄化用触媒
JP2009090235A (ja) 排ガス成分浄化用触媒材及び同触媒材付パティキュレートフィルタ
JP6288113B2 (ja) パティキュレートフィルタ
JP2016043323A (ja) 触媒付パティキュレートフィルタ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833601

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14346936

Country of ref document: US

Ref document number: 1120120039696

Country of ref document: DE

Ref document number: 112012003969

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833601

Country of ref document: EP

Kind code of ref document: A1