WO2018147408A1 - 排ガス用浄化触媒組成物及びその製造方法、並びに自動車用排ガス浄化触媒 - Google Patents

排ガス用浄化触媒組成物及びその製造方法、並びに自動車用排ガス浄化触媒 Download PDF

Info

Publication number
WO2018147408A1
WO2018147408A1 PCT/JP2018/004564 JP2018004564W WO2018147408A1 WO 2018147408 A1 WO2018147408 A1 WO 2018147408A1 JP 2018004564 W JP2018004564 W JP 2018004564W WO 2018147408 A1 WO2018147408 A1 WO 2018147408A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite oxide
component
exhaust gas
alumina
catalyst composition
Prior art date
Application number
PCT/JP2018/004564
Other languages
English (en)
French (fr)
Inventor
浩幸 原
裕基 中山
永田 誠
Original Assignee
エヌ・イーケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌ・イーケムキャット株式会社 filed Critical エヌ・イーケムキャット株式会社
Priority to CN201880011325.6A priority Critical patent/CN110312572B/zh
Priority to US16/479,731 priority patent/US20200070126A1/en
Priority to EP18750786.8A priority patent/EP3581268A4/en
Priority to JP2018567509A priority patent/JP7002812B2/ja
Publication of WO2018147408A1 publication Critical patent/WO2018147408A1/ja
Priority to JP2021210092A priority patent/JP7187654B2/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/36Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a purification catalyst composition for exhaust gas, a method for producing the same, and an exhaust gas purification catalyst for automobiles. More specifically, the present invention can purify hydrocarbons, carbon monoxide, nitrogen oxides, etc. discharged from an internal combustion engine, etc.
  • the present invention relates to an exhaust gas purification catalyst composition capable of maintaining excellent purification performance under a wide range of conditions from low temperature to high temperature, a method for producing the same, and an exhaust gas purification catalyst for automobiles.
  • Automobile internal combustion engines emit harmful gases such as carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx).
  • CO carbon monoxide
  • HC hydrocarbons
  • NOx nitrogen oxides
  • Platinum (Pt), palladium (Pd), and rhodium (Rh) are known as platinum group metals.
  • Exhaust gas purification catalysts such as gasoline cars, particularly carbon monoxide (CO), hydrocarbon (HC), nitrogen In a three-way catalyst (TWC) that simultaneously purifies oxide (NOx), a catalytically active species that excels in oxidation activity such as Pt and Pd and Rh that excels in NOx purification activity are often used in combination.
  • NOx oxide
  • Rh a catalytically active species that excels in oxidation activity
  • cerium oxide having an oxygen storage capacity (OSC), alkaline earth metal, zirconium oxide Zeolite and the like are used as catalyst components or promoter components.
  • cerium oxide occludes oxygen as CeO 2 when the oxygen concentration in the exhaust gas is high, and releases oxygen as Ce 2 O 3 when the oxygen concentration is low.
  • the released oxygen is active oxygen and promotes the purification of CO and HC by being used for the oxidizing action by Pt and Pd.
  • the OSC component also functions to buffer changes in oxygen concentration in the exhaust gas by storing and releasing oxygen. By this function, the purification performance of exhaust gas is improved in TWC.
  • TWC performs oxidation and reduction with a single catalyst, and there is a range of exhaust gas components suitable for purification by design, and this range often depends on the air-fuel ratio.
  • a range is called a window, and in many cases, the exhaust gas burned near the stoichiometric air-fuel ratio called Stichio is set in the window region.
  • Cerium-zirconium composite oxides are said to have high heat resistance and a high oxygen storage / release rate. This is presumably because the crystal structure of the cerium-zirconium composite oxide is stable and does not inhibit the action of cerium oxide, which is the main OSC component, so that the OSC functions effectively to the inside of the particles.
  • Zirconium oxide is said to promote a steam reforming reaction and a CO + NO reaction when used together with an Rh component (see Patent Document 2). Since such a reaction occurs in addition to the NOx purification reaction by HC, the NOx purification is further promoted. Therefore, a promoter for accelerating the steam reforming reaction other than zirconium oxide is used.
  • a rare earth oxide such as neodymium oxide or praseodymium oxide is added to alumina (see Patent Document 3), and lanthanum oxide into cerium oxide.
  • rare earth oxides such as neodymium oxide (see Patent Document 4)
  • alumina particles and neodymium oxide, zirconia, etc. whose heat resistance is improved with lanthanum oxide, zirconia, etc., which are noble metals such as Rh, Pd, etc.
  • a method of supporting both of the cerium oxide fine particles having improved heat resistance see Patent Document 5).
  • Rh is supported on a material having OSC.
  • an exhaust gas purification catalyst in which a catalyst layer containing Rh is provided on a base material an exhaust gas purification catalyst in which Rh is supported on a support material in which a Zr-based composite oxide is supported on activated alumina (Patent Document 6)
  • the catalyst layer contains a Zr-based composite oxide not containing Ce as a diluent, and further includes a Zr-based composite oxide carrying Rh.
  • the material having OSC supporting Rh is superior in oxygen diffusibility on the surface of the base material than alumina supporting Rh. Therefore, it is said that the light-off activity at the start of use is high. Since the material having heat resistance is lower than that of alumina, it is easy to sinter Rh, and thus a problem that the deterioration rate is large has been pointed out. That is, when exposed to high-temperature exhaust gas, it is considered that Rh tends to cause NOx performance deterioration due to grain growth.
  • Nagashima et al. include a catalyst composition in which rhodium (Rh) is supported on a zirconia (ZrO 2 ) base material together with ⁇ -alumina (Al 2 O 3 ) particles, and the average particle diameter of the ⁇ -alumina particles Discloses an exhaust gas-purifying catalyst composition having a particle size of 10 nm to 1 ⁇ m and smaller than the average particle diameter of the zirconia base material (see Patent Document 7).
  • the present invention has been made in view of the above conventional problems. Its purpose is to purify hydrocarbons, carbon monoxide, nitrogen oxides, etc. discharged from internal combustion engines, etc., and particularly to an exhaust gas purification catalyst composition capable of maintaining excellent performance under a wide range of conditions from low temperature to high temperature, and a method for producing the same And to provide an exhaust gas purification catalyst for automobiles and the like.
  • the inventors of the present invention have made complex oxidation of a specific component (A) containing Ce and / or a specific component (B) containing Zr on the alumina surface.
  • a specific component (A) containing Ce and / or a specific component (B) containing Zr on the alumina surface By arranging a predetermined amount of the substance together with Rh, it is found that the catalytic activity is relatively maintained even when exposed to high temperature exhaust gas for a long time, and the deterioration of the purification performance of CO, HC, NOx is suppressed.
  • the invention has been completed.
  • an exhaust gas purification catalyst composition for purifying carbon monoxide (CO), hydrocarbon (HC), and / or nitrogen oxide (NOx) in exhaust gas, wherein Rh,
  • the component oxide (A) containing Ce and / or the component oxide (B) containing Zr, and at least alumina, Rh is supported on the alumina together with the composite oxide, and the amount of Rh supported is , Rh and the total amount of the composite oxide and alumina is 0.01 to 5% by weight, and the total content of the composite oxide is based on the total amount of Rh, the composite oxide, and alumina.
  • An exhaust gas purification catalyst composition characterized by being 0.1 to 15% by weight is provided.
  • Nd / Y composite oxide Zr / Pr / Y composite oxide
  • Zr / Nd / Pr / La composite oxide Zr / Nd / Pr / Pr / Y composite oxide
  • Zr / Nd / La / Y composite oxide Zr ⁇ At least one selected from the group consisting of Pr ⁇ Ln ⁇ Y composite oxide and Zr ⁇ Nd ⁇ Pr ⁇ La ⁇ Y composite oxide
  • the content of the composite oxide is 0.1 to 10% by weight based on the total amount of Rh, the composite oxide, and alumina.
  • An exhaust gas purifying catalyst composition is provided.
  • an exhaust gas purifying catalyst composition characterized in that, in the first invention, the average particle diameter of alumina is 0.1 to 30 ⁇ m.
  • the exhaust gas purifying catalyst composition is characterized in that Rh and the composite oxide are highly dispersed on alumina. Is provided.
  • a method for producing an exhaust gas purification catalyst composition according to any one of the first to fourth aspects, wherein the component (A) contains at least a water-soluble Rh compound and Ce. ) And / or Zr-containing water-soluble precursor compound of the component (B) is dissolved in water to form a mixed precursor of Rh and the compound, and the aqueous solution containing the mixed precursor is brought into contact with alumina Rh and the component (A) or the precursor compound of the component (B) are impregnated into alumina to obtain a slurry, and then the obtained slurry is filtered, dried, and further baked to obtain Rh
  • a method for producing an exhaust gas purification catalyst composition characterized in that a catalyst composition supported on alumina together with component (A) and / or composite oxide of component (B) is obtained.
  • the Rh compound and the precursor compound of the component (A) and / or the component (B) are both acidic salt compounds.
  • the Rh compound and the precursor compound of the component (A) and / or the component (B) are both basic compounds.
  • a method for producing an exhaust gas purification catalyst composition wherein the mixed precursor is formed while a base is added.
  • an eighth aspect of the present invention there is provided the method for producing an exhaust gas purification catalyst composition according to any one of the fifth to seventh aspects, wherein the slurry is dried by spray drying.
  • Rh is supported on alumina together with the component (A) and / or the composite oxide of the component (B).
  • a method for producing an exhaust gas purifying catalyst composition wherein the catalyst composition is mixed with an aqueous medium containing a binder and an acid or a base and pulverized to form a slurry.
  • the slurry has an average particle diameter D90 of 1 to 20 ⁇ m.
  • a method is provided.
  • the honeycomb carrier is provided with at least a honeycomb carrier and a catalyst layer, and the exhaust gas purification catalyst composition of any one of the first to fourth inventions is coated on the honeycomb carrier as the catalyst layer.
  • An exhaust gas purification catalyst for automobiles is provided.
  • the catalyst layer comprises a catalyst composition in which Rh is supported on the component (A) and / or the composite oxide of the component (B).
  • the total coating amount of the catalyst composition is 20 to 300 g / L per unit volume of the honeycomb carrier.
  • An exhaust gas purification catalyst for automobiles is provided.
  • the exhaust gas purification catalyst composition of the present invention is superior in the purification activity of hydrocarbons, carbon monoxide, nitrogen oxides and the like at low temperatures, and has a higher activity than conventional Rh-supported OSC materials and Rh-supported alumina catalysts.
  • the catalyst inlet gas temperature (T50) when the reaction rate reaches a numerical value of 50% is low, and the purification rate can be improved even at a high temperature of 400 ° C. or higher.
  • the exhaust gas purification catalyst composition of the present invention exhibits excellent purification performance for CO, HC, NOx discharged from an internal combustion engine such as a gasoline engine.
  • the exhaust gas purification catalyst for automobiles of the present invention is durable. Not only is it excellent in properties, but it can be manufactured at low cost because the Rh blending amount is relatively small, and an exhaust gas purification device can be stably produced and supplied.
  • (A) is a catalyst particle cross section at the time of preparation of the exhaust gas purification catalyst for automobiles
  • (B) is a catalyst particle cross section after the high temperature durability treatment.
  • XRD X-ray-diffraction apparatus
  • FIG. 1 It is a graph which shows the result of having performed the light-off test about the honeycomb catalyst (exhaust gas purification catalyst for motor vehicles) of an Example and a comparative example using model gas.
  • (A) is a graph showing the relationship between the composite oxide content of component (A) and / or component (B) and HCT50, and (B) shows the relationship between the composite oxide content and NOxT50. It is a graph to show.
  • the exhaust gas purification catalyst composition of the present embodiment (hereinafter also simply referred to as catalyst composition) is a composite of a specific component (A) containing Ce of Rh and / or a specific component (B) containing Zr.
  • the catalyst powder contains at least an oxide and alumina, and a specific amount of Rh is supported on the alumina base material particles together with the composite oxide.
  • the catalyst powder in which Rh is supported on the base particle made of OSC-containing material or zirconia as in the prior art is superior in oxygen diffusibility on the surface of the base material than alumina supporting Rh. While it is known that the light-off activity at the start of use is high, there is a problem that a material having OSC as a base material or zirconia has lower durability than alumina. This is schematically shown in FIG. Rh particles are supported with a small particle size on the surface of both OSC-containing material or zirconia and alumina when the catalyst is prepared. If this is exposed to a high temperature of, for example, 1000 ° C.
  • the particle size of the Rh particles on the OSC base material particles increases due to sintering, resulting in a decrease in catalyst performance due to a decrease in the catalyst active point. Since the Rh particles on the zirconia base material particles have a lower catalytic activity than the Rh particles on the OSC base material particles, the catalytic activity of the catalyst powder as a whole is reduced.
  • component A for example, Ce / Zr / Nd / Pr composite oxide (hereinafter abbreviated as “CZNP”) is formed on the surface of the alumina base material particles.
  • CZNP Ce / Zr / Nd / Pr composite oxide
  • component B together with Rh increases the oxygen diffusibility on the surface of the alumina base material particles while ensuring the durability of the Rh-supported alumina.
  • the catalytic activity of Rh particles on the material particles is improved. This state is schematically shown in FIG.
  • the Rh particles are supported on the surface of both the OSC-containing material or zirconia and alumina, and the composite oxide of component (A) and / or component (B) is in a highly dispersed state on the surface of the alumina base material particles. It exists nearby. Therefore, even if the particle size is increased by being exposed to a high temperature of 1000 ° C. or higher, the Rh particles on the alumina base material particles are larger in particle size than the material having OSC shown in FIG. 8 or the Rh particles on zirconia.
  • the catalyst activity is improved by the interaction with the composite oxide of component (A) and / or component (B) while the degree is kept low, so that the decrease in the catalyst activity is suppressed even after a long period of time at a high temperature. It is considered to be.
  • the same mechanism is considered for not only the complex oxide of the component (A) containing Ce but also the complex oxide of the component (B) containing Zr.
  • the composite oxide of component (A) can also be regarded as a material having OSC that exhibits a good interaction with Rh, and the composite oxide of component (B) has the characteristics of ZrO 2 similar to the material having OSC. It can be seen that it is expressed on Al 2 O 3 .
  • Rhodium (Rh) In the catalyst powder (catalyst composition) of the present embodiment, the noble metal element Rh mainly functions as an active metal that reduces NOx in the exhaust gas.
  • the Rh particles are supported on alumina, and at that time, it is necessary to be supported together with the composite oxide of component (A) and / or component (B).
  • the presence of Rh particles on the base material particles 11 is observed with a scanning transmission electron microscope (STEM), powder X-ray diffraction (XRD), electron probe microanalyzer (EPMA). Electron Probe Micro Analyzer), X-ray Photoelectron Spectroscopy (XPS), or ESCA (Electron Spectroscopy for Chemical Analysis) can be used for grasping.
  • STEM scanning transmission electron microscope
  • XRD powder X-ray diffraction
  • EPMA electron probe microanalyzer
  • Electron Probe Micro Analyzer Electron Probe Micro Analyzer
  • XPS X-ray Photoelectron Spectroscopy
  • the Rh particles are not limited by the average particle diameter, but are preferably 100 nm or less in consideration of maintenance of catalyst performance due to dispersibility.
  • the average particle size is more preferably 80 nm or less, and further preferably 50 nm or less.
  • the lower limit of the average particle size of Rh is not particularly limited, but is generally preferably 0.1 nm or more.
  • the average particle size of the Rh particles means an average value of 20 points randomly extracted from a 10,000 times SEM image of the exhaust gas purification catalyst composition after the durability treatment.
  • the amount of Rh supported on the alumina base material particles is 0.01 to 5.0% by weight with respect to the total amount of Rh, the composite oxide, and alumina. From the viewpoint of denitration performance and price, the supported amount is preferably 0.05 to 2.0% by weight, more preferably 0.1 to 1.0% by weight.
  • alumina is a kind of porous inorganic oxide that functions as base material particles carrying Rh in a highly dispersed state.
  • alumina include, but are not particularly limited to, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and the like.
  • the BET specific surface area of alumina is not particularly limited, but is preferably 20 to 250 m 2 / g from the viewpoint of high dispersibility of Rh, gas diffusivity in the pores related to the pore diameter in the particles, and the like. 80 to 250 m 2 / g is more preferable, and 100 to 200 m 2 / g is particularly preferable.
  • BET specific surface area means the value calculated
  • the average particle diameter of alumina is not particularly limited, but is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, from the viewpoint of gas diffusion and the like. Further, the lower limit of the average particle diameter of alumina is not particularly limited, but usually 0.1 ⁇ m or more is preferable. In this specification, the average particle diameter of alumina is the median diameter D 50 measured with a laser diffraction particle size distribution measuring device (for example, a laser diffraction particle size distribution measuring device SALD-7100 manufactured by Shimadzu Corporation). Means.
  • composite oxide of component (A), composite oxide of component (B) In the catalyst powder (catalyst composition) of this embodiment, the composite oxide of component (A) and the composite oxide of component (B) Is a composite oxide containing Ce and / or Zr that supports the noble metal Rh on alumina in a highly dispersed manner and enhances the catalytic activity of Rh on alumina.
  • the component (A) is a composite oxide containing at least one Ce selected from the group exemplified below.
  • Zr.Nd.Y composite oxide CZNY
  • Ce.Zr. r ⁇ Y composite oxide CZPY
  • Ce ⁇ Nd ⁇ Pr ⁇ La composite oxide CNPL
  • Ce ⁇ Zr ⁇ Pr ⁇ La composite oxide CZPL
  • Ce ⁇ Zr ⁇ Nd ⁇ Y composite oxide CZNY
  • Ce.Zr.Ln.Y composite oxide CZLY
  • Ce.Zr.Pr.Y composite oxide CZPY
  • Ce.Nd.Pr.Y composite oxide CNPY
  • Ce.Nd.Ln Ce.Nd.Ln.
  • CNLY Ce • Pr • La • Y composite oxide
  • CZNPY Ce • Zr • Nd • Pr • Y composite oxide
  • CZNLY Ce • Zr • Nd • Ln • Y composite oxide
  • CZPLY Ce / Zr / Pr / La / Y composite oxide
  • CNPLY Ce / Zr / Nd / Pr / Ln / Y composite oxide
  • Component (B) is a composite oxide containing at least one or more Zr selected from the group exemplified below.
  • the composite oxide of component (A) and / or component (B) includes two elements among the main elements represented by CZNPLY (that is, Ce, Zr, Nd, Pr, La, Y).
  • CZNPLY that is, Ce, Zr, Nd, Pr, La, Y.
  • a composite oxide containing three elements or a composite oxide containing four elements is more preferable than a composite oxide.
  • a composite oxide containing four elements of Ce, Zr, Nd, and Pr (CZNP), and Ce and A five-element composite oxide or a six-element composite oxide containing four elements of Zr, Nd, and Pr as essential components is preferable.
  • the content of Ce and Zr is the content of the composite oxide.
  • the total amount is preferably 50% by weight or more, and more preferably 60% by weight or more in terms of metal oxide relative to the total amount.
  • the upper limit of content of Ce and Zr is not specifically limited, Usually 90 weight% or less is preferable in total.
  • Nd and La suppress the sintering with respect to Rh, and if Nd, Pr, and La are small amounts, they exert effects such as improving the heat resistance of CeO 2 , but the Rh catalytic function is confirmed.
  • the total content of Nd and La is preferably less than 50% by weight in terms of metal oxide with respect to the total amount of the composite oxide, and more preferably 40% by weight or less in total.
  • the minimum of content of Nd and La is not specifically limited, Usually, 1 weight% or more is preferable in total.
  • Y and Pr have a crystal structure stabilizing action with respect to Ce and Zr, and may improve Rh activity, etc., and can each be contained in an amount of 10% by weight or less.
  • the content of the composite oxide of component (A) and / or component (B) is 0 in total with respect to the total amount of Rh, the composite oxide, and alumina. It is preferably 1 to 15% by weight.
  • the composite oxide of component (A) and / or component (B) is supported in a highly dispersed state with a crystallite size of several nm or less, more preferably 1 nm or less, on the alumina base material particles, whereby zirconia And the effect of promoting the steam reforming reaction and CO + NO reaction of zirconia as a base material can be expected.
  • the composite oxide of component (A) and / or component (B) is preferably contained in a total amount of 0.1 to 10% by weight, and more preferably in a total of 0.3 to 8% by weight.
  • Exhaust gas purification catalyst composition of the present embodiment includes at least a water-soluble Rh compound and a water-soluble precursor compound of component (A) containing Ce and / or component (B) containing Zr Is dissolved in water to form a mixed precursor of Rh and the compound, an aqueous solution containing the mixed precursor is brought into contact with alumina, and a precursor compound of Rh and component (A) and / or component (B) After the slurry is impregnated with alumina, the resulting slurry is filtered, dried, and further baked. Later, Rh is added onto the alumina together with the composite oxide of component (A) and / or component (B). A supported catalyst composition is obtained.
  • a specific amount of a raw material containing a water-soluble Rh salt, a water-soluble rare earth salt, and, if necessary, a zirconium salt is prepared, and these are mixed and stirred to prepare an aqueous solution.
  • Any suitable compound and / or complex of the catalyst component Rh metal is utilized to disperse the catalyst component Rh on the activated alumina support particles.
  • a water-soluble compound of Rh or a compound or complex dispersible in water can be obtained by reacting the liquid used for impregnating or adhering the catalyst metal compound onto the alumina support particles with the catalyst metal or its compound or complex and other components of the slurry. And can be removed from the catalyst by evaporation or decomposition with heating and / or application of vacuum.
  • suitable compounds are rhodium nitrate, rhodium chloride, rhodium sulfate, hexamine rhodium chloride, etc. in the case of acid salts, and nitric acid that does not leave residues such as chlorine and sulfide after firing. Rhodium is preferred.
  • rhodium hydroxide etc. are mentioned.
  • the rare earth metals cerium, neodymium, praseodymium, lanthanum, yttrium compounds, and zirconium compounds are all water-soluble.
  • nitrates, halides, and sulfates are preferably used.
  • Nitrate that does not leave residues such as chlorine and sulfide after firing is preferred.
  • cerium hydroxide, neodymium hydroxide, praseodymium hydroxide, lanthanum hydroxide, yttrium hydroxide, zirconium hydroxide and the like can be mentioned.
  • a predetermined amount of water-soluble Rh compound and water-soluble rare earth compound are weighed and dissolved in water to form a mixed precursor such as Rh and rare earth compound. It is important to use an aqueous solution of the precursor. The same applies to the case of containing a salt of a zirconium compound in addition to the water-soluble Rh compound and the water-soluble rare earth compound.
  • both the properties (acidic / basic) of the aqueous solution or suspension containing the Rh salt aqueous solution and the rare earth compound or the like are different, both may aggregate to form a precipitate.
  • the properties of the aqueous solution to be contained be unified between acidic or basic.
  • both the Rh compound and the rare earth compound can be acid salt compounds, and it is effective to form a mixed precursor while further adding an acid.
  • both the Rh compound and the rare earth compound, or the Rh compound, the rare earth compound, and the zirconium compound are both basic compounds
  • ammonia NH 3
  • sodium carbonate Na 2 CO 3
  • sodium hydroxide NaOH
  • KOH potassium hydroxide
  • the aqueous solution is brought into contact with alumina, and Rh and a rare earth compound are impregnated into the alumina.
  • Rh and a rare earth compound are impregnated into the alumina.
  • the amount of the composite oxide of component (A) and / or component (B) supported on alumina is 0.1 in total with respect to the total amount of Rh, the composite oxide and alumina from the viewpoint of the supported state and cost. ⁇ 15 wt%. If it is this range, the synergistic effect with a zirconia and the promotion effect of the steam reforming reaction and CO + NO reaction which zirconia as a base material has can be acquired.
  • the catalyst composition mentioned above is obtained by filtering and drying the obtained slurry, and by firing this, Rh is supported on the alumina base material particles together with component (A), component (B) and the like. Is done.
  • the form of loading cannot be uniformly defined, there is a composite oxide of component (A) and / or component (B) containing a rare earth oxide in the vicinity of Rh, and at least a part of Rh is a component ( It is desirable to be supported on the alumina base material particles via a composite oxide (layer) of A) and / or component (B).
  • the drying means of the obtained slurry is not limited, and the slurry is dried by an ordinary drying method including drying in an oven, spray drying, freeze drying, and rotary evaporation.
  • a stationary bed, a moving bed, a fluidized bed, etc. can be adopted.
  • spray drying is preferable in that not only is drying efficiently, but a uniform particle size can be obtained by granulation during drying.
  • Firing after drying may be carried out according to a conventional method, and is not particularly limited.
  • an oxidizing gas such as air, or nitrogen, argon, xenon, helium and a mixture thereof. Heating is performed in an inert gas atmosphere selected from the group or an oxidizing gas atmosphere diluted with an inert gas.
  • the heating time can be appropriately set according to other conditions such as the heating temperature, and is not particularly limited, but is usually about 0.5 to 20 hours in consideration of productivity and the like.
  • D90 of the catalyst powder (catalyst composition) thus obtained depends on the desired performance. Although it can be appropriately set and is not particularly limited, it is preferably 1 to 20 ⁇ m, more preferably 3 to 10 ⁇ m.
  • the pulverized catalyst powder can be pulverized.
  • the pulverizer for example, a ball mill or the like can be used. This grinding further improves the catalytic activity of the produced catalyst composition.
  • the catalyst powder supported on the alumina base material particles together with the composite oxide of component (A) and / or component (B) Rh can be used as it is, but it is intended to improve the filling and durability of the apparatus. Therefore, it can be used by adhering and applying to various heat-resistant substances. In order to adhere and apply to a heat-resistant substance, it is preferable to use a catalyst by mixing an aqueous medium containing a binder and an acid and pulverizing the catalyst.
  • the exhaust gas purification catalyst composition of the present embodiment can be used as a structural catalyst in which the above catalyst components are coated on various carrier surfaces.
  • the shape of the carrier is not particularly limited, and can be selected from prismatic, cylindrical, spherical, honeycomb, sheet-like structural carriers.
  • the size of the structure-type carrier is not particularly limited, and a structural carrier having a diameter (length) of several millimeters to several centimeters can be used as long as it is any of a prismatic shape, a cylindrical shape, and a spherical shape.
  • Exhaust gas purification catalyst for automobiles of this embodiment includes at least a honeycomb carrier and a catalyst layer, and the above-described catalyst composition, that is, a composite oxide in which Rh is component (A) and / or component (B).
  • a honeycomb carrier is coated with one or more of the catalyst compositions containing alumina supported therewith as a catalyst layer.
  • one or more precious metals such as Pd and Pt can be added, and a barium compound and a binder can be added.
  • Catalyst preparation In order to prepare the exhaust gas purification catalyst for automobiles of this embodiment, the catalyst composition and, if necessary, a binder or the like are mixed with an aqueous medium to form a slurry mixture, and then applied to the honeycomb carrier. Work, dry and fire. That is, first, the catalyst composition and the aqueous medium are mixed at a predetermined ratio to obtain a slurry mixture.
  • the aqueous medium may be used in such an amount that the catalyst composition can be uniformly dispersed in the slurry.
  • an acid or a base for adjusting the pH may be blended, or a surfactant, a dispersing resin, or the like may be blended for adjusting the viscosity or improving the slurry dispersibility.
  • a mixing method of the slurry for example, pulverization and mixing by a ball mill or the like can be applied, but other pulverization or mixing methods can also be applied.
  • the coating method may be performed according to a conventional method, and is not particularly limited, but generally a wash coat method is preferable.
  • the drying temperature can be appropriately set and is not particularly limited, but is usually preferably 70 to 200 ° C, more preferably 80 to 150 ° C.
  • the firing temperature can be appropriately set and is not particularly limited, but is usually preferably 300 to 700 ° C, and preferably 400 to 600 ° C.
  • a heating means well-known heating means, such as an electric furnace and a gas furnace, can be used.
  • the total coating amount of the catalyst composition on the honeycomb carrier can be appropriately set according to the desired performance, and is not particularly limited, but ensures a sufficient amount of the composite oxide of component (A) and / or component (B), From the viewpoint of enhancing the dispersibility of the noble metal and suppressing the engine load due to pressure loss, it is preferably 20 to 300 g / L, more preferably 50 to 280 g / L, and still more preferably 100 to 250 g / L.
  • D90 is preferably 1 to 20 ⁇ m.
  • the thickness is more preferably 3 to 15 ⁇ m.
  • pulverization may be performed. At this time, it can be slurried with other components and pulverized.
  • the amount of Rh supported on alumina is preferably 0.005 g / L to 2.0 g / L, and preferably 0.01 g / L to 2.0 g / L per unit volume of the honeycomb carrier, from the viewpoint of denitration performance, cost, and the like. Is preferable, and 0.03 g / L to 1.5 g / L is more preferable.
  • the amount of the composite oxide of component (A) and / or component (B) supported on alumina suppresses the decrease in Rh activity, and from the standpoint of improving the denitration performance and the HC purification rate, the honeycomb carrier.
  • the supported amount of the co-supported alumina supporting Rh and the component (A) and / or component (B) composite oxide is preferably 20 to 200 g / L per unit volume of the honeycomb carrier, and preferably 50 to More preferably, it is 150 g / L.
  • Ceria / zirconia composite oxide carrying Rh The catalyst composition described above (catalyst layer containing the catalyst composition) may contain promoter particles as necessary. For example, it may further contain a ceria / zirconia composite oxide carrying Rh.
  • the ceria-zirconia composite oxide used here has a function as an OSC component and a function as a base material as described above.
  • the OSC of the base material ceria (cerium oxide) is mainly used, but zirconia (zirconium oxide) is preferable in order to improve heat resistance while maintaining the OSC function.
  • zirconia is mainly used as a base material, but ceria is preferably added in order to promote the oxidation-reduction action of the supported noble metal.
  • the raw material powder of the OSC component is a known material, for example, obtained by pulverizing oxide particles obtained by firing one or more inorganic or organic rare earth compounds and one or more zirconium compounds in the air at 450 to 600 ° C. .
  • the mixing ratio of ceria and zirconia is not particularly limited, but in order to achieve both the function as OSC and the function as a base material, the ceria ratio is preferably 10 to 80% by weight, 70% by weight is more preferred.
  • the ceria / zirconia composite oxide may further contain a rare earth oxide such as lanthanum oxide or praseodymium oxide.
  • the amount of the ceria / zirconia composite oxide supporting rhodium (Rh) is preferably 20 to 150 g / L per unit volume of the honeycomb carrier in order to exhibit the function as the OSC and the function as the base material. .
  • the catalyst composition (catalyst layer containing the catalyst composition) described above may further contain palladium as necessary.
  • the noble metal element palladium is an optional component, it functions as an active metal like Rh.
  • Palladium may be supported on the above-described alumina or may be supported on the above-mentioned ceria / zirconia composite oxide.
  • the amount of Pd added is preferably 10.0 g / L or less, more preferably 0.5 to 6.0 g / L per unit volume of the honeycomb carrier because it can improve the purification performance of HC, CO and the like and suppress the cost.
  • Binder etc.
  • a binder such as alumina sol can be used in order to adhere to the base material particles and the promoter particles and bond the particles.
  • Alumina sol is composed of fine particles of several tens of nm to several ⁇ m, and adheres and bonds to base material particles and promoter particles.
  • the amount of the binder is not particularly limited, and even if the amount is small, there is no problem as long as the catalyst does not peel from the honeycomb carrier even after durability.
  • the binder include various types of sols such as silica sol, zirconia sol, titania sol, in addition to alumina sol.
  • soluble salts such as aluminum nitrate, aluminum acetate, zirconium nitrate, and zirconium acetate can also be used.
  • acids such as acetic acid, nitric acid, hydrochloric acid and sulfuric acid can be used.
  • honeycomb carrier is made of a ceramic such as cordierite, silicon carbide, silicon nitride, or a metal such as stainless steel, and generally has a structure extending throughout the carrier. It has many parallel fine gas flow paths. As this material, cordierite is preferable because of durability and cost.
  • the number of holes in the opening of the honeycomb carrier is set to an appropriate range in consideration of the type of exhaust gas to be processed, the gas flow rate, the pressure loss, the removal efficiency, and the like.
  • the cell density is preferably 100 to 900 cells / inch 2 (15.5 to 139.5 cells / cm 2 ). More preferably, it is ⁇ 600 cells / inch 2 (31 to 93 cells / cm 2 ).
  • the cell density is the number of cells per unit area in a cross section when the honeycomb carrier is cut at right angles to the gas flow path.
  • the honeycomb carrier has a flow-through structure in which the gas flow path is communicated, and a wall in which a part of the end face of the gas flow path is sealed and gas can flow through the wall surface of the gas flow path.
  • Flow type structures are widely known.
  • a flow-through structure has low air resistance and low pressure loss of exhaust gas.
  • it is a wall flow type structure, it is possible to filter off the particulate component contained in exhaust gas. Either structure can be used for the exhaust gas purification catalyst for automobiles of this embodiment.
  • the exhaust gas purification catalyst for automobiles of this embodiment is obtained by coating a honeycomb carrier with one or more layers of the catalyst composition.
  • the layer structure may be one layer, but it is preferable to improve the exhaust gas purification performance by using two or more layers.
  • the component growth (A) and / or the composite oxide of the component (B) is supported on the alumina base material together with Rh, so that the particle growth of Rh particles is suppressed at a high temperature.
  • the decrease in Rh activity is suppressed. That is, Rh supported on the alumina base material together with the composite oxide of component (A) and / or component (B) can be mixed with a base material in which another noble metal is supported in a single layer. Even if it has a multilayer structure with a base material carrying NO, it is possible to maintain excellent CO, HC, and NOx purification characteristics because performance degradation is suppressed at high temperatures.
  • the basic concept of the present invention is that rhodium (Rh) is supported on the alumina base material together with the component (A) or the composite oxide of component (B).
  • the catalyst capacity allowed in the vehicle body the number of catalysts used, the type / amount / ratio of allowable precious metals, etc., the composition of the catalyst layers, each precious metal layer
  • the arrangement, the type and amount of promoter (compound containing rare earth, alkali metal, alkaline earth metal, transition metal, etc.) and the arrangement in each layer are appropriately determined.
  • BET SA Specific surface area
  • Example 1 A catalyst composition (catalyst powder) was prepared in the following manner. ⁇ Rh-component (A) and / or component (B) supported alumina> ⁇ -alumina powder, rhodium (Rh) and component (A) and / or component (B) composite oxide (CZNP) as a whole, rhodium nitrate is 0.2% by weight in terms of Rh, and cerium nitrate is used.
  • the mixed precursor slurry was prepared by weighing to 35 wt%, diluting with pure water, adding nitric acid, heating to 40-50 ° C. and stirring well.
  • this mixed precursor slurry was mixed with a commercially available high-purity ⁇ -alumina powder having a BET specific surface area of 150 m 2 / g, an average pore diameter of 15 nm, and a rare earth compound and a Zr compound content below the detection limit. (Rh) and a rare earth compound were impregnated and supported on a ⁇ -alumina support. Thereafter, the water-containing powder was dried and then calcined in air at 500 ° C.
  • Example 1 A co-supported alumina (Rh ⁇ Ce—Zr—Nd—Pr / Al 2 O 3 , CZNP content: 5 wt%) was prepared.
  • the composite oxide (CZNP) used here corresponds to the component (A) described above, but is highly dispersed on the ⁇ -alumina support, and other composite oxides such as ZNP not containing Ce are used. Since it was slightly formed and supported on a part of the surface of the ⁇ -alumina support, it was expressed as component (A) and / or component (B). The same applies to the following.
  • the crystallite diameter was measured by an XRD apparatus, the BET SA value was measured, and an EPMA image was taken. .
  • Comparative Example 1 A catalyst of Comparative Example 1 was prepared in the same manner as in Example 1 except that the blending of Component (A) and / or Component (B) was omitted. Specifically, Rh was supported on a ⁇ -alumina support in the following manner using a commercially available high-purity ⁇ -alumina powder having a rare earth compound and Zr compound content below the detection limit. ⁇ Rh supported alumina> Based on the total amount of ⁇ -alumina powder and rhodium (Rh) used, rhodium nitrate was weighed out to 0.2% by weight in terms of Rh and diluted with pure water to prepare a slurry.
  • This slurry was mixed with a commercially available high-purity ⁇ -alumina powder having a BET specific surface area of 150 m 2 / g, an average pore size of 15 nm, and rare earth compound and Zr compound content below the detection limit, and Rh was mixed on the ⁇ -alumina support. Impregnated and supported. Thereafter, the water-containing powder was dried and then calcined in the air at 500 ° C. for 1 hour to prepare the catalyst of Comparative Example 1, that is, 0.2 wt% Rh-supported alumina. Using the obtained Rh-supported alumina as a sample, the crystallite diameter was measured by an XRD apparatus, and the BET SA value was measured.
  • Example 2 to 4, Comparative Example 2 Except for changing the amount of component (A) and component (B) so that the content of component (A) and / or component (B) is in the range of 0.5 to 30.0% by weight, respectively.
  • Rh and component (A) and / or component (B) were impregnated and supported on a ⁇ -alumina carrier, dried and calcined, whereby the catalysts of Examples 2 to 4 and Comparative Example 2 Were prepared respectively.
  • the obtained Rh ⁇ component (A) and / or component (B) co-supported alumina was measured by an XRD apparatus, the BET SA value was measured, and an EPMA image was taken.
  • the CZNP content was 10% by weight or more, and a value detectable as a peak from around 28 was confirmed.
  • the crystallite size of the component (A) and / or the component (B) of the catalyst of Example 2 (CZNP content: 10% by weight) and Comparative Example 2 (CZNP content: 30% by weight) is considered to be 1 to 100 nm.
  • the crystallite size of the component (A) and / or component (B) of the catalyst of Example 3 (CZNP content: 1% by weight) and Example 4 (CZNP content: 0.5% by weight) is considered to be 1 nm or less. .
  • the BET SA value decreases with an increase in the CZNP content.
  • the CZNP content is 138 m 2 / g when the CZNP content is 0.5% by weight, and the BET SA value is 80 m when the CZNP content is 30% by weight. 2 / g.
  • the catalysts of Examples 2 to 4 and Comparative Example 2 have Rh and component (A) and / or component (B) supported on ⁇ -alumina support in a highly dispersed state. I understand that
  • the CZNP of the component (A) and / or component (B), which is also a catalytically active component is, for example, a mixed precursor slurry. It can be effectively supported by impregnating alumina in a state, and even if the amount of CZNP supported is as large as 30% by weight, it can be supported with good dispersibility.
  • CZNP as component (A) and / or component (B) is around 5% by weight
  • selection of raw materials and preparation of catalyst are possible even when 30% by weight of CZNP is contained. If the method and conditions are optimized, there are cases where it can be used practically without problems depending on the type of exhaust gas to be used, the operating condition of the engine, and the like. This is the same even when a small amount of 0.1 to 1% by weight of CZNP having good dispersibility is included, and depending on the type of exhaust gas to be used, the operating condition of the engine, etc., there are cases where it can be used without any practical problems.
  • Example 5 ⁇ Honeycomb catalyst> Using ⁇ Rh ⁇ component (A) and / or component (B) co-supported alumina> prepared in Example 1 above, a lower layer and an upper layer were sequentially formed on the honeycomb support in the following manner to obtain Example 5 A honeycomb catalyst was prepared.
  • Example 5 prepared in this way as a sample, a model gas evaluation test was performed in the manner described above.
  • the measurement results of HC T50, CO T50, and NOx T50 are shown in the graph of FIG. 5 together with other examples and comparative examples.
  • Comparative Example 3 At the time of forming the upper layer, the catalyst ⁇ Rh-supported alumina> of Comparative Example 1 was used in place of the catalyst ⁇ Rh ⁇ component (A) and / or component (B) co-supported alumina> prepared by the method of Example 1 Produced a honeycomb catalyst of Comparative Example 3 in the same manner as in Example 5.
  • the upper layer is coated with 90 g / L of Rh-supported alumina catalyst powder as Rh (0.2) / Al 2 O 3 together with Rh / OSC.
  • CZNP which is OSC has a weight ratio of Ce / Zr / Nd / Pr of 28/58/7/7 in terms of oxide, and Al 2 O 3 is pure alumina containing no rare earth metal or the like. is there.
  • Example 6 In the formation of the upper layer, instead of the catalyst ⁇ Rh • component (A) and / or component (B) supported alumina> prepared by the method of Example 1, the catalyst ⁇ Rh • prepared by the method of Examples 2 to 4 was used.
  • Honeycomb catalysts of Examples 6 to 8 were prepared in the same manner as Example 5 except that the component (A) and / or component (B) supported alumina was used in the following weight ratio.
  • the details of the catalyst in each Example are as follows, and the numerical value in () of each metal component is a numerical value of weight% with respect to the total amount of Rh, the composite oxide of component (A) and alumina. is there.
  • Example 6 0.2 wt% Rh-0.5 wt% Ce-Zr-Nd-Pr / Al 2 O 3: Rh (0.2) / OSC and Rh (0.2) -Ce (0.2) -Zr (0.2) -Nd (0.05) -Pr (0.05) / Al 2 O on the upper layer 3 is included in total 90 g / L.
  • Example 7 0.2 wt% Rh 1.0 wt% Ce—Zr—Nd—Pr / Al 2 O 3 : Rh (0.2) / OSC and Rh (0.2) -Ce (0.4) -Zr (0.4) -Nd (0.1) -Pr (0.1) / Al 2 O on the upper layer 3 is included in total 90 g / L.
  • Example 8 0.2 wt% Rh ⁇ 10.0 wt% Ce—Zr—Nd—Pr / Al 2 O 3 : Rh (0.2) / OSC and Rh (0.2) -Ce (2.8) -Zr (5.8) -Nd (0.7) -Pr (0.7) / Al 2 O 3 is included in total 90 g / L.
  • FIG. 6 is a graph showing the relationship between the composite oxide content of component (A) and / or component (B) and HCT50, and the composite oxide content of component (A) and / or component (B).
  • the graph which shows the relationship between quantity and NOxT50 is shown.
  • the T50 temperature is the catalyst inlet gas temperature when the purification rate of NOx or HC is 50%, and is an index of low temperature activity. A lower T50 indicates that the reaction starts from a lower temperature, and it can be evaluated that the catalytic activity is high.
  • the catalyst of Example 5 contains 5% by weight of component (A) CZNP, and is applied to the honeycomb carrier as a catalyst composition in which CZNP is supported together with Rh on the surface of alumina, and does not support CZNP.
  • component (A) CZNP component (A) CZNP
  • it exhibited an excellent low temperature activity / high temperature purification rate for HC, CO and NOx.
  • Examples 6 to 8 are cases in which the content of CZNP was changed from 0.5 wt% to 10 wt%.
  • alumina carrying Rh together with CZNP low temperature activity / high temperature purification was performed. In terms of the ratio, it was confirmed that the performance was improved as compared with the alumina catalyst not supporting CZNP of Comparative Example 3.
  • the base material supporting rhodium is alumina
  • CZNP as the component (A)
  • the low-temperature performance of HC, CO and NO purification by the catalyst composition is improved.
  • the performance improvement of HC is large, it is considered that the contribution of improving the SR reactivity to alumina is large.
  • the mother phase is used in the powder preparation process such as the mixed precursor formation stage and the homogenization process in the loading of Rh and CZNP on alumina. It is inferred that the BET SA value of the material changes and contributes.
  • the catalyst structure can be estimated as follows from the results of the EPMA evaluation tests using the catalyst powders of Examples 1 to 4 and Comparative Examples 1 and 2 before and after the heat treatment for rich / lean durability at 1,050 ° C. for 12 hours. .
  • the catalysts of the present invention carrying CZNP of Examples 1 to 4 are not heated, so there is no change in the catalyst structure, and the same applies to Comparative Example 1 that does not carry CZNP.
  • the catalyst of the present invention in which CZNP was supported on alumina and arranged in the upper layer was subjected to heat treatment (durability) at 1050 ° C., and Rh on alumina was present in the vicinity of CZNP.
  • Example 9 to 12 In Example 5 using 5 wt% Ce—Zr—Nd—Pr / Al 2 O 3 described above, the catalyst of Example 1 was used as ⁇ Rh • component (A) and / or component (B) supported alumina>. Instead, the honeycomb catalysts of Examples 9 to 12 were used in the same manner as in Example 5 except that any of the rare earth metals or components (A) and / or component (B) not containing zirconium was used in CZNP. Prepared.
  • CZNP an oxide containing three elements of Zr, Nd, and Pr lacking Ce
  • CNP an oxide containing three elements of Ce, Nd, and Pr lacking Zr
  • CZP an oxide containing three elements of Ce, Zr, and Pr lacking Nd
  • CZN an oxide containing three elements of Ce, Zr, and Nd lacking Pr
  • ZNP Zirconium nitrate
  • ZrO 2 Zirconium nitrate
  • neodymium nitrate is 0.35 wt% in terms of Nd 2 O 3
  • praseodymium nitrate is 0.35 wt% in terms of Pr 6 O 11.
  • (CNP) 1.4 wt% cerium nitrate in terms of CeO 2, 0.35 wt% neodymium nitrate in Nd 2 O 3 in terms, and 0.35% by weight of praseodymium nitrate in Pr 6 O 11 in terms of (CZP) 1.4 wt% cerium nitrate in terms of CeO 2, 2.9 wt% zirconium nitrate in terms of ZrO 2, and 0.35% by weight of praseodymium nitrate in Pr 6 O 11 in terms of (CZN) 1.4 wt% cerium nitrate in terms of CeO 2, 2.9 wt% zirconium nitrate in terms of ZrO 2, and 0.35% by weight of neodymium nitrate in the Nd 2 O 3 in terms of
  • this result is based on Example 5 using 5 wt% Ce—Zr—Nd—Pr / Al 2 O 3 , and contains any of rare earth metals such as Ce and Zr within the scope of the present invention.
  • the performance degradation can be suppressed to a minimum even with a three-element composite oxide lacking some components such as Nd and Pr.
  • this result is a case where the total element amount of the component (A) or the component (B) is less than 5% by weight as a composite oxide, and if the amount of Ce and / or Zr is more than 5% by weight, the element
  • it is considered that a certain degree of performance improvement can be obtained even with a two-element composite oxide. Therefore, it can be used practically without problems depending on the type of exhaust gas to be used and the operating status of the engine.
  • the exhaust gas purifying catalyst of the present invention can purify carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NOx), etc. in exhaust gas discharged from an internal combustion engine or the like, and particularly in a wide range of conditions from low temperature to high temperature. Therefore, it can be widely and effectively used for automobile applications such as gasoline engines and diesel engines, mobile objects such as ships, and stationary applications such as generators.
  • the present invention is not limited to these uses, and can be widely applied to a denitration technique for nitrogen oxides contained in exhaust gas from a fixed source such as a boiler.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

内燃機関等から排出される炭化水素、一酸化炭素、窒素酸化物等を浄化でき、特に低温から高温の幅広い条件で優れた浄化性能を維持しうる排ガス浄化触媒組成物とその製造方法及び自動車用排ガス浄化触媒を提供する。本発明は、排ガス中の一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)等を浄化する排ガス浄化触媒組成物であって、Rh、Ceを含む特定の成分(A)及び/又はZrを含む特定の成分(B)の複合酸化物、並びに、アルミナを少なくとも含有し、Rhが、前記複合酸化物とともにアルミナ上に担持され、Rhの担持量が、Rhと前記複合酸化物とアルミナの総量に対して、0.01~5重量%であり、前記複合酸化物の含有量が、Rhと前記複合酸化物とアルミナの総量に対して、合計で0.1~30重量%であることを特徴とする排ガス浄化触媒組成物等を提供する。

Description

排ガス用浄化触媒組成物及びその製造方法、並びに自動車用排ガス浄化触媒
 本発明は、排ガス用浄化触媒組成物及びその製造方法、並びに自動車用排ガス浄化触媒に関し、より詳しくは、内燃機関等から排出される炭化水素、一酸化炭素、窒素酸化物等を浄化でき、特に低温から高温の幅広い条件で優れた浄化性能を維持しうる排ガス浄化触媒組成物及びその製造方法、並びに自動車用排ガス浄化触媒に関する。
 自動車の内燃機関からは、一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)等の有害ガスが排出され、これを浄化するために、白金族金属をはじめとする様々な触媒が使用されている。
 白金族金属としては、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)が知られており、ガソリン車等の排ガス浄化用触媒、特に一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)を同時に浄化する三元触媒(TWC)においては、Pt、Pd等の酸化活性に優れる触媒活性種と、NOxの浄化活性に優れるRhとを組み合わせて用いることが多い。RhによるNOxの浄化では、例えばスチームリフォーミング反応やCO+NO反応が関与して、NOxを浄化するものと考えられている。
 また、排ガス浄化触媒では、更なる浄化性能の向上を図るため、白金族金属の他に、酸素吸蔵放出能(Oxgen Storage Capacity:OSC)を有する酸化セリウムや、アルカリ土類金属や、ジルコニウム酸化物、ゼオライト等が、触媒成分ないしは助触媒成分として使用されている。このうち、酸化セリウムは、排ガス中の酸素濃度が高いときにはCeOとして酸素を吸蔵し、酸素濃度が低いときにはCeになって酸素を放出する。放出された酸素は活性な酸素であり、PtやPdによる酸化作用に利用されることでCO、HCの浄化を促進する。また、OSC成分は酸素の吸蔵・放出により、排ガス中の酸素濃度変化を緩衝する働きもする。この働きにより、TWCでは排ガスの浄化性能が向上する。TWCは一つの触媒で酸化と還元を行うものであり、設計上、浄化に適した排ガス成分の範囲があり、この範囲は空燃比に依存することが多い。このような範囲はウィンドウといわれ、多くの場合、Stoichioと呼ばれる理論空燃比の近傍で燃焼した排ガスをウィンドウ域に設定している。排ガス中の酸素濃度の変化が緩衝されることで、このウィンドウ域が長時間保たれて排ガスの浄化がより効果的に行なわれ、これは特にRhによるNOxの浄化特性による影響と考えられている。
 OSCを有する材料としては、純粋な酸化セリウムの他、ジルコニウムとの複合酸化物も使用されることが多い(特許文献1参照)。セリウム・ジルコニウム複合酸化物は、耐熱性が高く、酸素の吸蔵・放出速度も速いといわれている。それはセリウム・ジルコニウム複合酸化物の結晶構造が安定で、主要なOSC成分であるセリウム酸化物の働きを阻害しないので、粒子の内部までOSCが有効に機能するためと考えられる。
 そして、ジルコニウム酸化物は、Rh成分と共に用いるとスチームリフォーミング反応やCO+NO反応を促進するとされている(特許文献2参照)。このような反応がHCによるNOxの浄化反応に加えて生じることにより、NOxの浄化をさらに促進させることになるので、ジルコニウム酸化物以外のスチームリフォーミング反応を加速させる助触媒が使用されている。
 また、母材であるアルミナやOSC成分である酸化セリウムの耐熱性を向上させるため、アルミナへ酸化ネオジム、酸化プラセオジム等の希土類酸化物を添加すること(特許文献3参照)、酸化セリウムへ酸化ランタン、酸化ネオジム等の希土類酸化物を添加すること(特許文献4参照)の他、貴金属であるRh、Pd等を、酸化ランタン、ジルコニア等で耐熱性を向上させたアルミナ粒子と酸化ネオジム、ジルコニア等で耐熱性を向上させたセリウム酸化物微粒子の両方に担持する方法(特許文献5参照)等が開示されている。
 また、触媒性能を効果的に発揮させるため、触媒を排ガス上流側、下流側に分けて配置することや、触媒層を担体表面に複数層設ける対策がとられている。これは、排ガス規制の強化に伴って、排ガス浄化触媒の特性をより生かすための処置である。例えば、Pt、Pd、Rhの貴金属は、耐久性(耐熱性、耐雰囲気性、耐被毒性)や触媒特性(酸化活性、還元活性)等に応じて、最適の位置を設定する必要があるため、表層にRh又はPt/Rh、下層にPd又はPd/Rhが配置されている。
 近年、OSCを有する材料にRhを担持することが行われている。例えば、基材上にRhを含有する触媒層が設けられた排ガス浄化用触媒において、活性アルミナにZr系複合酸化物が担持されてなるサポート材にRhを担持した排ガス浄化用触媒(特許文献6参照)が知られており、前記触媒層には、Ceを含まないZr系複合酸化物が希釈剤として含有され、Rhが担持されたZr系複合酸化物もさらに含まれている。
 Rhを担持したOSCを有する材料は、Rhを担持したアルミナよりも、母材表面の酸素拡散性が優れるため、使用開始時におけるライトオフ活性が高いとされている一方で、母材のOSCを有する材料はアルミナよりも耐熱性が低いため、Rhがシンタリングし易くなることから、劣化率が大きいという問題が指摘されていた。すなわち、高温の排ガスに曝されると、Rhが粒成長することによりNOx性能の低下を招き易いと考えられている。
 そのため、長島らは、ロジウム(Rh)がα-アルミナ(Al)粒子とともにジルコニア(ZrO)系母材上に担持された触媒組成物を含み、該α-アルミナ粒子の平均粒径が10nm~1μmであり、かつジルコニア系母材の平均粒径より小さくした排ガス浄化用触媒組成物を開示している(特許文献7参照)。
 これにより、NOx、CO、HCの浄化率の低下が抑制されるようになった。しかし、排ガスの規制はますます厳しくなる一方であるため、担持されたRhが高温に曝されてもHC,CO,NOxの浄化性能に影響を与えにくい、すなわち、Rhを担持したOSCを有する材料の高活性と、Rhを担持したアルミナの耐久性を併せ持った、排ガス浄化用触媒が必要とされている。
特公平06-75675号公報 再公表特許2000/027508号公報 特開昭61-38626号公報 特開昭64-4250号公報 特開2011-200817号公報 特開2013-237014号公報 再公表特許2014/002667号公報
 本発明、上記従来の課題に鑑みてなされたものである。その目的は、内燃機関等から排出される炭化水素、一酸化炭素、窒素酸化物等を浄化でき、特に低温から高温の幅広い条件で優れた性能を維持しうる排ガス浄化触媒組成物及びその製造方法、並びに自動車用排ガス浄化触媒等を提供することにある。
 本発明者らは、上記従来の課題を解決するために鋭意研究を重ねた結果、アルミナ表面に、Ceを含む特定の成分(A)及び/又はZrを含む特定の成分(B)の複合酸化物をRhと共に所定量配置することで、高温の排ガスに長時間さらされても触媒活性が比較的に維持され、CO、HC、NOxの浄化性能の低下が抑制されることを見出して、本発明を完成するに至った。
 すなわち、第1の発明によれば、排ガス中の一酸化炭素(CO)、炭化水素(HC)、及び/又は窒素酸化物(NOx)を浄化する排ガス浄化触媒組成物であって、Rh、下記のCeを含む成分(A)及び/又はZrを含む成分(B)の複合酸化物、並びに、アルミナを少なくとも含有し、Rhが、前記複合酸化物とともにアルミナ上に担持され、Rhの担持量が、Rhと前記複合酸化物とアルミナの総量に対して、0.01~5重量%であり、前記複合酸化物の含有量が、Rhと前記複合酸化物とアルミナの総量に対して、合計で0.1~15重量%であることを特徴とする排ガス浄化触媒組成物が提供される。
 成分(A)
 Ce・Zr複合酸化物、Ce・Nd複合酸化物、Ce・Pr複合酸化物、Ce・La複合酸化物、Ce・Y複合酸化物;Ce・Zr・Nd複合酸化物、Ce・Zr・Pr複合酸化物、Ce・Zr・La複合酸化物、Ce・Pr・La複合酸化物、Ce・Zr・Y複合酸化物、Ce・Nd・Pr複合酸化物、Ce・Nd・La複合酸化物、Ce・Nd・Y複合酸化物、Ce・Pr・Y複合酸化物、Ce・La・Y複合酸化物;Ce・Zr・Nd・Pr複合酸化物、Ce・Zr・Nd・La複合酸化物、Ce・Nd・Pr・La複合酸化物、Ce・Zr・Pr・La複合酸化物、Ce・Zr・Nd・Y複合酸化物、Ce・Zr・Ln・Y複合酸化物、Ce・Zr・Pr・Y複合酸化物、Ce・Nd・Pr・Y複合酸化物、Ce・Pr・La・Y複合酸化物;Ce・Nd・Ln・Y複合酸化物、Ce・Zr・Nd・Pr・Y複合酸化物、Ce・Zr・Nd・Ln・Y複合酸化物、Ce・Zr・Pr・La・Y複合酸化物、Ce・Nd・Pr・La・Y複合酸化物、及びCe・Zr・Nd・Pr・Ln・Y複合酸化物からなる群から選ばれる少なくとも1種以上
 成分(B)
 Zr・Nd複合酸化物、Zr・Pr複合酸化物、Zr・Y複合酸化物;Zr・Nd・Pr複合酸化物、Zr・Nd・La複合酸化物、Zr・Pr・La複合酸化物、Zr・Nd・Y複合酸化物、Zr・Pr・Y複合酸化物;Zr・Nd・Pr・La複合酸化物、Zr・Nd・Pr・Y複合酸化物、Zr・Nd・La・Y複合酸化物、Zr・Pr・Ln・Y複合酸化物、及びZr・Nd・Pr・La・Y複合酸化物からなる群から選ばれる少なくとも1種以上
 また、本発明の第2の発明によれば、第1の発明において、前記複合酸化物の含有量は、Rhと前記複合酸化物とアルミナの総量に対して0.1~10重量%であることを特徴とする排ガス浄化用触媒組成物が提供される。
 また、本発明の第3の発明によれば、第1の発明において、アルミナの平均粒径は、0.1~30μmであることを特徴とする排ガス浄化用触媒組成物が提供される。
 さらに、本発明の第4発明によれば、第1~3のいずれかの発明において、Rh及び前記複合酸化物が、アルミナ上に高分散していることを特徴とする排ガス浄化用触媒組成物が提供される。
 一方、本発明の第5の発明によれば、第1~4のいずれかの発明の排ガス浄化触媒組成物の製造方法であって、少なくとも水溶性のRh化合物と、Ceを含む前記成分(A)及び/又はZrを含む前記成分(B)の水溶性の前駆体化合物を水に溶解し、Rhと該化合物の混合前駆体を形成して、該混合前駆体を含有する水溶液をアルミナと接触させ、Rhと前記成分(A)又は前記成分(B)の前駆体化合物とをアルミナに含浸させてスラリーを得た後、得られたスラリーをろ過、乾燥し、さらに焼成して、Rhが前記成分(A)及び/又は前記成分(B)の複合酸化物とともにアルミナ上に担持された触媒組成物を得ることを特徴とする排ガス浄化触媒組成物の製造方法が提供される。
 また、本発明の第6の発明によれば、第5の発明において、前記Rh化合物と、前記成分(A)及び/又は前記成分(B)の前記前駆体化合物は、ともに酸性塩化合物であり、酸を添加しながら前記混合前駆体を形成させることを特徴とする排ガス浄化触媒組成物の製造方法が提供される。
 また、本発明の第7の発明によれば、第5の発明において、前記Rh化合物と、前記成分(A)及び/又は前記成分(B)の前記前駆体化合物は、ともに塩基性化合物であり、塩基を添加しながら前記混合前駆体を形成させることを特徴とする排ガス浄化触媒組成物の製造方法が提供される。
 さらに、本発明の第8の発明によれば、第5~7のいずれかの発明において、前記スラリーが、スプレードライにより乾燥されることを特徴とする排ガス浄化触媒組成物の製造方法が提供される。
 また、本発明の第9の発明によれば、第5~8のいずれかの発明において、Rhが、前記成分(A)及び/又は前記成分(B)の前記複合酸化物とともにアルミナ上に担持された前記触媒組成物に、バインダーと酸又は塩基を含む水系媒体を混合し、粉砕することでスラリー化することを特徴とする排ガス浄化触媒組成物の製造方法が提供される。
 また、本発明の第10の発明によれば、第5~9のいずれかの発明において、前記スラリーの平均粒径D90が、1~20μmであることを特徴とする排ガス浄化触媒組成物の製造方法が提供される。
 一方、本発明の第11の発明によれば、ハニカム担体、及び触媒層を少なくとも備え、第1~4のいずれかの発明の排ガス浄化触媒組成物が、前記触媒層として前記ハニカム担体に被覆されていることを特徴とする自動車用排ガス浄化触媒が提供される。
 また、本発明の第12の発明によれば、第11の発明において、前記触媒層は、Rhを前記成分(A)及び/又は前記成分(B)の前記複合酸化物に担持した触媒組成物を含有することを特徴とする自動車用排ガス浄化触媒が提供される。
 さらに、本発明の第13の発明によれば、第11又は12の発明において、前記触媒組成物の総被覆量が、前記ハニカム担体の単位体積あたり20~300g/Lであることを特徴とする自動車用排ガス浄化触媒が提供される。
 本発明の排ガス浄化触媒組成物によれば、従来のRh担持OSC材料やRh担持アルミナ触媒よりも、低温での炭化水素、一酸化炭素、窒素酸化物等の浄化活性に優れ、活性が高く、特に反応率が50%の数値に達した際の触媒入口ガス温度(T50)が低く、400℃以上の高温でも、浄化率を向上させることが可能になる。そして本発明の排ガス浄化触媒組成物は、ガソリンエンジン等の内燃機関から排出されるCO、HC、NOxに対して優れた浄化性能を発揮し、さらに、本発明の自動車用排ガス浄化触媒は、耐久性に優れるのみならず、Rh配合量が比較的に少なくて済むため低コストで製造でき、排ガス浄化装置を安定的に生産し供給することができる。
本発明の排ガス浄化触媒組成物の概念を模式的に示した説明図である。(A)は、自動車用排ガス浄化触媒の調製時の触媒粒子断面であり、(B)は、それを高温耐久処理した後の触媒粒子断面である。 実施例及び比較例の触媒試料について、X線回折装置(XRD)を用いた粉末X線回折測定の結果を示すチャートである。 実施例及び比較例の触媒試料における、成分(A)及び/又は成分(B)の複合酸化物含有量と比表面積(BET SA)との関係を示すグラフである。 実施例の触媒試料について、電子線マイクロアナライザ(EPMA)による測定結果を示す写真である。 実施例及び比較例のハニカム触媒(自動車用排ガス浄化触媒)について、モデルガスを用いてライトオフ試験を行った結果を示すグラフである。(A)は、NOxの還元率、HCの酸化率が50%の数値に達した際の触媒入口ガス温度(NOxT50、COT50、HCT50)を計測した結果を示すグラフであり、(B)は、400℃でのCO、HC及びNOxの転化率を相対的に示すグラフである。 実施例及び比較例のハニカム触媒(自動車用排ガス浄化触媒)について、モデルガスを用いてライトオフ試験を行った結果を示すグラフである。(A)は、成分(A)及び/又は成分(B)の複合酸化物含有量とHCT50との関係を示すグラフであり、(B)は、同複合酸化物含有量とNOxT50との関係を示すグラフである。 4元素系の成分(A)の複合酸化物の触媒粉末を基準とし、いずれかの元素を欠損させた3元素系の成分(A)及び/又は成分(B)複合酸化物のサンプルを用い、図5と同様にモデルガスライトオフ試験で触媒活性を評価した結果を示すグラフである。 Rhが直接アルミナに担持された触媒と、それを高温下で使用したときの構造変化を模式的に示す、従来技術の説明図である。(A)は、調製時の触媒粒子断面であり、(B)は、それを高温耐久処理した後の触媒粒子断面である。
 以下、本発明の実施の形態について、詳細に説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はこれらに限定されるものではない。なお、本明細書において、例えば「1~100」との数値範囲の表記は、その上限値「1」及び下限値「100」の双方を包含するものとする。また、他の数値範囲の表記も同様である。なお、以降においては、ガソリンエンジンの排ガス浄化の実施形態を中心に述べるが、本発明はそれに限定されるものではなく、ディーゼルエンジンや発電機等の内燃機関から排出される排ガス浄化にも有効であることはいうまでもない。
1.排ガス浄化触媒組成物
 本実施形態の排ガス浄化触媒組成物(以下、単に触媒組成物ともいう)は、Rh、のCeを含む特定成分(A)及び/又はZrを含む特定成分(B)の複合酸化物、並びに、アルミナを少なくとも含有する触媒粉末であって、Rhが前記複合酸化物とともにアルミナ母材粒子上に特定量担持されている。
 上述したとおり、従来技術のようにOSCを有する材料又はジルコニアからなる母材粒子上にRhを担持させた触媒粉末では、Rhを担持したアルミナよりも、母材表面の酸素拡散性が優れるため、使用開始時におけるライトオフ活性が高いことが知られている一方で、母材のOSCを有する材料又はジルコニアはアルミナよりも耐久性が低いという問題がある。この様子を図8に模式的に示した。Rh粒子は触媒調製時にはOSCを有する材料又はジルコニアとアルミナの双方の表面に小さな粒径で担持されている。これが耐久処理時に、例えば1000℃以上の高温に曝されると、OSC母材粒子上のRh粒子は、シンタリングにより粒径が拡大し、触媒活性点の減少による触媒性能の低下が生じ、また、ジルコニア母材粒子上のRh粒子は、OSC母材粒子上のRh粒子に比べて触媒活性が低いため、触媒粉末全体として触媒活性が低下したものとなる。
 そこで本実施形態の触媒粉末では、かかる問題点を解決するため、アルミナ母材粒子の表面に、成分A(例えばCe/Zr/Nd/Prの複合酸化物(以降において、「CZNP」と略記することがある。))及び/又は成分(B)の複合酸化物をRhと共に配置することで、Rh担持アルミナの耐久性を確保しつつ、アルミナ母材粒子表面における酸素拡散性を高め、アルミナ母材粒子上のRh粒子の触媒活性を向上させている。この様子を図1に模式的に示している。
 このメカニズムは明らかではないが、次のように推定される。すなわち、Rh粒子はOSCを有する材料又はジルコニアとアルミナの双方の表面に担持されており、アルミナ母材粒子表面には高分散状態で成分(A)及び/又は成分(B)の複合酸化物が近くに存在する。そのため、1000℃以上の高温に曝されて粒径が拡大したとしても、アルミナ母材粒子上のRh粒子は、図8に示すOSCを有する材料又はジルコニア上のRh粒子よりも、粒径拡大の程度が低く抑えられつつ、成分(A)及び/又は成分(B)の複合酸化物との相互作用によって触媒活性が向上し、トータルで高温長時間後も触媒活性の低下が抑制されるようになるものと考えられる。これは、Ceを含む成分(A)の複合酸化物だけでなく、Zrを含む成分(B)の複合酸化物でも同様なメカニズムが考えられている。成分(A)の複合酸化物は、Rhと良好な相互作用を示すOSCを有する材料とみることもでき、成分(B)の複合酸化物は、OSCを有する材料に類似するZrOの特徴をAl上でも発現させているとみることができる。
(1)ロジウム(Rh)
 本実施形態の触媒粉末(触媒組成物)において、貴金属元素のRhは、主に排ガス中のNOxを還元する活性金属として機能する。Rh粒子は、アルミナ上に担持されるが、その際に成分(A)及び/又は成分(B)の複合酸化物とともに担持されている必要がある。なお、母材粒子11上のRh粒子の存在は、走査透過型電子顕微鏡(STEM:Scanning Transmission Electron Microscope)による観察、粉末X線回折(XRD:X‐ray Diffraction)、電子プローブマイクロアナライザ(EPMA:Electron Probe Micro Analyzer)、X線光電分光法(XPS:X-ray Photoelectron Spectroscopy、又はESCA:Electron Spectroscopy for Chemical Analysis)等の各種測定方法により把握することができる。
 Rh粒子は、平均粒径によって限定されないが、分散性による触媒性能の維持を考慮すれば、100nm以下が好ましい。平均粒径は、80nm以下がより好ましく、50nm以下がさらに好ましい。また、Rhの平均粒径の下限は、特に限定されないが、一般的には0.1nm以上が好ましい。なお、本明細書において、Rh粒子の平均粒径は、耐久処理後の排ガス浄化触媒組成物の倍率1万倍のSEM画像において、無作為に抽出した20点の平均値を意味する。
 本実施形態におけるRhのアルミナ母材粒子への担持量は、Rhと前記複合酸化物とアルミナの総量に対して、0.01~5.0重量%とする。脱硝性能と価格等の観点から、該担持量は、0.05~2.0重量%が好ましく、0.1~1.0重量%がより好ましい。
(2)アルミナ
 本実施形態の触媒粉末(触媒組成物)において、アルミナは、Rhを高分散に担持する母材粒子として機能する多孔質無機酸化物の一種である。かかるアルミナの具体例としては、γ-アルミナ、β-アルミナ、δ-アルミナ、θ-アルミナ等が挙げられるが、これらに特に限定されない。また、アルミナのBET比表面積は、特に限定されないが、Rhの高分散性、粒子内の細孔径に関連する細孔内でのガス拡散性等の観点から、20~250m/gが好ましく、80~250m/gがより好ましく、100~200m/gが特に好ましい。なお、本明細書において、BET比表面積は、Tristar II3020(島津製作所製)を用い、BET一点法により求めた値を意味する。
 また、アルミナの平均粒子径は、特に限定されないが、ガス拡散等の観点から、50μm以下が好ましく、40μm以下がより好ましい。また、アルミナの平均粒子径の下限は、特に限定されないが、通常は0.1μm以上が好ましい。なお、本明細書において、アルミナの平均粒子径は、レーザー回折式粒度分布測定装置(例えば、島津製作所社製、レーザー回 折式粒度分布測定装置SALD-7100等)で測定されるメディアン径D50を意味する。
(3)成分(A)の複合酸化物、成分(B)の複合酸化物
 本実施形態の触媒粉末(触媒組成物)において、成分(A)の複合酸化物及び成分(B)の複合酸化物は、貴金属であるRhをアルミナ上で高分散に担持させるとともにアルミナ上のRhの触媒活性を増強させる、Ce及び/またはZrを含む複合酸化物である。
 具体的には、成分(A)は、次に例示される群から選ばれる少なくとも1種以上のCeを含有する複合酸化物である。
 Ce・Zr複合酸化物(CZ)、Ce・Nd複合酸化物(CN)、Ce・Pr複合酸化物(CP)、Ce・La複合酸化物(CL)、Ce・Y複合酸化物(CY);Ce・Zr・Nd複合酸化物(CZN)、Ce・Zr・Pr複合酸化物(CZP)、Ce・Zr・La複合酸化物(CZL)、Ce・Zr・Y複合酸化物(CZY)、Ce・Nd・Pr複合酸化物(CNP)、Ce・Nd・La複合酸化物(CNL)、Ce・Nd・Y複合酸化物(CNY)、Ce・Pr・La複合酸化物(CPL)、Ce・P・Y複合酸化物(CPY)、Ce・La・Y複合酸化物(CLY);Ce・Zr・Nd・Pr複合酸化物(CZNP)、Ce・Zr・Nd・La複合酸化物(CZNL)、Ce・Zr・Nd・Y複合酸化物(CZNY)、Ce・Zr・Pr・Y複合酸化物(CZPY)、Ce・Nd・Pr・La複合酸化物(CNPL)、Ce・Zr・Pr・La複合酸化物(CZPL)、Ce・Zr・Nd・Y複合酸化物(CZNY)、Ce・Zr・Ln・Y複合酸化物(CZLY)、Ce・Zr・Pr・Y複合酸化物(CZPY)、Ce・Nd・Pr・Y複合酸化物(CNPY)、Ce・Nd・Ln・Y複合酸化物(CNLY)、Ce・Pr・La・Y複合酸化物(CPLY);Ce・Zr・Nd・Pr・Y複合酸化物(CZNPY)、Ce・Zr・Nd・Ln・Y複合酸化物(CZNLY)、Ce・Zr・Pr・La・Y複合酸化物(CZPLY)、Ce・Nd・Pr・La・Y複合酸化物(CNPLY)、Ce・Zr・Nd・Pr・Ln・Y複合酸化物(CZNPLY)
 また、成分(B)は、次に例示される群から選ばれる少なくとも1種以上のZrを含有する複合酸化物である。
 Zr・Nd複合酸化物(ZN)、Zr・Pr複合酸化物(ZP)、Zr・La複合酸化物(ZL)、Zr・Y複合酸化物(ZY);Zr・Nd・Pr複合酸化物(ZNP)、Zr・Nd・La複合酸化物(ZNL)、Zr・Pr・La複合酸化物(ZPL)、Zr・Nd・Y複合酸化物(ZNY)、Zr・Pr・Y複合酸化物(ZPY)、Zr・Nd・Y複合酸化物(ZNY);Zr・Nd・Pr・La複合酸化物(ZNPL)、Zr・Nd・Pr・Y複合酸化物(ZNPY)、Zr・Nd・Ln・Y複合酸化物(ZNLY)、Zr・Pr・Ln・Y複合酸化物(ZPLY)、Zr・Nd・Pr・La・Y複合酸化物(ZNPLY)
 これらの中でも、成分(A)及び/又は成分(B)の複合酸化物としては、CZNPLYで表した主要元素(すなわち、Ce、Zr、Nd、Pr、La、Y)のうち、2元素を含む複合酸化物よりも、3元素を含む複合酸化物や4元素を含む複合酸化物のほうが好ましく、特にCeとZrとNdとPrの4元素を含む複合酸化物(CZNP)、及び、このCeとZrとNdとPrの4元素を必須成分として含む、5元素の複合酸化物又は6元素の複合酸化物が好ましい。
 Ce及びZrは、成分(A)及び/又は成分(B)の複合酸化物を構成する元素の中で、重要なRh触媒機能を有することから、Ce及びZrの含有量は、複合酸化物の総量に対する金属酸化物換算で、合計で50重量%以上であることが好ましく、合計で60重量%以上であることがより好ましい。なお、Ce及びZrの含有量の上限は、特に限定されないが、通常は合計で90重量%以下が好ましい。
 一方、NdとLaは、Rhに対してシンタリングを抑制し、NdとPrとLaのいずれも少量であればCeOの耐熱性を向上させる等の作用を発揮するが、Rh触媒機能は確認されていないことから、Nd及びLaの含有量は、複合酸化物の総量に対する金属酸化物換算で、合計で50重量%未満であることが好ましく、合計で40重量%以下であることがより好ましい。なお、Nd及びLaの含有量の下限は、特に限定されないが、通常は合計で1重量%以上が好ましい。なお、Y及びPrは、Ce及びZrに対して結晶構造安定作用を有し、Rh活性向上等への可能性があり、それぞれ10重量%以下含有することができる。
 本実施形態の触媒粉末(触媒組成物)において、成分(A)及び/又は成分(B)の複合酸化物の含有量は、Rhと該複合酸化物とアルミナの総量に対して、合計で0.1~15重量%とすることが好ましい。成分(A)及び/又は成分(B)の複合酸化物は、アルミナ母材粒子上で結晶子径が数nm以下、より好ましくは1nm又はそれ以下の高分散状態で担持され、これにより、ジルコニアとの相乗効果、及び母材としてのジルコニアが有するスチームリフォーミング反応やCO+NO反応の促進効果が期待できる。かかる観点から、成分(A)及び/又は成分(B)の複合酸化物は、合計で0.1~10重量%含有することがより好ましく、合計で0.3~8重量%がさらに好ましい。
2.触媒組成物の調製方法
 本実施形態の排ガス浄化触媒組成物は、少なくとも水溶性のRh化合物と、Ceを含む成分(A)及び/又はZrを含む成分(B)の水溶性の前駆体化合物とを水に溶解し、Rhと該化合物の混合前駆体を形成して、該混合前駆体を含有する水溶液をアルミナと接触させ、Rhと成分(A)及び/又は成分(B)の前駆体化合物とをアルミナに含浸させてスラリーを得た後、得られたスラリーをろ過、乾燥し、さらに焼成して、後にRhが成分(A)及び/又は成分(B)の複合酸化物とともにアルミナ上に担持された触媒組成物を得るものである。
 好ましい製法の一例としては、まず出発原料として、水溶性のRh塩と水溶性の希土類塩、及び必要に応じてジルコニウム塩を含有する原料を特定量用意し、これらを混合・攪拌して、水溶液とする。
 触媒成分のRhを活性アルミナ担体粒子上に分散させるために、触媒成分のRh金属のいずれかの適当な化合物及び/又は錯体を利用する。Rhの水溶性化合物又は水に分散し得る化合物或いは錯体は、触媒金属化合物をアルミナ担体粒子に含浸させる又は付着させるために用いる液体が触媒金属或いはその化合物又は錯体並びにスラリーの他の成分との反応を阻害しないようにし、かつ加熱及び/又は真空の適用で蒸発又は分解により触媒から除去できるように使用する。
 Rhの水溶性化合物及び錯体の水溶液として、適当な化合物は、酸性塩の場合、硝酸ロジウム、塩化ロジウム、硫酸ロジウム、ヘキサミンロジウムクロライド等であり、焼成後に塩素、硫化物等の残渣が残らない硝酸ロジウムが好ましい。また、塩基性化合物の場合は、水酸化ロジウム等が挙げられる。
 希土類金属であるセリウム、ネオジム、プラセオジム、ランタン、イットリウムの化合物、及びジルコニウム化合物は、いずれも水溶性で、例えば硝酸塩、ハライド、硫酸塩の使用が好ましい。焼成後に塩素、硫化物等の残渣が残らない硝酸塩が好ましい。また、塩基性化合物の場合は、水酸化セリウム、水酸化ネオジム、水酸化プラセオジム、水酸化ランタン、水酸化イットリウム、水酸化ジルコニウム等が挙げられる。
 本実施形態の製造方法では、水溶性のRh化合物と水溶性の希土類化合物とを所定量 .量し、水に溶解して、Rhと希土類化合物等の混合前駆体が形成されるようにし、混合前駆体の水溶液とするのが重要である。これは、水溶性のRh化合物と水溶性の希土類化合物のほかに、ジルコニウム化合物の塩を含む場合も同様である。
 その際、Rh塩水溶液と希土類化合物等を含有する水溶液又は懸濁液の性質(酸性・塩基性)が異なると、両方が凝集して沈殿物を生じる恐れがあるため、ロジウム及び希土類化合物等を含有する水溶液の性質は酸性同士又は塩基性同士で統一することが好ましい。例えば、Rh化合物と希土類化合物は、ともに酸性塩化合物とすることができ、さらに酸を添加しながら混合前駆体を形成させるのが効果的である。具体的には、水溶液を混合しながら酸を添加して十分撹拌するのが好ましい。その際、常温でもよいが40~80℃に加熱することもできる。また、Rh化合物と希土類化合物、又はRh化合物と希土類化合物とジルコニウム化合物を、ともに塩基性化合物とするときは、さらにアンモニア(NH)、炭酸ナトリウム(NaCO)、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)等の塩基を添加しながら混合前駆体を形成させるのが効果的である。具体的には、水溶液を混合しながら塩基を添加して十分撹拌するのが好ましい。その際、常温でもよいが40~80℃に加熱することもできる。
 次に、均一な混合前駆体水溶液とした後、該水溶液をアルミナと接触させ、Rhと希土類化合物等をアルミナに含浸させる。このとき、該水溶液とアルミナの系を少なくとも目視で液と固体の分離が観察されなくなる程度以上に十分に混合するのが好ましく、この含浸によりRhが希土類化合物等とともにアルミナの表面に付着し細孔内にも入る。
 アルミナへの成分(A)及び/又は成分(B)の複合酸化物の担持量は、担持状態やコストの観点から、Rhと該複合酸化物とアルミナの総量に対して、合計で0.1~15重量%とする。この範囲であれば、ジルコニアとの相乗効果、及び母材としてのジルコニアが有するスチームリフォーミング反応やCO+NO反応の促進効果を得ることができる。
 その後、得られたスラリーをろ過、乾燥することで、上述した触媒組成物が得られ、これを焼成することで、Rhが成分(A)、成分(B)等とともにアルミナ母材粒子上に担持される。担持の形態は一律に規定できないが、Rhの近傍に希土類酸化物を含んだ成分(A)及び/又は成分(B)の複合酸化物が存在しており、少なくとも一部において、Rhが成分(A)及び/又は成分(B)の複合酸化物(の層)を介してアルミナ母材粒子上に担持されるのが望ましい。得られたスラリーの乾燥手段は制限されず、オーブン中での乾燥、噴霧乾燥、凍結乾燥、及びロータリーエバポレーションをはじめとする通常の乾燥法によって乾燥する。例えば50~150℃に加熱できる手段であれば静置式でも移動床、流動床等も採用できる。中でも、スプレードライによれば、効率的に乾燥されるだけでなく、乾燥時の造粒により均一な粒径のものが得られる点で好ましい。
 また、乾燥後の焼成は、常法にしたがって行えばよく、特に限定されないが、例えば300~800℃にて、空気等の酸化性ガス、又は、窒素、アルゴン、キセノン、ヘリウム及びこれらの混合物からなる群から選ばれる不活性ガス、もしくは不活性ガスで希釈した酸化性ガス雰囲気で加熱する。加熱時間は、加熱温度等の他の条件に応じて適宜設定することができ、特に限定されないが、生産性等を考慮すると通常0.5~20時間程度とする。
 かくして得られた触媒粉末(触媒組成物)のD90(体積基準の粒子径の累積分布において小粒径からの積算値が全体の90%に達したときの粒子径)は、所望性能に応じて適宜設定することができ、特に限定されないが、1~20μmであることが好ましく、3~10μmであることがより好ましい。所望の粒度分布とするために、焼成後の触媒粉末に粉砕処理を行うことができる。粉砕装置としては、例えばボールミル等が使用できる。この粉砕によって、製造された触媒組成物の触媒活性がさらに改善される。
 Rhが成分(A)及び/又は成分(B)の複合酸化物とともにアルミナ母材粒子上に担持された触媒粉末は、そのまま粉体として使用できるが、装置への充填、耐久性の向上を図るために、各種耐熱性物質に付着・塗布させて用いることができる。耐熱性物質に付着・塗布するには、触媒をバインダーと酸を含む水系媒体を混合し、粉砕することでスラリー化して用いるのが好ましい。
 本実施形態の排ガス浄化触媒組成物は、上記触媒成分を各種担体表面に被覆した構造型触媒として用いることができる。ここで担体の形状は、特に限定されるものではなく、角柱状、円筒状、球状、ハニカム状、シート状等の構造型担体から選択可能である。構造型担体のサイズは、特に制限されないが、角柱状、円筒状、球状のいずれかであれば、例えば数ミリから数センチの直径(長さ)のものが使用できる。
3.自動車用排ガス浄化触媒
 本実施形態の自動車用排ガス浄化触媒は、ハニカム担体、及び触媒層を少なくとも備え、上述した触媒組成物、すなわちRhが成分(A)及び/又は成分(B)の複合酸化物とともに担持されたアルミナを含む触媒組成物を、触媒層としてハニカム担体に一層以上被覆したものである。
 また、Rh以外に、PdやPt等の一種以上の貴金属を添加することができ、さらに、バリウム化合物やバインダー等を添加することもできる。
(1)触媒調製
 本実施形態の自動車用排ガス浄化触媒を調製するには、前記触媒組成物と、必要に応じてバインダー等を水系媒体と混合してスラリー状混合物にしてから、ハニカム担体へ塗工して、乾燥、焼成する。
 すなわち、まず、触媒組成物と水系媒体を所定の比率で混合してスラリー状混合物を得る。ここで水系媒体は、スラリー中で触媒組成物が均一に分散できる量を用いればよい。
 この際、必要に応じてpH調整のための酸、又は塩基を配合したり、粘性の調整やスラリー分散性向上のための界面活性剤、分散用樹脂等を配合することができる。スラリーの混合方法としては、例えばボールミル等による粉砕混合が適用可能であるが、他の粉砕、もしくは混合方法を適用することもできる。
 次に、ハニカム担体へスラリー状混合物を塗工する。塗工方法は、常法にしたがって行えばよく、特に限定されないが、一般的にはウォッシュコート法が好ましい。
 塗工した後、乾燥、焼成を行うことにより触媒組成物が担持された一体構造型触媒が得られる。なお、乾燥温度は、適宜設定することができ、特に限定されないが、通常は70~200℃が好ましく、80~150℃がより好ましい。また、焼成温度は、適宜設定することができ、特に限定されないが、通常は300~700℃が好ましく、400~600℃が好ましい。なお、加熱手段については、電気炉やガス炉等の公知の加熱手段を用いることができる。
 触媒組成物のハニカム担体への総被覆量は、所望性能に応じて適宜設定でき、特に限定されないが、成分(A)及び/又は成分(B)の複合酸化物の十分な量を確保し、貴金属の分散性を高め、圧損によるエンジン負荷等を抑える等の観点から、20~300g/Lが好ましく、50~280g/Lがより好ましく、100~250g/Lがさらに好ましい。
(2)Rh及び成分(A)又は成分(B)の複合酸化物を共担持したアルミナ
 先に述べたロジウム(Rh)と成分(A)及び/又は成分(B)の複合酸化物とを担持したアルミナを使用する。
 用いる粉末の粒径は、D90が、1~20μmであることが好ましい。ハニカム担体への塗布性、活性向上のためには3~15μmであることがより好ましい。また、所望の粒度分布とするために、粉砕処理を行ってもよい。このとき、他の成分とともにスラリー化して粉砕することができる。
 アルミナへのRhの担持量は、脱硝性能やコスト等の観点から、ハニカム担体の単位体積あたり、0.005g/L~2.0g/Lが好ましく、0.01g/L~2.0g/Lが好ましく、0.03g/L~1.5g/Lがより好ましい。また、アルミナへの成分(A)及び/又は成分(B)の複合酸化物の担持量は、Rhの活性低下を抑制し、脱硝性能、HC浄化率を高められる等の観点から、ハニカム担体の単位体積あたり、10g/L~150g/Lが好ましく、30g/L~120g/Lがより好ましく、50~100g/Lがさらに好ましい。さらに、Rh及び成分(A)及び/又は成分(B)の複合酸化物を担持した共担持アルミナの担持量は、ハニカム担体の単位体積あたり、20~200g/Lであることが好ましく、50~150g/Lであることがより好ましい。
(3)Rhを担持したセリア・ジルコニア複合酸化物
 上述した触媒組成物(触媒組成物を含む触媒層)は、必要に応じて、助触媒粒子を含んでいてもよい。例えば、Rhを担持したセリア・ジルコニア複合酸化物をさらに含有していてもよい。ここで用いるセリア・ジルコニア複合酸化物は、前記した通りOSC成分としての機能及び母材としての機能を有するものである。
 母材のOSCとしてはセリア(酸化セリウム)が主体となるが、OSC機能を維持したまま耐熱性を向上させるため、ジルコニア(酸化ジルコニウム)が好ましい。一方、母材としてはジルコニアが主体となるが、担持される貴金属の酸化-還元作用を促進させるため、セリアの添加が好ましい。OSC成分の原料粉末は、公知の材料であって、例えば無機又は有機の希土類化合物とジルコニウム化合物一種以上を大気中、450~600℃で焼成して得られた酸化物粒子を粉砕したものである。
 セリア・ジルコニア複合酸化物において、セリアとジルコニアの混合比率は特に制限されないが、OSCとしての機能と母材としての機能を両立させるうえで、セリアの比率で10~80重量%が好ましく、20~70重量%がより好ましい。セリア・ジルコニア複合酸化物は、耐熱性を増すために、さらに酸化ランタン、酸化プラセオジム等の希土類酸化物を加えてもよい。
 ロジウム(Rh)を担持したセリア・ジルコニア複合酸化物の量は、OSCとしての機能と母材としての機能を発揮させるために、ハニカム担体の単位体積あたり、20~150g/Lであることが好ましい。
(4)パラジウム(Pd)
 上述した触媒組成物(触媒組成物を含む触媒層)は、必要に応じて、パラジウムをさらに含有していてもよい。貴金属元素のパラジウムは、任意成分であるが、Rh同様、活性金属として機能する。パラジウムは、上述したアルミナ上に担持されていても、上述したセリア・ジルコニア複合酸化物上に担持されていてもよい。
 Pdの添加量は、HC、CO等の浄化性能を高めコストを抑制できることから、ハニカム担体の単位体積あたり、10.0g/L以下が好ましく、0.5~6.0g/Lがより好ましい。
(5)バインダー等
 本実施形態において、母材粒子や助触媒粒子に付着して各々の粒子を結合するために、アルミナゾル等のバインダーを使用することができる。
 アルミナゾルは、数十nm~数μmの微粒子から成り立っており、母材粒子や助触媒粒子と付着、結合する。バインダーの量は、特に制限はなく、耐久後もハニカム担体から触媒が剥離しなければ少量でも特に問題はない。
 バインダーとしてはアルミナゾルの他、シリカゾル、ジルコニアゾル、チタニアゾル等の種々のゾルを挙げることができる。その他、硝酸アルミニウム、酢酸アルミニウム、硝酸ジルコニウム、酢酸ジルコニウム等の可溶性の塩も使用できる。また、酢酸、硝酸、塩酸、硫酸等の酸も使用できる。
(6)ハニカム担体
 ハニカム担体は、コージェライト、シリコンカーバイド、窒化珪素等のセラミックや、ステンレス等の金属からなるもので、その構造としては、一般的には、担体中の全体に渡って伸びている平行な多数の微細な気体流路を有する。この材質としてはコージェライトが耐久性、コストの理由で好ましい。
 また、ハニカム担体の開口部の孔数は、処理すべき排ガスの種類、ガス流量、圧力損失及び除去効率等を考慮して適正な範囲とされる。PMの付着による目詰まりを抑制し触媒有効使用率を高めるためには、そのセル密度は100~900セル/inch(15.5~139.5セル/cm)であることが好ましく、200~600セル/inch(31~93セル/cm)であることがより好ましい。なお、セル密度とは、ハニカム担体を気体流路に対して直角に切断した際の断面における単位面積あたりのセル数のことである。
 また、ハニカム担体には、気体流路が連通しているフロースルー型構造体と、気体流路の一部端面が目封じされ、かつ気体流路の壁面を通して気体が流通可能になっているウォールフロー型構造体とが広く知られている。フロースルー型構造体であれば空気抵抗が少なく、排ガスの圧力損失が少ない。また、ウォールフロー型構造体であれば、排ガス中に含まれる粒子状成分を濾し取ることが可能である。本実施形態の自動車用排ガス浄化触媒には、そのどちらの構造体も用いることができる。
(7)層構成
 本実施形態の自動車用排ガス浄化触媒は、前記触媒組成物をハニカム担体に一層以上被覆したものである。層構成は、一層でもよいが、二層以上として排ガス浄化性能を高めることが好ましい。
 上述した触媒組成物は、Rhとともに成分(A)及び/又は成分(B)の複合酸化物がアルミナ母材上に担持されていることにより、高温下においてRh粒子の粒子成長が抑制されているのみならず、Rhの活性低下が抑制されたものとなっている。すなわち、アルミナ母材上に成分(A)及び/又は成分(B)の複合酸化物とともに担持されたRhは、一層状態で他の貴金属が担持された母材と混合しても、他の貴金属が担持された母材との多層構造をとっても、高温下で性能低下が抑制されるため、優れたCO、HC、NOxの浄化特性を維持することが可能となる。
 本発明では、この様にロジウム(Rh)が成分(A)又は成分(B)の複合酸化物とともにアルミナ母材上に担持されていることを基本概念とするものである。車に搭載されるエンジンの仕様・排気量、車体内に許容される触媒容量、触媒の使用個数、許容される貴金属の種類・量・比率等に応じて、触媒の層の構成、貴金属の各層への配置、助触媒(希土類、アルカリ金属、アルカリ土類金属、遷移金属等を含む化合物)の種類・量及び各層への配置等が適宜決められる。
 以下、本発明の実施例、比較例を挙げて本発明の特徴をさらに具体的に説明するが、本発明は、この実施例に限定して解釈されるものではない。また、以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜変更することができる。なお、評価する触媒試料の熱処理条件と、結晶子の大きさ、比表面積(BET SA)、元素の分散性等の物性、また触媒の活性試験は、次のようにして行った。
<触媒の熱処理条件>
 下記実施例及び比較例で得られた触媒は、触媒粉末を電気炉内で1,050℃、12時間焼成し(耐久)、その後、1%の水素雰囲気下で800℃、2時間加熱し(前処理)、評価用サンプルとした。
<結晶子の大きさ>
 Rhと成分(A)及び/又は成分(B)とを共担持したアルミナ試料に対して、X線回折装置(XRD)として、「X’Pert Pro(PANalytical製)」を用い、測定した。このXRDにより結晶子の大きさを推定した。
<比表面積(BET SA)>
 BET SAの測定装置として、Tristar II3020(島津製作所製)を用いた。
<元素の分散性>
 希土類金属等の分散性をJEOL社製電子線マイクロアナライザ(EPMA:Electron Probe Micro Analyser)JXA-8100を用いて測定した。電子線照射により触媒サンプル内の特定元素の断面分布が分かる。
<モデルガス評価試験>
 得られた各ハニカム触媒を1,050℃、12時間、リッチ/リーン耐久の熱処理を実施した後に、コアドリル及びダイアモンドカッターを用いて、モデルガス評価用触媒の大きさ(25.4mm径×30mm長さ、15.2mL)に切り出し、モデルガス評価装置にて、以下の条件でモデルガスライトオフ試験活性を評価した。空気/燃料比:14.7±0.15Hzを模擬したモデルガスを用い、100℃から500℃まで30℃/分で昇温して行った。NOxの還元率、HCの酸化率が50%の数値に達した際の触媒の触媒床温度(NOxT50、COT50、HCT50)を計測した。
Figure JPOXMLDOC01-appb-T000001
(実施例1)
 以下の要領で、触媒組成物(触媒粉末)を調製した。
<Rh・成分(A)及び/又は成分(B)担持アルミナ>
 用いるγ-アルミナ粉末とロジウム(Rh)と成分(A)及び/又は成分(B)の複合酸化物(CZNP)の全体に対して、硝酸ロジウムをRh換算で0.2重量%、硝酸セリウムをCeO換算で1.4重量%、硝酸ジルコニウムをZrO換算で2.9重量%、硝酸ネオジムをNd換算で0.35重量%、及び硝酸プラセオジムをPr11換算で0.35重量%となるように量り取り、純水で希釈し硝酸を添加し40~50℃に加熱し十分に撹拌しながら、混合前駆体スラリーを調製した。
 次に、この混合前駆体スラリーを、BET比表面積150m/g、平均細孔径15nm、希土類化合物及びZr化合物の含有量が検出限界以下の市販の高純度なγ-アルミナ粉末と混合し、ロジウム(Rh)と希土類系化合物をγ-アルミナ担体上に含浸担持した。
 その後、この含水粉末を乾燥後、500℃及び1時間、空気中で焼成することで、実施例1の触媒粉末、すなわち0.2重量%Rh・5重量%成分(A)及び/又は成分(B)共担持アルミナ(Rh・Ce-Zr-Nd-Pr/Al、CZNP含量:5重量%)を調製した。なお、ここで用いた複合酸化物(CZNP)は、上述した成分(A)に相当するが、γ-アルミナ担体上に高分散しており、Ceを含まないZNP等の他の複合酸化物がγ-アルミナ担体の一部表面上に僅かに生成し担持されることから、成分(A)及び/又は成分(B)と表記した。以降においても、同様とする。
 得られたRh・成分(A)及び/又は成分(B)共担持アルミナを試料として用いて、XRD装置により結晶子径を測定し、また、BET SA値を測定するとともに、EPMA像を撮影した。
 結果を図2のチャート、図3のグラフ、及び図4の写真に示す。図2のチャートに示すとおり、28付近にピークとして検出できる値がみられないことから、実施例1の触媒の成分(A)及び/又は成分(B)の結晶子径は1nm以下と考えられる。また、図3のグラフに示すとおり、実施例1の触媒のBET SA値は128m/gであった。さらに、図4の写真に示されるEPMA像においてAlの他にはZrが僅かに確認されるだけで他の元素はほとんど確認できないことから、Rh、並びに、成分(A)及び/又は成分(B)がγ-アルミナ担体上で高分散に担持されていることが分かる。
(比較例1)
 成分(A)及び/又は成分(B)の配合を省略する以外は、実施例1と同様に行って、比較例1の触媒を調製した。具体的には、希土類化合物及びZr化合物の含有量が検出限界以下の市販の高純度なγ-アルミナ粉末を用いて、下記の要領でRhをγ-アルミナ担体上に担持させた。
<Rh担持アルミナ>
 用いるγ-アルミナ粉末とロジウム(Rh)の合計に対して、硝酸ロジウムをRh換算で0.2重量%となるように量り取り、純水で希釈して、スラリーを調製した。このスラリーを、BET比表面積150m/g、平均細孔径15nm、希土類化合物及びZr化合物の含有量が検出限界以下の市販の高純度なγ-アルミナ粉末と混合し、Rhをγ-アルミナ担体上に含浸担持した。
 その後、この含水粉末を乾燥後、500℃及び1時間、空気中で焼成することで、比較例1の触媒、すなわち、0.2重量%Rh担持アルミナを調製した。
 得られたRh担持アルミナを試料として、XRD装置により結晶子径を測定し、また、BET SA値を測定した。
 結果を図2のチャート、及び図3のグラフに示す。比較例1の触媒は成分(A)及び/又は成分(B)を含まないため、図2のチャートにおいて28付近にピークは検出されなかった。また、図3のグラフに示すとおり、比較例1の触媒のBET SA値は142m/gであった。
(実施例2~4、比較例2)
 成分(A)及び/又は成分(B)の含有量がそれぞれ0.5~30.0重量%の範囲となるように、成分(A)及び成分(B)の配合量を変更する以外は、実施例1と同様にして、Rhと成分(A)及び/又は成分(B)をγ-アルミナ担体上に含浸担持させ、乾燥及び焼成することにより、実施例2~4及び比較例2の触媒をそれぞれ調製した。
 得られたRh・成分(A)及び/又は成分(B)共担持アルミナを試料として用いて、XRD装置により結晶子径を測定し、またBET SA値を測定するとともに、EPMA像を撮影した。
 結果を図2のチャート、図3のグラフ、及び図4の写真に示す。図2のチャートに示すとおり、CZNP含量が10重量%以上で、28付近からピークとして検出できる値が確認された。また、実施例2(CZNP含量:10重量%)及び比較例2(CZNP含量:30重量%)の触媒の成分(A)及び/又は成分(B)の結晶子径は1~100nmと考えられ、実施例3(CZNP含量:1重量%)及び実施例4(CZNP含量:0.5重量%)の触媒の成分(A)及び/又は成分(B)の結晶子径は1nm以下と考えられる。
 また、図3のグラフに示すとおり、BET SA値はCZNP含量の増加にともなって小さくなることが示され、CZNP含量が0.5重量%では138m/g、CZNP含量が30重量%では80m/gであった。
 さらに、図4の写真に示されるEPMA像においてCZNP含量が10重量%以上であってもAlの他にZrが顕著に確認されるだけで他の元素はほとんど確認できないことから、CZNP含量が5重量%の実施例1と同様に、実施例2~4及び比較例2の触媒は、Rh、並びに、成分(A)及び/又は成分(B)がγ-アルミナ担体上で高分散に担持されていることが分かる。
「評価結果1」
 得られたRh・成分(A)及び/又は成分(B)共担持アルミナを試料として用い、XRD装置により結晶子径を測定した結果、図2のチャートに示したとおりであった。ピークとして検出できる値については、一概には言えないが、その結晶子径の算出範囲は、一般的に1~100nm程度と言われている。
 図2に示すチャートの結果から、10重量%超のCZNPを含むと、CZNPに起因するX線回折ピークが確認され、またアルミナに起因するピークの山が小さくなる傾向にあることが分かる。これにより、アルミナ担体表面に担持された希土類系CZNPの結晶子は、CZNP量の増加とともに、増大する傾向にあることが分かる。
 また、図3に示すBET SA測定の結果から、10重量%超のCZNPを含むと、BET SA値が大幅に低下することが確認された。このことから、CZNPがアルミナ担体の細孔内に入りこむことで、アルミナ担体の表面積が低下していく傾向にあることが推察される。CZNPの含有量が多いと、アルミナ担体の細孔内を充填しつつ外表面に薄い被膜を形成した状態になるか、アルミナ担体の細孔内を完全に充填し外表面積にやや厚い被膜を形成した状態になるものと推察される。
 一方、図4に示すEPMA像を観察すると、実施例2~4及び比較例2の触媒は、Rh、並びに、成分(A)及び/又は成分(B)がγ-アルミナ担体上でいずれも高分散に担持されており、成分(A)及び/又は成分(B)であるCZNPの分散性は、その含有量と相関性があることが示された。すなわち、CZNPの含有量の増加とともに、その分散性が低下する傾向にあり、0.5重量%以上5重量%以下のCZNPを含むものは、特に高分散であり、逆に10重量%超のCZNPを含むと、分散性が次第に低下していく傾向にあることが分かる。
 以上のRh・成分(A)及び/又は成分(B)共担持アルミナ試料の物性を総合すると、触媒活性成分でもある成分(A)及び/又は成分(B)のCZNPは、例えば混合前駆体スラリー状態でアルミナに含浸することで効果的に担持することができ、CZNPの担持量が30重量%と多量であっても、分散性良く担持させることができる。
 BET SA値が大きく、結晶子が小さいほど、排ガスの浄化性能が高くなることから、これらを勘案してアルミナ担体への希土類系CZNPの担持量を決定するべきといえる。
 なお、成分(A)及び/又は成分(B)であるCZNPが5重量%近辺で最良の性能が期待できると考えられるが、30重量%のCZNPを含むものでも、原材料の選定、触媒の調製方法や条件を最適化すれば、対象とする排ガスの種類、エンジンの稼働状況等によっては、実用上問題なく使用できる場合がある。これは、分散性が良い0.1~1重量%のCZNPを少量含むものでも同様であり、対象とする排ガスの種類、エンジンの稼働状況等によっては、実用上問題なく使用できる場合がある。
(実施例5)
<ハニカム触媒>
 上記実施例1で調製した<Rh・成分(A)及び/又は成分(B)共担持アルミナ>を用いて、下記の要領で、ハニカム担上に下層・上層を順次形成して、実施例5のハニカム触媒を調製した。
・下層
 γ-アルミナ粉末(BET SA=150m/g、Al=100%、D90=50μm品)と純水と酢酸(AcOH)を加え、湿式ボールミルで混合・粉砕し、D90=9μmのスラリーを調製し、このスラリーをハニカム担体(1inch×30mmL、600セル/3.5mil.)へ塗布し、乾燥、焼成を行った。
・上層
 実施例1の方法で調製した<Rh・成分(A)及び/又は成分(B)共担持アルミナ>に、Rh/OSCと、γ-アルミナ粉末(BET SA=150m/g、Al=100%、D90=50μm品)と、純水と硝酸(HNO)を湿式ボールミルで混合・粉砕し、D90=12μmのスラリーを調製し、このスラリーを上層が形成されたハニカム担体へ塗布し、乾燥、焼成を行った。Rh/OSCは0.2重量%RhをOSC(Ce/Zr/Nd/Pr=28/58/7/7、酸化物重量ベース、D90=24μm品)に、含浸法にて担持したものを用いた。
 この上層には、5重量%のCe-Zr-Nd-PrがAlに担持されたRh(0.2)-Ce(1.4)-Zr(2.9)-Nd(0.35)-Pr(0.35)/Alが、Rh(0.2)/OSCとともに合計90g/L塗布されている(なお、括弧内は、酸化物換算の重量割合である。以降において、同様とする。)。
 次に、こうして調製した実施例5のハニカム触媒を試料として用いて、前記の要領でモデルガス評価試験を行った。HC T50、CO T50、NOx T50の測定結果を、他の実施例・比較例とともに図5のグラフに示す。
(比較例3)
 上層の形成時において、実施例1の方法で調製した触媒<Rh・成分(A)及び/又は成分(B)共担持アルミナ>に代えて、比較例1の触媒<Rh担持アルミナ>を用いる以外は、実施例5と同様にして、比較例3のハニカム触媒を調製した。
 この上層には、Rh担持アルミナ触媒粉末が、Rh(0.2)/Alとして、Rh/OSCとともに90g/L塗布されている。ここで、OSCであるCZNPは、Ce/Zr/Nd/Prの重量比率が酸化物換算で28/58/7/7であり、Alは、希土類金属等を含まない純粋なアルミナである。
 次に、こうして調製した比較例3のハニカム触媒を試料として用いて、前記の要領でモデルガス評価試験を行った。HC T50、CO T50、NOx T50の測定結果を、他の実施例・比較例とともに図5のグラフに示す。
(実施例6~8)
 上層の形成時において、実施例1の方法で調製した触媒<Rh・成分(A)及び/又は成分(B)担持アルミナ>に代えて、実施例2~4の方法で調製した触媒<Rh・成分(A)及び/又は成分(B)担持アルミナ>を以下に示す重量比で用いる以外は、実施例5と同様にして、実施例6~8のハニカム触媒を調製した。また、なお、各実施例における触媒の詳細は以下に示すとおりであり、各金属成分の( )内の数値は、Rhと成分(A)の複合酸化物とアルミナの総量に対する重量%の数値である。
・実施例6:0.2重量%Rh・0.5重量%Ce-Zr-Nd-Pr/Al
 上層にRh(0.2)/OSCと、Rh(0.2)-Ce(0.2)-Zr(0.2)-Nd(0.05)-Pr(0.05)/Alを合計で90g/L含む。
・実施例7:0.2重量%Rh・1.0重量%Ce-Zr-Nd-Pr/Al
 上層にRh(0.2)/OSCと、Rh(0.2)-Ce(0.4)-Zr(0.4)-Nd(0.1)-Pr(0.1)/Alを合計で90g/L含む。
・実施例8:0.2重量%Rh・10.0重量%Ce-Zr-Nd-Pr/Al
 上層にRh(0.2)/OSCと、Rh(0.2)-Ce(2.8)-Zr(5.8)-Nd(0.7)-Pr(0.7)/Alを合計で90g/L含む。
 次に、こうして調製した実施例6~8のハニカム触媒を試料として用いて、前記の要領でモデルガス評価試験を行った。HC T50、CO T50、NOx T50の結果を、図5のグラフに示す。また、図6に、成分(A)及び/又は成分(B)の複合酸化物含有量とHCT50との関係を示すグラフ、並びに、成分(A)及び/又は成分(B)の複合酸化物含有量とNOxT50との関係を示すグラフを示す。
(比較例4)
 上層の形成時において、実施例1の方法で調製した触媒<Rh・成分(A)及び/又は成分(B)担持アルミナ>に代えて、比較例2の方法で調製した触媒<Rh・成分(A)及び/又は成分(B)担持アルミナ>を以下に示す重量比で用いる以外は、実施例5と同様にして、比較例4のハニカム触媒を調製した。
 この上層には、30.0重量%Ce-Zr-Nd-Pr/AlがRh(0.2)/OSCとともに、Rh(0.2)-Ce(8.4)-Zr(17.4)-Nd(2.1)-Pr(2.1)/Alで、合計90g/L塗布されている。なお、各金属成分の( )内の数値は、Rhと成分(A)の複合酸化物とアルミナの総量に対する重量%の数値である。
 次に、こうして調製した比較例4のハニカム触媒を試料として用いて、前記の要領でモデルガス評価試験を行った。モデルガス評価試験による評価結果を、図5及び6に示す。
「評価結果2」
 モデルガス評価試験の結果を示すグラフ、すなわち、1,050℃、12時間、リッチ/リーン耐久の熱処理後の上記触媒によるモデルガス評価試験を取りまとめた図5、図6から、NOx、CO及びHCの浄化特性について次のことがわかる。T50温度はNOx、又はHCの浄化率が各々50%となる時の触媒入口ガス温度であり、低温活性の指標となる。T50が低い方がより低温から反応が立ち上がることを示しており、触媒活性が高いと評価できる。
 実施例5の触媒は、成分(A)であるCZNPを5重量%含有し、アルミナの表面上にRhとともにCZNPが担持された触媒組成物としてハニカム担体に塗布されており、CZNPを担持しない比較例3に比べ、HC、CO及びNOxに対する優れた低温活性/高温浄化率を発揮した。また、実施例6~実施例8は、CZNPの含有量を0.5重量%から10重量%まで変化させた場合であり、RhをCZNPとともに担持したアルミナを用いることにより、低温活性/高温浄化率において、何れも比較例3のCZNPを担持しないアルミナ触媒よりも性能向上していることが確認された。
 この様に、ロジウムを担持する母材がアルミナの場合、Rhが成分(A)であるCZNPとともにアルミナに担持されると、触媒組成物によるHC,CO及びNO浄化の低温性能が向上するといえる。
 特に、本発明の実施例5では、HCの性能向上が大きいことから、アルミナへのSR反応性向上の寄与が大きいと考えられる。また、Rh一定量に対してCZNP濃度を高めることにより性能差が確認されていることから、RhとCZNPのアルミナへの担持における混合前駆体の形成段階、均一化処理等の粉末調製工程において母材が持つBET SA値が変化し寄与しているものと推察される。
 なお、1,050℃、12時間、リッチ/リーン耐久の熱処理前後の上記実施例1~4及び比較例1~2の触媒粉末によるEPMA評価試験の結果から、触媒構造について次のように推定できる。
 まず、熱処理前においては、実施例1~4のCZNPを担持した本発明の触媒では、加熱を受けていないので触媒構造に変化はなく、CZNPを担持しない比較例1でも同様である。
 しかし、実施例5~8のように、CZNPをアルミナ上に担持して上層に配置した本発明の触媒は、1050℃の熱処理(耐久)後、アルミナ上のRhは、その周辺に存在するCZNP等により高分散を維持し、粒径の拡大が抑制される。一方、CZNPを担持せずにRhだけをアルミナ上に担持して上層に配置した比較例3(CZNP含量:0重量%)の触媒では、熱処理(耐久)によりアルミナ上のRhの多くが粒径を拡大して、触媒構造が大きく変化し性能が低下したと推測される。
(実施例9~12)
 上記の5重量%Ce-Zr-Nd-Pr/Alを用いた実施例5において、<Rh・成分(A)及び/又は成分(B)担持アルミナ>として、実施例1の触媒に代えて、CZNPのうちいずれかの希土類金属又はジルコニウムが含まれない成分(A)及び/又は成分(B)を用いる以外は、実施例5と同様にして、実施例9~12のハニカム触媒を調製した。
 すなわち、CZNPの代わりに、以下に示すCeが欠損したZr、Nd、Prの3元素を含む酸化物(ZNP)、Zrが欠損したCe、Nd、Prの3元素を含む酸化物(CNP)、Ndが欠損したCe、Zr、Prの3元素を含む酸化物(CZP)、Prが欠損したCe、Zr、Ndの3元素を含む酸化物(CZN)を調製し、これらを用いて、前記と同様な条件でモデルガス試験を行った。
 (ZNP) 硝酸ジルコニウムをZrO換算で2.9重量%、硝酸ネオジムをNd換算で0.35重量%、及び硝酸プラセオジムをPr11換算で0.35重量%
 (CNP) 硝酸セリウムをCeO換算で1.4重量%、硝酸ネオジムをNd換算で0.35重量%、及び硝酸プラセオジムをPr11換算で0.35重量%
 (CZP) 硝酸セリウムをCeO換算で1.4重量%、硝酸ジルコニウムをZrO換算で2.9重量%、及び硝酸プラセオジムをPr11換算で0.35重量%
 (CZN) 硝酸セリウムをCeO換算で1.4重量%、硝酸ジルコニウムをZrO換算で2.9重量%、及び硝酸ネオジムをNd換算で0.35重量%
 T50の結果をCO,HC,NOxごとに図7の棒グラフに示す。なお、C400 転化率の結果は、Nd欠損の場合に他と比べてわずかな性能低下が認められたが、概ねT50の結果と同様であった。得られた成分(A)又は成分(B)による触媒効果であるが、CZNPのいずれかの元素が欠けると、CZNPすべてを含むものよりも、性能は若干低下している。これにより、RhはCZNPすべてを含むものに担持されアルミナに担持されたものが好ましいと言える。
 しかし、この結果は5重量%Ce-Zr-Nd-Pr/Alを用いた実施例5を基準としており、本発明の範囲内でCe等の希土類金属やZrのいずれかが含有されていれば、NdやPr等一部の成分が欠けた3元素系複合酸化物としても、性能低下を最低限に止められると考えられる。また、この結果は成分(A)又は成分(B)の元素合計量が複合酸化物として5重量%未満と少ない場合であり、Ce及び/又はZrの量が5重量%以上と多ければ、元素の種類にもよるが2元素系複合酸化物であっても、ある程度の性能向上が得られると考えられる。したがって対象とする排ガスの種類、エンジンの稼働状況等によっては、実用上問題なく使用できると考えられる。
 本発明の排ガス浄化用触媒は、内燃機関等から排出される排ガス中の一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)等を浄化でき、特に低温から高温の幅広い条件で優れた性能を維持できるため、例えばガソリンエンジン、ディーゼルエンジン等の自動車用途をはじめ、船舶等の移動体用途や、発電機等の定置用途等に広く且つ有効に利用可能である。ただし、本発明は、これらの用途に限定されるものではなく、ボイラー等固定源からの排ガス中に含まれる窒素酸化物の脱硝技術にも広く適用可能である。
 

Claims (9)

  1.  排ガス中の一酸化炭素(CO)、炭化水素(HC)、及び/又は窒素酸化物(NOx)を浄化する排ガス浄化触媒組成物であって、
     Rh、下記のCeを含む成分(A)及び/又はZrを含む成分(B)の複合酸化物、並びに、アルミナを少なくとも含有し、
     Rhが、前記複合酸化物とともにアルミナ上に担持され、Rhの担持量が、Rhと前記複合酸化物とアルミナの総量に対して、0.01~5重量%であり、前記複合酸化物の含有量が、Rhと前記複合酸化物とアルミナの総量に対して、合計で0.1~15重量%である
    ことを特徴とする排ガス浄化触媒組成物。
     成分(A)
     Ce・Zr複合酸化物、Ce・Nd複合酸化物、Ce・Pr複合酸化物、Ce・La複合酸化物、Ce・Y複合酸化物;Ce・Zr・Nd複合酸化物、Ce・Zr・Pr複合酸化物、Ce・Zr・La複合酸化物、Ce・Pr・La複合酸化物、Ce・Zr・Y複合酸化物、Ce・Nd・Pr複合酸化物、Ce・Nd・La複合酸化物、Ce・Nd・Y複合酸化物、Ce・Pr・Y複合酸化物、Ce・La・Y複合酸化物;Ce・Zr・Nd・Pr複合酸化物、Ce・Zr・Nd・La複合酸化物、Ce・Nd・Pr・La複合酸化物、Ce・Zr・Pr・La複合酸化物、Ce・Zr・Nd・Y複合酸化物、Ce・Zr・Ln・Y複合酸化物、Ce・Zr・Pr・Y複合酸化物、Ce・Nd・Pr・Y複合酸化物、Ce・Pr・La・Y複合酸化物;Ce・Nd・Ln・Y複合酸化物、Ce・Zr・Nd・Pr・Y複合酸化物、Ce・Zr・Nd・Ln・Y複合酸化物、Ce・Zr・Pr・La・Y複合酸化物、Ce・Nd・Pr・La・Y複合酸化物、及びCe・Zr・Nd・Pr・Ln・Y複合酸化物からなる群から選ばれる少なくとも1種以上
     成分(B)
     Zr・Nd複合酸化物、Zr・Pr複合酸化物、Zr・Y複合酸化物;Zr・Nd・Pr複合酸化物、Zr・Nd・La複合酸化物、Zr・Pr・La複合酸化物、Zr・Nd・Y複合酸化物、Zr・Pr・Y複合酸化物;Zr・Nd・Pr・La複合酸化物、Zr・Nd・Pr・Y複合酸化物、Zr・Nd・La・Y複合酸化物、Zr・Pr・Ln・Y複合酸化物、及びZr・Nd・Pr・La・Y複合酸化物からなる群から選ばれる少なくとも1種以上
  2.  Rh及び前記複合酸化物が、アルミナ上に高分散していることを特徴とする
    請求項1に記載の排ガス浄化用触媒組成物。
  3.  請求項1又は2に記載の排ガス浄化触媒組成物の製造方法であって、
     少なくとも水溶性のRh化合物と、Ceを含む前記成分(A)及び/又はZrを含む前記成分(B)の水溶性の前駆体化合物とを水に溶解し、RhとCe及び/又はZrを含む化合物の混合前駆体を形成して、該混合前駆体を含有する水溶液をアルミナと接触させ、Rhと前記成分(A)及び/又は前記成分(B)の前駆体化合物とをアルミナに含浸させてスラリーを得た後、得られたスラリーをろ過、乾燥し、さらに焼成して、Rhが前記成分(A)及び/又は前記成分(B)の複合酸化物とともにアルミナ上に担持された触媒組成物を得ることを特徴とする
    排ガス浄化触媒組成物の製造方法。
  4.  前記Rh化合物と、前記成分(A)及び/又は前記成分(B)の前記前駆体化合物は、ともに酸性塩化合物であり、酸を添加しながら前記混合前駆体を形成させることを特徴とする
    請求項3に記載の排ガス浄化触媒組成物の製造方法。
  5.  前記Rh化合物と、前記成分(A)及び/又は前記成分(B)の前記前駆体化合物は、ともに塩基性化合物であり、塩基を添加しながら前記混合前駆体を形成させることを特徴とする
    請求項3に記載の排ガス浄化触媒組成物の製造方法。
  6.  前記スラリーが、スプレードライにより乾燥されることを特徴とする
    請求項3~5のいずれか一項に記載の排ガス浄化触媒組成物の製造方法。
  7.  Rhが、前記成分(A)及び/又は前記成分(B)の前記複合酸化物とともにアルミナ上に担持された前記触媒組成物に、バインダーと酸又は塩基を含む水系媒体を混合し、粉砕することでスラリー化することを特徴とする
    請求項3~6のいずれか一項に記載の排ガス浄化触媒組成物の製造方法。
  8.  ハニカム担体、及び触媒層を少なくとも備え、
     請求項1又は2に記載の排ガス浄化触媒組成物が、前記触媒層として前記ハニカム担体に被覆されていることを特徴とする
    自動車用排ガス浄化触媒。
  9.  前記触媒層は、Rhを前記成分(A)及び/又は前記成分(B)の前記複合酸化物に担持した触媒組成物を含有することを特徴とする
    請求項8に記載の自動車用排ガス浄化触媒。
     
PCT/JP2018/004564 2017-02-13 2018-02-09 排ガス用浄化触媒組成物及びその製造方法、並びに自動車用排ガス浄化触媒 WO2018147408A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880011325.6A CN110312572B (zh) 2017-02-13 2018-02-09 废气用净化催化剂组合物及其制造方法、以及汽车用废气净化催化剂
US16/479,731 US20200070126A1 (en) 2017-02-13 2018-02-09 Exhaust gas-purifying catalyst composition and method for producing the same, and automobile exhaust gas-purifying catalyst
EP18750786.8A EP3581268A4 (en) 2017-02-13 2018-02-09 EMISSION CONTROL CATALYST COMPOSITION, METHOD OF MANUFACTURING THEREOF, AND EMISSION CONTROL CATALYST FOR AUTOMOBILES
JP2018567509A JP7002812B2 (ja) 2017-02-13 2018-02-09 排ガス用浄化触媒組成物の製造方法
JP2021210092A JP7187654B2 (ja) 2017-02-13 2021-12-24 排ガス用浄化触媒組成物、及び自動車用排ガス浄化触媒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017024213 2017-02-13
JP2017-024213 2017-02-13

Publications (1)

Publication Number Publication Date
WO2018147408A1 true WO2018147408A1 (ja) 2018-08-16

Family

ID=63108275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004564 WO2018147408A1 (ja) 2017-02-13 2018-02-09 排ガス用浄化触媒組成物及びその製造方法、並びに自動車用排ガス浄化触媒

Country Status (5)

Country Link
US (1) US20200070126A1 (ja)
EP (1) EP3581268A4 (ja)
JP (2) JP7002812B2 (ja)
CN (1) CN110312572B (ja)
WO (1) WO2018147408A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7430754B1 (ja) 2022-08-25 2024-02-13 株式会社キャタラー 排ガス浄化用触媒およびこれを用いた触媒体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4144698A4 (en) * 2020-04-28 2024-06-05 Umicore Shokubai Japan Co., Ltd. Ce-Zr COMPOSITE OXIDE AND PRODUCTION METHOD THEREFOR, AND EXHAUST GAS PURIFICATION CATALYST USING SAME
JP2023008520A (ja) * 2021-07-06 2023-01-19 トヨタ自動車株式会社 排ガス浄化用触媒

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138626A (ja) 1984-07-30 1986-02-24 Hitachi Ltd 触媒用担体
JPS644250A (en) 1987-03-05 1989-01-09 Toyota Central Res & Dev Catalyst for cleaning exhaust gas and its production
JPH0675675A (ja) 1991-06-24 1994-03-18 Mitsubishi Electric Corp キーボード
WO2000027508A1 (fr) 1998-11-05 2000-05-18 Toyota Jidosha Kabushiki Kaisha Procede et systeme pour purifier les gaz d'echappement et catalyseur de purification des gaz d'echappement utilise avec ce systeme ainsi que procede de fabrication correspondant
JP2008516768A (ja) * 2004-10-20 2008-05-22 バスフ・カタリスツ・エルエルシー SOx許容性をもつNOx捕捉用層状触媒およびその製造法
JP2011200817A (ja) 2010-03-26 2011-10-13 Mazda Motor Corp 排気ガス浄化用触媒
JP2012187518A (ja) * 2011-03-10 2012-10-04 Toyota Motor Corp 排ガス浄化用触媒
WO2013042300A1 (ja) * 2011-09-22 2013-03-28 マツダ株式会社 触媒付パティキュレートフィルタ
JP2013237014A (ja) 2012-05-15 2013-11-28 Mazda Motor Corp 排気ガス浄化用触媒
WO2014002667A1 (ja) 2012-06-28 2014-01-03 エヌ・イーケムキャット株式会社 排気ガス浄化用触媒組成物および自動車用排気ガス浄化用触媒
JP2015073961A (ja) * 2013-10-10 2015-04-20 マツダ株式会社 排気ガス浄化用触媒
WO2015182726A1 (ja) * 2014-05-28 2015-12-03 ユミコア日本触媒株式会社 内燃機関排ガス浄化用触媒およびそのシステム
WO2016163488A1 (ja) * 2015-04-07 2016-10-13 ユミコア日本触媒株式会社 内燃機関排気ガスの浄化触媒及び該触媒を用いた排気ガス浄化方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU604083B2 (en) * 1987-01-20 1990-12-06 Nippon Shokubai Kagaku Kogyo Co. Ltd. Catalyst for purifying exhaust gas and method for production thereof
JP3262044B2 (ja) * 1996-10-07 2002-03-04 株式会社豊田中央研究所 複合酸化物担体および複合酸化物含有触媒
US7981834B2 (en) * 2006-03-16 2011-07-19 Ict Co., Ltd. Adsorbent for hydrocarbons, catalyst for exhaust gas purification and method for exhaust gas purification
BRPI0908461B1 (pt) * 2008-02-05 2020-06-16 Basf Corporation Sistema de tratamento de emissão adequado para o tratamento de um sistema de descarga a jusante de um motor a gasolina de injeção direta
JP5380534B2 (ja) * 2009-06-16 2014-01-08 株式会社キャタラー 排ガス浄化用触媒及びその製造方法
CN104168999A (zh) * 2012-03-14 2014-11-26 恩亿凯嘉股份有限公司 废气净化用催化剂组合物以及汽车用废气净化用催化剂
CN104968430B (zh) * 2013-01-31 2018-05-08 优美科触媒日本有限公司 废气净化用催化剂以及使用该催化剂的废气净化方法
US9616386B2 (en) * 2015-03-23 2017-04-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purification of exhaust gas, NOx storage-reduction catalyst, and method for purifying exhaust gas

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138626A (ja) 1984-07-30 1986-02-24 Hitachi Ltd 触媒用担体
JPS644250A (en) 1987-03-05 1989-01-09 Toyota Central Res & Dev Catalyst for cleaning exhaust gas and its production
JPH0675675A (ja) 1991-06-24 1994-03-18 Mitsubishi Electric Corp キーボード
WO2000027508A1 (fr) 1998-11-05 2000-05-18 Toyota Jidosha Kabushiki Kaisha Procede et systeme pour purifier les gaz d'echappement et catalyseur de purification des gaz d'echappement utilise avec ce systeme ainsi que procede de fabrication correspondant
JP2008516768A (ja) * 2004-10-20 2008-05-22 バスフ・カタリスツ・エルエルシー SOx許容性をもつNOx捕捉用層状触媒およびその製造法
JP2011200817A (ja) 2010-03-26 2011-10-13 Mazda Motor Corp 排気ガス浄化用触媒
JP2012187518A (ja) * 2011-03-10 2012-10-04 Toyota Motor Corp 排ガス浄化用触媒
WO2013042300A1 (ja) * 2011-09-22 2013-03-28 マツダ株式会社 触媒付パティキュレートフィルタ
JP2013237014A (ja) 2012-05-15 2013-11-28 Mazda Motor Corp 排気ガス浄化用触媒
WO2014002667A1 (ja) 2012-06-28 2014-01-03 エヌ・イーケムキャット株式会社 排気ガス浄化用触媒組成物および自動車用排気ガス浄化用触媒
JP2015073961A (ja) * 2013-10-10 2015-04-20 マツダ株式会社 排気ガス浄化用触媒
WO2015182726A1 (ja) * 2014-05-28 2015-12-03 ユミコア日本触媒株式会社 内燃機関排ガス浄化用触媒およびそのシステム
WO2016163488A1 (ja) * 2015-04-07 2016-10-13 ユミコア日本触媒株式会社 内燃機関排気ガスの浄化触媒及び該触媒を用いた排気ガス浄化方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7430754B1 (ja) 2022-08-25 2024-02-13 株式会社キャタラー 排ガス浄化用触媒およびこれを用いた触媒体
WO2024042935A1 (ja) * 2022-08-25 2024-02-29 株式会社キャタラー 排ガス浄化用触媒およびこれを用いた触媒体

Also Published As

Publication number Publication date
CN110312572B (zh) 2022-09-20
US20200070126A1 (en) 2020-03-05
JP2022061979A (ja) 2022-04-19
CN110312572A (zh) 2019-10-08
JPWO2018147408A1 (ja) 2019-12-19
JP7187654B2 (ja) 2022-12-12
JP7002812B2 (ja) 2022-01-20
EP3581268A4 (en) 2021-01-06
EP3581268A1 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
KR102483435B1 (ko) 배기 시스템용 아산화질소 제거 촉매
KR101538183B1 (ko) 다층상 촉매 조성물
JP6007193B2 (ja) 硫酸バリウムを含むアルミナ材料の製造方法、及び排気ガス浄化用触媒の製造方法
JP4950365B2 (ja) 混合相セラミック酸化物三元合金触媒製剤及びその触媒製造方法
JP6007248B2 (ja) 排気ガス浄化用触媒組成物および自動車用排気ガス浄化用触媒
JP7187654B2 (ja) 排ガス用浄化触媒組成物、及び自動車用排ガス浄化触媒
KR20150023708A (ko) 산소 저장을 위한 혼합 금속 산화물의 복합체
EP3250320A1 (en) Platinum group metal (pgm) catalysts for automotive emissions treatment
WO2013136821A1 (ja) 排気ガス浄化用触媒組成物および自動車用排気ガス浄化用触媒
JP7518763B2 (ja) 排気ガス浄化触媒
JP6087362B2 (ja) 白金系酸化触媒、及びそれを用いた排気ガス浄化方法
JP2014505587A (ja) 硫酸バリウムを備える熱的に安定した触媒担体
JP3265534B2 (ja) 排ガス浄化用触媒
CN113042045A (zh) 排气净化用催化剂
CN113042047A (zh) 排气净化用催化剂
CN113042042A (zh) 排气净化用催化剂
CN109937088B (zh) 废气净化用催化剂及废气净化方法
JP5806157B2 (ja) 排気ガス浄化用触媒組成物
JP2019147090A (ja) 排ガス浄化用三元触媒及びその製造方法、並びに一体構造型排ガス浄化用触媒
WO2022209154A1 (ja) 排ガス浄化用触媒及び排ガス浄化システム
JP2007319795A (ja) 排ガス浄化用触媒及びその製造方法
JP2004136179A (ja) 排ガス浄化用触媒とその製造方法及び排ガス浄化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18750786

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018567509

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018750786

Country of ref document: EP